/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990 Mentat Inc. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * This file contains routines that manipulate Internet Routing Entries (IREs). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Synchronization notes: * * The fields of the ire_t struct are protected in the following way : * * ire_next/ire_ptpn * * - bucket lock of the respective tables (cache or forwarding tables). * * ire_fp_mp * ire_dlureq_mp * * - ire_lock protects multiple threads updating ire_fp_mp * simultaneously. Otherwise no locks are used while accessing * (both read/write) both the fields. * * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr * * - Set in ire_create_v4/v6 and never changes after that. Thus, * we don't need a lock whenever these fields are accessed. * * - ire_bucket and ire_masklen (also set in ire_create) is set in * ire_add_v4/ire_add_v6 before inserting in the bucket and never * changes after that. Thus we don't need a lock whenever these * fields are accessed. * * ire_gateway_addr_v4[v6] * * - ire_gateway_addr_v4[v6] is set during ire_create and later modified * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to * it assumed to be atomic and hence the other parts of the code * does not use any locks. ire_gateway_addr_v6 updates are not atomic * and hence any access to it uses ire_lock to get/set the right value. * * ire_ident, ire_refcnt * * - Updated atomically using atomic_add_32 * * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count * * - Assumes that 32 bit writes are atomic. No locks. ire_lock is * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. * * ire_max_frag, ire_frag_flag * * - ire_lock is used to set/read both of them together. * * ire_tire_mark * * - Set in ire_create and updated in ire_expire, which is called * by only one function namely ip_trash_timer_expire. Thus only * one function updates and examines the value. * * ire_marks * - bucket lock protects this. * * ire_ipsec_overhead/ire_ll_hdr_length * * - Place holder for returning the information to the upper layers * when IRE_DB_REQ comes down. * * ip_ire_default_count protected by the bucket lock of * ip_forwarding_table[0][0]. * * ipv6_ire_default_count is protected by the bucket lock of * ip_forwarding_table_v6[0][0]. * * ip_ire_default_index/ipv6_ire_default_index is not protected as it * is just a hint at which default gateway to use. There is nothing * wrong in using the same gateway for two different connections. * * As we always hold the bucket locks in all the places while accessing * the above values, it is natural to use them for protecting them. * * We have a separate cache table and forwarding table for IPv4 and IPv6. * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an * array of irb_t structure and forwarding table (ip_forwarding_table/ * ip_forwarding_table_v6) is an array of pointers to array of irb_t * structure. ip_forwarding_table[_v6] is allocated dynamically in * ire_add_v4/v6. ire_ft_init_lock is used to serialize multiple threads * initializing the same bucket. Once a bucket is initialized, it is never * de-alloacted. This assumption enables us to access ip_forwarding_table[i] * or ip_forwarding_table_v6[i] without any locks. * * Each irb_t - ire bucket structure has a lock to protect * a bucket and the ires residing in the bucket have a back pointer to * the bucket structure. It also has a reference count for the number * of threads walking the bucket - irb_refcnt which is bumped up * using the macro IRB_REFHOLD macro. The flags irb_flags can be * set to IRE_MARK_CONDEMNED indicating that there are some ires * in this bucket that are marked with IRE_MARK_CONDEMNED and the * last thread to leave the bucket should delete the ires. Usually * this is done by the IRB_REFRELE macro which is used to decrement * the reference count on a bucket. * * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ * decrements the reference count, ire_refcnt, atomically on the ire. * ire_refcnt is modified only using this macro. Operations on the IRE * could be described as follows : * * CREATE an ire with reference count initialized to 1. * * ADDITION of an ire holds the bucket lock, checks for duplicates * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after * bumping up once more i.e the reference count is 2. This is to avoid * an extra lookup in the functions calling ire_add which wants to * work with the ire after adding. * * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD * macro. It is valid to bump up the referece count of the IRE, * after the lookup has returned an ire. Following are the lookup * functions that return an HELD ire : * * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup. * * DELETION