/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _INET_SADB_H #define _INET_SADB_H #ifdef __cplusplus extern "C" { #endif #include #include #include #include #define IPSA_MAX_ADDRLEN 4 /* Max address len. (in 32-bits) for an SA. */ /* * Return codes of IPsec processing functions. */ typedef enum { IPSEC_STATUS_SUCCESS = 1, IPSEC_STATUS_FAILED = 2, IPSEC_STATUS_PENDING = 3 } ipsec_status_t; /* * IP security association. Synchronization assumes 32-bit loads, so * the 64-bit quantities can't even be be read w/o locking it down! */ /* keying info */ typedef struct ipsa_key_s { void *sak_key; /* Algorithm key. */ uint_t sak_keylen; /* Algorithm key length (in bytes). */ uint_t sak_keybits; /* Algorithm key length (in bits) */ uint_t sak_algid; /* Algorithm ID number. */ } ipsa_key_t; /* the security association */ typedef struct ipsa_s { struct ipsa_s *ipsa_next; /* Next in hash bucket */ struct ipsa_s **ipsa_ptpn; /* Pointer to previous next pointer. */ kmutex_t *ipsa_linklock; /* Pointer to hash-chain lock. */ void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */ /* * NOTE: I may need more pointers, depending on future SA * requirements. */ ipsa_key_t ipsa_authkeydata; #define ipsa_authkey ipsa_authkeydata.sak_key #define ipsa_authkeylen ipsa_authkeydata.sak_keylen #define ipsa_authkeybits ipsa_authkeydata.sak_keybits #define ipsa_auth_alg ipsa_authkeydata.sak_algid ipsa_key_t ipsa_encrkeydata; #define ipsa_encrkey ipsa_encrkeydata.sak_key #define ipsa_encrkeylen ipsa_encrkeydata.sak_keylen #define ipsa_encrkeybits ipsa_encrkeydata.sak_keybits #define ipsa_encr_alg ipsa_encrkeydata.sak_algid struct ipsid_s *ipsa_src_cid; /* Source certificate identity */ struct ipsid_s *ipsa_dst_cid; /* Destination certificate identity */ uint64_t *ipsa_integ; /* Integrity bitmap */ uint64_t *ipsa_sens; /* Sensitivity bitmap */ mblk_t *ipsa_lpkt; /* Packet received while larval (CAS me) */ mblk_t *ipsa_bpkt_head; /* Packets received while idle */ mblk_t *ipsa_bpkt_tail; #define SADB_MAX_IDLEPKTS 100 uint8_t ipsa_mblkcnt; /* Number of packets received while idle */ /* * PF_KEYv2 supports a replay window size of 255. Hence there is a * need a bit vector to support a replay window of 255. 256 is a nice * round number, so I support that. * * Use an array of uint64_t for best performance on 64-bit * processors. (And hope that 32-bit compilers can handle things * okay.) The " >> 6 " is to get the appropriate number of 64-bit * ints. */ #define SADB_MAX_REPLAY 256 /* Must be 0 mod 64. */ uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6]; uint64_t ipsa_unique_id; /* Non-zero for unique SAs */ uint64_t ipsa_unique_mask; /* mask value for unique_id */ /* * Reference count semantics: * * An SA has a reference count of 1 if something's pointing * to it. This includes being in a hash table. So if an * SA is in a hash table, it has a reference count of at least 1. * * When a ptr. to an IPSA is assigned, you MUST REFHOLD after * said assignment. When a ptr. to an IPSA is released * you MUST REFRELE. When the refcount hits 0, REFRELE * will free the IPSA. */ kmutex_t ipsa_lock; /* Locks non-linkage/refcnt fields. */ /* Q: Since I may be doing refcnts differently, will I need cv? */ uint_t ipsa_refcnt; /* Reference count. */ /* * The following four time fields are the ones monitored by ah_ager() * and esp_ager() respectively. They are all absolute wall-clock * times. The times of creation (i.e. add time) and first use are * pretty straightforward. The soft and hard expire times are * derived from the times of first use and creation, plus the minimum * expiration times in the fields that follow this. * * For example, if I had a hard add time of 30 seconds, and a hard * use time of 15, the ipsa_hardexpiretime would be time of add, plus * 30 seconds. If I USE the SA such that time of first use plus 