/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990 Mentat Inc. */ #include #include #include #include #include #define _SUN_TPI_VERSION 2 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Synchronization notes: * * UDP is MT and uses the usual kernel synchronization primitives. There are 2 * locks, the fanout lock (uf_lock) and conn_lock. conn_lock * protects the contents of the udp_t. uf_lock protects the address and the * fanout information. * The lock order is conn_lock -> uf_lock. * * The fanout lock uf_lock: * When a UDP endpoint is bound to a local port, it is inserted into * a bind hash list. The list consists of an array of udp_fanout_t buckets. * The size of the array is controlled by the udp_bind_fanout_size variable. * This variable can be changed in /etc/system if the default value is * not large enough. Each bind hash bucket is protected by a per bucket * lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t * structure and a few other fields in the udp_t. A UDP endpoint is removed * from the bind hash list only when it is being unbound or being closed. * The per bucket lock also protects a UDP endpoint's state changes. * * Plumbing notes: * UDP is always a device driver. For compatibility with mibopen() code * it is possible to I_PUSH "udp", but that results in pushing a passthrough * dummy module. * * The above implies that we don't support any intermediate module to * reside in between /dev/ip and udp -- in fact, we never supported such * scenario in the past as the inter-layer communication semantics have * always been private. */ /* For /etc/system control */ uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; static void udp_addr_req(queue_t *q, mblk_t *mp); static void udp_tpi_bind(queue_t *q, mblk_t *mp); static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); static int udp_build_hdr_template(conn_t *, const in6_addr_t *, const in6_addr_t *, in_port_t, uint32_t); static void udp_capability_req(queue_t *q, mblk_t *mp); static int udp_tpi_close(queue_t *q, int flags); static void udp_close_free(conn_t *); static void udp_tpi_connect(queue_t *q, mblk_t *mp); static void udp_tpi_disconnect(queue_t *q, mblk_t *mp); static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error); static void udp_err_ack_prim(queue_t *q, mblk_t *mp, t_scalar_t primitive, t_scalar_t tlierr, int sys_error); static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static void udp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); static void udp_icmp_error_ipv6(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira); static void udp_info_req(queue_t *q, mblk_t *mp); static void udp_input(void *, mblk_t *, void *, ip_recv_attr_t *); static void udp_lrput(queue_t *, mblk_t *); static void udp_lwput(queue_t *, mblk_t *); static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, boolean_t isv6); static int udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp); static int udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp); static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); int udp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr); int udp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr); static int udp_output_connected(conn_t *connp, mblk_t *mp, cred_t *cr, pid_t pid); static int udp_output_lastdst(conn_t *connp, mblk_t *mp, cred_t *cr, pid_t pid, ip_xmit_attr_t *ixa); static int udp_output_newdst(conn_t *connp, mblk_t *data_mp, sin_t *sin, sin6_t *sin6, ushort_t ipversion, cred_t *cr, pid_t, ip_xmit_attr_t *ixa); static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt); static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static mblk_t *udp_prepend_hdr(conn_t *, ip_xmit_attr_t *, const ip_pkt_t *, const in6_addr_t *, const in6_addr_t *, in_port_t, uint32_t, mblk_t *, int *); static mblk_t *udp_prepend_header_template(conn_t *, ip_xmit_attr_t *, mblk_t *, const in6_addr_t *, in_port_t, uint32_t, int *); static void udp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err); static void udp_ud_err_connected(conn_t *, t_scalar_t); static void udp_tpi_unbind(queue_t *q, mblk_t *mp); static in_port_t udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random); static void udp_wput_other(queue_t *q, mblk_t *mp); static void udp_wput_iocdata(queue_t *q, mblk_t *mp); static void udp_wput_fallback(queue_t *q, mblk_t *mp); static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size); static void *udp_stack_init(netstackid_t stackid, netstack_t *ns); static void udp_stack_fini(netstackid_t stackid, void *arg); static void *udp_kstat_init(netstackid_t stackid); static void udp_kstat_fini(netstackid_t stackid, kstat_t *ksp); static void *udp_kstat2_init(netstackid_t, udp_stat_t *); static void udp_kstat2_fini(netstackid_t, kstat_t *); static int udp_kstat_update(kstat_t *kp, int rw); /* Common routines for TPI and socket module */ static void udp_ulp_recv(conn_t *, mblk_t *, uint_t, ip_recv_attr_t *); /* Common routine for TPI and socket module */ static conn_t *udp_do_open(cred_t *, boolean_t, int, int *); static void udp_do_close(conn_t *); static int udp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, boolean_t); static int udp_do_unbind(conn_t *); int udp_getsockname(sock_lower_handle_t, struct sockaddr *, socklen_t *, cred_t *); int udp_getpeername(sock_lower_handle_t, struct sockaddr *, socklen_t *, cred_t *); static int udp_do_connect(conn_t *, const struct sockaddr *, socklen_t, cred_t *, pid_t); #define UDP_RECV_HIWATER (56 * 1024) #define UDP_RECV_LOWATER 128 #define UDP_XMIT_HIWATER (56 * 1024) #define UDP_XMIT_LOWATER 1024 #pragma inline(udp_output_connected, udp_output_newdst, udp_output_lastdst) /* * Checks if the given destination addr/port is allowed out. * If allowed, registers the (dest_addr/port, node_ID) mapping at Cluster. * Called for each connect() and for sendto()/sendmsg() to a different * destination. * For connect(), called in udp_connect(). * For sendto()/sendmsg(), called in udp_output_newdst(). * * This macro assumes that the cl_inet_connect2 hook is not NULL. * Please check this before calling this macro. * * void * CL_INET_UDP_CONNECT(conn_t cp, udp_t *udp, boolean_t is_outgoing, * in6_addr_t *faddrp, in_port_t (or uint16_t) fport, int err); */ #define CL_INET_UDP_CONNECT(cp, is_outgoing, faddrp, fport, err) { \ (err) = 0; \ /* \ * Running in cluster mode - check and register active \ * "connection" information \ */ \ if ((cp)->conn_ipversion == IPV4_VERSION) \ (err) = (*cl_inet_connect2)( \ (cp)->conn_netstack->netstack_stackid, \ IPPROTO_UDP, is_outgoing, AF_INET, \ (uint8_t *)&((cp)->conn_laddr_v4), \ (cp)->conn_lport, \ (uint8_t *)&(V4_PART_OF_V6(*faddrp)), \ (in_port_t)(fport), NULL); \ else \ (err) = (*cl_inet_connect2)( \ (cp)->conn_netstack->netstack_stackid, \ IPPROTO_UDP, is_outgoing, AF_INET6, \ (uint8_t *)&((cp)->conn_laddr_v6), \ (cp)->conn_lport, \ (uint8_t *)(faddrp), (in_port_t)(fport), NULL); \ } static struct module_info udp_mod_info = { UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER }; /* * Entry points for UDP as a device. * We have separate open functions for the /dev/udp and /dev/udp6 devices. */ static struct qinit udp_rinitv4 = { NULL, NULL, udp_openv4, udp_tpi_close, NULL, &udp_mod_info, NULL }; static struct qinit udp_rinitv6 = { NULL, NULL, udp_openv6, udp_tpi_close, NULL, &udp_mod_info, NULL }; static struct qinit udp_winit = { (pfi_t)udp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, &udp_mod_info }; /* UDP entry point during fallback */ struct qinit udp_fallback_sock_winit = { (pfi_t)udp_wput_fallback, NULL, NULL, NULL, NULL, &udp_mod_info }; /* * UDP needs to handle I_LINK and I_PLINK since ifconfig * likes to use it as a place to hang the various streams. */ static struct qinit udp_lrinit = { (pfi_t)udp_lrput, NULL, udp_openv4, udp_tpi_close, NULL, &udp_mod_info }; static struct qinit udp_lwinit = { (pfi_t)udp_lwput, NULL, udp_openv4, udp_tpi_close, NULL, &udp_mod_info }; /* For AF_INET aka /dev/udp */ struct streamtab udpinfov4 = { &udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit }; /* For AF_INET6 aka /dev/udp6 */ struct streamtab udpinfov6 = { &udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit }; #define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) /* Default structure copied into T_INFO_ACK messages */ static struct T_info_ack udp_g_t_info_ack_ipv4 = { T_INFO_ACK, UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ T_INVALID, /* ETSU_size. udp does not support expedited data. */ T_INVALID, /* CDATA_size. udp does not support connect data. */ T_INVALID, /* DDATA_size. udp does not support disconnect data. */ sizeof (sin_t), /* ADDR_size. */ 0, /* OPT_size - not initialized here */ UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ T_CLTS, /* SERV_type. udp supports connection-less. */ TS_UNBND, /* CURRENT_state. This is set from udp_state. */ (XPG4_1|SENDZERO) /* PROVIDER_flag */ }; #define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) static struct T_info_ack udp_g_t_info_ack_ipv6 = { T_INFO_ACK, UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ T_INVALID, /* ETSU_size. udp does not support expedited data. */ T_INVALID, /* CDATA_size. udp does not support connect data. */ T_INVALID, /* DDATA_size. udp does not support disconnect data. */ sizeof (sin6_t), /* ADDR_size. */ 0, /* OPT_size - not initialized here */ UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ T_CLTS, /* SERV_type. udp supports connection-less. */ TS_UNBND, /* CURRENT_state. This is set from udp_state. */ (XPG4_1|SENDZERO) /* PROVIDER_flag */ }; /* largest UDP port number */ #define UDP_MAX_PORT 65535 /* * Table of ND variables supported by udp. These are loaded into us_nd * in udp_open. * All of these are alterable, within the min/max values given, at run time. */ /* BEGIN CSTYLED */ udpparam_t udp_param_arr[] = { /*min max value name */ { 0L, 256, 32, "udp_wroff_extra" }, { 1L, 255, 255, "udp_ipv4_ttl" }, { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, { 0, 1, 1, "udp_do_checksum" }, { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"}, { 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"}, { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"}, { 65536, (1<<30), 2*1024*1024, "udp_max_buf"}, { 0, 1, 0, "udp_pmtu_discovery" }, { 0, 1, 0, "udp_sendto_ignerr" }, }; /* END CSTYLED */ /* Setable in /etc/system */ /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ uint32_t udp_random_anon_port = 1; /* * Hook functions to enable cluster networking. * On non-clustered systems these vectors must always be NULL */ void (*cl_inet_bind)(netstackid_t stack_id, uchar_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport, void *args) = NULL; void (*cl_inet_unbind)(netstackid_t stack_id, uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport, void *args) = NULL; typedef union T_primitives *t_primp_t; /* * Return the next anonymous port in the privileged port range for * bind checking. * * Trusted Extension (TX) notes: TX allows administrator to mark or * reserve ports as Multilevel ports (MLP). MLP has special function * on TX systems. Once a port is made MLP, it's not available as * ordinary port. This creates "holes" in the port name space. It * may be necessary to skip the "holes" find a suitable anon port. */ static in_port_t udp_get_next_priv_port(udp_t *udp) { static in_port_t next_priv_port = IPPORT_RESERVED - 1; in_port_t nextport; boolean_t restart = B_FALSE; udp_stack_t *us = udp->udp_us; retry: if (next_priv_port < us->us_min_anonpriv_port || next_priv_port >= IPPORT_RESERVED) { next_priv_port = IPPORT_RESERVED - 1; if (restart) return (0); restart = B_TRUE; } if (is_system_labeled() && (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) { next_priv_port = nextport; goto retry; } return (next_priv_port--); } /* * Hash list removal routine for udp_t structures. */ static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) { udp_t *udpnext; kmutex_t *lockp; udp_stack_t *us = udp->udp_us; conn_t *connp = udp->udp_connp; if (udp->udp_ptpbhn == NULL) return; /* * Extract the lock pointer in case there are concurrent * hash_remove's for this instance. */ ASSERT(connp->conn_lport != 0); if (!caller_holds_lock) { lockp = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport, us->us_bind_fanout_size)].uf_lock; ASSERT(lockp != NULL); mutex_enter(lockp); } if (udp->udp_ptpbhn != NULL) { udpnext = udp->udp_bind_hash; if (udpnext != NULL) { udpnext->udp_ptpbhn = udp->udp_ptpbhn; udp->udp_bind_hash = NULL; } *udp->udp_ptpbhn = udpnext; udp->udp_ptpbhn = NULL; } if (!caller_holds_lock) { mutex_exit(lockp); } } static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) { conn_t *connp = udp->udp_connp; udp_t **udpp; udp_t *udpnext; conn_t *connext; ASSERT(MUTEX_HELD(&uf->uf_lock)); ASSERT(udp->udp_ptpbhn == NULL); udpp = &uf->uf_udp; udpnext = udpp[0]; if (udpnext != NULL) { /* * If the new udp bound to the INADDR_ANY address * and the first one in the list is not bound to * INADDR_ANY we skip all entries until we find the * first one bound to INADDR_ANY. * This makes sure that applications binding to a * specific address get preference over those binding to * INADDR_ANY. */ connext = udpnext->udp_connp; if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { while ((udpnext = udpp[0]) != NULL && !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { udpp = &(udpnext->udp_bind_hash); } if (udpnext != NULL) udpnext->udp_ptpbhn = &udp->udp_bind_hash; } else { udpnext->udp_ptpbhn = &udp->udp_bind_hash; } } udp->udp_bind_hash = udpnext; udp->udp_ptpbhn = udpp; udpp[0] = udp; } /* * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message * passed to udp_wput. * It associates a port number and local address with the stream. * It calls IP to verify the local IP address, and calls IP to insert * the conn_t in the fanout table. * If everything is ok it then sends the T_BIND_ACK back up. * * Note that UDP over IPv4 and IPv6 sockets can use the same port number * without setting SO_REUSEADDR. This is needed so that they * can be viewed as two independent transport protocols. * However, anonymouns ports are allocated from the same range to avoid * duplicating the us->us_next_port_to_try. */ static void udp_tpi_bind(queue_t *q, mblk_t *mp) { sin_t *sin; sin6_t *sin6; mblk_t *mp1; struct T_bind_req *tbr; conn_t *connp; udp_t *udp; int error; struct sockaddr *sa; cred_t *cr; /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cr = msg_getcred(mp, NULL); ASSERT(cr != NULL); if (cr == NULL) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } connp = Q_TO_CONN(q); udp = connp->conn_udp; if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "udp_bind: bad req, len %u", (uint_t)(mp->b_wptr - mp->b_rptr)); udp_err_ack(q, mp, TPROTO, 0); return; } if (udp->udp_state != TS_UNBND) { (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "udp_bind: bad state, %u", udp->udp_state); udp_err_ack(q, mp, TOUTSTATE, 0); return; } /* * Reallocate the message to make sure we have enough room for an * address. */ mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); if (mp1 == NULL) { udp_err_ack(q, mp, TSYSERR, ENOMEM); return; } mp = mp1; /* Reset the message type in preparation for shipping it back. */ DB_TYPE(mp) = M_PCPROTO; tbr = (struct T_bind_req *)mp->b_rptr; switch (tbr->ADDR_length) { case 0: /* Request for a generic port */ tbr->ADDR_offset = sizeof (struct T_bind_req); if (connp->conn_family == AF_INET) { tbr->ADDR_length = sizeof (sin_t); sin = (sin_t *)&tbr[1]; *sin = sin_null; sin->sin_family = AF_INET; mp->b_wptr = (uchar_t *)&sin[1]; sa = (struct sockaddr *)sin; } else { ASSERT(connp->conn_family == AF_INET6); tbr->ADDR_length = sizeof (sin6_t); sin6 = (sin6_t *)&tbr[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; mp->b_wptr = (uchar_t *)&sin6[1]; sa = (struct sockaddr *)sin6; } break; case sizeof (sin_t): /* Complete IPv4 address */ sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin_t)); if (sa == NULL || !OK_32PTR((char *)sa)) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (connp->conn_family != AF_INET || sa->sa_family != AF_INET) { udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } break; case sizeof (sin6_t): /* complete IPv6 address */ sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin6_t)); if (sa == NULL || !OK_32PTR((char *)sa)) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (connp->conn_family != AF_INET6 || sa->sa_family != AF_INET6) { udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } break; default: /* Invalid request */ (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); udp_err_ack(q, mp, TBADADDR, 0); return; } error = udp_do_bind(connp, sa, tbr->ADDR_length, cr, tbr->PRIM_type != O_T_BIND_REQ); if (error != 0) { if (error > 0) { udp_err_ack(q, mp, TSYSERR, error); } else { udp_err_ack(q, mp, -error, 0); } } else { tbr->PRIM_type = T_BIND_ACK; qreply(q, mp); } } /* * This routine handles each T_CONN_REQ message passed to udp. It * associates a default destination address with the stream. * * After various error checks are completed, udp_connect() lays * the target address and port into the composite header template. * Then we ask IP for information, including a source address if we didn't * already have one. Finally we send up the T_OK_ACK reply message. */ static void udp_tpi_connect(queue_t *q, mblk_t *mp) { conn_t *connp = Q_TO_CONN(q); int error; socklen_t len; struct sockaddr *sa; struct T_conn_req *tcr; cred_t *cr; pid_t pid; /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cr = msg_getcred(mp, &pid); ASSERT(cr != NULL); if (cr == NULL) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } tcr = (struct T_conn_req *)mp->b_rptr; /* A bit of sanity checking */ if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { udp_err_ack(q, mp, TPROTO, 0); return; } if (tcr->OPT_length != 0) { udp_err_ack(q, mp, TBADOPT, 0); return; } /* * Determine packet type based on type of address passed in * the request should contain an IPv4 or IPv6 address. * Make sure that address family matches the type of * family of the address passed down. */ len = tcr->DEST_length; switch (tcr->DEST_length) { default: udp_err_ack(q, mp, TBADADDR, 0); return; case sizeof (sin_t): sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin_t)); break; case sizeof (sin6_t): sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin6_t)); break; } error = proto_verify_ip_addr(connp->conn_family, sa, len); if (error != 0) { udp_err_ack(q, mp, TSYSERR, error); return; } error = udp_do_connect(connp, sa, len, cr, pid); if (error != 0) { if (error < 0) udp_err_ack(q, mp, -error, 0); else udp_err_ack(q, mp, TSYSERR, error); } else { mblk_t *mp1; /* * We have to send a connection confirmation to * keep TLI happy. */ if (connp->conn_family == AF_INET) { mp1 = mi_tpi_conn_con(NULL, (char *)sa, sizeof (sin_t), NULL, 0); } else { mp1 = mi_tpi_conn_con(NULL, (char *)sa, sizeof (sin6_t), NULL, 0); } if (mp1 == NULL) { udp_err_ack(q, mp, TSYSERR, ENOMEM); return; } /* * Send ok_ack for T_CONN_REQ */ mp = mi_tpi_ok_ack_alloc(mp); if (mp == NULL) { /* Unable to reuse the T_CONN_REQ for the ack. */ udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); return; } putnext(connp->conn_rq, mp); putnext(connp->conn_rq, mp1); } } static int udp_tpi_close(queue_t *q, int flags) { conn_t *connp; if (flags & SO_FALLBACK) { /* * stream is being closed while in fallback * simply free the resources that were allocated */ inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); qprocsoff(q); goto done; } connp = Q_TO_CONN(q); udp_do_close(connp); done: q->q_ptr = WR(q)->q_ptr = NULL; return (0); } static void udp_close_free(conn_t *connp) { udp_t *udp = connp->conn_udp; /* If there are any options associated with the stream, free them. */ if (udp->udp_recv_ipp.ipp_fields != 0) ip_pkt_free(&udp->udp_recv_ipp); /* * Clear any fields which the kmem_cache constructor clears. * Only udp_connp needs to be preserved. * TBD: We should make this more efficient to avoid clearing * everything. */ ASSERT(udp->udp_connp == connp); bzero(udp, sizeof (udp_t)); udp->udp_connp = connp; } static int udp_do_disconnect(conn_t *connp) { udp_t *udp; udp_fanout_t *udpf; udp_stack_t *us; int error; udp = connp->conn_udp; us = udp->udp_us; mutex_enter(&connp->conn_lock); if (udp->udp_state != TS_DATA_XFER) { mutex_exit(&connp->conn_lock); return (-TOUTSTATE); } udpf = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport, us->us_bind_fanout_size)]; mutex_enter(&udpf->uf_lock); if (connp->conn_mcbc_bind) connp->conn_saddr_v6 = ipv6_all_zeros; else connp->conn_saddr_v6 = connp->conn_bound_addr_v6; connp->conn_laddr_v6 = connp->conn_bound_addr_v6; connp->conn_faddr_v6 = ipv6_all_zeros; connp->conn_fport = 0; udp->udp_state = TS_IDLE; mutex_exit(&udpf->uf_lock); /* Remove any remnants of mapped address binding */ if (connp->conn_family == AF_INET6) connp->conn_ipversion = IPV6_VERSION; connp->conn_v6lastdst = ipv6_all_zeros; error = udp_build_hdr_template(connp, &connp->conn_saddr_v6, &connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo); mutex_exit(&connp->conn_lock); if (error != 0) return (error); /* * Tell IP to remove the full binding and revert * to the local address binding. */ return (ip_laddr_fanout_insert(connp)); } static void udp_tpi_disconnect(queue_t *q, mblk_t *mp) { conn_t *connp = Q_TO_CONN(q); int error; /* * Allocate the largest primitive we need to send back * T_error_ack is > than T_ok_ack */ mp = reallocb(mp, sizeof (struct T_error_ack), 1); if (mp == NULL) { /* Unable to reuse the T_DISCON_REQ for the ack. */ udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, ENOMEM); return; } error = udp_do_disconnect(connp); if (error != 0) { if (error < 0) { udp_err_ack(q, mp, -error, 0); } else { udp_err_ack(q, mp, TSYSERR, error); } } else { mp = mi_tpi_ok_ack_alloc(mp); ASSERT(mp != NULL); qreply(q, mp); } } int udp_disconnect(conn_t *connp) { int error; connp->conn_dgram_errind = B_FALSE; error = udp_do_disconnect(connp); if (error < 0) error = proto_tlitosyserr(-error); return (error); } /* This routine creates a T_ERROR_ACK message and passes it upstream. */ static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) { if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) qreply(q, mp); } /* Shorthand to generate and send TPI error acks to our client */ static void udp_err_ack_prim(queue_t *q, mblk_t *mp, t_scalar_t primitive, t_scalar_t t_error, int sys_error) { struct T_error_ack *teackp; if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), M_PCPROTO, T_ERROR_ACK)) != NULL) { teackp = (struct T_error_ack *)mp->b_rptr; teackp->ERROR_prim = primitive; teackp->TLI_error = t_error; teackp->UNIX_error = sys_error; qreply(q, mp); } } /*ARGSUSED2*/ static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { int i; udp_t *udp = Q_TO_UDP(q); udp_stack_t *us = udp->udp_us; for (i = 0; i < us->us_num_epriv_ports; i++) { if (us->us_epriv_ports[i] != 0) (void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]); } return (0); } /* ARGSUSED1 */ static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; int i; udp_t *udp = Q_TO_UDP(q); udp_stack_t *us = udp->udp_us; /* * Fail the request if the new value does not lie within the * port number limits. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || new_value >= 65536) { return (EINVAL); } /* Check if the value is already in the list */ for (i = 0; i < us->us_num_epriv_ports; i++) { if (new_value == us->us_epriv_ports[i]) { return (EEXIST); } } /* Find an empty slot */ for (i = 0; i < us->us_num_epriv_ports; i++) { if (us->us_epriv_ports[i] == 0) break; } if (i == us->us_num_epriv_ports) { return (EOVERFLOW); } /* Set the new value */ us->us_epriv_ports[i] = (in_port_t)new_value; return (0); } /* ARGSUSED1 */ static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; int i; udp_t *udp = Q_TO_UDP(q); udp_stack_t *us = udp->udp_us; /* * Fail the request if the new value does not lie within the * port number limits. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || new_value >= 65536) { return (EINVAL); } /* Check that the value is already in the list */ for (i = 0; i < us->us_num_epriv_ports; i++) { if (us->us_epriv_ports[i] == new_value) break; } if (i == us->us_num_epriv_ports) { return (ESRCH); } /* Clear the value */ us->us_epriv_ports[i] = 0; return (0); } /* At minimum we need 4 bytes of UDP header */ #define ICMP_MIN_UDP_HDR 4 /* * udp_icmp_input is called as conn_recvicmp to process ICMP messages. * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. * Assumes that IP has pulled up everything up to and including the ICMP header. */ /* ARGSUSED2 */ static void udp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { conn_t *connp = (conn_t *)arg1; icmph_t *icmph; ipha_t *ipha; int iph_hdr_length; udpha_t *udpha; sin_t sin; sin6_t sin6; mblk_t *mp1; int error = 0; udp_t *udp = connp->conn_udp; ipha = (ipha_t *)mp->b_rptr; ASSERT(OK_32PTR(mp->b_rptr)); if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); udp_icmp_error_ipv6(connp, mp, ira); return; } ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); /* Skip past the outer IP and ICMP headers */ ASSERT(IPH_HDR_LENGTH(ipha) == ira->ira_ip_hdr_length); iph_hdr_length = ira->ira_ip_hdr_length; icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; ipha = (ipha_t *)&icmph[1]; /* Inner IP header */ /* Skip past the inner IP and find the ULP header */ iph_hdr_length = IPH_HDR_LENGTH(ipha); udpha = (udpha_t *)((char *)ipha + iph_hdr_length); switch (icmph->icmph_type) { case ICMP_DEST_UNREACHABLE: switch (icmph->icmph_code) { case ICMP_FRAGMENTATION_NEEDED: { ipha_t *ipha; ip_xmit_attr_t *ixa; /* * IP has already adjusted the path MTU. * But we need to adjust DF for IPv4. */ if (connp->conn_ipversion != IPV4_VERSION) break; ixa = conn_get_ixa(connp, B_FALSE); if (ixa == NULL || ixa->ixa_ire == NULL) { /* * Some other thread holds conn_ixa. We will * redo this on the next ICMP too big. */ if (ixa != NULL) ixa_refrele(ixa); break; } (void) ip_get_pmtu(ixa); mutex_enter(&connp->conn_lock); ipha = (ipha_t *)connp->conn_ht_iphc; if (ixa->ixa_flags & IXAF_PMTU_IPV4_DF) { ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; } else { ipha->ipha_fragment_offset_and_flags &= ~IPH_DF_HTONS; } mutex_exit(&connp->conn_lock); ixa_refrele(ixa); break; } case ICMP_PORT_UNREACHABLE: case ICMP_PROTOCOL_UNREACHABLE: error = ECONNREFUSED; break; default: /* Transient errors */ break; } break; default: /* Transient errors */ break; } if (error == 0) { freemsg(mp); return; } /* * Deliver T_UDERROR_IND when the application has asked for it. * The socket layer enables this automatically when connected. */ if (!connp->conn_dgram_errind) { freemsg(mp); return; } switch (connp->conn_family) { case AF_INET: sin = sin_null; sin.sin_family = AF_INET; sin.sin_addr.s_addr = ipha->ipha_dst; sin.sin_port = udpha->uha_dst_port; if (IPCL_IS_NONSTR(connp)) { mutex_enter(&connp->conn_lock); if (udp->udp_state == TS_DATA_XFER) { if (sin.sin_port == connp->conn_fport && sin.sin_addr.s_addr == connp->conn_faddr_v4) { mutex_exit(&connp->conn_lock); (*connp->conn_upcalls->su_set_error) (connp->conn_upper_handle, error); goto done; } } else { udp->udp_delayed_error = error; *((sin_t *)&udp->udp_delayed_addr) = sin; } mutex_exit(&connp->conn_lock); } else { mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, error); if (mp1 != NULL) putnext(connp->conn_rq, mp1); } break; case AF_INET6: sin6 = sin6_null; sin6.sin6_family = AF_INET6; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); sin6.sin6_port = udpha->uha_dst_port; if (IPCL_IS_NONSTR(connp)) { mutex_enter(&connp->conn_lock); if (udp->udp_state == TS_DATA_XFER) { if (sin6.sin6_port == connp->conn_fport && IN6_ARE_ADDR_EQUAL(&sin6.sin6_addr, &connp->conn_faddr_v6)) { mutex_exit(&connp->conn_lock); (*connp->conn_upcalls->su_set_error) (connp->conn_upper_handle, error); goto done; } } else { udp->udp_delayed_error = error; *((sin6_t *)&udp->udp_delayed_addr) = sin6; } mutex_exit(&connp->conn_lock); } else { mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, error); if (mp1 != NULL) putnext(connp->conn_rq, mp1); } break; } done: freemsg(mp); } /* * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. * Assumes that IP has pulled up all the extension headers as well as the * ICMPv6 header. */ static void udp_icmp_error_ipv6(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira) { icmp6_t *icmp6; ip6_t *ip6h, *outer_ip6h; uint16_t iph_hdr_length; uint8_t *nexthdrp; udpha_t *udpha; sin6_t sin6; mblk_t *mp1; int error = 0; udp_t *udp = connp->conn_udp; udp_stack_t *us = udp->udp_us; outer_ip6h = (ip6_t *)mp->b_rptr; #ifdef DEBUG if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6) iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h); else iph_hdr_length = IPV6_HDR_LEN; ASSERT(iph_hdr_length == ira->ira_ip_hdr_length); #endif /* Skip past the outer IP and ICMP headers */ iph_hdr_length = ira->ira_ip_hdr_length; icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; /* Skip past the inner IP and find the ULP header */ ip6h = (ip6_t *)&icmp6[1]; /* Inner IP header */ if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) { freemsg(mp); return; } udpha = (udpha_t *)((char *)ip6h + iph_hdr_length); switch (icmp6->icmp6_type) { case ICMP6_DST_UNREACH: switch (icmp6->icmp6_code) { case ICMP6_DST_UNREACH_NOPORT: error = ECONNREFUSED; break; case ICMP6_DST_UNREACH_ADMIN: case ICMP6_DST_UNREACH_NOROUTE: case ICMP6_DST_UNREACH_BEYONDSCOPE: case ICMP6_DST_UNREACH_ADDR: /* Transient errors */ break; default: break; } break; case ICMP6_PACKET_TOO_BIG: { struct T_unitdata_ind *tudi; struct T_opthdr *toh; size_t udi_size; mblk_t *newmp; t_scalar_t opt_length = sizeof (struct T_opthdr) + sizeof (struct ip6_mtuinfo); sin6_t *sin6; struct ip6_mtuinfo *mtuinfo; /* * If the application has requested to receive path mtu * information, send up an empty message containing an * IPV6_PATHMTU ancillary data item. */ if (!connp->conn_ipv6_recvpathmtu) break; udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + opt_length; if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { BUMP_MIB(&us->us_udp_mib, udpInErrors); break; } /* * newmp->b_cont is left to NULL on purpose. This is an * empty message containing only ancillary data. */ newmp->b_datap->db_type = M_PROTO; tudi = (struct T_unitdata_ind *)newmp->b_rptr; newmp->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin6_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); tudi->OPT_length = opt_length; sin6 = (sin6_t *)&tudi[1]; bzero(sin6, sizeof (sin6_t)); sin6->sin6_family = AF_INET6; sin6->sin6_addr = connp->conn_faddr_v6; toh = (struct T_opthdr *)&sin6[1]; toh->level = IPPROTO_IPV6; toh->name = IPV6_PATHMTU; toh->len = opt_length; toh->status = 0; mtuinfo = (struct ip6_mtuinfo *)&toh[1]; bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); mtuinfo->ip6m_addr.sin6_family = AF_INET6; mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; /* * We've consumed everything we need from the original * message. Free it, then send our empty message. */ freemsg(mp); udp_ulp_recv(connp, newmp, msgdsize(newmp), ira); return; } case ICMP6_TIME_EXCEEDED: /* Transient errors */ break; case ICMP6_PARAM_PROB: /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && (uchar_t *)ip6h + icmp6->icmp6_pptr == (uchar_t *)nexthdrp) { error = ECONNREFUSED; break; } break; } if (error == 0) { freemsg(mp); return; } /* * Deliver T_UDERROR_IND when the application has asked for it. * The socket layer enables this automatically when connected. */ if (!connp->conn_dgram_errind) { freemsg(mp); return; } sin6 = sin6_null; sin6.sin6_family = AF_INET6; sin6.sin6_addr = ip6h->ip6_dst; sin6.sin6_port = udpha->uha_dst_port; sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; if (IPCL_IS_NONSTR(connp)) { mutex_enter(&connp->conn_lock); if (udp->udp_state == TS_DATA_XFER) { if (sin6.sin6_port == connp->conn_fport && IN6_ARE_ADDR_EQUAL(&sin6.sin6_addr, &connp->conn_faddr_v6)) { mutex_exit(&connp->conn_lock); (*connp->conn_upcalls->su_set_error) (connp->conn_upper_handle, error); goto done; } } else { udp->udp_delayed_error = error; *((sin6_t *)&udp->udp_delayed_addr) = sin6; } mutex_exit(&connp->conn_lock); } else { mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, error); if (mp1 != NULL) putnext(connp->conn_rq, mp1); } done: freemsg(mp); } /* * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. * The local address is filled in if endpoint is bound. The remote address * is filled in if remote address has been precified ("connected endpoint") * (The concept of connected CLTS sockets is alien to published TPI * but we support it anyway). */ static void udp_addr_req(queue_t *q, mblk_t *mp) { struct sockaddr *sa; mblk_t *ackmp; struct T_addr_ack *taa; udp_t *udp = Q_TO_UDP(q); conn_t *connp = udp->udp_connp; uint_t addrlen; /* Make it large enough for worst case */ ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2 * sizeof (sin6_t), 1); if (ackmp == NULL) { udp_err_ack(q, mp, TSYSERR, ENOMEM); return; } taa = (struct T_addr_ack *)ackmp->b_rptr; bzero(taa, sizeof (struct T_addr_ack)); ackmp->b_wptr = (uchar_t *)&taa[1]; taa->PRIM_type = T_ADDR_ACK; ackmp->b_datap->db_type = M_PCPROTO; if (connp->conn_family == AF_INET) addrlen = sizeof (sin_t); else addrlen = sizeof (sin6_t); mutex_enter(&connp->conn_lock); /* * Note: Following code assumes 32 bit alignment of basic * data structures like sin_t and struct T_addr_ack. */ if (udp->udp_state != TS_UNBND) { /* * Fill in local address first */ taa->LOCADDR_offset = sizeof (*taa); taa->LOCADDR_length = addrlen; sa = (struct sockaddr *)&taa[1]; (void) conn_getsockname(connp, sa, &addrlen); ackmp->b_wptr += addrlen; } if (udp->udp_state == TS_DATA_XFER) { /* * connected, fill remote address too */ taa->REMADDR_length = addrlen; /* assumed 32-bit alignment */ taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); (void) conn_getpeername(connp, sa, &addrlen); ackmp->b_wptr += addrlen; } mutex_exit(&connp->conn_lock); ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); qreply(q, ackmp); } static void udp_copy_info(struct T_info_ack *tap, udp_t *udp) { conn_t *connp = udp->udp_connp; if (connp->conn_family == AF_INET) { *tap = udp_g_t_info_ack_ipv4; } else { *tap = udp_g_t_info_ack_ipv6; } tap->CURRENT_state = udp->udp_state; tap->OPT_size = udp_max_optsize; } static void udp_do_capability_ack(udp_t *udp, struct T_capability_ack *tcap, t_uscalar_t cap_bits1) { tcap->CAP_bits1 = 0; if (cap_bits1 & TC1_INFO) { udp_copy_info(&tcap->INFO_ack, udp); tcap->CAP_bits1 |= TC1_INFO; } } /* * This routine responds to T_CAPABILITY_REQ messages. It is called by * udp_wput. Much of the T_CAPABILITY_ACK information is copied from * udp_g_t_info_ack. The current state of the stream is copied from * udp_state. */ static void udp_capability_req(queue_t *q, mblk_t *mp) { t_uscalar_t cap_bits1; struct T_capability_ack *tcap; udp_t *udp = Q_TO_UDP(q); cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), mp->b_datap->db_type, T_CAPABILITY_ACK); if (!mp) return; tcap = (struct T_capability_ack *)mp->b_rptr; udp_do_capability_ack(udp, tcap, cap_bits1); qreply(q, mp); } /* * This routine responds to T_INFO_REQ messages. It is called by udp_wput. * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. * The current state of the stream is copied from udp_state. */ static void udp_info_req(queue_t *q, mblk_t *mp) { udp_t *udp = Q_TO_UDP(q); /* Create a T_INFO_ACK message. */ mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, T_INFO_ACK); if (!mp) return; udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); qreply(q, mp); } /* For /dev/udp aka AF_INET open */ static int udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { return (udp_open(q, devp, flag, sflag, credp, B_FALSE)); } /* For /dev/udp6 aka AF_INET6 open */ static int udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { return (udp_open(q, devp, flag, sflag, credp, B_TRUE)); } /* * This is the open routine for udp. It allocates a udp_t structure for * the stream and, on the first open of the module, creates an ND table. */ static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, boolean_t isv6) { udp_t *udp; conn_t *connp; dev_t conn_dev; vmem_t *minor_arena; int err; /* If the stream is already open, return immediately. */ if (q->q_ptr != NULL) return (0); if (sflag == MODOPEN) return (EINVAL); if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { minor_arena = ip_minor_arena_la; } else { /* * Either minor numbers in the large arena were exhausted * or a non socket application is doing the open. * Try to allocate from the small arena. */ if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) return (EBUSY); minor_arena = ip_minor_arena_sa; } if (flag & SO_FALLBACK) { /* * Non streams socket needs a stream to fallback to */ RD(q)->q_ptr = (void *)conn_dev; WR(q)->q_qinfo = &udp_fallback_sock_winit; WR(q)->q_ptr = (void *)minor_arena; qprocson(q); return (0); } connp = udp_do_open(credp, isv6, KM_SLEEP, &err); if (connp == NULL) { inet_minor_free(minor_arena, conn_dev); return (err); } udp = connp->conn_udp; *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); connp->conn_dev = conn_dev; connp->conn_minor_arena = minor_arena; /* * Initialize the udp_t structure for this stream. */ q->q_ptr = connp; WR(q)->q_ptr = connp; connp->conn_rq = q; connp->conn_wq = WR(q); /* * Since this conn_t/udp_t is not yet visible to anybody else we don't * need to lock anything. */ ASSERT(connp->conn_proto == IPPROTO_UDP); ASSERT(connp->conn_udp == udp); ASSERT(udp->udp_connp == connp); if (flag & SO_SOCKSTR) { udp->udp_issocket = B_TRUE; } WR(q)->q_hiwat = connp->conn_sndbuf; WR(q)->q_lowat = connp->conn_sndlowat; qprocson(q); /* Set the Stream head write offset and high watermark. */ (void) proto_set_tx_wroff(q, connp, connp->conn_wroff); (void) proto_set_rx_hiwat(q, connp, udp_set_rcv_hiwat(udp, connp->conn_rcvbuf)); mutex_enter(&connp->conn_lock); connp->conn_state_flags &= ~CONN_INCIPIENT; mutex_exit(&connp->conn_lock); return (0); } /* * Which UDP options OK to set through T_UNITDATA_REQ... */ /* ARGSUSED */ static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) { return (B_TRUE); } /* * This routine gets default values of certain options whose default * values are maintained by protcol specific code */ int udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) { udp_t *udp = Q_TO_UDP(q); udp_stack_t *us = udp->udp_us; int *i1 = (int *)ptr; switch (level) { case IPPROTO_IP: switch (name) { case IP_MULTICAST_TTL: *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; return (sizeof (uchar_t)); case IP_MULTICAST_LOOP: *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; return (sizeof (uchar_t)); } break; case IPPROTO_IPV6: switch (name) { case IPV6_MULTICAST_HOPS: *i1 = IP_DEFAULT_MULTICAST_TTL; return (sizeof (int)); case IPV6_MULTICAST_LOOP: *i1 = IP_DEFAULT_MULTICAST_LOOP; return (sizeof (int)); case IPV6_UNICAST_HOPS: *i1 = us->us_ipv6_hoplimit; return (sizeof (int)); } break; } return (-1); } /* * This routine retrieves the current status of socket options. * It returns the size of the option retrieved, or -1. */ int udp_opt_get(conn_t *connp, t_scalar_t level, t_scalar_t name, uchar_t *ptr) { int *i1 = (int *)ptr; udp_t *udp = connp->conn_udp; int len; conn_opt_arg_t coas; int retval; coas.coa_connp = connp; coas.coa_ixa = connp->conn_ixa; coas.coa_ipp = &connp->conn_xmit_ipp; coas.coa_ancillary = B_FALSE; coas.coa_changed = 0; /* * We assume that the optcom framework has checked for the set * of levels and names that are supported, hence we don't worry * about rejecting based on that. * First check for UDP specific handling, then pass to common routine. */ switch (level) { case IPPROTO_IP: /* * Only allow IPv4 option processing on IPv4 sockets. */ if (connp->conn_family != AF_INET) return (-1); switch (name) { case IP_OPTIONS: case T_IP_OPTIONS: mutex_enter(&connp->conn_lock); if (!(udp->udp_recv_ipp.ipp_fields & IPPF_IPV4_OPTIONS)) { mutex_exit(&connp->conn_lock); return (0); } len = udp->udp_recv_ipp.ipp_ipv4_options_len; ASSERT(len != 0); bcopy(udp->udp_recv_ipp.ipp_ipv4_options, ptr, len); mutex_exit(&connp->conn_lock); return (len); } break; case IPPROTO_UDP: switch (name) { case UDP_NAT_T_ENDPOINT: mutex_enter(&connp->conn_lock); *i1 = udp->udp_nat_t_endpoint; mutex_exit(&connp->conn_lock); return (sizeof (int)); case UDP_RCVHDR: mutex_enter(&connp->conn_lock); *i1 = udp->udp_rcvhdr ? 1 : 0; mutex_exit(&connp->conn_lock); return (sizeof (int)); } } mutex_enter(&connp->conn_lock); retval = conn_opt_get(&coas, level, name, ptr); mutex_exit(&connp->conn_lock); return (retval); } /* * This routine retrieves the current status of socket options. * It returns the size of the option retrieved, or -1. */ int udp_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) { conn_t *connp = Q_TO_CONN(q); int err; err = udp_opt_get(connp, level, name, ptr); return (err); } /* * This routine sets socket options. */ int udp_do_opt_set(conn_opt_arg_t *coa, int level, int name, uint_t inlen, uchar_t *invalp, cred_t *cr, boolean_t checkonly) { conn_t *connp = coa->coa_connp; ip_xmit_attr_t *ixa = coa->coa_ixa; udp_t *udp = connp->conn_udp; udp_stack_t *us = udp->udp_us; int *i1 = (int *)invalp; boolean_t onoff = (*i1 == 0) ? 