of an ire holds the bucket lock, removes it from the list * and then decrements the reference count for having removed from the list * by using the IRE_REFRELE macro. If some other thread has looked up * the ire, the reference count would have been bumped up and hence * this ire will not be freed once deleted. It will be freed once the * reference count drops to zero. * * Add and Delete acquires the bucket lock as RW_WRITER, while all the * lookups acquire the bucket lock as RW_READER. * * NOTE : The only functions that does the IRE_REFRELE when an ire is * passed as an argument are : * * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the * broadcast ires it looks up internally within * the function. Currently, for simplicity it does * not differentiate the one that is passed in and * the ones it looks up internally. It always * IRE_REFRELEs. * 2) ire_send * ire_send_v6 : As ire_send calls ip_wput_ire and other functions * that take ire as an argument, it has to selectively * IRE_REFRELE the ire. To maintain symmetry, * ire_send_v6 does the same. * * Otherwise, the general rule is to do the IRE_REFRELE in the function * that is passing the ire as an argument. * * In trying to locate ires the following points are to be noted. * * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is * to be ignored when walking the ires using ire_next. * * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the * benefit of in.mpathd which needs to probe interfaces for failures. Normal * applications should not be seeing this ire and hence this ire is ignored * in most cases in the search using ire_next. * * Zones note: * Walking IREs within a given zone also walks certain ires in other * zones. This is done intentionally. IRE walks with a specified * zoneid are used only when doing informational reports, and * zone users want to see things that they can access. See block * comment in ire_walk_ill_match(). */ static irb_t *ip_forwarding_table[IP_MASK_TABLE_SIZE]; /* This is dynamically allocated in ip_ire_init */ static irb_t *ip_cache_table; /* This is dynamically allocated in ire_add_mrtun */ irb_t *ip_mrtun_table; uint32_t ire_handle = 1; /* * ire_ft_init_lock is used while initializing ip_forwarding_table * dynamically in ire_add. */ kmutex_t ire_ft_init_lock; kmutex_t ire_mrtun_lock; /* Protects creation of table and it's count */ kmutex_t ire_srcif_table_lock; /* Same as above */ /* * The following counts are used to determine whether a walk is * needed through the reverse tunnel table or through ills */ kmutex_t ire_handle_lock; /* Protects ire_handle */ uint_t ire_mrtun_count; /* Number of ires in reverse tun table */ /* * A per-interface routing table is created ( if not present) * when the first entry is added to this special routing table. * This special routing table is accessed through the ill data structure. * The routing table looks like cache table. For example, currently it * is used by mobile-ip foreign agent to forward data that only comes from * the home agent tunnel for a mobile node. Thus if the outgoing interface * is a RESOLVER interface, IP may need to resolve the hardware address for * the outgoing interface. The routing entries in this table are not updated * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa- * tion is lost as the write queue is passed to ip_wput. * But, before sending the packet out, the hardware information must be updated * in the special forwarding table. ire_srcif_table_count keeps track of total * number of ires that are in interface based tables. Each interface based * table hangs off of the incoming ill and each ill_t also keeps a refcnt * of ires in that table. */ uint_t ire_srcif_table_count; /* Number of ires in all srcif tables */ /* * The minimum size of IRE cache table. It will be recalcuated in * ip_ire_init(). */ uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; /* * The size of the forwarding table. We will make sure that it is a * power of 2 in ip_ire_init(). */ uint32_t ip_ftable_hash_size = IP_FTABLE_HASH_SIZE; uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; struct kmem_cache *ire_cache; static ire_t ire_null; ire_stats_t ire_stats_v4; /* IPv4 ire statistics */ ire_stats_t ire_stats_v6; /* IPv6 ire statistics */ /* * The threshold number of IRE in a bucket when the IREs are * cleaned up. This threshold is calculated later in ip_open() * based on the speed of CPU and available memory. This default * value is the maximum. * * We have two kinds of cached IRE, temporary and * non-temporary. Temporary IREs are marked with * IRE_MARK_TEMPORARY. They are IREs created for non * TCP traffic and for forwarding purposes. All others * are non-temporary IREs. We don't mark IRE created for * TCP as