15 * seconds would be earlier than the add time plus 30 seconds, then * ipsa_hardexpiretime would become this earlier time. */ time_t ipsa_addtime; /* Time I was added. */ time_t ipsa_usetime; /* Time of my first use. */ time_t ipsa_lastuse; /* Time of my last use. */ time_t ipsa_idletime; /* Seconds of idle time */ time_t ipsa_last_nat_t_ka; /* Time of my last NAT-T keepalive. */ time_t ipsa_softexpiretime; /* Time of my first soft expire. */ time_t ipsa_hardexpiretime; /* Time of my first hard expire. */ time_t ipsa_idleexpiretime; /* Time of my next idle expire time */ /* * The following fields are directly reflected in PF_KEYv2 LIFETIME * extensions. The time_ts are in number-of-seconds, and the bytes * are in... bytes. */ time_t ipsa_softaddlt; /* Seconds of soft lifetime after add. */ time_t ipsa_softuselt; /* Seconds of soft lifetime after first use. */ time_t ipsa_hardaddlt; /* Seconds of hard lifetime after add. */ time_t ipsa_harduselt; /* Seconds of hard lifetime after first use. */ time_t ipsa_idleaddlt; /* Seconds of idle time after add */ time_t ipsa_idleuselt; /* Seconds of idle time after first use */ uint64_t ipsa_softbyteslt; /* Bytes of soft lifetime. */ uint64_t ipsa_hardbyteslt; /* Bytes of hard lifetime. */ uint64_t ipsa_bytes; /* Bytes encrypted/authed by this SA. */ /* * "Allocations" are a concept mentioned in PF_KEYv2. We do not * support them, except to record them per the PF_KEYv2 spec. */ uint_t ipsa_softalloc; /* Allocations allowed (soft). */ uint_t ipsa_hardalloc; /* Allocations allowed (hard). */ uint_t ipsa_alloc; /* Allocations made. */ uint_t ipsa_integlen; /* Length of the integrity bitmap (bytes). */ uint_t ipsa_senslen; /* Length of the sensitivity bitmap (bytes). */ uint_t ipsa_type; /* Type of security association. (AH/etc.) */ uint_t ipsa_dpd; /* Domain for sensitivity bit vectors. */ uint_t ipsa_senslevel; /* Sensitivity level. */ uint_t ipsa_integlevel; /* Integrity level. */ uint_t ipsa_state; /* State of my association. */ uint_t ipsa_replay_wsize; /* Size of replay window */ uint32_t ipsa_flags; /* Flags for security association. */ uint32_t ipsa_spi; /* Security parameters index. */ uint32_t ipsa_replay; /* Highest seen replay value for this SA. */ uint32_t ipsa_kmp; /* key management proto */ uint32_t ipsa_kmc; /* key management cookie */ boolean_t ipsa_haspeer; /* Has peer in another table. */ /* * Address storage. * The source address can be INADDR_ANY, IN6ADDR_ANY, etc. * * Address families (per sys/socket.h) guide us. We could have just * used sockaddr_storage */ sa_family_t ipsa_addrfam; sa_family_t ipsa_innerfam; /* Inner AF can be != src/dst AF. */ uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN]; uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN]; uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN]; uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN]; uint8_t ipsa_innersrcpfx; uint8_t ipsa_innerdstpfx; uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */ uint16_t ipsa_local_nat_port; /* Local NAT-T port. (0 --> 4500) */ uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */ /* these can only be v4 */ uint32_t ipsa_natt_addr_loc; uint32_t ipsa_natt_addr_rem; /* * icmp type and code. *_end are to specify ranges. if only * a single value, * and *_end are the same value. */ uint8_t ipsa_icmp_type; uint8_t ipsa_icmp_type_end; uint8_t ipsa_icmp_code; uint8_t ipsa_icmp_code_end; /* * For the kernel crypto framework. */ crypto_key_t ipsa_kcfauthkey; /* authentication key */ crypto_key_t ipsa_kcfencrkey; /* encryption key */ crypto_ctx_template_t ipsa_authtmpl; /* auth context template */ crypto_ctx_template_t ipsa_encrtmpl; /* encr context template */ crypto_mechanism_t ipsa_amech; /* auth mech type and ICV len */ crypto_mechanism_t ipsa_emech; /* encr mech type */ size_t ipsa_mac_len; /* auth MAC