0 : 1; int error; ASSERT(MUTEX_NOT_HELD(&coa->coa_connp->conn_lock)); /* * First do UDP specific sanity checks and handle UDP specific * options. Note that some IPPROTO_UDP options are handled * by conn_opt_set. */ switch (level) { case SOL_SOCKET: switch (name) { case SO_SNDBUF: if (*i1 > us->us_max_buf) { return (ENOBUFS); } break; case SO_RCVBUF: if (*i1 > us->us_max_buf) { return (ENOBUFS); } break; case SCM_UCRED: { struct ucred_s *ucr; cred_t *newcr; ts_label_t *tsl; /* * Only sockets that have proper privileges and are * bound to MLPs will have any other value here, so * this implicitly tests for privilege to set label. */ if (connp->conn_mlp_type == mlptSingle) break; ucr = (struct ucred_s *)invalp; if (inlen < sizeof (*ucr) + sizeof (bslabel_t) || ucr->uc_labeloff < sizeof (*ucr) || ucr->uc_labeloff + sizeof (bslabel_t) > inlen) return (EINVAL); if (!checkonly) { /* * Set ixa_tsl to the new label. * We assume that crgetzoneid doesn't change * as part of the SCM_UCRED. */ ASSERT(cr != NULL); if ((tsl = crgetlabel(cr)) == NULL) return (EINVAL); newcr = copycred_from_bslabel(cr, UCLABEL(ucr), tsl->tsl_doi, KM_NOSLEEP); if (newcr == NULL) return (ENOSR); ASSERT(newcr->cr_label != NULL); /* * Move the hold on the cr_label to ixa_tsl by * setting cr_label to NULL. Then release newcr. */ ip_xmit_attr_replace_tsl(ixa, newcr->cr_label); ixa->ixa_flags |= IXAF_UCRED_TSL; newcr->cr_label = NULL; crfree(newcr); coa->coa_changed |= COA_HEADER_CHANGED; coa->coa_changed |= COA_WROFF_CHANGED; } /* Fully handled this option. */ return (0); } } break; case IPPROTO_UDP: switch (name) { case UDP_NAT_T_ENDPOINT: if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { return (error); } /* * Use conn_family instead so we can avoid ambiguitites * with AF_INET6 sockets that may switch from IPv4 * to IPv6. */ if (connp->conn_family != AF_INET) { return (EAFNOSUPPORT); } if (!checkonly) { mutex_enter(&connp->conn_lock); udp->udp_nat_t_endpoint = onoff; mutex_exit(&connp->conn_lock); coa->coa_changed |= COA_HEADER_CHANGED; coa->coa_changed |= COA_WROFF_CHANGED; } /* Fully handled this option. */ return (0); case UDP_RCVHDR: mutex_enter(&connp->conn_lock); udp->udp_rcvhdr = onoff; mutex_exit(&connp->conn_lock); return (0); } break; } error = conn_opt_set(coa, level, name, inlen, invalp, checkonly, cr); return (error); } /* * This routine sets socket options. */ int udp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr) { udp_t *udp = connp->conn_udp; int err; conn_opt_arg_t coas, *coa; boolean_t checkonly; udp_stack_t *us = udp->udp_us; switch (optset_context) { case SETFN_OPTCOM_CHECKONLY: checkonly = B_TRUE; /* * Note: Implies T_CHECK semantics for T_OPTCOM_REQ * inlen != 0 implies value supplied and * we have to "pretend" to set it. * inlen == 0 implies that there is no * value part in T_CHECK request and just validation * done elsewhere should be enough, we just return here. */ if (inlen == 0) { *outlenp = 0; return (0); } break; case SETFN_OPTCOM_NEGOTIATE: checkonly = B_FALSE; break; case SETFN_UD_NEGOTIATE: case SETFN_CONN_NEGOTIATE: checkonly = B_FALSE; /* * Negotiating local and "association-related" options * through T_UNITDATA_REQ. * * Following routine can filter out ones we do not * want to be "set" this way. */ if (!udp_opt_allow_udr_set(level, name)) { *outlenp = 0; return (EINVAL); } break; default: /* * We should never get here */ *outlenp = 0; return (EINVAL); } ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); if (thisdg_attrs != NULL) { /* Options from T_UNITDATA_REQ */ coa = (conn_opt_arg_t *)thisdg_attrs; ASSERT(coa->coa_connp == connp); ASSERT(coa->coa_ixa != NULL); ASSERT(coa->coa_ipp != NULL); ASSERT(coa->coa_ancillary); } else { coa = &coas; coas.coa_connp = connp; /* Get a reference on conn_ixa to prevent concurrent mods */ coas.coa_ixa = conn_get_ixa(connp, B_TRUE); if (coas.coa_ixa == NULL) { *outlenp = 0; return (ENOMEM); } coas.coa_ipp = &connp->conn_xmit_ipp; coas.coa_ancillary = B_FALSE; coas.coa_changed = 0; } err = udp_do_opt_set(coa, level, name, inlen, invalp, cr, checkonly); if (err != 0) { errout: if (!coa->coa_ancillary) ixa_refrele(coa->coa_ixa); *outlenp = 0; return (err); } /* Handle DHCPINIT here outside of lock */ if (level == IPPROTO_IP && name == IP_DHCPINIT_IF) { uint_t ifindex; ill_t *ill; ifindex = *(uint_t *)invalp; if (ifindex == 0) { ill = NULL; } else { ill = ill_lookup_on_ifindex(ifindex, B_FALSE, coa->coa_ixa->ixa_ipst); if (ill == NULL) { err = ENXIO; goto errout; } mutex_enter(&ill->ill_lock); if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); ill_refrele(ill); err = ENXIO; goto errout; } if (IS_VNI(ill)) { mutex_exit(&ill->ill_lock); ill_refrele(ill); err = EINVAL; goto errout; } } mutex_enter(&connp->conn_lock); if (connp->conn_dhcpinit_ill != NULL) { /* * We've locked the conn so conn_cleanup_ill() * cannot clear conn_dhcpinit_ill -- so it's * safe to access the ill. */ ill_t *oill = connp->conn_dhcpinit_ill; ASSERT(oill->ill_dhcpinit != 0); atomic_dec_32(&oill->ill_dhcpinit); ill_set_inputfn(connp->conn_dhcpinit_ill); connp->conn_dhcpinit_ill = NULL; } if (ill != NULL) { connp->conn_dhcpinit_ill = ill; atomic_inc_32(&ill->ill_dhcpinit); ill_set_inputfn(ill); mutex_exit(&connp->conn_lock); mutex_exit(&ill->ill_lock); ill_refrele(ill); } else { mutex_exit(&connp->conn_lock); } } /* * Common case of OK return with outval same as inval. */ if (invalp != outvalp) { /* don't trust bcopy for identical src/dst */ (void) bcopy(invalp, outvalp, inlen); } *outlenp = inlen; /* * If this was not ancillary data, then we rebuild the headers, * update the IRE/NCE, and IPsec as needed. * Since the label depends on the destination we go through * ip_set_destination first. */ if (coa->coa_ancillary) { return (0); } if (coa->coa_changed & COA_ROUTE_CHANGED) { in6_addr_t saddr, faddr, nexthop; in_port_t fport; /* * We clear lastdst to make sure we pick up the change * next time sending. * If we are connected we re-cache the information. * We ignore errors to preserve BSD behavior. * Note that we don't redo IPsec policy lookup here * since the final destination (or source) didn't change. */ mutex_enter(&connp->conn_lock); connp->conn_v6lastdst = ipv6_all_zeros; ip_attr_nexthop(coa->coa_ipp, coa->coa_ixa, &connp->conn_faddr_v6, &nexthop); saddr = connp->conn_saddr_v6; faddr = connp->conn_faddr_v6; fport = connp->conn_fport; mutex_exit(&connp->conn_lock); if (!IN6_IS_ADDR_UNSPECIFIED(&faddr) && !IN6_IS_ADDR_V4MAPPED_ANY(&faddr)) { (void) ip_attr_connect(connp, coa->coa_ixa, &saddr, &faddr, &nexthop, fport, NULL, NULL, IPDF_ALLOW_MCBC | IPDF_VERIFY_DST); } } ixa_refrele(coa->coa_ixa); if (coa->coa_changed & COA_HEADER_CHANGED) { /* * Rebuild the header template if we are connected. * Otherwise clear conn_v6lastdst so we rebuild the header * in the data path. */ mutex_enter(&connp->conn_lock); if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { err = udp_build_hdr_template(connp, &connp->conn_saddr_v6, &connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo); if (err != 0) { mutex_exit(&connp->conn_lock); return (err); } } else { connp->conn_v6lastdst = ipv6_all_zeros; } mutex_exit(&connp->conn_lock); } if (coa->coa_changed & COA_RCVBUF_CHANGED) { (void) proto_set_rx_hiwat(connp->conn_rq, connp, connp->conn_rcvbuf); } if ((coa->coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { connp->conn_wq->q_hiwat = connp->conn_sndbuf; } if (coa->coa_changed & COA_WROFF_CHANGED) { /* Increase wroff if needed */ uint_t wroff; mutex_enter(&connp->conn_lock); wroff = connp->conn_ht_iphc_allocated + us->us_wroff_extra; if (udp->udp_nat_t_endpoint) wroff += sizeof (uint32_t); if (wroff > connp->conn_wroff) { connp->conn_wroff = wroff; mutex_exit(&connp->conn_lock); (void) proto_set_tx_wroff(connp->conn_rq, connp, wroff); } else { mutex_exit(&connp->conn_lock); } } return (err); } /* This routine sets socket options. */ int udp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr) { conn_t *connp = Q_TO_CONN(q); int error; error = udp_opt_set(connp, optset_context, level, name, inlen, invalp, outlenp, outvalp, thisdg_attrs, cr); return (error); } /* * Setup IP and UDP headers. * Returns NULL on allocation failure, in which case data_mp is freed. */ mblk_t * udp_prepend_hdr(conn_t *connp, ip_xmit_attr_t *ixa, const ip_pkt_t *ipp, const in6_addr_t *v6src, const in6_addr_t *v6dst, in_port_t dstport, uint32_t flowinfo, mblk_t *data_mp, int *errorp) { mblk_t *mp; udpha_t *udpha; udp_stack_t *us = connp->conn_netstack->netstack_udp; uint_t data_len; uint32_t cksum; udp_t *udp = connp->conn_udp; boolean_t insert_spi = udp->udp_nat_t_endpoint; uint_t ulp_hdr_len; data_len = msgdsize(data_mp); ulp_hdr_len = UDPH_SIZE; if (insert_spi) ulp_hdr_len += sizeof (uint32_t); mp = conn_prepend_hdr(ixa, ipp, v6src, v6dst, IPPROTO_UDP, flowinfo, ulp_hdr_len, data_mp, data_len, us->us_wroff_extra, &cksum, errorp); if (mp == NULL) { ASSERT(*errorp != 0); return (NULL); } data_len += ulp_hdr_len; ixa->ixa_pktlen = data_len + ixa->ixa_ip_hdr_length; udpha = (udpha_t *)(mp->b_rptr + ixa->ixa_ip_hdr_length); udpha->uha_src_port = connp->conn_lport; udpha->uha_dst_port = dstport; udpha->uha_checksum = 0; udpha->uha_length = htons(data_len); /* * If there was a routing option/header then conn_prepend_hdr * has massaged it and placed the pseudo-header checksum difference * in the cksum argument. * * Setup header length and prepare for ULP checksum done in IP. * * We make it easy for IP to include our pseudo header * by putting our length in uha_checksum. * The IP source, destination, and length have already been set by * conn_prepend_hdr. */ cksum += data_len; cksum = (cksum >> 16) + (cksum & 0xFFFF); ASSERT(cksum < 0x10000); if (ixa->ixa_flags & IXAF_IS_IPV4) { ipha_t *ipha = (ipha_t *)mp->b_rptr; ASSERT(ntohs(ipha->ipha_length) == ixa->ixa_pktlen); /* IP does the checksum if uha_checksum is non-zero */ if (us->us_do_checksum) { if (cksum == 0) udpha->uha_checksum = 0xffff; else udpha->uha_checksum = htons(cksum); } else { udpha->uha_checksum = 0; } } else { ip6_t *ip6h = (ip6_t *)mp->b_rptr; ASSERT(ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN == ixa->ixa_pktlen); if (cksum == 0) udpha->uha_checksum = 0xffff; else udpha->uha_checksum = htons(cksum); } /* Insert all-0s SPI now. */ if (insert_spi) *((uint32_t *)(udpha + 1)) = 0; return (mp); } static int udp_build_hdr_template(conn_t *connp, const in6_addr_t *v6src, const in6_addr_t *v6dst, in_port_t dstport, uint32_t flowinfo) { udpha_t *udpha; int error; ASSERT(MUTEX_HELD(&connp->conn_lock)); /* * We clear lastdst to make sure we don't use the lastdst path * next time sending since we might not have set v6dst yet. */ connp->conn_v6lastdst = ipv6_all_zeros; error = conn_build_hdr_template(connp, UDPH_SIZE, 0, v6src, v6dst, flowinfo); if (error != 0) return (error); /* * Any routing header/option has been massaged. The checksum difference * is stored in conn_sum. */ udpha = (udpha_t *)connp->conn_ht_ulp; udpha->uha_src_port = connp->conn_lport; udpha->uha_dst_port = dstport; udpha->uha_checksum = 0; udpha->uha_length = htons(UDPH_SIZE); /* Filled in later */ return (0); } /* * This routine retrieves the value of an ND variable in a udpparam_t * structure. It is called through nd_getset when a user reads the * variable. */ /* ARGSUSED */ static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { udpparam_t *udppa = (udpparam_t *)cp; (void) mi_mpprintf(mp, "%d", udppa->udp_param_value); return (0); } /* * Walk through the param array specified registering each element with the * named dispatch (ND) handler. */ static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt) { for (; cnt-- > 0; udppa++) { if (udppa->udp_param_name && udppa->udp_param_name[0]) { if (!nd_load(ndp, udppa->udp_param_name, udp_param_get, udp_param_set, (caddr_t)udppa)) { nd_free(ndp); return (B_FALSE); } } } if (!nd_load(ndp, "udp_extra_priv_ports", udp_extra_priv_ports_get, NULL, NULL)) { nd_free(ndp); return (B_FALSE); } if (!nd_load(ndp, "udp_extra_priv_ports_add", NULL, udp_extra_priv_ports_add, NULL)) { nd_free(ndp); return (B_FALSE); } if (!nd_load(ndp, "udp_extra_priv_ports_del", NULL, udp_extra_priv_ports_del, NULL)) { nd_free(ndp); return (B_FALSE); } return (B_TRUE); } /* This routine sets an ND variable in a udpparam_t structure. */ /* ARGSUSED */ static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; udpparam_t *udppa = (udpparam_t *)cp; /* * Fail the request if the new value does not lie within the * required bounds. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value < udppa->udp_param_min || new_value > udppa->udp_param_max) { return (EINVAL); } /* Set the new value */ udppa->udp_param_value = new_value; return (0); } static mblk_t * udp_queue_fallback(udp_t *udp, mblk_t *mp) { ASSERT(MUTEX_HELD(&udp->udp_recv_lock)); if (IPCL_IS_NONSTR(udp->udp_connp)) { /* * fallback has started but messages have not been moved yet */ if (udp->udp_fallback_queue_head == NULL) { ASSERT(udp->udp_fallback_queue_tail == NULL); udp->udp_fallback_queue_head = mp; udp->udp_fallback_queue_tail = mp; } else { ASSERT(udp->udp_fallback_queue_tail != NULL); udp->udp_fallback_queue_tail->b_next = mp; udp->udp_fallback_queue_tail = mp; } return (NULL); } else { /* * Fallback completed, let the caller putnext() the mblk. */ return (mp); } } /* * Deliver data to ULP. In case we have a socket, and it's falling back to * TPI, then we'll queue the mp for later processing. */ static void udp_ulp_recv(conn_t *connp, mblk_t *mp, uint_t len, ip_recv_attr_t *ira) { if (IPCL_IS_NONSTR(connp)) { udp_t *udp = connp->conn_udp; int error; ASSERT(len == msgdsize(mp)); if ((*connp->conn_upcalls->su_recv) (connp->conn_upper_handle, mp, len, 0, &error, NULL) < 0) { mutex_enter(&udp->udp_recv_lock); if (error == ENOSPC) { /* * let's confirm while holding the lock */ if ((*connp->conn_upcalls->su_recv) (connp->conn_upper_handle, NULL, 0, 0, &error, NULL) < 0) { ASSERT(error == ENOSPC); if (error == ENOSPC) { connp->conn_flow_cntrld = B_TRUE; } } mutex_exit(&udp->udp_recv_lock); } else { ASSERT(error == EOPNOTSUPP); mp = udp_queue_fallback(udp, mp); mutex_exit(&udp->udp_recv_lock); if (mp != NULL) putnext(connp->conn_rq, mp); } } ASSERT(MUTEX_NOT_HELD(&udp->udp_recv_lock)); } else { if (is_system_labeled()) { ASSERT(ira->ira_cred != NULL); /* * Provide for protocols above UDP such as RPC * NOPID leaves db_cpid unchanged. */ mblk_setcred(mp, ira->ira_cred, NOPID); } putnext(connp->conn_rq, mp); } } /* * This is the inbound data path. * IP has already pulled up the IP plus UDP headers and verified alignment * etc. */ /* ARGSUSED2 */ static void udp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { conn_t *connp = (conn_t *)arg1; struct T_unitdata_ind *tudi; uchar_t *rptr; /* Pointer to IP header */ int hdr_length; /* Length of IP+UDP headers */ int udi_size; /* Size of T_unitdata_ind */ int pkt_len; udp_t *udp; udpha_t *udpha; ip_pkt_t ipps; ip6_t *ip6h; mblk_t *mp1; uint32_t udp_ipv4_options_len; crb_t recv_ancillary; udp_stack_t *us; ASSERT(connp->conn_flags & IPCL_UDPCONN); udp = connp->conn_udp; us = udp->udp_us; rptr = mp->b_rptr; ASSERT(DB_TYPE(mp) == M_DATA); ASSERT(OK_32PTR(rptr)); ASSERT(ira->ira_pktlen == msgdsize(mp)); pkt_len = ira->ira_pktlen; /* * Get a snapshot of these and allow other threads to change * them after that. We need the same recv_ancillary when determining * the size as when adding the ancillary data items. */ mutex_enter(&connp->conn_lock); udp_ipv4_options_len = udp->udp_recv_ipp.ipp_ipv4_options_len; recv_ancillary = connp->conn_recv_ancillary; mutex_exit(&connp->conn_lock); hdr_length = ira->ira_ip_hdr_length; /* * IP inspected the UDP header thus all of it must be in the mblk. * UDP length check is performed for IPv6 packets and IPv4 packets * to check if the size of the packet as specified * by the UDP header is the same as the length derived from the IP * header. */ udpha = (udpha_t *)(rptr + hdr_length); if (pkt_len != ntohs(udpha->uha_length) + hdr_length) goto tossit; hdr_length += UDPH_SIZE; ASSERT(MBLKL(mp) >= hdr_length); /* IP did a pullup */ /* Initialize regardless of IP version */ ipps.ipp_fields = 0; if (((ira->ira_flags & IRAF_IPV4_OPTIONS) || udp_ipv4_options_len > 0) && connp->conn_family == AF_INET) { int err; /* * Record/update udp_recv_ipp with the lock * held. Not needed for AF_INET6 sockets * since they don't support a getsockopt of IP_OPTIONS. */ mutex_enter(&connp->conn_lock); err = ip_find_hdr_v4((ipha_t *)rptr, &udp->udp_recv_ipp, B_TRUE); if (err != 0) { /* Allocation failed. Drop packet */ mutex_exit(&connp->conn_lock); freemsg(mp); BUMP_MIB(&us->us_udp_mib, udpInErrors); return; } mutex_exit(&connp->conn_lock); } if (recv_ancillary.crb_all != 0) { /* * Record packet information in the ip_pkt_t */ if (ira->ira_flags & IRAF_IS_IPV4) { ASSERT(IPH_HDR_VERSION(rptr) == IPV4_VERSION); ASSERT(MBLKL(mp) >= sizeof (ipha_t)); ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP); ASSERT(ira->ira_ip_hdr_length == IPH_HDR_LENGTH(rptr)); (void) ip_find_hdr_v4((ipha_t *)rptr, &ipps, B_FALSE); } else { uint8_t nexthdrp; ASSERT(IPH_HDR_VERSION(rptr) == IPV6_VERSION); /* * IPv6 packets can only be received by applications * that are prepared to receive IPv6 addresses. * The IP fanout must ensure this. */ ASSERT(connp->conn_family == AF_INET6); ip6h = (ip6_t *)rptr; /* We don't care about the length, but need the ipp */ hdr_length = ip_find_hdr_v6(mp, ip6h, B_TRUE, &ipps, &nexthdrp); ASSERT(hdr_length == ira->ira_ip_hdr_length); /* Restore */ hdr_length = ira->ira_ip_hdr_length + UDPH_SIZE; ASSERT(nexthdrp == IPPROTO_UDP); } } /* * This is the inbound data path. Packets are passed upstream as * T_UNITDATA_IND messages. */ if (connp->conn_family == AF_INET) { sin_t *sin; ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); /* * Normally only send up the source address. * If any ancillary data items are wanted we add those. */ udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); if (recv_ancillary.crb_all != 0) { udi_size += conn_recvancillary_size(connp, recv_ancillary, ira, mp, &ipps); } /* Allocate a message block for the T_UNITDATA_IND structure. */ mp1 = allocb(udi_size, BPRI_MED); if (mp1 == NULL) { freemsg(mp); BUMP_MIB(&us->us_udp_mib, udpInErrors); return; } mp1->b_cont = mp; mp1->b_datap->db_type = M_PROTO; tudi = (struct T_unitdata_ind *)mp1->b_rptr; mp1->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t); udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); tudi->OPT_length = udi_size; sin = (sin_t *)&tudi[1]; sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; sin->sin_port = udpha->uha_src_port; sin->sin_family = connp->conn_family; *(uint32_t *)&sin->sin_zero[0] = 0; *(uint32_t *)&sin->sin_zero[4] = 0; /* * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or * IP_RECVTTL has been set. */ if (udi_size != 0) { conn_recvancillary_add(connp, recv_ancillary, ira, &ipps, (uchar_t *)&sin[1], udi_size); } } else { sin6_t *sin6; /* * Handle both IPv4 and IPv6 packets for IPv6 sockets. * * Normally we only send up the address. If receiving of any * optional receive side information is enabled, we also send * that up as options. */ udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); if (recv_ancillary.crb_all != 0) { udi_size += conn_recvancillary_size(connp, recv_ancillary, ira, mp, &ipps); } mp1 = allocb(udi_size, BPRI_MED); if (mp1 == NULL) { freemsg(mp); BUMP_MIB(&us->us_udp_mib, udpInErrors); return; } mp1->b_cont = mp; mp1->b_datap->db_type = M_PROTO; tudi = (struct T_unitdata_ind *)mp1->b_rptr; mp1->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin6_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t)); tudi->OPT_length = udi_size; sin6 = (sin6_t *)&tudi[1]; if (ira->ira_flags & IRAF_IS_IPV4) { in6_addr_t v6dst; IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src, &sin6->sin6_addr); IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst, &v6dst); sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = 0; sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst, IPCL_ZONEID(connp), us->us_netstack); } else { ip6h = (ip6_t *)rptr; sin6->sin6_addr = ip6h->ip6_src; /* No sin6_flowinfo per API */ sin6->sin6_flowinfo = 0; /* For link-scope pass up scope id */ if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) sin6->sin6_scope_id = ira->ira_ruifindex; else sin6->sin6_scope_id = 0; sin6->__sin6_src_id = ip_srcid_find_addr( &ip6h->ip6_dst, IPCL_ZONEID(connp), us->us_netstack); } sin6->sin6_port = udpha->uha_src_port; sin6->sin6_family = connp->conn_family; if (udi_size != 0) { conn_recvancillary_add(connp, recv_ancillary, ira, &ipps, (uchar_t *)&sin6[1], udi_size); } } /* Walk past the headers unless IP_RECVHDR was set. */ if (!udp->udp_rcvhdr) { mp->b_rptr = rptr + hdr_length; pkt_len -= hdr_length; } BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams); udp_ulp_recv(connp, mp1, pkt_len, ira); return; tossit: freemsg(mp); BUMP_MIB(&us->us_udp_mib, udpInErrors); } /* * return SNMP stuff in buffer in mpdata. We don't hold any lock and report * information that can be changing beneath us. */ mblk_t * udp_snmp_get(queue_t *q, mblk_t *mpctl) { mblk_t *mpdata; mblk_t *mp_conn_ctl; mblk_t *mp_attr_ctl; mblk_t *mp6_conn_ctl; mblk_t *mp6_attr_ctl; mblk_t *mp_conn_tail; mblk_t *mp_attr_tail; mblk_t *mp6_conn_tail; mblk_t *mp6_attr_tail; struct opthdr *optp; mib2_udpEntry_t ude; mib2_udp6Entry_t ude6; mib2_transportMLPEntry_t mlp; int state; zoneid_t zoneid; int i; connf_t *connfp; conn_t *connp = Q_TO_CONN(q); int v4_conn_idx; int v6_conn_idx; boolean_t needattr; udp_t *udp; ip_stack_t *ipst = connp->conn_netstack->netstack_ip; udp_stack_t *us = connp->conn_netstack->netstack_udp; mblk_t *mp2ctl; /* * make a copy of the original message */ mp2ctl = copymsg(mpctl); mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL; if (mpctl == NULL || (mpdata = mpctl->b_cont) == NULL || (mp_conn_ctl = copymsg(mpctl)) == NULL || (mp_attr_ctl = copymsg(mpctl)) == NULL || (mp6_conn_ctl = copymsg(mpctl)) == NULL || (mp6_attr_ctl = copymsg(mpctl)) == NULL) { freemsg(mp_conn_ctl); freemsg(mp_attr_ctl); freemsg(mp6_conn_ctl); freemsg(mpctl); freemsg(mp2ctl); return (0); } zoneid = connp->conn_zoneid; /* fixed length structure for IPv4 and IPv6 counters */ SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t)); SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t)); /* synchronize 64- and 32-bit counters */ SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams); SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams); optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_UDP; optp->name = 0; (void) snmp_append_data(mpdata, (char *)&us->us_udp_mib, sizeof (us->us_udp_mib)); optp->len = msgdsize(mpdata); qreply(q, mpctl); mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; v4_conn_idx = v6_conn_idx = 0; for (i = 0; i < CONN_G_HASH_SIZE; i++) { connfp = &ipst->ips_ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_UDPCONN))) { udp = connp->conn_udp; if (zoneid != connp->conn_zoneid) continue; /* * Note that the port numbers are sent in * host byte order */ if (udp->udp_state == TS_UNBND) state = MIB2_UDP_unbound; else if (udp->udp_state == TS_IDLE) state = MIB2_UDP_idle; else if (udp->udp_state == TS_DATA_XFER) state = MIB2_UDP_connected; else state = MIB2_UDP_unknown; needattr = B_FALSE; bzero(&mlp, sizeof (mlp)); if (connp->conn_mlp_type != mlptSingle) { if (connp->conn_mlp_type == mlptShared || connp->conn_mlp_type == mlptBoth) mlp.tme_flags |= MIB2_TMEF_SHARED; if (connp->conn_mlp_type == mlptPrivate || connp->conn_mlp_type == mlptBoth) mlp.tme_flags |= MIB2_TMEF_PRIVATE; needattr = B_TRUE; } if (connp->conn_anon_mlp) { mlp.tme_flags |= MIB2_TMEF_ANONMLP; needattr = B_TRUE; } switch (connp->conn_mac_mode) { case CONN_MAC_DEFAULT: break; case CONN_MAC_AWARE: mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; needattr = B_TRUE; break; case CONN_MAC_IMPLICIT: mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; needattr = B_TRUE; break; } mutex_enter(&connp->conn_lock); if (udp->udp_state == TS_DATA_XFER && connp->conn_ixa->ixa_tsl != NULL) { ts_label_t *tsl; tsl = connp->conn_ixa->ixa_tsl; mlp.tme_flags |= MIB2_TMEF_IS_LABELED; mlp.tme_doi = label2doi(tsl); mlp.tme_label = *label2bslabel(tsl); needattr = B_TRUE; } mutex_exit(&connp->conn_lock); /* * Create an IPv4 table entry for IPv4 entries and also * any IPv6 entries which are bound to in6addr_any * (i.e. anything a IPv4 peer could connect/send to). */ if (connp->conn_ipversion == IPV4_VERSION || (udp->udp_state <= TS_IDLE && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { ude.udpEntryInfo.ue_state = state; /* * If in6addr_any this will set it to * INADDR_ANY */ ude.udpLocalAddress = connp->conn_laddr_v4; ude.udpLocalPort = ntohs(connp->conn_lport); if (udp->udp_state == TS_DATA_XFER) { /* * Can potentially get here for * v6 socket if another process * (say, ping) has just done a * sendto(), changing the state * from the TS_IDLE above to * TS_DATA_XFER by the time we hit * this part of the code. */ ude.udpEntryInfo.ue_RemoteAddress = connp->conn_faddr_v4; ude.udpEntryInfo.ue_RemotePort = ntohs(connp->conn_fport); } else { ude.udpEntryInfo.ue_RemoteAddress = 0; ude.udpEntryInfo.ue_RemotePort = 0; } /* * We make the assumption that all udp_t * structs will be created within an address * region no larger than 32-bits. */ ude.udpInstance = (uint32_t)(uintptr_t)udp; ude.udpCreationProcess = (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : connp->conn_cpid; ude.udpCreationTime = connp->conn_open_time; (void) snmp_append_data2(mp_conn_ctl->b_cont, &mp_conn_tail, (char *)&ude, sizeof (ude)); mlp.tme_connidx = v4_conn_idx++; if (needattr) (void) snmp_append_data2( mp_attr_ctl->b_cont, &mp_attr_tail, (char *)&mlp, sizeof (mlp)); } if (connp->conn_ipversion == IPV6_VERSION) { ude6.udp6EntryInfo.ue_state = state; ude6.udp6LocalAddress = connp->conn_laddr_v6; ude6.udp6LocalPort = ntohs(connp->conn_lport); mutex_enter(&connp->conn_lock); if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { ude6.udp6IfIndex = connp->conn_ixa->ixa_scopeid; } else { ude6.udp6IfIndex = connp->conn_bound_if; } mutex_exit(&connp->conn_lock); if (udp->udp_state == TS_DATA_XFER) { ude6.udp6EntryInfo.ue_RemoteAddress = connp->conn_faddr_v6; ude6.udp6EntryInfo.ue_RemotePort = ntohs(connp->conn_fport); } else { ude6.udp6EntryInfo.ue_RemoteAddress = sin6_null.sin6_addr; ude6.udp6EntryInfo.ue_RemotePort = 0; } /* * We make the assumption that all udp_t * structs will be created within an address * region no larger than 32-bits. */ ude6.udp6Instance = (uint32_t)(uintptr_t)udp; ude6.udp6CreationProcess = (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : connp->conn_cpid; ude6.udp6CreationTime = connp->conn_open_time; (void) snmp_append_data2(mp6_conn_ctl->b_cont, &mp6_conn_tail, (char *)&ude6, sizeof (ude6)); mlp.tme_connidx = v6_conn_idx++; if (needattr) (void) snmp_append_data2( mp6_attr_ctl->b_cont, &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); } } } /* IPv4 UDP endpoints */ optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_UDP; optp->name = MIB2_UDP_ENTRY; optp->len = msgdsize(mp_conn_ctl->b_cont); qreply(q, mp_conn_ctl); /* table of MLP attributes... */ optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_UDP; optp->name = EXPER_XPORT_MLP; optp->len = msgdsize(mp_attr_ctl->b_cont); if (optp->len == 0) freemsg(mp_attr_ctl); else qreply(q, mp_attr_ctl); /* IPv6 UDP endpoints */ optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_UDP6; optp->name = MIB2_UDP6_ENTRY; optp->len = msgdsize(mp6_conn_ctl->b_cont); qreply(q, mp6_conn_ctl); /* table of MLP attributes... */ optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_UDP6; optp->name = EXPER_XPORT_MLP; optp->len = msgdsize(mp6_attr_ctl->b_cont); if (optp->len == 0) freemsg(mp6_attr_ctl); else qreply(q, mp6_attr_ctl); return (mp2ctl); } /* * Return 0 if invalid set request, 1 otherwise, including non-udp requests. * NOTE: Per MIB-II, UDP has no writable data. * TODO: If this ever actually tries to set anything, it needs to be * to do the appropriate locking. */ /* ARGSUSED */ int udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr, int len) { switch (level) { case MIB2_UDP: return (0); default: return (1); } } /* * This routine creates a T_UDERROR_IND message and passes it upstream. * The address and options are copied from the T_UNITDATA_REQ message * passed in mp. This message is freed. */ static void udp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err) { struct T_unitdata_req *tudr; mblk_t *mp1; uchar_t *destaddr; t_scalar_t destlen; uchar_t *optaddr; t_scalar_t optlen; if ((mp->b_wptr < mp->b_rptr) || (MBLKL(mp)) < sizeof (struct T_unitdata_req)) { goto done; } tudr = (struct T_unitdata_req *)mp->b_rptr; destaddr = mp->b_rptr + tudr->DEST_offset; if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr || destaddr + tudr->DEST_length < mp->b_rptr || destaddr + tudr->DEST_length > mp->b_wptr) { goto done; } optaddr = mp->b_rptr + tudr->OPT_offset; if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr || optaddr + tudr->OPT_length < mp->b_rptr || optaddr + tudr->OPT_length > mp->b_wptr) { goto done; } destlen = tudr->DEST_length; optlen = tudr->OPT_length; mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen, (char *)optaddr, optlen, err); if (mp1 != NULL) qreply(q, mp1); done: freemsg(mp); } /* * This routine removes a port number association from a stream. It * is called by udp_wput to handle T_UNBIND_REQ messages. */ static void udp_tpi_unbind(queue_t *q, mblk_t *mp) { conn_t *connp = Q_TO_CONN(q); int error; error = udp_do_unbind(connp); if (error) { if (error < 0) udp_err_ack(q, mp, -error, 0); else udp_err_ack(q, mp, TSYSERR, error); return; } mp = mi_tpi_ok_ack_alloc(mp); ASSERT(mp != NULL); ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK); qreply(q, mp); } /* * Don't let port fall into the privileged range. * Since the extra privileged ports can be arbitrary we also * ensure that we exclude those from consideration. * us->us_epriv_ports is not sorted thus we loop over it until * there are no changes. */ static in_port_t udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random) { int i; in_port_t nextport; boolean_t restart = B_FALSE; udp_stack_t *us = udp->udp_us; if (random && udp_random_anon_port != 0) { (void) random_get_pseudo_bytes((uint8_t *)&port, sizeof (in_port_t)); /* * Unless changed by a sys admin, the smallest anon port * is 32768 and the largest anon port is 65535. It is * very likely (50%) for the random port to be smaller * than the smallest anon port. When that happens, * add port % (anon port range) to the smallest anon * port to get the random port. It should fall into the * valid anon port range. */ if (port < us->us_smallest_anon_port) { port = us->us_smallest_anon_port + port % (us->us_largest_anon_port - us->us_smallest_anon_port); } } retry: if (port < us->us_smallest_anon_port) port = us->us_smallest_anon_port; if (port > us->us_largest_anon_port) { port = us->us_smallest_anon_port; if (restart) return (0); restart = B_TRUE; } if (port < us->us_smallest_nonpriv_port) port = us->us_smallest_nonpriv_port; for (i = 0; i < us->us_num_epriv_ports; i++) { if (port == us->us_epriv_ports[i]) { port++; /* * Make sure that the port is in the * valid range. */ goto retry; } } if (is_system_labeled() && (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), port, IPPROTO_UDP, B_TRUE)) != 0) { port = nextport; goto retry; } return (port); } /* * Handle T_UNITDATA_REQ with options. Both IPv4 and IPv6 * Either tudr_mp or msg is set. If tudr_mp we take ancillary data from * the TPI options, otherwise we take them from msg_control. * If both sin and sin6 is set it is a connected socket and we use conn_faddr. * Always consumes mp; never consumes tudr_mp. */ static int udp_output_ancillary(conn_t *connp, sin_t *sin, sin6_t *sin6, mblk_t *mp, mblk_t *tudr_mp, struct nmsghdr *msg, cred_t *cr, pid_t pid) { udp_t *udp = connp->conn_udp; udp_stack_t *us = udp->udp_us; int error; ip_xmit_attr_t *ixa; ip_pkt_t *ipp; in6_addr_t v6src; in6_addr_t v6dst; in6_addr_t v6nexthop; in_port_t dstport; uint32_t flowinfo; uint_t srcid; int is_absreq_failure = 0; conn_opt_arg_t coas, *coa; ASSERT(tudr_mp != NULL || msg != NULL); /* * Get ixa before checking state to handle a disconnect race. * * We need an exclusive copy of conn_ixa since the ancillary data * options might modify it. That copy has no pointers hence we * need to set them up once we've parsed the ancillary data. */ ixa = conn_get_ixa_exclusive(connp); if (ixa == NULL) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); freemsg(mp); return (ENOMEM); } ASSERT(cr != NULL); ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = cr; ixa->ixa_cpid = pid; if (is_system_labeled()) { /* We need to restart with a label based on the cred */ ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); } /* In case previous destination was multicast or multirt */ ip_attr_newdst(ixa); /* Get a copy of conn_xmit_ipp since the options might change it */ ipp = kmem_zalloc(sizeof (*ipp), KM_NOSLEEP); if (ipp == NULL) { ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); BUMP_MIB(&us->us_udp_mib, udpOutErrors); freemsg(mp); return (ENOMEM); } mutex_enter(&connp->conn_lock); error = ip_pkt_copy(&connp->conn_xmit_ipp, ipp, KM_NOSLEEP); mutex_exit(&connp->conn_lock); if (error != 0) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); freemsg(mp); goto done; } /* * Parse the options and update ixa and ipp as a result. * Note that ixa_tsl can be updated if SCM_UCRED. * ixa_refrele/ixa_inactivate will release any reference on ixa_tsl. */ coa = &coas; coa->coa_connp = connp; coa->coa_ixa = ixa; coa->coa_ipp = ipp; coa->coa_ancillary = B_TRUE; coa->coa_changed = 0; if (msg != NULL) { error = process_auxiliary_options(connp, msg->msg_control, msg->msg_controllen, coa, &udp_opt_obj, udp_opt_set, cr); } else { struct T_unitdata_req *tudr; tudr = (struct T_unitdata_req *)tudr_mp->b_rptr; ASSERT(tudr->PRIM_type == T_UNITDATA_REQ); error = tpi_optcom_buf(connp->conn_wq, tudr_mp, &tudr->OPT_length, tudr->OPT_offset, cr, &udp_opt_obj, coa, &is_absreq_failure); } if (error != 0) { /* * Note: No special action needed in this * module for "is_absreq_failure" */ freemsg(mp); BUMP_MIB(&us->us_udp_mib, udpOutErrors); goto done; } ASSERT(is_absreq_failure == 0); mutex_enter(&connp->conn_lock); /* * If laddr is unspecified then we look at sin6_src_id. * We will give precedence to a source address set with IPV6_PKTINFO * (aka IPPF_ADDR) but that is handled in build_hdrs. However, we don't * want ip_attr_connect to select a source (since it can fail) when * IPV6_PKTINFO is specified. * If this doesn't result in a source address then we get a source * from ip_attr_connect() below. */ v6src = connp->conn_saddr_v6; if (sin != NULL) { IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6dst); dstport = sin->sin_port; flowinfo = 0; ixa->ixa_flags &= ~IXAF_SCOPEID_SET; ixa->ixa_flags |= IXAF_IS_IPV4; } else if (sin6 != NULL) { v6dst = sin6->sin6_addr; dstport = sin6->sin6_port; flowinfo = sin6->sin6_flowinfo; srcid = sin6->__sin6_src_id; if (IN6_IS_ADDR_LINKSCOPE(&v6dst) && sin6->sin6_scope_id != 0) { ixa->ixa_scopeid = sin6->sin6_scope_id; ixa->ixa_flags |= IXAF_SCOPEID_SET; } else { ixa->ixa_flags &= ~IXAF_SCOPEID_SET; } if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&v6src)) { ip_srcid_find_id(srcid, &v6src, IPCL_ZONEID(connp), connp->conn_netstack); } if (IN6_IS_ADDR_V4MAPPED(&v6dst)) ixa->ixa_flags |= IXAF_IS_IPV4; else ixa->ixa_flags &= ~IXAF_IS_IPV4; } else { /* Connected case */ v6dst = connp->conn_faddr_v6; dstport = connp->conn_fport; flowinfo = connp->conn_flowinfo; } mutex_exit(&connp->conn_lock); /* Handle IPV6_PKTINFO setting source address. */ if (IN6_IS_ADDR_UNSPECIFIED(&v6src) && (ipp->ipp_fields & IPPF_ADDR)) { if (ixa->ixa_flags & IXAF_IS_IPV4) { if (IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) v6src = ipp->ipp_addr; } else { if (!IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) v6src = ipp->ipp_addr; } } ip_attr_nexthop(ipp, ixa, &v6dst, &v6nexthop); error = ip_attr_connect(connp, ixa, &v6src, &v6dst, &v6nexthop, dstport, &v6src, NULL, IPDF_ALLOW_MCBC | IPDF_VERIFY_DST | IPDF_IPSEC); switch (error) { case 0: break; case EADDRNOTAVAIL: /* * IXAF_VERIFY_SOURCE tells us to pick a better source. * Don't have the application see that errno */ error = ENETUNREACH; goto failed; case ENETDOWN: /* * Have !ipif_addr_ready address; drop packet silently * until we can get applications to not send until we * are ready. */ error = 0; goto failed; case EHOSTUNREACH: case ENETUNREACH: if (ixa->ixa_ire != NULL) { /* * Let conn_ip_output/ire_send_noroute return * the error and send any local ICMP error. */ error = 0; break; } /* FALLTHRU */ default: failed: freemsg(mp); BUMP_MIB(&us->us_udp_mib, udpOutErrors); goto done; } /* * We might be going to a different destination than last time, * thus check that TX allows the communication and compute any * needed label. * * TSOL Note: We have an exclusive ipp and ixa for this thread so we * don't have to worry about concurrent threads. */ if (is_system_labeled()) { /* Using UDP MLP requires SCM_UCRED from user */ if (connp->conn_mlp_type != mlptSingle && !((ixa->ixa_flags & IXAF_UCRED_TSL))) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); error = ECONNREFUSED; freemsg(mp); goto done; } /* * Check whether Trusted Solaris policy allows communication * with this host, and pretend that the destination is * unreachable if not. * Compute any needed label and place it in ipp_label_v4/v6. * * Later conn_build_hdr_template/conn_prepend_hdr takes * ipp_label_v4/v6 to form the packet. * * Tsol note: We have ipp structure local to this thread so * no locking is needed. */ error = conn_update_label(connp, ixa, &v6dst, ipp); if (error != 0) { freemsg(mp); BUMP_MIB(&us->us_udp_mib, udpOutErrors); goto done; } } mp = udp_prepend_hdr(connp, ixa, ipp, &v6src, &v6dst, dstport, flowinfo, mp, &error); if (mp == NULL) { ASSERT(error != 0); BUMP_MIB(&us->us_udp_mib, udpOutErrors); goto done; } if (ixa->ixa_pktlen > IP_MAXPACKET) { error = EMSGSIZE; BUMP_MIB(&us->us_udp_mib, udpOutErrors); freemsg(mp); goto done; } /* We're done. Pass the packet to ip. */ BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); error = conn_ip_output(mp, ixa); /* No udpOutErrors if an error since IP increases its error counter */ switch (error) { case 0: break; case EWOULDBLOCK: (void) ixa_check_drain_insert(connp, ixa); error = 0; break; case EADDRNOTAVAIL: /* * IXAF_VERIFY_SOURCE tells us to pick a better source. * Don't have the application see that errno */ error = ENETUNREACH; /* FALLTHRU */ default: mutex_enter(&connp->conn_lock); /* * Clear the source and v6lastdst so we call ip_attr_connect * for the next packet and try to pick a better source. */ if (connp->conn_mcbc_bind) connp->conn_saddr_v6 = ipv6_all_zeros; else connp->conn_saddr_v6 = connp->conn_bound_addr_v6; connp->conn_v6lastdst = ipv6_all_zeros; mutex_exit(&connp->conn_lock); break; } done: ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); ip_pkt_free(ipp); kmem_free(ipp, sizeof (*ipp)); return (error); } /* * Handle sending an M_DATA for a connected socket. * Handles both IPv4 and IPv6. */ static int udp_output_connected(conn_t *connp, mblk_t *mp, cred_t *cr, pid_t pid) { udp_t *udp = connp->conn_udp; udp_stack_t *us = udp->udp_us; int error; ip_xmit_attr_t *ixa; /* * If no other thread is using conn_ixa this just gets a reference to * conn_ixa. Otherwise we get a safe copy of conn_ixa. */ ixa = conn_get_ixa(connp, B_FALSE); if (ixa == NULL) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); freemsg(mp); return (ENOMEM); } ASSERT(cr != NULL); ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = cr; ixa->ixa_cpid = pid; mutex_enter(&connp->conn_lock); mp = udp_prepend_header_template(connp, ixa, mp, &connp->conn_saddr_v6, connp->conn_fport, connp->conn_flowinfo, &error); if (mp == NULL) { ASSERT(error != 0); mutex_exit(&connp->conn_lock); ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); BUMP_MIB(&us->us_udp_mib, udpOutErrors); freemsg(mp); return (error); } /* * In case we got a safe copy of conn_ixa, or if opt_set made us a new * safe copy, then we need to fill in any pointers in it. */ if (ixa->ixa_ire == NULL) { in6_addr_t faddr, saddr; in6_addr_t nexthop; in_port_t fport; saddr = connp->conn_saddr_v6; faddr = connp->conn_faddr_v6; fport = connp->conn_fport; ip_attr_nexthop(&connp->conn_xmit_ipp, ixa, &faddr, &nexthop); mutex_exit(&connp->conn_lock); error = ip_attr_connect(connp, ixa, &saddr, &faddr, &nexthop, fport, NULL, NULL, IPDF_ALLOW_MCBC | IPDF_VERIFY_DST | IPDF_IPSEC); switch (error) { case 0: break; case EADDRNOTAVAIL: /* * IXAF_VERIFY_SOURCE tells us to pick a better source. * Don't have the application see that errno */ error = ENETUNREACH; goto failed; case ENETDOWN: /* * Have !ipif_addr_ready address; drop packet silently * until we can get applications to not send until we * are ready. */ error = 0; goto failed; case EHOSTUNREACH: case ENETUNREACH: if (ixa->ixa_ire != NULL) { /* * Let conn_ip_output/ire_send_noroute return * the error and send any local ICMP error. */ error = 0; break; } /* FALLTHRU */ default: failed: ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); freemsg(mp); BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (error); } } else { /* Done with conn_t */ mutex_exit(&connp->conn_lock); } ASSERT(ixa->ixa_ire != NULL); /* We're done. Pass the packet to ip. */ BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); error = conn_ip_output(mp, ixa); /* No udpOutErrors if an error since