temporary because TCP is stateful and there are * info stored in the IRE which can be shared by other TCP * connections to the same destination. For connected * endpoint, we also don't want to mark the IRE used as * temporary because the same IRE will be used frequently, * otherwise, the app should not do a connect(). We change * the marking at ip_bind_connected_*() if necessary. * * We want to keep the cache IRE hash bucket length reasonably * short, otherwise IRE lookup functions will take "forever." * We use the "crude" function that the IRE bucket * length should be based on the CPU speed, which is 1 entry * per x MHz, depending on the shift factor ip_ire_cpu_ratio * (n). This means that with a 750MHz CPU, the max bucket * length can be (750 >> n) entries. * * Note that this threshold is separate for temp and non-temp * IREs. This means that the actual bucket length can be * twice as that. And while we try to keep temporary IRE * length at most at the threshold value, we do not attempt to * make the length for non-temporary IREs fixed, for the * reason stated above. Instead, we start trying to find * "unused" non-temporary IREs when the bucket length reaches * this threshold and clean them up. * * We also want to limit the amount of memory used by * IREs. So if we are allowed to use ~3% of memory (M) * for those IREs, each bucket should not have more than * * M / num of cache bucket / sizeof (ire_t) * * Again the above memory uses are separate for temp and * non-temp cached IREs. * * We may also want the limit to be a function of the number * of interfaces and number of CPUs. Doing the initialization * in ip_open() means that every time an interface is plumbed, * the max is re-calculated. Right now, we don't do anything * different. In future, when we have more experience, we * may want to change this behavior. */ uint32_t ip_ire_max_bucket_cnt = 10; uint32_t ip6_ire_max_bucket_cnt = 10; /* * The minimum of the temporary IRE bucket count. We do not want * the length of each bucket to be too short. This may hurt * performance of some apps as the temporary IREs are removed too * often. */ uint32_t ip_ire_min_bucket_cnt = 3; uint32_t ip6_ire_min_bucket_cnt = 3; /* * The ratio of memory consumed by IRE used for temporary to available * memory. This is a shift factor, so 6 means the ratio 1 to 64. This * value can be changed in /etc/system. 6 is a reasonable number. */ uint32_t ip_ire_mem_ratio = 6; /* The shift factor for CPU speed to calculate the max IRE bucket length. */ uint32_t ip_ire_cpu_ratio = 7; /* * The maximum number of buckets in IRE cache table. In future, we may * want to make it a dynamic hash table. For the moment, we fix the * size and allocate the table in ip_ire_init() when IP is first loaded. * We take into account the amount of memory a system has. */ #define IP_MAX_CACHE_TABLE_SIZE 4096 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; #define NUM_ILLS 3 /* To build the ILL list to unlock */ /* Zero iulp_t for initialization. */ const iulp_t ire_uinfo_null = { 0 }; static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func); static int ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func); static ire_t *ire_update_srcif_v4(ire_t *ire); static void ire_delete_v4(ire_t *ire); static void ire_report_ftable(ire_t *ire, char *mp); static void ire_report_ctable(ire_t *ire, char *mp); static void ire_report_mrtun_table(ire_t *ire, char *mp); static void ire_report_srcif_table(ire_t *ire, char *mp); static void ire_walk_ipvers(pfv_t func, char *arg, uchar_t vers, zoneid_t zoneid); static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, char *arg, uchar_t vers, ill_t *ill); static void ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, char *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid); static void ire_delete_host_redirects(ipaddr_t gateway); static boolean_t ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, int type, ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, int match_flags); static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); extern void ill_unlock_ills(ill_t **list, int cnt); static void ire_fastpath_list_add(ill_t *ill, ire_t *ire); extern void th_trace_rrecord(th_trace_t *); #ifdef IRE_DEBUG static void ire_trace_inactive(ire_t *); #endif /* * To avoid bloating the code, we call this function instead of * using the macro IRE_REFRELE. Use macro only in performance * critical paths. * * Must not be called while holding any locks. Otherwise if this is * the last reference to be released there is a chance of recursive mutex * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying * to restart an ioctl. The one exception is when the caller is sure that * this is not the last reference