length */ size_t ipsa_iv_len; /* encr IV length */ /* * Input and output processing functions called from IP. */ ipsec_status_t (*ipsa_output_func)(mblk_t *); ipsec_status_t (*ipsa_input_func)(mblk_t *, void *); /* * Soft reference to paired SA */ uint32_t ipsa_otherspi; /* MLS boxen will probably need more fields in here. */ netstack_t *ipsa_netstack; /* Does not have a netstack_hold */ } ipsa_t; /* * ipsa_t address handling macros. We want these to be inlined, and deal * with 32-bit words to avoid bcmp/bcopy calls. * * Assume we only have AF_INET and AF_INET6 addresses for now. Also assume * that we have 32-bit alignment on everything. */ #define IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \ (((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \ ((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0))) #define IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \ ((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \ (((fam) == AF_INET) || \ (((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \ ((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \ ((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1]))) #define IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \ ((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \ if ((fam) == AF_INET6) {\ ((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \ ((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \ ((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } } /* * ipsa_t reference hold/release macros. * * If you have a pointer, you REFHOLD. If you are releasing a pointer, you * REFRELE. An ipsa_t that is newly inserted into the table should have * a reference count of 1 (for the table's pointer), plus 1 more for every * pointer that is referencing the ipsa_t. */ #define IPSA_REFHOLD(ipsa) { \ atomic_add_32(&(ipsa)->ipsa_refcnt, 1); \ ASSERT((ipsa)->ipsa_refcnt != 0); \ } /* * Decrement the reference count on the SA. * In architectures e.g sun4u, where atomic_add_32_nv is just * a cas, we need to maintain the right memory barrier semantics * as that of mutex_exit i.e all the loads and stores should complete * before the cas is executed. membar_exit() does that here. */ #define IPSA_REFRELE(ipsa) { \ ASSERT((ipsa)->ipsa_refcnt != 0); \ membar_exit(); \ if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0) \ ((ipsa)->ipsa_freefunc)(ipsa); \ } /* * Security association hash macros and definitions. For now, assume the * IPsec model, and hash outbounds on destination address, and inbounds on * SPI. */ #define IPSEC_DEFAULT_HASH_SIZE 256 #define INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize)) #define OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize)) #define OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \ (*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \ (*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3))) /* * Syntactic sugar to find the appropriate hash bucket directly. */ #define INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)]) #define OUTBOUND_BUCKET_V4(sadb, v4addr) \ &(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)]) #define OUTBOUND_BUCKET_V6(sadb, v6addr) \ &(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)]) #define IPSA_F_PFS SADB_SAFLAGS_PFS /* PFS in use for this SA? */ #define IPSA_F_NOREPFLD SADB_SAFLAGS_NOREPLAY /* No replay field, for */ /* backward compat. */ #define IPSA_F_USED SADB_X_SAFLAGS_USED /* SA has been used. */ #define IPSA_F_UNIQUE SADB_X_SAFLAGS_UNIQUE /* SA is unique */ #define IPSA_F_AALG1 SADB_X_SAFLAGS_AALG1 /* Auth alg flag 1 */ #define IPSA_F_AALG2 SADB_X_SAFLAGS_AALG2 /* Auth alg flag 2 */ #define IPSA_F_EALG1 SADB_X_SAFLAGS_EALG1 /* Encrypt alg flag 1 */ #define IPSA_F_EALG2 SADB_X_SAFLAGS_EALG2 /* Encrypt alg flag 2 */ #define IPSA_F_HW 0x200000 /* hwaccel capable SA */ #define