IP increases its error counter */ switch (error) { case 0: break; case EWOULDBLOCK: (void) ixa_check_drain_insert(connp, ixa); error = 0; break; case EADDRNOTAVAIL: /* * IXAF_VERIFY_SOURCE tells us to pick a better source. * Don't have the application see that errno */ error = ENETUNREACH; break; } ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); return (error); } /* * Handle sending an M_DATA to the last destination. * Handles both IPv4 and IPv6. * * NOTE: The caller must hold conn_lock and we drop it here. */ static int udp_output_lastdst(conn_t *connp, mblk_t *mp, cred_t *cr, pid_t pid, ip_xmit_attr_t *ixa) { udp_t *udp = connp->conn_udp; udp_stack_t *us = udp->udp_us; int error; ASSERT(MUTEX_HELD(&connp->conn_lock)); ASSERT(ixa != NULL); ASSERT(cr != NULL); ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = cr; ixa->ixa_cpid = pid; mp = udp_prepend_header_template(connp, ixa, mp, &connp->conn_v6lastsrc, connp->conn_lastdstport, connp->conn_lastflowinfo, &error); if (mp == NULL) { ASSERT(error != 0); mutex_exit(&connp->conn_lock); ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); BUMP_MIB(&us->us_udp_mib, udpOutErrors); freemsg(mp); return (error); } /* * In case we got a safe copy of conn_ixa, or if opt_set made us a new * safe copy, then we need to fill in any pointers in it. */ if (ixa->ixa_ire == NULL) { in6_addr_t lastdst, lastsrc; in6_addr_t nexthop; in_port_t lastport; lastsrc = connp->conn_v6lastsrc; lastdst = connp->conn_v6lastdst; lastport = connp->conn_lastdstport; ip_attr_nexthop(&connp->conn_xmit_ipp, ixa, &lastdst, &nexthop); mutex_exit(&connp->conn_lock); error = ip_attr_connect(connp, ixa, &lastsrc, &lastdst, &nexthop, lastport, NULL, NULL, IPDF_ALLOW_MCBC | IPDF_VERIFY_DST | IPDF_IPSEC); switch (error) { case 0: break; case EADDRNOTAVAIL: /* * IXAF_VERIFY_SOURCE tells us to pick a better source. * Don't have the application see that errno */ error = ENETUNREACH; goto failed; case ENETDOWN: /* * Have !ipif_addr_ready address; drop packet silently * until we can get applications to not send until we * are ready. */ error = 0; goto failed; case EHOSTUNREACH: case ENETUNREACH: if (ixa->ixa_ire != NULL) { /* * Let conn_ip_output/ire_send_noroute return * the error and send any local ICMP error. */ error = 0; break; } /* FALLTHRU */ default: failed: ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); freemsg(mp); BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (error); } } else { /* Done with conn_t */ mutex_exit(&connp->conn_lock); } /* We're done. Pass the packet to ip. */ BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); error = conn_ip_output(mp, ixa); /* No udpOutErrors if an error since IP increases its error counter */ switch (error) { case 0: break; case EWOULDBLOCK: (void) ixa_check_drain_insert(connp, ixa); error = 0; break; case EADDRNOTAVAIL: /* * IXAF_VERIFY_SOURCE tells us to pick a better source. * Don't have the application see that errno */ error = ENETUNREACH; /* FALLTHRU */ default: mutex_enter(&connp->conn_lock); /* * Clear the source and v6lastdst so we call ip_attr_connect * for the next packet and try to pick a better source. */ if (connp->conn_mcbc_bind) connp->conn_saddr_v6 = ipv6_all_zeros; else connp->conn_saddr_v6 = connp->conn_bound_addr_v6; connp->conn_v6lastdst = ipv6_all_zeros; mutex_exit(&connp->conn_lock); break; } ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); return (error); } /* * Prepend the header template and then fill in the source and * flowinfo. The caller needs to handle the destination address since * it's setting is different if rthdr or source route. * * Returns NULL is allocation failed or if the packet would exceed IP_MAXPACKET. * When it returns NULL it sets errorp. */ static mblk_t * udp_prepend_header_template(conn_t *connp, ip_xmit_attr_t *ixa, mblk_t *mp, const in6_addr_t *v6src, in_port_t dstport, uint32_t flowinfo, int *errorp) { udp_t *udp = connp->conn_udp; udp_stack_t *us = udp->udp_us; boolean_t insert_spi = udp->udp_nat_t_endpoint; uint_t pktlen; uint_t alloclen; uint_t copylen; uint8_t *iph; uint_t ip_hdr_length; udpha_t *udpha; uint32_t cksum; ip_pkt_t *ipp; ASSERT(MUTEX_HELD(&connp->conn_lock)); /* * Copy the header template and leave space for an SPI */ copylen = connp->conn_ht_iphc_len; alloclen = copylen + (insert_spi ? sizeof (uint32_t) : 0); pktlen = alloclen + msgdsize(mp); if (pktlen > IP_MAXPACKET) { freemsg(mp); *errorp = EMSGSIZE; return (NULL); } ixa->ixa_pktlen = pktlen; /* check/fix buffer config, setup pointers into it */ iph = mp->b_rptr - alloclen; if (DB_REF(mp) != 1 || iph < DB_BASE(mp) || !OK_32PTR(iph)) { mblk_t *mp1; mp1 = allocb(alloclen + us->us_wroff_extra, BPRI_MED); if (mp1 == NULL) { freemsg(mp); *errorp = ENOMEM; return (NULL); } mp1->b_wptr = DB_LIM(mp1); mp1->b_cont = mp; mp = mp1; iph = (mp->b_wptr - alloclen); } mp->b_rptr = iph; bcopy(connp->conn_ht_iphc, iph, copylen); ip_hdr_length = (uint_t)(connp->conn_ht_ulp - connp->conn_ht_iphc); ixa->ixa_ip_hdr_length = ip_hdr_length; udpha = (udpha_t *)(iph + ip_hdr_length); /* * Setup header length and prepare for ULP checksum done in IP. * udp_build_hdr_template has already massaged any routing header * and placed the result in conn_sum. * * We make it easy for IP to include our pseudo header * by putting our length in uha_checksum. */ cksum = pktlen - ip_hdr_length; udpha->uha_length = htons(cksum); cksum += connp->conn_sum; cksum = (cksum >> 16) + (cksum & 0xFFFF); ASSERT(cksum < 0x10000); ipp = &connp->conn_xmit_ipp; if (ixa->ixa_flags & IXAF_IS_IPV4) { ipha_t *ipha = (ipha_t *)iph; ipha->ipha_length = htons((uint16_t)pktlen); /* IP does the checksum if uha_checksum is non-zero */ if (us->us_do_checksum) udpha->uha_checksum = htons(cksum); /* if IP_PKTINFO specified an addres it wins over bind() */ if ((ipp->ipp_fields & IPPF_ADDR) && IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) { ASSERT(ipp->ipp_addr_v4 != INADDR_ANY); ipha->ipha_src = ipp->ipp_addr_v4; } else { IN6_V4MAPPED_TO_IPADDR(v6src, ipha->ipha_src); } } else { ip6_t *ip6h = (ip6_t *)iph; ip6h->ip6_plen = htons((uint16_t)(pktlen - IPV6_HDR_LEN)); udpha->uha_checksum = htons(cksum); /* if IP_PKTINFO specified an addres it wins over bind() */ if ((ipp->ipp_fields & IPPF_ADDR) && !IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) { ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)); ip6h->ip6_src = ipp->ipp_addr; } else { ip6h->ip6_src = *v6src; } ip6h->ip6_vcf = (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); if (ipp->ipp_fields & IPPF_TCLASS) { /* Overrides the class part of flowinfo */ ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf, ipp->ipp_tclass); } } /* Insert all-0s SPI now. */ if (insert_spi) *((uint32_t *)(udpha + 1)) = 0; udpha->uha_dst_port = dstport; return (mp); } /* * Send a T_UDERR_IND in response to an M_DATA */ static void udp_ud_err_connected(conn_t *connp, t_scalar_t error) { struct sockaddr_storage ss; sin_t *sin; sin6_t *sin6; struct sockaddr *addr; socklen_t addrlen; mblk_t *mp1; mutex_enter(&connp->conn_lock); /* Initialize addr and addrlen as if they're passed in */ if (connp->conn_family == AF_INET) { sin = (sin_t *)&ss; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_port = connp->conn_fport; sin->sin_addr.s_addr = connp->conn_faddr_v4; addr = (struct sockaddr *)sin; addrlen = sizeof (*sin); } else { sin6 = (sin6_t *)&ss; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_port = connp->conn_fport; sin6->sin6_flowinfo = connp->conn_flowinfo; sin6->sin6_addr = connp->conn_faddr_v6; if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6) && (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { sin6->sin6_scope_id = connp->conn_ixa->ixa_scopeid; } else { sin6->sin6_scope_id = 0; } sin6->__sin6_src_id = 0; addr = (struct sockaddr *)sin6; addrlen = sizeof (*sin6); } mutex_exit(&connp->conn_lock); mp1 = mi_tpi_uderror_ind((char *)addr, addrlen, NULL, 0, error); if (mp1 != NULL) putnext(connp->conn_rq, mp1); } /* * This routine handles all messages passed downstream. It either * consumes the message or passes it downstream; it never queues a * a message. * * Also entry point for sockfs when udp is in "direct sockfs" mode. This mode * is valid when we are directly beneath the stream head, and thus sockfs * is able to bypass STREAMS and directly call us, passing along the sockaddr * structure without the cumbersome T_UNITDATA_REQ interface for the case of * connected endpoints. */ void udp_wput(queue_t *q, mblk_t *mp) { sin6_t *sin6; sin_t *sin = NULL; uint_t srcid; conn_t *connp = Q_TO_CONN(q); udp_t *udp = connp->conn_udp; int error = 0; struct sockaddr *addr = NULL; socklen_t addrlen; udp_stack_t *us = udp->udp_us; struct T_unitdata_req *tudr; mblk_t *data_mp; ushort_t ipversion; cred_t *cr; pid_t pid; /* * We directly handle several cases here: T_UNITDATA_REQ message * coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected * socket. */ switch (DB_TYPE(mp)) { case M_DATA: if (!udp->udp_issocket || udp->udp_state != TS_DATA_XFER) { /* Not connected; address is required */ BUMP_MIB(&us->us_udp_mib, udpOutErrors); UDP_DBGSTAT(us, udp_data_notconn); UDP_STAT(us, udp_out_err_notconn); freemsg(mp); return; } /* * All Solaris components should pass a db_credp * for this message, hence we ASSERT. * On production kernels we return an error to be robust against * random streams modules sitting on top of us. */ cr = msg_getcred(mp, &pid); ASSERT(cr != NULL); if (cr == NULL) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); freemsg(mp); return; } ASSERT(udp->udp_issocket); UDP_DBGSTAT(us, udp_data_conn); error = udp_output_connected(connp, mp, cr, pid); if (error != 0) { UDP_STAT(us, udp_out_err_output); if (connp->conn_rq != NULL) udp_ud_err_connected(connp, (t_scalar_t)error); #ifdef DEBUG printf("udp_output_connected returned %d\n", error); #endif } return; case M_PROTO: case M_PCPROTO: tudr = (struct T_unitdata_req *)mp->b_rptr; if (MBLKL(mp) < sizeof (*tudr) || ((t_primp_t)mp->b_rptr)->type != T_UNITDATA_REQ) { udp_wput_other(q, mp); return; } break; default: udp_wput_other(q, mp); return; } /* Handle valid T_UNITDATA_REQ here */ data_mp = mp->b_cont; if (data_mp == NULL) { error = EPROTO; goto ud_error2; } mp->b_cont = NULL; if (!MBLKIN(mp, 0, tudr->DEST_offset + tudr->DEST_length)) { error = EADDRNOTAVAIL; goto ud_error2; } /* * All Solaris components should pass a db_credp * for this TPI message, hence we should ASSERT. * However, RPC (svc_clts_ksend) does this odd thing where it * passes the options from a T_UNITDATA_IND unchanged in a * T_UNITDATA_REQ. While that is the right thing to do for * some options, SCM_UCRED being the key one, this also makes it * pass down IP_RECVDSTADDR. Hence we can't ASSERT here. */ cr = msg_getcred(mp, &pid); if (cr == NULL) { cr = connp->conn_cred; pid = connp->conn_cpid; } /* * If a port has not been bound to the stream, fail. * This is not a problem when sockfs is directly * above us, because it will ensure that the socket * is first bound before allowing data to be sent. */ if (udp->udp_state == TS_UNBND) { error = EPROTO; goto ud_error2; } addr = (struct sockaddr *)&mp->b_rptr[tudr->DEST_offset]; addrlen = tudr->DEST_length; switch (connp->conn_family) { case AF_INET6: sin6 = (sin6_t *)addr; if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) || (sin6->sin6_family != AF_INET6)) { error = EADDRNOTAVAIL; goto ud_error2; } srcid = sin6->__sin6_src_id; if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { /* * Destination is a non-IPv4-compatible IPv6 address. * Send out an IPv6 format packet. */ /* * If the local address is a mapped address return * an error. * It would be possible to send an IPv6 packet but the * response would never make it back to the application * since it is bound to a mapped address. */ if (IN6_IS_ADDR_V4MAPPED(&connp->conn_saddr_v6)) { error = EADDRNOTAVAIL; goto ud_error2; } UDP_DBGSTAT(us, udp_out_ipv6); if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) sin6->sin6_addr = ipv6_loopback; ipversion = IPV6_VERSION; } else { if (connp->conn_ipv6_v6only) { error = EADDRNOTAVAIL; goto ud_error2; } /* * If the local address is not zero or a mapped address * return an error. It would be possible to send an * IPv4 packet but the response would never make it * back to the application since it is bound to a * non-mapped address. */ if (!IN6_IS_ADDR_V4MAPPED(&connp->conn_saddr_v6) && !IN6_IS_ADDR_UNSPECIFIED(&connp->conn_saddr_v6)) { error = EADDRNOTAVAIL; goto ud_error2; } UDP_DBGSTAT(us, udp_out_mapped); if (V4_PART_OF_V6(sin6->sin6_addr) == INADDR_ANY) { V4_PART_OF_V6(sin6->sin6_addr) = htonl(INADDR_LOOPBACK); } ipversion = IPV4_VERSION; } if (tudr->OPT_length != 0) { /* * If we are connected then the destination needs to be * the same as the connected one. */ if (udp->udp_state == TS_DATA_XFER && !conn_same_as_last_v6(connp, sin6)) { error = EISCONN; goto ud_error2; } UDP_STAT(us, udp_out_opt); error = udp_output_ancillary(connp, NULL, sin6, data_mp, mp, NULL, cr, pid); } else { ip_xmit_attr_t *ixa; /* * We have to allocate an ip_xmit_attr_t before we grab * conn_lock and we need to hold conn_lock once we've * checked conn_same_as_last_v6 to handle concurrent * send* calls on a socket. */ ixa = conn_get_ixa(connp, B_FALSE); if (ixa == NULL) { error = ENOMEM; goto ud_error2; } mutex_enter(&connp->conn_lock); if (conn_same_as_last_v6(connp, sin6) && connp->conn_lastsrcid == srcid && ipsec_outbound_policy_current(ixa)) { UDP_DBGSTAT(us, udp_out_lastdst); /* udp_output_lastdst drops conn_lock */ error = udp_output_lastdst(connp, data_mp, cr, pid, ixa); } else { UDP_DBGSTAT(us, udp_out_diffdst); /* udp_output_newdst drops conn_lock */ error = udp_output_newdst(connp, data_mp, NULL, sin6, ipversion, cr, pid, ixa); } ASSERT(MUTEX_NOT_HELD(&connp->conn_lock)); } if (error == 0) { freeb(mp); return; } break; case AF_INET: sin = (sin_t *)addr; if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) || (sin->sin_family != AF_INET)) { error = EADDRNOTAVAIL; goto ud_error2; } UDP_DBGSTAT(us, udp_out_ipv4); if (sin->sin_addr.s_addr == INADDR_ANY) sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK); ipversion = IPV4_VERSION; srcid = 0; if (tudr->OPT_length != 0) { /* * If we are connected then the destination needs to be * the same as the connected one. */ if (udp->udp_state == TS_DATA_XFER && !conn_same_as_last_v4(connp, sin)) { error = EISCONN; goto ud_error2; } UDP_STAT(us, udp_out_opt); error = udp_output_ancillary(connp, sin, NULL, data_mp, mp, NULL, cr, pid); } else { ip_xmit_attr_t *ixa; /* * We have to allocate an ip_xmit_attr_t before we grab * conn_lock and we need to hold conn_lock once we've * checked conn_same_as_last_v4 to handle concurrent * send* calls on a socket. */ ixa = conn_get_ixa(connp, B_FALSE); if (ixa == NULL) { error = ENOMEM; goto ud_error2; } mutex_enter(&connp->conn_lock); if (conn_same_as_last_v4(connp, sin) && ipsec_outbound_policy_current(ixa)) { UDP_DBGSTAT(us, udp_out_lastdst); /* udp_output_lastdst drops conn_lock */ error = udp_output_lastdst(connp, data_mp, cr, pid, ixa); } else { UDP_DBGSTAT(us, udp_out_diffdst); /* udp_output_newdst drops conn_lock */ error = udp_output_newdst(connp, data_mp, sin, NULL, ipversion, cr, pid, ixa); } ASSERT(MUTEX_NOT_HELD(&connp->conn_lock)); } if (error == 0) { freeb(mp); return; } break; } UDP_STAT(us, udp_out_err_output); ASSERT(mp != NULL); /* mp is freed by the following routine */ udp_ud_err(q, mp, (t_scalar_t)error); return; ud_error2: BUMP_MIB(&us->us_udp_mib, udpOutErrors); freemsg(data_mp); UDP_STAT(us, udp_out_err_output); ASSERT(mp != NULL); /* mp is freed by the following routine */ udp_ud_err(q, mp, (t_scalar_t)error); } /* * Handle the case of the IP address, port, flow label being different * for both IPv4 and IPv6. * * NOTE: The caller must hold conn_lock and we drop it here. */ static int udp_output_newdst(conn_t *connp, mblk_t *data_mp, sin_t *sin, sin6_t *sin6, ushort_t ipversion, cred_t *cr, pid_t pid, ip_xmit_attr_t *ixa) { uint_t srcid; uint32_t flowinfo; udp_t *udp = connp->conn_udp; int error = 0; ip_xmit_attr_t *oldixa; udp_stack_t *us = udp->udp_us; in6_addr_t v6src; in6_addr_t v6dst; in6_addr_t v6nexthop; in_port_t dstport; ASSERT(MUTEX_HELD(&connp->conn_lock)); ASSERT(ixa != NULL); /* * We hold conn_lock across all the use and modifications of * the conn_lastdst, conn_ixa, and conn_xmit_ipp to ensure that they * stay consistent. */ ASSERT(cr != NULL); ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = cr; ixa->ixa_cpid = pid; if (is_system_labeled()) { /* We need to restart with a label based on the cred */ ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); } /* * If we are connected then the destination needs to be the * same as the connected one, which is not the case here since we * checked for that above. */ if (udp->udp_state == TS_DATA_XFER) { mutex_exit(&connp->conn_lock); error = EISCONN; goto ud_error; } /* In case previous destination was multicast or multirt */ ip_attr_newdst(ixa); /* * If laddr is unspecified then we look at sin6_src_id. * We will give precedence to a source address set with IPV6_PKTINFO * (aka IPPF_ADDR) but that is handled in build_hdrs. However, we don't * want ip_attr_connect to select a source (since it can fail) when * IPV6_PKTINFO is specified. * If this doesn't result in a source address then we get a source * from ip_attr_connect() below. */ v6src = connp->conn_saddr_v6; if (sin != NULL) { IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6dst); dstport = sin->sin_port; flowinfo = 0; srcid = 0; ixa->ixa_flags &= ~IXAF_SCOPEID_SET; if (srcid != 0 && V4_PART_OF_V6(&v6src) == INADDR_ANY) { ip_srcid_find_id(srcid, &v6src, IPCL_ZONEID(connp), connp->conn_netstack); } ixa->ixa_flags |= IXAF_IS_IPV4; } else { v6dst = sin6->sin6_addr; dstport = sin6->sin6_port; flowinfo = sin6->sin6_flowinfo; srcid = sin6->__sin6_src_id; if (IN6_IS_ADDR_LINKSCOPE(&v6dst) && sin6->sin6_scope_id != 0) { ixa->ixa_scopeid = sin6->sin6_scope_id; ixa->ixa_flags |= IXAF_SCOPEID_SET; } else { ixa->ixa_flags &= ~IXAF_SCOPEID_SET; } if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&v6src)) { ip_srcid_find_id(srcid, &v6src, IPCL_ZONEID(connp), connp->conn_netstack); } if (IN6_IS_ADDR_V4MAPPED(&v6dst)) ixa->ixa_flags |= IXAF_IS_IPV4; else ixa->ixa_flags &= ~IXAF_IS_IPV4; } /* Handle IPV6_PKTINFO setting source address. */ if (IN6_IS_ADDR_UNSPECIFIED(&v6src) && (connp->conn_xmit_ipp.ipp_fields & IPPF_ADDR)) { ip_pkt_t *ipp = &connp->conn_xmit_ipp; if (ixa->ixa_flags & IXAF_IS_IPV4) { if (IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) v6src = ipp->ipp_addr; } else { if (!IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) v6src = ipp->ipp_addr; } } ip_attr_nexthop(&connp->conn_xmit_ipp, ixa, &v6dst, &v6nexthop); mutex_exit(&connp->conn_lock); error = ip_attr_connect(connp, ixa, &v6src, &v6dst, &v6nexthop, dstport, &v6src, NULL, IPDF_ALLOW_MCBC | IPDF_VERIFY_DST | IPDF_IPSEC); switch (error) { case 0: break; case EADDRNOTAVAIL: /* * IXAF_VERIFY_SOURCE tells us to pick a better source. * Don't have the application see that errno */ error = ENETUNREACH; goto failed; case ENETDOWN: /* * Have !ipif_addr_ready address; drop packet silently * until we can get applications to not send until we * are ready. */ error = 0; goto failed; case EHOSTUNREACH: case ENETUNREACH: if (ixa->ixa_ire != NULL) { /* * Let conn_ip_output/ire_send_noroute return * the error and send any local ICMP error. */ error = 0; break; } /* FALLTHRU */ failed: default: goto ud_error; } /* * Cluster note: we let the cluster hook know that we are sending to a * new address and/or port. */ if (cl_inet_connect2 != NULL) { CL_INET_UDP_CONNECT(connp, B_TRUE, &v6dst, dstport, error); if (error != 0) { error = EHOSTUNREACH; goto ud_error; } } mutex_enter(&connp->conn_lock); /* * While we dropped the lock some other thread might have connected * this socket. If so we bail out with EISCONN to ensure that the * connecting thread is the one that updates conn_ixa, conn_ht_* * and conn_*last*. */ if (udp->udp_state == TS_DATA_XFER) { mutex_exit(&connp->conn_lock); error = EISCONN; goto ud_error; } /* * We need to rebuild the headers if * - we are labeling packets (could be different for different * destinations) * - we have a source route (or routing header) since we need to * massage that to get the pseudo-header checksum * - the IP version is different than the last time * - a socket option with COA_HEADER_CHANGED has been set which * set conn_v6lastdst to zero. * * Otherwise the prepend function will just update the src, dst, * dstport, and flow label. */ if (is_system_labeled()) { /* TX MLP requires SCM_UCRED and don't have that here */ if (connp->conn_mlp_type != mlptSingle) { mutex_exit(&connp->conn_lock); error = ECONNREFUSED; goto ud_error; } /* * Check whether Trusted Solaris policy allows communication * with this host, and pretend that the destination is * unreachable if not. * Compute any needed label and place it in ipp_label_v4/v6. * * Later conn_build_hdr_template/conn_prepend_hdr takes * ipp_label_v4/v6 to form the packet. * * Tsol note: Since we hold conn_lock we know no other * thread manipulates conn_xmit_ipp. */ error = conn_update_label(connp, ixa, &v6dst, &connp->conn_xmit_ipp); if (error != 0) { mutex_exit(&connp->conn_lock); goto ud_error; } /* Rebuild the header template */ error = udp_build_hdr_template(connp, &v6src, &v6dst, dstport, flowinfo); if (error != 0) { mutex_exit(&connp->conn_lock); goto ud_error; } } else if ((connp->conn_xmit_ipp.ipp_fields & (IPPF_IPV4_OPTIONS|IPPF_RTHDR)) || ipversion != connp->conn_lastipversion || IN6_IS_ADDR_UNSPECIFIED(&connp->conn_v6lastdst)) { /* Rebuild the header template */ error = udp_build_hdr_template(connp, &v6src, &v6dst, dstport, flowinfo); if (error != 0) { mutex_exit(&connp->conn_lock); goto ud_error; } } else { /* Simply update the destination address if no source route */ if (ixa->ixa_flags & IXAF_IS_IPV4) { ipha_t *ipha = (ipha_t *)connp->conn_ht_iphc; IN6_V4MAPPED_TO_IPADDR(&v6dst, ipha->ipha_dst); if (ixa->ixa_flags & IXAF_PMTU_IPV4_DF) { ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; } else { ipha->ipha_fragment_offset_and_flags &= ~IPH_DF_HTONS; } } else { ip6_t *ip6h = (ip6_t *)connp->conn_ht_iphc; ip6h->ip6_dst = v6dst; } } /* * Remember the dst/dstport etc which corresponds to the built header * template and conn_ixa. */ oldixa = conn_replace_ixa(connp, ixa); connp->conn_v6lastdst = v6dst; connp->conn_lastipversion = ipversion; connp->conn_lastdstport = dstport; connp->conn_lastflowinfo = flowinfo; connp->conn_lastscopeid = ixa->ixa_scopeid; connp->conn_lastsrcid = srcid; /* Also remember a source to use together with lastdst */ connp->conn_v6lastsrc = v6src; data_mp = udp_prepend_header_template(connp, ixa, data_mp, &v6src, dstport, flowinfo, &error); /* Done with conn_t */ mutex_exit(&connp->conn_lock); ixa_refrele(oldixa); if (data_mp == NULL) { ASSERT(error != 0); goto ud_error; } /* We're done. Pass the packet to ip. */ BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); error = conn_ip_output(data_mp, ixa); /* No udpOutErrors if an error since IP increases its error counter */ switch (error) { case 0: break; case EWOULDBLOCK: (void) ixa_check_drain_insert(connp, ixa); error = 0; break; case EADDRNOTAVAIL: /* * IXAF_VERIFY_SOURCE tells us to pick a better source. * Don't have the application see that errno */ error = ENETUNREACH; /* FALLTHRU */ default: mutex_enter(&connp->conn_lock); /* * Clear the source and v6lastdst so we call ip_attr_connect * for the next packet and try to pick a better source. */ if (connp->conn_mcbc_bind) connp->conn_saddr_v6 = ipv6_all_zeros; else connp->conn_saddr_v6 = connp->conn_bound_addr_v6; connp->conn_v6lastdst = ipv6_all_zeros; mutex_exit(&connp->conn_lock); break; } ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); return (error); ud_error: ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = connp->conn_cred; /* Restore */ ixa->ixa_cpid = connp->conn_cpid; ixa_refrele(ixa); freemsg(data_mp); BUMP_MIB(&us->us_udp_mib, udpOutErrors); UDP_STAT(us, udp_out_err_output); return (error); } /* ARGSUSED */ static void udp_wput_fallback(queue_t *wq, mblk_t *mp) { #ifdef DEBUG cmn_err(CE_CONT, "udp_wput_fallback: Message in fallback \n"); #endif freemsg(mp); } /* * Handle special out-of-band ioctl requests (see PSARC/2008/265). */ static void udp_wput_cmdblk(queue_t *q, mblk_t *mp) { void *data; mblk_t *datamp = mp->b_cont; conn_t *connp = Q_TO_CONN(q); udp_t *udp = connp->conn_udp; cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { cmdp->cb_error = EPROTO; qreply(q, mp); return; } data = datamp->b_rptr; mutex_enter(&connp->conn_lock); switch (cmdp->cb_cmd) { case TI_GETPEERNAME: if (udp->udp_state != TS_DATA_XFER) cmdp->cb_error = ENOTCONN; else cmdp->cb_error = conn_getpeername(connp, data, &cmdp->cb_len); break; case TI_GETMYNAME: cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); break; default: cmdp->cb_error = EINVAL; break; } mutex_exit(&connp->conn_lock); qreply(q, mp); } static void udp_use_pure_tpi(udp_t *udp) { conn_t *connp = udp->udp_connp; mutex_enter(&connp->conn_lock); udp->udp_issocket = B_FALSE; mutex_exit(&connp->conn_lock); UDP_STAT(udp->udp_us, udp_sock_fallback); } static void udp_wput_other(queue_t *q, mblk_t *mp) { uchar_t *rptr = mp->b_rptr; struct iocblk *iocp; conn_t *connp = Q_TO_CONN(q); udp_t *udp = connp->conn_udp; udp_stack_t *us = udp->udp_us; cred_t *cr; switch (mp->b_datap->db_type) { case M_CMD: udp_wput_cmdblk(q, mp); return; case M_PROTO: case M_PCPROTO: if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { /* * If the message does not contain a PRIM_type, * throw it away. */ freemsg(mp); return; } switch (((t_primp_t)rptr)->type) { case T_ADDR_REQ: udp_addr_req(q, mp); return; case O_T_BIND_REQ: case T_BIND_REQ: udp_tpi_bind(q, mp); return; case T_CONN_REQ: udp_tpi_connect(q, mp); return; case T_CAPABILITY_REQ: udp_capability_req(q, mp); return; case T_INFO_REQ: udp_info_req(q, mp); return; case T_UNITDATA_REQ: /* * If a T_UNITDATA_REQ gets here, the address must * be bad. Valid T_UNITDATA_REQs are handled * in udp_wput. */ udp_ud_err(q, mp, EADDRNOTAVAIL); return; case T_UNBIND_REQ: udp_tpi_unbind(q, mp); return; case T_SVR4_OPTMGMT_REQ: /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cr = msg_getcred(mp, NULL); ASSERT(cr != NULL); if (cr == NULL) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get, cr)) { svr4_optcom_req(q, mp, cr, &udp_opt_obj); } return; case T_OPTMGMT_REQ: /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cr = msg_getcred(mp, NULL); ASSERT(cr != NULL); if (cr == NULL) { udp_err_ack(q, mp, TSYSERR, EINVAL); return; } tpi_optcom_req(q, mp, cr, &udp_opt_obj); return; case T_DISCON_REQ: udp_tpi_disconnect(q, mp); return; /* The following TPI message is not supported by udp. */ case O_T_CONN_RES: case T_CONN_RES: udp_err_ack(q, mp, TNOTSUPPORT, 0); return; /* The following 3 TPI requests are illegal for udp. */ case T_DATA_REQ: case T_EXDATA_REQ: case T_ORDREL_REQ: udp_err_ack(q, mp, TNOTSUPPORT, 0); return; default: break; } break; case M_FLUSH: if (*rptr & FLUSHW) flushq(q, FLUSHDATA); break; case M_IOCTL: iocp = (struct iocblk *)mp->b_rptr; switch (iocp->ioc_cmd) { case TI_GETPEERNAME: if (udp->udp_state != TS_DATA_XFER) { /* * If a default destination address has not * been associated with the stream, then we * don't know the peer's name. */ iocp->ioc_error = ENOTCONN; iocp->ioc_count = 0; mp->b_datap->db_type = M_IOCACK; qreply(q, mp); return; } /* FALLTHRU */ case TI_GETMYNAME: /* * For TI_GETPEERNAME and TI_GETMYNAME, we first * need to copyin the user's strbuf structure. * Processing will continue in the M_IOCDATA case * below. */ mi_copyin(q, mp, NULL, SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); return; case ND_SET: /* nd_getset performs the necessary checking */ case ND_GET: if (nd_getset(q, us->us_nd, mp)) { qreply(q, mp); return; } break; case _SIOCSOCKFALLBACK: /* * Either sockmod is about to be popped and the * socket would now be treated as a plain stream, * or a module is about to be pushed so we have * to follow pure TPI semantics. */ if (!udp->udp_issocket) { DB_TYPE(mp) = M_IOCNAK; iocp->ioc_error = EINVAL; } else { udp_use_pure_tpi(udp); DB_TYPE(mp) = M_IOCACK; iocp->ioc_error = 0; } iocp->ioc_count = 0; iocp->ioc_rval = 0; qreply(q, mp); return; default: break; } break; case M_IOCDATA: udp_wput_iocdata(q, mp); return; default: /* Unrecognized messages are passed through without change. */ break; } ip_wput_nondata(q, mp); } /* * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA * messages. */ static void udp_wput_iocdata(queue_t *q, mblk_t *mp) { mblk_t *mp1; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; STRUCT_HANDLE(strbuf, sb); uint_t addrlen; conn_t *connp = Q_TO_CONN(q); udp_t *udp = connp->conn_udp; /* Make sure it is one of ours. */ switch (iocp->ioc_cmd) { case TI_GETMYNAME: case TI_GETPEERNAME: break; default: ip_wput_nondata(q, mp); return; } switch (mi_copy_state(q, mp, &mp1)) { case -1: return; case MI_COPY_CASE(MI_COPY_IN, 1): break; case MI_COPY_CASE(MI_COPY_OUT, 1): /* * The address has been copied out, so now * copyout the strbuf. */ mi_copyout(q, mp); return; case MI_COPY_CASE(MI_COPY_OUT, 2): /* * The address and strbuf have been copied out. * We're done, so just acknowledge the original * M_IOCTL. */ mi_copy_done(q, mp, 0); return; default: /* * Something strange has happened, so acknowledge * the original M_IOCTL with an EPROTO error. */ mi_copy_done(q, mp, EPROTO); return; } /* * Now we have the strbuf structure for TI_GETMYNAME * and TI_GETPEERNAME. Next we copyout the requested * address and then we'll copyout the strbuf. */ STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); if (connp->conn_family == AF_INET) addrlen = sizeof (sin_t); else addrlen = sizeof (sin6_t); if (STRUCT_FGET(sb, maxlen) < addrlen) { mi_copy_done(q, mp, EINVAL); return; } switch (iocp->ioc_cmd) { case TI_GETMYNAME: break; case TI_GETPEERNAME: if (udp->udp_state != TS_DATA_XFER) { mi_copy_done(q, mp, ENOTCONN); return; } break; } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); if (!mp1) return; STRUCT_FSET(sb, len, addrlen); switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { case TI_GETMYNAME: (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, &addrlen); break; case TI_GETPEERNAME: (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, &addrlen); break; } mp1->b_wptr += addrlen; /* Copy out the address */ mi_copyout(q, mp); } void udp_ddi_g_init(void) { udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr, udp_opt_obj.odb_opt_arr_cnt); /* * We want to be informed each time a stack is created or * destroyed in the kernel, so we can maintain the * set of udp_stack_t's. */ netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini); } void udp_ddi_g_destroy(void) { netstack_unregister(NS_UDP); } #define INET_NAME "ip" /* * Initialize the UDP stack instance. */ static void * udp_stack_init(netstackid_t stackid, netstack_t *ns) { udp_stack_t *us; udpparam_t *pa; int i; int error = 0; major_t major; us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP); us->us_netstack = ns; us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS; us->us_epriv_ports[0] = 2049; us->us_epriv_ports[1] = 4045; /* * The smallest anonymous port in the priviledged port range which UDP * looks for free port. Use in the option UDP_ANONPRIVBIND. */ us->us_min_anonpriv_port = 512; us->us_bind_fanout_size = udp_bind_fanout_size; /* Roundup variable that might have been modified in /etc/system */ if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) { /* Not a power of two. Round up to nearest power of two */ for (i = 0; i < 31; i++) { if (us->us_bind_fanout_size < (1 << i)) break; } us->us_bind_fanout_size = 1 << i; } us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size * sizeof (udp_fanout_t), KM_SLEEP); for (i = 0; i < us->us_bind_fanout_size; i++) { mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT, NULL); } pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP); us->us_param_arr = pa; bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr)); (void) udp_param_register(&us->us_nd, us->us_param_arr, A_CNT(udp_param_arr)); us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics); us->us_mibkp = udp_kstat_init(stackid); major = mod_name_to_major(INET_NAME); error = ldi_ident_from_major(major, &us->us_ldi_ident); ASSERT(error == 0); return (us); } /* * Free the UDP stack instance. */ static void udp_stack_fini(netstackid_t stackid, void *arg) { udp_stack_t *us = (udp_stack_t *)arg; int i; for (i = 0; i < us->us_bind_fanout_size; i++) { mutex_destroy(&us->us_bind_fanout[i].uf_lock); } kmem_free(us->us_bind_fanout, us->us_bind_fanout_size * sizeof (udp_fanout_t)); us->us_bind_fanout = NULL; nd_free(&us->us_nd); kmem_free(us->us_param_arr, sizeof (udp_param_arr)); us->us_param_arr = NULL; udp_kstat_fini(stackid, us->us_mibkp); us->us_mibkp = NULL; udp_kstat2_fini(stackid, us->us_kstat); us->us_kstat = NULL; bzero(&us->us_statistics, sizeof (us->us_statistics)); ldi_ident_release(us->us_ldi_ident); kmem_free(us, sizeof (*us)); } static void * udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp) { kstat_t *ksp; udp_stat_t template = { { "udp_sock_fallback", KSTAT_DATA_UINT64 }, { "udp_out_opt", KSTAT_DATA_UINT64 }, { "udp_out_err_notconn", KSTAT_DATA_UINT64 }, { "udp_out_err_output", KSTAT_DATA_UINT64 }, { "udp_out_err_tudr", KSTAT_DATA_UINT64 }, #ifdef DEBUG { "udp_data_conn", KSTAT_DATA_UINT64 }, { "udp_data_notconn", KSTAT_DATA_UINT64 }, { "udp_out_lastdst", KSTAT_DATA_UINT64 }, { "udp_out_diffdst", KSTAT_DATA_UINT64 }, { "udp_out_ipv6", KSTAT_DATA_UINT64 }, { "udp_out_mapped", KSTAT_DATA_UINT64 }, { "udp_out_ipv4", KSTAT_DATA_UINT64 }, #endif }; ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net", KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL, stackid); if (ksp == NULL) return (NULL); bcopy(&template, us_statisticsp, sizeof (template)); ksp->ks_data = (void *)us_statisticsp; ksp->ks_private = (void *)(uintptr_t)stackid; kstat_install(ksp); return (ksp); } static void udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) { if (ksp != NULL) { ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); kstat_delete_netstack(ksp, stackid); } } static void * udp_kstat_init(netstackid_t stackid) { kstat_t *ksp; udp_named_kstat_t template = { { "inDatagrams", KSTAT_DATA_UINT64, 0 }, { "inErrors", KSTAT_DATA_UINT32, 0 }, { "outDatagrams", KSTAT_DATA_UINT64, 0 }, { "entrySize", KSTAT_DATA_INT32, 0 }, { "entry6Size", KSTAT_DATA_INT32, 0 }, { "outErrors", KSTAT_DATA_UINT32, 0 }, }; ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid); if (ksp == NULL || ksp->ks_data == NULL) return (NULL); template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t); template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t); bcopy(&template, ksp->ks_data, sizeof (template)); ksp->ks_update = udp_kstat_update; ksp->ks_private = (void *)(uintptr_t)stackid; kstat_install(ksp); return (ksp); } static void udp_kstat_fini(netstackid_t stackid, kstat_t *ksp) { if (ksp != NULL) { ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); kstat_delete_netstack(ksp, stackid); } } static int udp_kstat_update(kstat_t *kp, int rw) { udp_named_kstat_t *udpkp; netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; netstack_t *ns; udp_stack_t *us; if ((kp == NULL) || (kp->ks_data == NULL)) return (EIO); if (rw == KSTAT_WRITE) return (EACCES); ns = netstack_find_by_stackid(stackid); if (ns == NULL) return (-1); us = ns->netstack_udp; if (us == NULL) { netstack_rele(ns); return (-1); } udpkp = (udp_named_kstat_t *)kp->ks_data; udpkp->inDatagrams.value.ui64 = us->us_udp_mib.udpHCInDatagrams; udpkp->inErrors.value.ui32 = us->us_udp_mib.udpInErrors; udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams; udpkp->outErrors.value.ui32 = us->us_udp_mib.udpOutErrors; netstack_rele(ns); return (0); } static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size) { udp_stack_t *us = udp->udp_us; /* We add a bit of extra buffering */ size += size >> 1; if (size > us->us_max_buf) size = us->us_max_buf; udp->udp_rcv_hiwat = size; return (size); } /* * For the lower queue so that UDP can be a dummy mux. * Nobody should be sending * packets up this stream */ static void udp_lrput(queue_t *q, mblk_t *mp) { switch (mp->b_datap->db_type) { case M_FLUSH: /* Turn around */ if (*mp->b_rptr & FLUSHW) { *mp->b_rptr &= ~FLUSHR; qreply(q, mp); return; } break; } freemsg(mp); } /* * For the lower queue so that UDP can be a dummy mux. * Nobody should be sending packets down this stream. */ /* ARGSUSED */ void udp_lwput(queue_t *q, mblk_t *mp) { freemsg(mp); } /* * Below routines for UDP socket module. */ static conn_t * udp_do_open(cred_t *credp, boolean_t isv6, int flags, int *errorp) { udp_t *udp; conn_t *connp; zoneid_t zoneid; netstack_t *ns; udp_stack_t *us; int len; ASSERT(errorp != NULL); if ((*errorp = secpolicy_basic_net_access(credp)) != 0) return (NULL); ns = netstack_find_by_cred(credp); ASSERT(ns != NULL); us = ns->netstack_udp; ASSERT(us != NULL); /* * For exclusive stacks we set the zoneid to zero * to make UDP operate as if in the global zone. */ if (ns->netstack_stackid != GLOBAL_NETSTACKID) zoneid = GLOBAL_ZONEID; else zoneid = crgetzoneid(credp); ASSERT(flags == KM_SLEEP || flags == KM_NOSLEEP); connp = ipcl_conn_create(IPCL_UDPCONN, flags, ns); if (connp == NULL) { netstack_rele(ns); *errorp = ENOMEM; return (NULL); } udp = connp->conn_udp; /* * ipcl_conn_create did a netstack_hold. Undo the hold that was * done by netstack_find_by_cred() */ netstack_rele(ns); /* * Since this conn_t/udp_t is not yet visible to anybody else we don't * need to lock anything. */ ASSERT(connp->conn_proto == IPPROTO_UDP); ASSERT(connp->conn_udp == udp); ASSERT(udp->udp_connp == connp); /* Set the initial state of the stream and the privilege status. */ udp->udp_state = TS_UNBND; connp->conn_ixa->ixa_flags |= IXAF_VERIFY_SOURCE; if (isv6) { connp->conn_family = AF_INET6; connp->conn_ipversion = IPV6_VERSION; connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; connp->conn_default_ttl = us->us_ipv6_hoplimit; len = sizeof (ip6_t) + UDPH_SIZE; } else { connp->conn_family = AF_INET; connp->conn_ipversion = IPV4_VERSION; connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; connp->conn_default_ttl = us->us_ipv4_ttl; len = sizeof (ipha_t) + UDPH_SIZE; } ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; connp->conn_ixa->ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ connp->conn_ixa->ixa_zoneid = zoneid; connp->conn_zoneid = zoneid; /* * If the caller has the process-wide flag set, then default to MAC * exempt mode. This allows read-down to unlabeled hosts. */ if (getpflags(NET_MAC_AWARE, credp) != 0) connp->conn_mac_mode = CONN_MAC_AWARE; connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); udp->udp_us = us; connp->conn_rcvbuf = us->us_recv_hiwat; connp->conn_sndbuf = us->us_xmit_hiwat; connp->conn_sndlowat = us->us_xmit_lowat; connp->conn_rcvlowat = udp_mod_info.mi_lowat; connp->conn_wroff = len + us->us_wroff_extra; connp->conn_so_type = SOCK_DGRAM; connp->conn_recv = udp_input; connp->conn_recvicmp = udp_icmp_input; crhold(credp); connp->conn_cred = credp; connp->conn_cpid = curproc->p_pid; connp->conn_open_time = ddi_get_lbolt64(); /* Cache things in ixa without an extra refhold */ ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); connp->conn_ixa->ixa_cred = connp->conn_cred; connp->conn_ixa->ixa_cpid = connp->conn_cpid; if (is_system_labeled()) connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); *((sin6_t *)&udp->udp_delayed_addr) = sin6_null; if (us->us_pmtu_discovery) connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; return (connp); } sock_lower_handle_t udp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, uint_t *smodep, int *errorp, int flags, cred_t *credp) { udp_t *udp = NULL; udp_stack_t *us; conn_t *connp; boolean_t isv6; if (type != SOCK_DGRAM || (family != AF_INET && family != AF_INET6) || (proto != 0 && proto != IPPROTO_UDP)) { *errorp = EPROTONOSUPPORT; return (NULL); } if (family == AF_INET6) isv6 = B_TRUE; else isv6 = B_FALSE; connp = udp_do_open(credp, isv6, flags, errorp); if (connp == NULL) return (NULL); udp = connp->conn_udp; ASSERT(udp != NULL); us = udp->udp_us; ASSERT(us != NULL); udp->udp_issocket = B_TRUE; connp->conn_flags |= IPCL_NONSTR; /* * Set flow control * Since this conn_t/udp_t is not yet visible to anybody else we don't * need to lock anything. */ (void) udp_set_rcv_hiwat(udp, connp->conn_rcvbuf); udp->udp_rcv_disply_hiwat = connp->conn_rcvbuf; connp->conn_flow_cntrld = B_FALSE; mutex_enter(&connp->conn_lock); connp->conn_state_flags &= ~CONN_INCIPIENT; mutex_exit(&connp->conn_lock); *errorp = 0; *smodep = SM_ATOMIC; *sock_downcalls = &sock_udp_downcalls; return ((sock_lower_handle_t)connp); } /* ARGSUSED3 */ void udp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; struct sock_proto_props sopp; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); connp->conn_upcalls = sock_upcalls; connp->conn_upper_handle = sock_handle; sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ; sopp.sopp_wroff = connp->conn_wroff; sopp.sopp_maxblk = INFPSZ; sopp.sopp_rxhiwat = connp->conn_rcvbuf; sopp.sopp_rxlowat = connp->conn_rcvlowat; sopp.sopp_maxaddrlen = sizeof (sin6_t); sopp.sopp_maxpsz = (connp->conn_family == AF_INET) ? UDP_MAXPACKET_IPV4 : UDP_MAXPACKET_IPV6; sopp.sopp_minpsz = (udp_mod_info.mi_minpsz == 1) ? 