IPSA_F_NATT_LOC SADB_X_SAFLAGS_NATT_LOC #define IPSA_F_NATT_REM SADB_X_SAFLAGS_NATT_REM #define IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED #define IPSA_F_NATT (SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \ SADB_X_SAFLAGS_NATTED) #define IPSA_F_CINVALID 0x40000 /* SA shouldn't be cached */ #define IPSA_F_PAIRED SADB_X_SAFLAGS_PAIRED /* SA is one of a pair */ #define IPSA_F_OUTBOUND SADB_X_SAFLAGS_OUTBOUND /* SA direction bit */ #define IPSA_F_INBOUND SADB_X_SAFLAGS_INBOUND /* SA direction bit */ #define IPSA_F_TUNNEL SADB_X_SAFLAGS_TUNNEL /* * Sets of flags that are allowed to by set or modified by PF_KEY apps. */ #define AH_UPDATE_SETTABLE_FLAGS \ (SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \ SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \ SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \ SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4) /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ #define ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT) #define AH_ADD_SETTABLE_FLAGS \ (AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \ SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \ SADB_SAFLAGS_NOREPLAY) /* AH can't set NAT flags (or even use NAT). Add NAT flags to the ESP set. */ #define ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \ SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2) /* SA states are important for handling UPDATE PF_KEY messages. */ #define IPSA_STATE_LARVAL SADB_SASTATE_LARVAL #define IPSA_STATE_MATURE SADB_SASTATE_MATURE #define IPSA_STATE_DYING SADB_SASTATE_DYING #define IPSA_STATE_DEAD SADB_SASTATE_DEAD #define IPSA_STATE_IDLE SADB_X_SASTATE_IDLE #define IPSA_STATE_ACTIVE_ELSEWHERE SADB_X_SASTATE_ACTIVE_ELSEWHERE /* * NOTE: If the document authors do things right in defining algorithms, we'll * probably have flags for what all is here w.r.t. replay, ESP w/HMAC, * etc. */ #define IPSA_T_ACQUIRE SEC_TYPE_NONE /* If this typed returned, sa needed */ #define IPSA_T_AH SEC_TYPE_AH /* IPsec AH association */ #define IPSA_T_ESP SEC_TYPE_ESP /* IPsec ESP association */ #define IPSA_AALG_NONE SADB_AALG_NONE /* No auth. algorithm */ #define IPSA_AALG_MD5H SADB_AALG_MD5HMAC /* MD5-HMAC algorithm */ #define IPSA_AALG_SHA1H SADB_AALG_SHA1HMAC /* SHA1-HMAC algorithm */ #define IPSA_EALG_NONE SADB_EALG_NONE /* No encryption algorithm */ #define IPSA_EALG_DES_CBC SADB_EALG_DESCBC #define IPSA_EALG_3DES SADB_EALG_3DESCBC /* * Protect each ipsa_t bucket (and linkage) with a lock. */ typedef struct isaf_s { ipsa_t *isaf_ipsa; kmutex_t isaf_lock; uint64_t isaf_gen; } isaf_t; /* * ACQUIRE record. If AH/ESP/whatever cannot find an association for outbound * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record. */ #define IPSACQ_MAXPACKETS 4 /* Number of packets that can be queued up */ /* waiting for an ACQUIRE to finish. */ typedef struct ipsacq_s { struct ipsacq_s *ipsacq_next; struct ipsacq_s **ipsacq_ptpn; kmutex_t *ipsacq_linklock; struct ipsec_policy_s *ipsacq_policy; struct ipsec_action_s *ipsacq_act; sa_family_t ipsacq_addrfam; /* Address family. */ sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */ int ipsacq_numpackets; /* How many packets queued up so far. */ uint32_t ipsacq_seq; /* PF_KEY sequence number. */ uint64_t ipsacq_unique_id; /* Unique ID for SAs that need it. */ kmutex_t ipsacq_lock; /* Protects non-linkage fields. */ time_t ipsacq_expire; /* Wall-clock time when this record expires. */ mblk_t *ipsacq_mp; /* List of datagrams waiting for an SA. */ /* These two point inside the last mblk inserted. */ uint32_t *ipsacq_srcaddr; uint32_t *ipsacq_dstaddr; /* Cache these instead of point so we can mask off accordingly */ uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN]; uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN]; /* These may change per-acquire. */ uint16_t ipsacq_srcport; uint16_t ipsacq_dstport; uint8_t ipsacq_proto; uint8_t ipsacq_inner_proto; uint8_t ipsacq_innersrcpfx; uint8_t ipsacq_innerdstpfx; /* icmp type and code of triggering packet (if applicable) */ uint8_t ipsacq_icmp_type; uint8_t ipsacq_icmp_code; } ipsacq_t; /* * Kernel-generated sequence numbers will be no less than 0x80000000 to * forestall any cretinous problems with manual keying accidentally updating * an ACQUIRE entry. */ #define IACQF_LOWEST_SEQ 0x80000000 #define SADB_AGE_INTERVAL_DEFAULT 1000 /* * ACQUIRE fanout. Protect each linkage with a lock. */ typedef struct iacqf_s { ipsacq_t *iacqf_ipsacq; kmutex_t iacqf_lock; } iacqf_t; /* * A (network protocol, ipsec protocol) specific SADB. * (i.e., one each for {ah, esp} and {v4, v6}. * * Keep outbound assocs about the same as ire_cache entries for now. * One danger point, multiple SAs for a single dest will clog a bucket. * For the future, consider two-level hashing (2nd hash on IPC?), then probe. */ typedef struct sadb_s { isaf_t *sdb_of; isaf_t *sdb_if; iacqf_t *sdb_acq; int sdb_hashsize; } sadb_t; /* * A pair of SADB's (one for v4, one for v6), and related state (including * acquire callbacks). */ typedef struct sadbp_s { uint32_t s_satype; queue_t *s_ip_q; uint32_t *s_acquire_timeout; void (*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *); sadb_t s_v4; sadb_t s_v6; uint32_t s_addflags; uint32_t s_updateflags; } sadbp_t; /* * A pair of SA's for a single connection, the structure contains a * pointer to a SA and the SA its paired with (opposite direction) as well * as the SA's respective hash buckets. */ typedef struct ipsap_s { isaf_t *ipsap_bucket; ipsa_t *ipsap_sa_ptr; isaf_t *ipsap_pbucket; ipsa_t *ipsap_psa_ptr; } ipsap_t; typedef struct templist_s { ipsa_t *ipsa; struct templist_s *next; } templist_t; /* Pointer to an all-zeroes IPv6 address. */ #define ALL_ZEROES_PTR ((uint32_t *)&ipv6_all_zeros) /* * Form unique id from ipsec_out_t */ #define SA_FORM_UNIQUE_ID(io) \ SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \ ((io)->ipsec_out_tunnel ? ((io)->ipsec_out_inaf == AF_INET6 ? \ IPPROTO_IPV6 : IPPROTO_ENCAP) : (io)->ipsec_out_proto), \ ((io)->ipsec_out_tunnel ? (io)->ipsec_out_proto : 0)) /* * This macro is used to generate unique ids (along with the addresses, both * inner and outer) for outbound datagrams that require unique SAs. * * N.B. casts and unsigned shift amounts discourage unwarranted * sign extension of dstport, proto, and iproto. * * Unique ID is 64-bits allocated as follows (pardon my big-endian bias): * * 6 4 43 33 11 * 3 7 09 21 65 0 * +---------------*-------+-------+--------------+---------------+ * | MUST-BE-ZERO ||| | | * +---------------*-------+-------+--------------+---------------+ * * If there are inner addresses (tunnel mode) the ports come from the * inner addresses. If there are no inner addresses, the ports come from * the outer addresses (transport mode). Tunnel mode MUST have * set to either IPPROTO_ENCAP or IPPPROTO_IPV6. */ #define SA_UNIQUE_ID(srcport, dstport, proto, iproto) \ ((srcport) | ((uint64_t)(dstport) << 16U) | \ ((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U)) /* * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value * from a packet to an SA. */ #define SA_UNIQUE_MASK(srcport, dstport, proto, iproto) \ SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0, \ (dstport != 0) ? 0xffff : 0, \ (proto != 0) ? 0xff : 0, \ (iproto != 0) ? 