0 : udp_mod_info.mi_minpsz; (*connp->conn_upcalls->su_set_proto_props)(connp->conn_upper_handle, &sopp); } static void udp_do_close(conn_t *connp) { udp_t *udp; ASSERT(connp != NULL && IPCL_IS_UDP(connp)); udp = connp->conn_udp; if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { /* * Running in cluster mode - register unbind information */ if (connp->conn_ipversion == IPV4_VERSION) { (*cl_inet_unbind)( connp->conn_netstack->netstack_stackid, IPPROTO_UDP, AF_INET, (uint8_t *)(&V4_PART_OF_V6(connp->conn_laddr_v6)), (in_port_t)connp->conn_lport, NULL); } else { (*cl_inet_unbind)( connp->conn_netstack->netstack_stackid, IPPROTO_UDP, AF_INET6, (uint8_t *)&(connp->conn_laddr_v6), (in_port_t)connp->conn_lport, NULL); } } udp_bind_hash_remove(udp, B_FALSE); ip_quiesce_conn(connp); if (!IPCL_IS_NONSTR(connp)) { ASSERT(connp->conn_wq != NULL); ASSERT(connp->conn_rq != NULL); qprocsoff(connp->conn_rq); } udp_close_free(connp); /* * Now we are truly single threaded on this stream, and can * delete the things hanging off the connp, and finally the connp. * We removed this connp from the fanout list, it cannot be * accessed thru the fanouts, and we already waited for the * conn_ref to drop to 0. We are already in close, so * there cannot be any other thread from the top. qprocsoff * has completed, and service has completed or won't run in * future. */ ASSERT(connp->conn_ref == 1); if (!IPCL_IS_NONSTR(connp)) { inet_minor_free(connp->conn_minor_arena, connp->conn_dev); } else { ip_free_helper_stream(connp); } connp->conn_ref--; ipcl_conn_destroy(connp); } /* ARGSUSED1 */ int udp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); udp_do_close(connp); return (0); } static int udp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, boolean_t bind_to_req_port_only) { sin_t *sin; sin6_t *sin6; udp_t *udp = connp->conn_udp; int error = 0; ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ in_port_t port; /* Host byte order */ in_port_t requested_port; /* Host byte order */ int count; ipaddr_t v4src; /* Set if AF_INET */ in6_addr_t v6src; int loopmax; udp_fanout_t *udpf; in_port_t lport; /* Network byte order */ uint_t scopeid = 0; zoneid_t zoneid = IPCL_ZONEID(connp); ip_stack_t *ipst = connp->conn_netstack->netstack_ip; boolean_t is_inaddr_any; mlp_type_t addrtype, mlptype; udp_stack_t *us = udp->udp_us; switch (len) { case sizeof (sin_t): /* Complete IPv4 address */ sin = (sin_t *)sa; if (sin == NULL || !OK_32PTR((char *)sin)) return (EINVAL); if (connp->conn_family != AF_INET || sin->sin_family != AF_INET) { return (EAFNOSUPPORT); } v4src = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(v4src, &v6src); if (v4src != INADDR_ANY) { laddr_type = ip_laddr_verify_v4(v4src, zoneid, ipst, B_TRUE); } port = ntohs(sin->sin_port); break; case sizeof (sin6_t): /* complete IPv6 address */ sin6 = (sin6_t *)sa; if (sin6 == NULL || !OK_32PTR((char *)sin6)) return (EINVAL); if (connp->conn_family != AF_INET6 || sin6->sin6_family != AF_INET6) { return (EAFNOSUPPORT); } v6src = sin6->sin6_addr; if (IN6_IS_ADDR_V4MAPPED(&v6src)) { if (connp->conn_ipv6_v6only) return (EADDRNOTAVAIL); IN6_V4MAPPED_TO_IPADDR(&v6src, v4src); if (v4src != INADDR_ANY) { laddr_type = ip_laddr_verify_v4(v4src, zoneid, ipst, B_FALSE); } } else { if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { if (IN6_IS_ADDR_LINKSCOPE(&v6src)) scopeid = sin6->sin6_scope_id; laddr_type = ip_laddr_verify_v6(&v6src, zoneid, ipst, B_TRUE, scopeid); } } port = ntohs(sin6->sin6_port); break; default: /* Invalid request */ (void) strlog(UDP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "udp_bind: bad ADDR_length length %u", len); return (-TBADADDR); } /* Is the local address a valid unicast, multicast, or broadcast? */ if (laddr_type == IPVL_BAD) return (EADDRNOTAVAIL); requested_port = port; if (requested_port == 0 || !bind_to_req_port_only) bind_to_req_port_only = B_FALSE; else /* T_BIND_REQ and requested_port != 0 */ bind_to_req_port_only = B_TRUE; if (requested_port == 0) { /* * If the application passed in zero for the port number, it * doesn't care which port number we bind to. Get one in the * valid range. */ if (connp->conn_anon_priv_bind) { port = udp_get_next_priv_port(udp); } else { port = udp_update_next_port(udp, us->us_next_port_to_try, B_TRUE); } } else { /* * If the port is in the well-known privileged range, * make sure the caller was privileged. */ int i; boolean_t priv = B_FALSE; if (port < us->us_smallest_nonpriv_port) { priv = B_TRUE; } else { for (i = 0; i < us->us_num_epriv_ports; i++) { if (port == us->us_epriv_ports[i]) { priv = B_TRUE; break; } } } if (priv) { if (secpolicy_net_privaddr(cr, port, IPPROTO_UDP) != 0) return (-TACCES); } } if (port == 0) return (-TNOADDR); /* * The state must be TS_UNBND. TPI mandates that users must send * TPI primitives only 1 at a time and wait for the response before * sending the next primitive. */ mutex_enter(&connp->conn_lock); if (udp->udp_state != TS_UNBND) { mutex_exit(&connp->conn_lock); (void) strlog(UDP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "udp_bind: bad state, %u", udp->udp_state); return (-TOUTSTATE); } /* * Copy the source address into our udp structure. This address * may still be zero; if so, IP will fill in the correct address * each time an outbound packet is passed to it. Since the udp is * not yet in the bind hash list, we don't grab the uf_lock to * change conn_ipversion */ if (connp->conn_family == AF_INET) { ASSERT(sin != NULL); ASSERT(connp->conn_ixa->ixa_flags & IXAF_IS_IPV4); } else { if (IN6_IS_ADDR_V4MAPPED(&v6src)) { /* * no need to hold the uf_lock to set the conn_ipversion * since we are not yet in the fanout list */ connp->conn_ipversion = IPV4_VERSION; connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; } else { connp->conn_ipversion = IPV6_VERSION; connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; } } /* * If conn_reuseaddr is not set, then we have to make sure that * the IP address and port number the application requested * (or we selected for the application) is not being used by * another stream. If another stream is already using the * requested IP address and port, the behavior depends on * "bind_to_req_port_only". If set the bind fails; otherwise we * search for any an unused port to bind to the stream. * * As per the BSD semantics, as modified by the Deering multicast * changes, if udp_reuseaddr is set, then we allow multiple binds * to the same port independent of the local IP address. * * This is slightly different than in SunOS 4.X which did not * support IP multicast. Note that the change implemented by the * Deering multicast code effects all binds - not only binding * to IP multicast addresses. * * Note that when binding to port zero we ignore SO_REUSEADDR in * order to guarantee a unique port. */ count = 0; if (connp->conn_anon_priv_bind) { /* * loopmax = (IPPORT_RESERVED-1) - * us->us_min_anonpriv_port + 1 */ loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port; } else { loopmax = us->us_largest_anon_port - us->us_smallest_anon_port + 1; } is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); for (;;) { udp_t *udp1; boolean_t found_exclbind = B_FALSE; conn_t *connp1; /* * Walk through the list of udp streams bound to * requested port with the same IP address. */ lport = htons(port); udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport, us->us_bind_fanout_size)]; mutex_enter(&udpf->uf_lock); for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { connp1 = udp1->udp_connp; if (lport != connp1->conn_lport) continue; /* * On a labeled system, we must treat bindings to ports * on shared IP addresses by sockets with MAC exemption * privilege as being in all zones, as there's * otherwise no way to identify the right receiver. */ if (!IPCL_BIND_ZONE_MATCH(connp1, connp)) continue; /* * If UDP_EXCLBIND is set for either the bound or * binding endpoint, the semantics of bind * is changed according to the following chart. * * spec = specified address (v4 or v6) * unspec = unspecified address (v4 or v6) * A = specified addresses are different for endpoints * * bound bind to allowed? * ------------------------------------- * unspec unspec no * unspec spec no * spec unspec no * spec spec yes if A * * For labeled systems, SO_MAC_EXEMPT behaves the same * as UDP_EXCLBIND, except that zoneid is ignored. */ if (connp1->conn_exclbind || connp->conn_exclbind || IPCL_CONNS_MAC(udp1->udp_connp, connp)) { if (V6_OR_V4_INADDR_ANY( connp1->conn_bound_addr_v6) || is_inaddr_any || IN6_ARE_ADDR_EQUAL( &connp1->conn_bound_addr_v6, &v6src)) { found_exclbind = B_TRUE; break; } continue; } /* * Check ipversion to allow IPv4 and IPv6 sockets to * have disjoint port number spaces. */ if (connp->conn_ipversion != connp1->conn_ipversion) { /* * On the first time through the loop, if the * the user intentionally specified a * particular port number, then ignore any * bindings of the other protocol that may * conflict. This allows the user to bind IPv6 * alone and get both v4 and v6, or bind both * both and get each seperately. On subsequent * times through the loop, we're checking a * port that we chose (not the user) and thus * we do not allow casual duplicate bindings. */ if (count == 0 && requested_port != 0) continue; } /* * No difference depending on SO_REUSEADDR. * * If existing port is bound to a * non-wildcard IP address and * the requesting stream is bound to * a distinct different IP addresses * (non-wildcard, also), keep going. */ if (!is_inaddr_any && !V6_OR_V4_INADDR_ANY(connp1->conn_bound_addr_v6) && !IN6_ARE_ADDR_EQUAL(&connp1->conn_laddr_v6, &v6src)) { continue; } break; } if (!found_exclbind && (connp->conn_reuseaddr && requested_port != 0)) { break; } if (udp1 == NULL) { /* * No other stream has this IP address * and port number. We can use it. */ break; } mutex_exit(&udpf->uf_lock); if (bind_to_req_port_only) { /* * We get here only when requested port * is bound (and only first of the for() * loop iteration). * * The semantics of this bind request * require it to fail so we return from * the routine (and exit the loop). * */ mutex_exit(&connp->conn_lock); return (-TADDRBUSY); } if (connp->conn_anon_priv_bind) { port = udp_get_next_priv_port(udp); } else { if ((count == 0) && (requested_port != 0)) { /* * If the application wants us to find * a port, get one to start with. Set * requested_port to 0, so that we will * update us->us_next_port_to_try below. */ port = udp_update_next_port(udp, us->us_next_port_to_try, B_TRUE); requested_port = 0; } else { port = udp_update_next_port(udp, port + 1, B_FALSE); } } if (port == 0 || ++count >= loopmax) { /* * We've tried every possible port number and * there are none available, so send an error * to the user. */ mutex_exit(&connp->conn_lock); return (-TNOADDR); } } /* * Copy the source address into our udp structure. This address * may still be zero; if so, ip_attr_connect will fill in the correct * address when a packet is about to be sent. * If we are binding to a broadcast or multicast address then * we just set the conn_bound_addr since we don't want to use * that as the source address when sending. */ connp->conn_bound_addr_v6 = v6src; connp->conn_laddr_v6 = v6src; if (scopeid != 0) { connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; connp->conn_ixa->ixa_scopeid = scopeid; connp->conn_incoming_ifindex = scopeid; } else { connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; connp->conn_incoming_ifindex = connp->conn_bound_if; } switch (laddr_type) { case IPVL_UNICAST_UP: case IPVL_UNICAST_DOWN: connp->conn_saddr_v6 = v6src; connp->conn_mcbc_bind = B_FALSE; break; case IPVL_MCAST: case IPVL_BCAST: /* ip_set_destination will pick a source address later */ connp->conn_saddr_v6 = ipv6_all_zeros; connp->conn_mcbc_bind = B_TRUE; break; } /* Any errors after this point should use late_error */ connp->conn_lport = lport; /* * Now reset the next anonymous port if the application requested * an anonymous port, or we handed out the next anonymous port. */ if ((requested_port == 0) && (!connp->conn_anon_priv_bind)) { us->us_next_port_to_try = port + 1; } /* Initialize the T_BIND_ACK. */ if (connp->conn_family == AF_INET) { sin->sin_port = connp->conn_lport; } else { sin6->sin6_port = connp->conn_lport; } udp->udp_state = TS_IDLE; udp_bind_hash_insert(udpf, udp); mutex_exit(&udpf->uf_lock); mutex_exit(&connp->conn_lock); if (cl_inet_bind) { /* * Running in cluster mode - register bind information */ if (connp->conn_ipversion == IPV4_VERSION) { (*cl_inet_bind)(connp->conn_netstack->netstack_stackid, IPPROTO_UDP, AF_INET, (uint8_t *)&v4src, (in_port_t)connp->conn_lport, NULL); } else { (*cl_inet_bind)(connp->conn_netstack->netstack_stackid, IPPROTO_UDP, AF_INET6, (uint8_t *)&v6src, (in_port_t)connp->conn_lport, NULL); } } mutex_enter(&connp->conn_lock); connp->conn_anon_port = (is_system_labeled() && requested_port == 0); if (is_system_labeled() && (!connp->conn_anon_port || connp->conn_anon_mlp)) { uint16_t mlpport; zone_t *zone; zone = crgetzone(cr); connp->conn_mlp_type = connp->conn_recv_ancillary.crb_recvucred ? mlptBoth : mlptSingle; addrtype = tsol_mlp_addr_type( connp->conn_allzones ? ALL_ZONES : zone->zone_id, IPV6_VERSION, &v6src, us->us_netstack->netstack_ip); if (addrtype == mlptSingle) { error = -TNOADDR; mutex_exit(&connp->conn_lock); goto late_error; } mlpport = connp->conn_anon_port ? PMAPPORT : port; mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport, addrtype); /* * It is a coding error to attempt to bind an MLP port * without first setting SOL_SOCKET/SCM_UCRED. */ if (mlptype != mlptSingle && connp->conn_mlp_type == mlptSingle) { error = EINVAL; mutex_exit(&connp->conn_lock); goto late_error; } /* * It is an access violation to attempt to bind an MLP port * without NET_BINDMLP privilege. */ if (mlptype != mlptSingle && secpolicy_net_bindmlp(cr) != 0) { if (connp->conn_debug) { (void) strlog(UDP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "udp_bind: no priv for multilevel port %d", mlpport); } error = -TACCES; mutex_exit(&connp->conn_lock); goto late_error; } /* * If we're specifically binding a shared IP address and the * port is MLP on shared addresses, then check to see if this * zone actually owns the MLP. Reject if not. */ if (mlptype == mlptShared && addrtype == mlptShared) { /* * No need to handle exclusive-stack zones since * ALL_ZONES only applies to the shared stack. */ zoneid_t mlpzone; mlpzone = tsol_mlp_findzone(IPPROTO_UDP, htons(mlpport)); if (connp->conn_zoneid != mlpzone) { if (connp->conn_debug) { (void) strlog(UDP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "udp_bind: attempt to bind port " "%d on shared addr in zone %d " "(should be %d)", mlpport, connp->conn_zoneid, mlpzone); } error = -TACCES; mutex_exit(&connp->conn_lock); goto late_error; } } if (connp->conn_anon_port) { error = tsol_mlp_anon(zone, mlptype, connp->conn_proto, port, B_TRUE); if (error != 0) { if (connp->conn_debug) { (void) strlog(UDP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "udp_bind: cannot establish anon " "MLP for port %d", port); } error = -TACCES; mutex_exit(&connp->conn_lock); goto late_error; } } connp->conn_mlp_type = mlptype; } /* * We create an initial header template here to make a subsequent * sendto have a starting point. Since conn_last_dst is zero the * first sendto will always follow the 'dst changed' code path. * Note that we defer massaging options and the related checksum * adjustment until we have a destination address. */ error = udp_build_hdr_template(connp, &connp->conn_saddr_v6, &connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo); if (error != 0) { mutex_exit(&connp->conn_lock); goto late_error; } /* Just in case */ connp->conn_faddr_v6 = ipv6_all_zeros; connp->conn_fport = 0; connp->conn_v6lastdst = ipv6_all_zeros; mutex_exit(&connp->conn_lock); error = ip_laddr_fanout_insert(connp); if (error != 0) goto late_error; /* Bind succeeded */ return (0); late_error: /* We had already picked the port number, and then the bind failed */ mutex_enter(&connp->conn_lock); udpf = &us->us_bind_fanout[ UDP_BIND_HASH(connp->conn_lport, us->us_bind_fanout_size)]; mutex_enter(&udpf->uf_lock); connp->conn_saddr_v6 = ipv6_all_zeros; connp->conn_bound_addr_v6 = ipv6_all_zeros; connp->conn_laddr_v6 = ipv6_all_zeros; if (scopeid != 0) { connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; connp->conn_incoming_ifindex = connp->conn_bound_if; } udp->udp_state = TS_UNBND; udp_bind_hash_remove(udp, B_TRUE); connp->conn_lport = 0; mutex_exit(&udpf->uf_lock); connp->conn_anon_port = B_FALSE; connp->conn_mlp_type = mlptSingle; connp->conn_v6lastdst = ipv6_all_zeros; /* Restore the header that was built above - different source address */ (void) udp_build_hdr_template(connp, &connp->conn_saddr_v6, &connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo); mutex_exit(&connp->conn_lock); return (error); } int udp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, socklen_t len, cred_t *cr) { int error; conn_t *connp; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); connp = (conn_t *)proto_handle; if (sa == NULL) error = udp_do_unbind(connp); else error = udp_do_bind(connp, sa, len, cr, B_TRUE); if (error < 0) { if (error == -TOUTSTATE) error = EINVAL; else error = proto_tlitosyserr(-error); } return (error); } static int udp_implicit_bind(conn_t *connp, cred_t *cr) { sin6_t sin6addr; sin_t *sin; sin6_t *sin6; socklen_t len; int error; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); if (connp->conn_family == AF_INET) { len = sizeof (struct sockaddr_in); sin = (sin_t *)&sin6addr; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = INADDR_ANY; } else { ASSERT(connp->conn_family == AF_INET6); len = sizeof (sin6_t); sin6 = (sin6_t *)&sin6addr; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; V6_SET_ZERO(sin6->sin6_addr); } error = udp_do_bind(connp, (struct sockaddr *)&sin6addr, len, cr, B_FALSE); return ((error < 0) ? proto_tlitosyserr(-error) : error); } /* * This routine removes a port number association from a stream. It * is called by udp_unbind and udp_tpi_unbind. */ static int udp_do_unbind(conn_t *connp) { udp_t *udp = connp->conn_udp; udp_fanout_t *udpf; udp_stack_t *us = udp->udp_us; if (cl_inet_unbind != NULL) { /* * Running in cluster mode - register unbind information */ if (connp->conn_ipversion == IPV4_VERSION) { (*cl_inet_unbind)( connp->conn_netstack->netstack_stackid, IPPROTO_UDP, AF_INET, (uint8_t *)(&V4_PART_OF_V6(connp->conn_laddr_v6)), (in_port_t)connp->conn_lport, NULL); } else { (*cl_inet_unbind)( connp->conn_netstack->netstack_stackid, IPPROTO_UDP, AF_INET6, (uint8_t *)&(connp->conn_laddr_v6), (in_port_t)connp->conn_lport, NULL); } } mutex_enter(&connp->conn_lock); /* If a bind has not been done, we can't unbind. */ if (udp->udp_state == TS_UNBND) { mutex_exit(&connp->conn_lock); return (-TOUTSTATE); } udpf = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport, us->us_bind_fanout_size)]; mutex_enter(&udpf->uf_lock); udp_bind_hash_remove(udp, B_TRUE); connp->conn_saddr_v6 = ipv6_all_zeros; connp->conn_bound_addr_v6 = ipv6_all_zeros; connp->conn_laddr_v6 = ipv6_all_zeros; connp->conn_mcbc_bind = B_FALSE; connp->conn_lport = 0; /* In case we were also connected */ connp->conn_faddr_v6 = ipv6_all_zeros; connp->conn_fport = 0; mutex_exit(&udpf->uf_lock); connp->conn_v6lastdst = ipv6_all_zeros; udp->udp_state = TS_UNBND; (void) udp_build_hdr_template(connp, &connp->conn_saddr_v6, &connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo); mutex_exit(&connp->conn_lock); ip_unbind(connp); return (0); } /* * It associates a default destination address with the stream. */ static int udp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, cred_t *cr, pid_t pid) { sin6_t *sin6; sin_t *sin; in6_addr_t v6dst; ipaddr_t v4dst; uint16_t dstport; uint32_t flowinfo; udp_fanout_t *udpf; udp_t *udp, *udp1; ushort_t ipversion; udp_stack_t *us; int error; conn_t *connp1; ip_xmit_attr_t *ixa; uint_t scopeid = 0; uint_t srcid = 0; in6_addr_t v6src = connp->conn_saddr_v6; udp = connp->conn_udp; us = udp->udp_us; /* * Address has been verified by the caller */ switch (len) { default: /* * Should never happen */ return (EINVAL); case sizeof (sin_t): sin = (sin_t *)sa; v4dst = sin->sin_addr.s_addr; dstport = sin->sin_port; IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); ASSERT(connp->conn_ipversion == IPV4_VERSION); ipversion = IPV4_VERSION; break; case sizeof (sin6_t): sin6 = (sin6_t *)sa; v6dst = sin6->sin6_addr; dstport = sin6->sin6_port; srcid = sin6->__sin6_src_id; if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&v6src)) { ip_srcid_find_id(srcid, &v6src, IPCL_ZONEID(connp), connp->conn_netstack); } if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { if (connp->conn_ipv6_v6only) return (EADDRNOTAVAIL); /* * Destination adress is mapped IPv6 address. * Source bound address should be unspecified or * IPv6 mapped address as well. */ if (!IN6_IS_ADDR_UNSPECIFIED( &connp->conn_bound_addr_v6) && !