0xff : 0) /* * Decompose unique id back into its original fields. */ #define SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff #define SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff #define SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff) #define SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff) /* * All functions that return an ipsa_t will return it with IPSA_REFHOLD() * already called. */ /* SA retrieval (inbound and outbound) */ ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *, sa_family_t); ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *, sa_family_t, uint8_t); ipsap_t *get_ipsa_pair(sadb_sa_t *, sadb_address_t *, sadb_address_t *, sadbp_t *); void destroy_ipsa_pair(ipsap_t *); int update_pairing(ipsap_t *, keysock_in_t *, int *, sadbp_t *); /* SA insertion. */ int sadb_insertassoc(ipsa_t *, isaf_t *); /* SA table construction and destruction. */ void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *); void sadbp_flush(sadbp_t *, netstack_t *); void sadbp_destroy(sadbp_t *, netstack_t *); /* SA insertion and deletion. */ int sadb_insertassoc(ipsa_t *, isaf_t *); void sadb_unlinkassoc(ipsa_t *); /* Support routines to interface a keysock consumer to PF_KEY. */ mblk_t *sadb_keysock_out(minor_t); int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *); void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *, ipsa_t *); void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t); void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *), void *, timeout_id_t *, int); int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *); boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *); int sadb_addrset(ire_t *); int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *, uint8_t); int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, queue_t *, queue_t *); int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *, keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *, netstack_t *, sadbp_t *); void sadb_set_usetime(ipsa_t *); boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t); int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *, int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *), netstack_t *, uint8_t); void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t); void sadb_destroy_acquire(ipsacq_t *, netstack_t *); struct ipsec_stack; mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *); ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t); void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *); boolean_t sadb_replay_check(ipsa_t *, uint32_t); boolean_t sadb_replay_peek(ipsa_t *, uint32_t); int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *); void sadb_replay_delete(ipsa_t *); void sadb_ager(sadb_t *, queue_t *, queue_t *, int, netstack_t *); timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *, uint_t *, uint_t, short); void sadb_sa_refrele(void *target); void sadb_set_lpkt(ipsa_t *, mblk_t *, netstack_t *); mblk_t *sadb_clear_lpkt(ipsa_t *); void sadb_buf_pkt(ipsa_t *, mblk_t *, netstack_t *); void sadb_clear_buf_pkt(void *ipkt); #define HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt) \ { \ if (buf_pkt != NULL) { \ if (taskq_dispatch(taskq, sadb_clear_buf_pkt, \ (void *) buf_pkt, TQ_NOSLEEP) == 0) { \ /* Dispatch was unsuccessful drop the packets. */ \ mblk_t *tmp; \ while (buf_pkt != NULL) { \ tmp = buf_pkt->b_next; \ buf_pkt->b_next = NULL; \ ip_drop_packet(buf_pkt, B_TRUE, NULL, \ NULL, DROPPER(stack, \ ipds_sadb_inidle_timeout), \ &dropper); \ buf_pkt = tmp; \ } \ } \ } \ } \ /* * Hw accel-related calls (downloading sadb to driver) */ void sadb_ill_download(ill_t *, uint_t); mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t); /* * Sub-set of the IPsec hardware acceleration capabilities functions * implemented by ip_if.c */ extern boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *, netstack_t *); extern void ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *, netstack_t *); /* * One IPsec -> IP linking routine, and two IPsec rate-limiting routines. */ extern boolean_t sadb_t_bind_req(queue_t *, int); /*PRINTFLIKE6*/ extern void ipsec_rl_strlog(netstack_t *, short, short, char, ushort_t, char *, ...) __KPRINTFLIKE(6); extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t, void *, int, netstack_t *); /* * Algorithm types. */ #define IPSEC_NALGTYPES 2 typedef enum ipsec_algtype { IPSEC_ALG_AUTH = 0, IPSEC_ALG_ENCR = 1 } ipsec_algtype_t; /* * Definitions as per IPsec/ISAKMP DOI. */ #define IPSEC_MAX_ALGS 256 #define PROTO_IPSEC_AH 2 #define PROTO_IPSEC_ESP 3 /* * Common algorithm info. */ typedef struct ipsec_alginfo { uint8_t alg_id; uint8_t alg_flags; uint16_t *alg_key_sizes; uint16_t *alg_block_sizes; uint16_t alg_nkey_sizes; uint16_t alg_nblock_sizes; uint16_t alg_minbits; uint16_t alg_maxbits; uint16_t alg_datalen; /* * increment: number of bits from keysize to keysize * default: # of increments from min to default key len */ uint16_t alg_increment; uint16_t alg_default; uint16_t alg_default_bits; /* * Min, max, and default key sizes effectively supported * by the encryption framework. */ uint16_t alg_ef_minbits; uint16_t alg_ef_maxbits; uint16_t alg_ef_default; uint16_t alg_ef_default_bits; crypto_mech_type_t alg_mech_type; /* KCF mechanism type */ crypto_mech_name_t alg_mech_name; /* KCF mechanism name */ } ipsec_alginfo_t; #define alg_datalen alg_block_sizes[0] #define ALG_FLAG_VALID 0x01 #define ALG_VALID(_alg) ((_alg)->alg_flags & ALG_FLAG_VALID) /* * Software crypto execution mode. */ typedef enum { IPSEC_ALGS_EXEC_SYNC = 0, IPSEC_ALGS_EXEC_ASYNC = 1 } ipsec_algs_exec_mode_t; extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *); extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *); extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t, netstack_t *ns); extern void ipsec_alg_free(ipsec_alginfo_t *); extern void ipsec_register_prov_update(void); extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t, netstack_t *); /* * Context templates management. */ #define IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1) #define IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) { \ if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) { \ mutex_enter(&assoc->ipsa_lock); \ if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) { \ ipsec_stack_t *ipss; \ \ ipss = assoc->ipsa_netstack->netstack_ipsec; \ mutex_enter(&ipss->ipsec_alg_lock); \ (void) ipsec_create_ctx_tmpl(_sa, _type); \ mutex_exit(&ipss->ipsec_alg_lock); \ } \ mutex_exit(&assoc->ipsa_lock); \ if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) \ _tmpl = NULL; \ } \ } extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t); extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t); /* key checking */ extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *); typedef struct ipsec_kstats_s { kstat_named_t esp_stat_in_requests; kstat_named_t esp_stat_in_discards; kstat_named_t esp_stat_lookup_failure; kstat_named_t ah_stat_in_requests; kstat_named_t ah_stat_in_discards; kstat_named_t ah_stat_lookup_failure; kstat_named_t sadb_acquire_maxpackets; kstat_named_t sadb_acquire_qhiwater; } ipsec_kstats_t; /* * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it * fails, it will be NULL. Note this is done for all stack instances, * so it *could* fail. hence a non-NULL checking is done for * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT */ #define IP_ESP_BUMP_STAT(ipss, x) \ do { \ if ((ipss)->ipsec_kstats != NULL) \ ((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++; \ _NOTE(CONSTCOND) \ } while (0) #define IP_AH_BUMP_STAT(ipss, x) \ do { \ if ((ipss)->ipsec_kstats != NULL) \ ((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++; \ _NOTE(CONSTCOND) \ } while (0) #define IP_ACQUIRE_STAT(ipss, val, new) \ do { \ if ((ipss)->ipsec_kstats != NULL && \ ((uint64_t)(new)) > \ ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64) \ ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \ ((uint64_t)(new)); \ _NOTE(CONSTCOND) \ } while (0) #ifdef __cplusplus } #endif #endif /* _INET_SADB_H */