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { return (EADDRNOTAVAIL); } IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); ipversion = IPV4_VERSION; flowinfo = 0; } else { ipversion = IPV6_VERSION; flowinfo = sin6->sin6_flowinfo; if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) scopeid = sin6->sin6_scope_id; } break; } if (dstport == 0) return (-TBADADDR); /* * If there is a different thread using conn_ixa then we get a new * copy and cut the old one loose from conn_ixa. Otherwise we use * conn_ixa and prevent any other thread from using/changing it. * Once connect() is done other threads can use conn_ixa since the * refcnt will be back at one. */ ixa = conn_get_ixa(connp, B_TRUE); if (ixa == NULL) return (ENOMEM); ASSERT(ixa->ixa_refcnt >= 2); ASSERT(ixa == connp->conn_ixa); mutex_enter(&connp->conn_lock); /* * This udp_t must have bound to a port already before doing a connect. * Reject if a connect is in progress (we drop conn_lock during * udp_do_connect). */ if (udp->udp_state == TS_UNBND || udp->udp_state == TS_WCON_CREQ) { mutex_exit(&connp->conn_lock); (void) strlog(UDP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "udp_connect: bad state, %u", udp->udp_state); ixa_refrele(ixa); return (-TOUTSTATE); } ASSERT(connp->conn_lport != 0 && udp->udp_ptpbhn != NULL); udpf = &us->us_bind_fanout[UDP_BIND_HASH(connp->conn_lport, us->us_bind_fanout_size)]; mutex_enter(&udpf->uf_lock); if (udp->udp_state == TS_DATA_XFER) { /* Already connected - clear out state */ if (connp->conn_mcbc_bind) connp->conn_saddr_v6 = ipv6_all_zeros; else connp->conn_saddr_v6 = connp->conn_bound_addr_v6; connp->conn_laddr_v6 = connp->conn_bound_addr_v6; connp->conn_faddr_v6 = ipv6_all_zeros; connp->conn_fport = 0; udp->udp_state = TS_IDLE; } connp->conn_fport = dstport; connp->conn_ipversion = ipversion; if (ipversion == IPV4_VERSION) { /* * Interpret a zero destination to mean loopback. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ if (v4dst == INADDR_ANY) { v4dst = htonl(INADDR_LOOPBACK); IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); if (connp->conn_family == AF_INET) { sin->sin_addr.s_addr = v4dst; } else { sin6->sin6_addr = v6dst; } } connp->conn_faddr_v6 = v6dst; connp->conn_flowinfo = 0; } else { ASSERT(connp->conn_ipversion == IPV6_VERSION); /* * Interpret a zero destination to mean loopback. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { v6dst = ipv6_loopback; sin6->sin6_addr = v6dst; } connp->conn_faddr_v6 = v6dst; connp->conn_flowinfo = flowinfo; } mutex_exit(&udpf->uf_lock); /* * We update our cred/cpid based on the caller of connect */ if (connp->conn_cred != cr) { crhold(cr); crfree(connp->conn_cred); connp->conn_cred = cr; } connp->conn_cpid = pid; ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); ixa->ixa_cred = cr; ixa->ixa_cpid = pid; if (is_system_labeled()) { /* We need to restart with a label based on the cred */ ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); } if (scopeid != 0) { ixa->ixa_flags |= IXAF_SCOPEID_SET; ixa->ixa_scopeid = scopeid; connp->conn_incoming_ifindex = scopeid; } else { ixa->ixa_flags &= ~IXAF_SCOPEID_SET; connp->conn_incoming_ifindex = connp->conn_bound_if; } /* * conn_connect will drop conn_lock and reacquire it. * To prevent a send* from messing with this udp_t while the lock * is dropped we set udp_state and clear conn_v6lastdst. * That will make all send* fail with EISCONN. */ connp->conn_v6lastdst = ipv6_all_zeros; udp->udp_state = TS_WCON_CREQ; error = conn_connect(connp, NULL, IPDF_ALLOW_MCBC); mutex_exit(&connp->conn_lock); if (error != 0) goto connect_failed; /* * The addresses have been verified. Time to insert in * the correct fanout list. */ error = ipcl_conn_insert(connp); if (error != 0) goto connect_failed; mutex_enter(&connp->conn_lock); error = udp_build_hdr_template(connp, &connp->conn_saddr_v6, &connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo); if (error != 0) { mutex_exit(&connp->conn_lock); goto connect_failed; } udp->udp_state = TS_DATA_XFER; /* Record this as the "last" send even though we haven't sent any */ connp->conn_v6lastdst = connp->conn_faddr_v6; connp->conn_lastipversion = connp->conn_ipversion; connp->conn_lastdstport = connp->conn_fport; connp->conn_lastflowinfo = connp->conn_flowinfo; connp->conn_lastscopeid = scopeid; connp->conn_lastsrcid = srcid; /* Also remember a source to use together with lastdst */ connp->conn_v6lastsrc = v6src; mutex_exit(&connp->conn_lock); /* * We've picked a source address above. Now we can * verify that the src/port/dst/port is unique for all * connections in TS_DATA_XFER, skipping ourselves. */ mutex_enter(&udpf->uf_lock); for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { if (udp1->udp_state != TS_DATA_XFER) continue; if (udp1 == udp) continue; connp1 = udp1->udp_connp; if (connp->conn_lport != connp1->conn_lport || connp->conn_ipversion != connp1->conn_ipversion || dstport != connp1->conn_fport || !IN6_ARE_ADDR_EQUAL(&connp->conn_laddr_v6, &connp1->conn_laddr_v6) || !IN6_ARE_ADDR_EQUAL(&v6dst, &connp1->conn_faddr_v6) || !(IPCL_ZONE_MATCH(connp, connp1->conn_zoneid) || IPCL_ZONE_MATCH(connp1, connp->conn_zoneid))) continue; mutex_exit(&udpf->uf_lock); error = -TBADADDR; goto connect_failed; } if (cl_inet_connect2 != NULL) { CL_INET_UDP_CONNECT(connp, B_TRUE, &v6dst, dstport, error); if (error != 0) { mutex_exit(&udpf->uf_lock); error = -TBADADDR; goto connect_failed; } } mutex_exit(&udpf->uf_lock); ixa_refrele(ixa); return (0); connect_failed: if (ixa != NULL) ixa_refrele(ixa); mutex_enter(&connp->conn_lock); mutex_enter(&udpf->uf_lock); udp->udp_state = TS_IDLE; connp->conn_faddr_v6 = ipv6_all_zeros; connp->conn_fport = 0; /* In case the source address was set above */ if (connp->conn_mcbc_bind) connp->conn_saddr_v6 = ipv6_all_zeros; else connp->conn_saddr_v6 = connp->conn_bound_addr_v6; connp->conn_laddr_v6 = connp->conn_bound_addr_v6; mutex_exit(&udpf->uf_lock); connp->conn_v6lastdst = ipv6_all_zeros; connp->conn_flowinfo = 0; (void) udp_build_hdr_template(connp, &connp->conn_saddr_v6, &connp->conn_faddr_v6, connp->conn_fport, connp->conn_flowinfo); mutex_exit(&connp->conn_lock); return (error); } static int udp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, socklen_t len, sock_connid_t *id, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; udp_t *udp = connp->conn_udp; int error; boolean_t did_bind = B_FALSE; pid_t pid = curproc->p_pid; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); if (sa == NULL) { /* * Disconnect * Make sure we are connected */ if (udp->udp_state != TS_DATA_XFER) return (EINVAL); error = udp_disconnect(connp); return (error); } error = proto_verify_ip_addr(connp->conn_family, sa, len); if (error != 0) goto done; /* do an implicit bind if necessary */ if (udp->udp_state == TS_UNBND) { error = udp_implicit_bind(connp, cr); /* * We could be racing with an actual bind, in which case * we would see EPROTO. We cross our fingers and try * to connect. */ if (!(error == 0 || error == EPROTO)) goto done; did_bind = B_TRUE; } /* * set SO_DGRAM_ERRIND */ connp->conn_dgram_errind = B_TRUE; error = udp_do_connect(connp, sa, len, cr, pid); if (error != 0 && did_bind) { int unbind_err; unbind_err = udp_do_unbind(connp); ASSERT(unbind_err == 0); } if (error == 0) { *id = 0; (*connp->conn_upcalls->su_connected) (connp->conn_upper_handle, 0, NULL, -1); } else if (error < 0) { error = proto_tlitosyserr(-error); } done: if (error != 0 && udp->udp_state == TS_DATA_XFER) { /* * No need to hold locks to set state * after connect failure socket state is undefined * We set the state only to imitate old sockfs behavior */ udp->udp_state = TS_IDLE; } return (error); } int udp_send(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, cred_t *cr) { sin6_t *sin6; sin_t *sin = NULL; uint_t srcid; conn_t *connp = (conn_t *)proto_handle; udp_t *udp = connp->conn_udp; int error = 0; udp_stack_t *us = udp->udp_us; ushort_t ipversion; pid_t pid = curproc->p_pid; ip_xmit_attr_t *ixa; ASSERT(DB_TYPE(mp) == M_DATA); /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); /* do an implicit bind if necessary */ if (udp->udp_state == TS_UNBND) { error = udp_implicit_bind(connp, cr); /* * We could be racing with an actual bind, in which case * we would see EPROTO. We cross our fingers and try * to connect. */ if (!(error == 0 || error == EPROTO)) { freemsg(mp); return (error); } } /* Connected? */ if (msg->msg_name == NULL) { if (udp->udp_state != TS_DATA_XFER) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (EDESTADDRREQ); } if (msg->msg_controllen != 0) { error = udp_output_ancillary(connp, NULL, NULL, mp, NULL, msg, cr, pid); } else { error = udp_output_connected(connp, mp, cr, pid); } if (us->us_sendto_ignerr) return (0); else return (error); } if (udp->udp_state == TS_DATA_XFER) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (EISCONN); } error = proto_verify_ip_addr(connp->conn_family, (struct sockaddr *)msg->msg_name, msg->msg_namelen); if (error != 0) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (error); } switch (connp->conn_family) { case AF_INET6: sin6 = (sin6_t *)msg->msg_name; srcid = sin6->__sin6_src_id; if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { /* * Destination is a non-IPv4-compatible IPv6 address. * Send out an IPv6 format packet. */ /* * If the local address is a mapped address return * an error. * It would be possible to send an IPv6 packet but the * response would never make it back to the application * since it is bound to a mapped address. */ if (IN6_IS_ADDR_V4MAPPED(&connp->conn_saddr_v6)) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (EADDRNOTAVAIL); } if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) sin6->sin6_addr = ipv6_loopback; ipversion = IPV6_VERSION; } else { if (connp->conn_ipv6_v6only) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (EADDRNOTAVAIL); } /* * If the local address is not zero or a mapped address * return an error. It would be possible to send an * IPv4 packet but the response would never make it * back to the application since it is bound to a * non-mapped address. */ if (!IN6_IS_ADDR_V4MAPPED(&connp->conn_saddr_v6) && !IN6_IS_ADDR_UNSPECIFIED(&connp->conn_saddr_v6)) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (EADDRNOTAVAIL); } if (V4_PART_OF_V6(sin6->sin6_addr) == INADDR_ANY) { V4_PART_OF_V6(sin6->sin6_addr) = htonl(INADDR_LOOPBACK); } ipversion = IPV4_VERSION; } /* * We have to allocate an ip_xmit_attr_t before we grab * conn_lock and we need to hold conn_lock once we've check * conn_same_as_last_v6 to handle concurrent send* calls on a * socket. */ if (msg->msg_controllen == 0) { ixa = conn_get_ixa(connp, B_FALSE); if (ixa == NULL) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (ENOMEM); } } else { ixa = NULL; } mutex_enter(&connp->conn_lock); if (udp->udp_delayed_error != 0) { sin6_t *sin2 = (sin6_t *)&udp->udp_delayed_addr; error = udp->udp_delayed_error; udp->udp_delayed_error = 0; /* Compare IP address, port, and family */ if (sin6->sin6_port == sin2->sin6_port && IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr, &sin2->sin6_addr) && sin6->sin6_family == sin2->sin6_family) { mutex_exit(&connp->conn_lock); BUMP_MIB(&us->us_udp_mib, udpOutErrors); if (ixa != NULL) ixa_refrele(ixa); return (error); } } if (msg->msg_controllen != 0) { mutex_exit(&connp->conn_lock); ASSERT(ixa == NULL); error = udp_output_ancillary(connp, NULL, sin6, mp, NULL, msg, cr, pid); } else if (conn_same_as_last_v6(connp, sin6) && connp->conn_lastsrcid == srcid && ipsec_outbound_policy_current(ixa)) { /* udp_output_lastdst drops conn_lock */ error = udp_output_lastdst(connp, mp, cr, pid, ixa); } else { /* udp_output_newdst drops conn_lock */ error = udp_output_newdst(connp, mp, NULL, sin6, ipversion, cr, pid, ixa); } ASSERT(MUTEX_NOT_HELD(&connp->conn_lock)); if (us->us_sendto_ignerr) return (0); else return (error); case AF_INET: sin = (sin_t *)msg->msg_name; ipversion = IPV4_VERSION; if (sin->sin_addr.s_addr == INADDR_ANY) sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK); /* * We have to allocate an ip_xmit_attr_t before we grab * conn_lock and we need to hold conn_lock once we've check * conn_same_as_last_v6 to handle concurrent send* on a socket. */ if (msg->msg_controllen == 0) { ixa = conn_get_ixa(connp, B_FALSE); if (ixa == NULL) { BUMP_MIB(&us->us_udp_mib, udpOutErrors); return (ENOMEM); } } else { ixa = NULL; } mutex_enter(&connp->conn_lock); if (udp->udp_delayed_error != 0) { sin_t *sin2 = (sin_t *)&udp->udp_delayed_addr; error = udp->udp_delayed_error; udp->udp_delayed_error = 0; /* Compare IP address and port */ if (sin->sin_port == sin2->sin_port && sin->sin_addr.s_addr == sin2->sin_addr.s_addr) { mutex_exit(&connp->conn_lock); BUMP_MIB(&us->us_udp_mib, udpOutErrors); if (ixa != NULL) ixa_refrele(ixa); return (error); } } if (msg->msg_controllen != 0) { mutex_exit(&connp->conn_lock); ASSERT(ixa == NULL); error = udp_output_ancillary(connp, sin, NULL, mp, NULL, msg, cr, pid); } else if (conn_same_as_last_v4(connp, sin) && ipsec_outbound_policy_current(ixa)) { /* udp_output_lastdst drops conn_lock */ error = udp_output_lastdst(connp, mp, cr, pid, ixa); } else { /* udp_output_newdst drops conn_lock */ error = udp_output_newdst(connp, mp, sin, NULL, ipversion, cr, pid, ixa); } ASSERT(MUTEX_NOT_HELD(&connp->conn_lock)); if (us->us_sendto_ignerr) return (0); else return (error); default: return (EINVAL); } } int udp_fallback(sock_lower_handle_t proto_handle, queue_t *q, boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) { conn_t *connp = (conn_t *)proto_handle; udp_t *udp; struct T_capability_ack tca; struct sockaddr_in6 laddr, faddr; socklen_t laddrlen, faddrlen; short opts; struct stroptions *stropt; mblk_t *stropt_mp; int error; udp = connp->conn_udp; stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL); /* * setup the fallback stream that was allocated */ connp->conn_dev = (dev_t)RD(q)->q_ptr; connp->conn_minor_arena = WR(q)->q_ptr; RD(q)->q_ptr = WR(q)->q_ptr = connp; WR(q)->q_qinfo = &udp_winit; connp->conn_rq = RD(q); connp->conn_wq = WR(q); /* Notify stream head about options before sending up data */ stropt_mp->b_datap->db_type = M_SETOPTS; stropt_mp->b_wptr += sizeof (*stropt); stropt = (struct stroptions *)stropt_mp->b_rptr; stropt->so_flags = SO_WROFF | SO_HIWAT; stropt->so_wroff = connp->conn_wroff; stropt->so_hiwat = udp->udp_rcv_disply_hiwat; putnext(RD(q), stropt_mp); /* * Free the helper stream */ ip_free_helper_stream(connp); if (!issocket) udp_use_pure_tpi(udp); /* * Collect the information needed to sync with the sonode */ udp_do_capability_ack(udp, &tca, TC1_INFO); laddrlen = faddrlen = sizeof (sin6_t); (void) udp_getsockname((sock_lower_handle_t)connp, (struct sockaddr *)&laddr, &laddrlen, CRED()); error = udp_getpeername((sock_lower_handle_t)connp, (struct sockaddr *)&faddr, &faddrlen, CRED()); if (error != 0) faddrlen = 0; opts = 0; if (connp->conn_dgram_errind) opts |= SO_DGRAM_ERRIND; if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) opts |= SO_DONTROUTE; (*quiesced_cb)(connp->conn_upper_handle, q, &tca, (struct sockaddr *)&laddr, laddrlen, (struct sockaddr *)&faddr, faddrlen, opts); mutex_enter(&udp->udp_recv_lock); /* * Attempts to send data up during fallback will result in it being * queued in udp_t. Now we push up any queued packets. */ while (udp->udp_fallback_queue_head != NULL) { mblk_t *mp; mp = udp->udp_fallback_queue_head; udp->udp_fallback_queue_head = mp->b_next; mutex_exit(&udp->udp_recv_lock); mp->b_next = NULL; putnext(RD(q), mp); mutex_enter(&udp->udp_recv_lock); } udp->udp_fallback_queue_tail = udp->udp_fallback_queue_head; /* * No longer a streams less socket */ mutex_enter(&connp->conn_lock); connp->conn_flags &= ~IPCL_NONSTR; mutex_exit(&connp->conn_lock); mutex_exit(&udp->udp_recv_lock); ASSERT(connp->conn_ref >= 1); return (0); } /* ARGSUSED3 */ int udp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *sa, socklen_t *salenp, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; udp_t *udp = connp->conn_udp; int error; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); mutex_enter(&connp->conn_lock); if (udp->udp_state != TS_DATA_XFER) error = ENOTCONN; else error = conn_getpeername(connp, sa, salenp); mutex_exit(&connp->conn_lock); return (error); } /* ARGSUSED3 */ int udp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *sa, socklen_t *salenp, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; int error; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); mutex_enter(&connp->conn_lock); error = conn_getsockname(connp, sa, salenp); mutex_exit(&connp->conn_lock); return (error); } int udp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, void *optvalp, socklen_t *optlen, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; int error; t_uscalar_t max_optbuf_len; void *optvalp_buf; int len; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, udp_opt_obj.odb_opt_des_arr, udp_opt_obj.odb_opt_arr_cnt, B_FALSE, B_TRUE, cr); if (error != 0) { if (error < 0) error = proto_tlitosyserr(-error); return (error); } optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); len = udp_opt_get(connp, level, option_name, optvalp_buf); if (len == -1) { kmem_free(optvalp_buf, max_optbuf_len); return (EINVAL); } /* * update optlen and copy option value */ t_uscalar_t size = MIN(len, *optlen); bcopy(optvalp_buf, optvalp, size); bcopy(&size, optlen, sizeof (size)); kmem_free(optvalp_buf, max_optbuf_len); return (0); } int udp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, const void *optvalp, socklen_t optlen, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; int error; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); error = proto_opt_check(level, option_name, optlen, NULL, udp_opt_obj.odb_opt_des_arr, udp_opt_obj.odb_opt_arr_cnt, B_TRUE, B_FALSE, cr); if (error != 0) { if (error < 0) error = proto_tlitosyserr(-error); return (error); } error = udp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, NULL, cr); ASSERT(error >= 0); return (error); } void udp_clr_flowctrl(sock_lower_handle_t proto_handle) { conn_t *connp = (conn_t *)proto_handle; udp_t *udp = connp->conn_udp; mutex_enter(&udp->udp_recv_lock); connp->conn_flow_cntrld = B_FALSE; mutex_exit(&udp->udp_recv_lock); } /* ARGSUSED2 */ int udp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); /* shut down the send side */ if (how != SHUT_RD) (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, SOCK_OPCTL_SHUT_SEND, 0); /* shut down the recv side */ if (how != SHUT_WR) (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); return (0); } int udp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, int mode, int32_t *rvalp, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; int error; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); /* * If we don't have a helper stream then create one. * ip_create_helper_stream takes care of locking the conn_t, * so this check for NULL is just a performance optimization. */ if (connp->conn_helper_info == NULL) { udp_stack_t *us = connp->conn_udp->udp_us; ASSERT(us->us_ldi_ident != NULL); /* * Create a helper stream for non-STREAMS socket. */ error = ip_create_helper_stream(connp, us->us_ldi_ident); if (error != 0) { ip0dbg(("tcp_ioctl: create of IP helper stream " "failed %d\n", error)); return (error); } } switch (cmd) { case ND_SET: case ND_GET: case _SIOCSOCKFALLBACK: case TI_GETPEERNAME: case TI_GETMYNAME: ip1dbg(("udp_ioctl: cmd 0x%x on non streams socket", cmd)); error = EINVAL; break; default: /* * Pass on to IP using helper stream */ error = ldi_ioctl(connp->conn_helper_info->iphs_handle, cmd, arg, mode, cr, rvalp); break; } return (error); } /* ARGSUSED */ int udp_accept(sock_lower_handle_t lproto_handle, sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, cred_t *cr) { return (EOPNOTSUPP); } /* ARGSUSED */ int udp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) { return (EOPNOTSUPP); } sock_downcalls_t sock_udp_downcalls = { udp_activate, /* sd_activate */ udp_accept, /* sd_accept */ udp_bind, /* sd_bind */ udp_listen, /* sd_listen */ udp_connect, /* sd_connect */ udp_getpeername, /* sd_getpeername */ udp_getsockname, /* sd_getsockname */ udp_getsockopt, /* sd_getsockopt */ udp_setsockopt, /* sd_setsockopt */ udp_send, /* sd_send */ NULL, /* sd_send_uio */ NULL, /* sd_recv_uio */ NULL, /* sd_poll */ udp_shutdown, /* sd_shutdown */ udp_clr_flowctrl, /* sd_setflowctrl */ udp_ioctl, /* sd_ioctl */ udp_close /* sd_close */ };