to be released. Eg. if the caller is * sure that the ire has not been deleted and won't be deleted. */ void ire_refrele(ire_t *ire) { IRE_REFRELE(ire); } void ire_refrele_notr(ire_t *ire) { IRE_REFRELE_NOTR(ire); } /* * kmem_cache_alloc constructor for IRE in kma space. * Note that when ire_mp is set the IRE is stored in that mblk and * not in this cache. */ /* ARGSUSED */ static int ip_ire_constructor(void *buf, void *cdrarg, int kmflags) { ire_t *ire = buf; ire->ire_fp_mp = NULL; ire->ire_dlureq_mp = NULL; return (0); } /* ARGSUSED1 */ static void ip_ire_destructor(void *buf, void *cdrarg) { ire_t *ire = buf; ASSERT(ire->ire_fp_mp == NULL); ASSERT(ire->ire_dlureq_mp == NULL); } /* * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY * IOCTL. It is used by TCP (or other ULPs) to supply revised information * for an existing CACHED IRE. */ /* ARGSUSED */ int ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) { uchar_t *addr_ucp; ipic_t *ipic; ire_t *ire; ipaddr_t addr; in6_addr_t v6addr; irb_t *irb; zoneid_t zoneid; ASSERT(q->q_next == NULL); zoneid = Q_TO_CONN(q)->conn_zoneid; /* * Check privilege using the ioctl credential; if it is NULL * then this is a kernel message and therefor privileged. */ if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) return (EPERM); ipic = (ipic_t *)mp->b_rptr; if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, ipic->ipic_addr_length))) { return (EINVAL); } if (!OK_32PTR(addr_ucp)) return (EINVAL); switch (ipic->ipic_addr_length) { case IP_ADDR_LEN: { /* Extract the destination address. */ addr = *(ipaddr_t *)addr_ucp; /* Find the corresponding IRE. */ ire = ire_cache_lookup(addr, zoneid); break; } case IPV6_ADDR_LEN: { /* Extract the destination address. */ v6addr = *(in6_addr_t *)addr_ucp; /* Find the corresponding IRE. */ ire = ire_cache_lookup_v6(&v6addr, zoneid); break; } default: return (EINVAL); } if (ire == NULL) return (ENOENT); /* * Update the round trip time estimate and/or the max frag size * and/or the slow start threshold. * * We serialize multiple advises using ire_lock. */ mutex_enter(&ire->ire_lock); if (ipic->ipic_rtt) { /* * If there is no old cached values, initialize them * conservatively. Set them to be (1.5 * new value). */ if (ire->ire_uinfo.iulp_rtt != 0) { ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + ipic->ipic_rtt) >> 1; } else { ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + (ipic->ipic_rtt >> 1); } if (ire->ire_uinfo.iulp_rtt_sd != 0) { ire->ire_uinfo.iulp_rtt_sd = (ire->ire_uinfo.iulp_rtt_sd + ipic->ipic_rtt_sd) >> 1; } else { ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + (ipic->ipic_rtt_sd >> 1); } } if (ipic->ipic_max_frag) ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); if (ipic->ipic_ssthresh != 0) { if (ire->ire_uinfo.iulp_ssthresh != 0) ire->ire_uinfo.iulp_ssthresh = (ipic->ipic_ssthresh + ire->ire_uinfo.iulp_ssthresh) >> 1; else ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; } /* * Don't need the ire_lock below this. ire_type does not change * after initialization. ire_marks is protected by irb_lock. */ mutex_exit(&ire->ire_lock); if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { /* * Only increment the temporary IRE count if the original * IRE is not already marked temporary. */ irb = ire->ire_bucket; rw_enter(&irb->irb_lock, RW_WRITER); if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && !(ire->ire_marks & IRE_MARK_TEMPORARY)) { irb->irb_tmp_ire_cnt++; } ire->ire_marks |= ipic->ipic_ire_marks; rw_exit(&irb->irb_lock); } ire_refrele(ire); return (0); } /* * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE * for a host that is not responding. This will force an attempt to * establish a new route, if available. Management processes may want * to use the version that generates a reply. * * This function does not support IPv6 since Neighbor Unreachability Detection * means that negative advise like this is useless. */ /* ARGSUSED */ int ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) { uchar_t *addr_ucp; ipaddr_t addr; ire_t *ire; ipid_t *ipid; boolean_t routing_sock_info = B_FALSE; /* Sent info? */ zoneid_t zoneid; ASSERT(q->q_next == NULL); zoneid = Q_TO_CONN(q)->conn_zoneid; /* * Check privilege using the ioctl credential; if it is NULL * then this is a kernel message and therefor privileged. */ if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) return (EPERM); ipid = (ipid_t *)mp->b_rptr; /* Only actions on IRE_CACHEs are acceptable at present. */ if (ipid->ipid_ire_type != IRE_CACHE) return (EINVAL); addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, ipid->ipid_addr_length); if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) return (EINVAL); switch (ipid->ipid_addr_length) { case IP_ADDR_LEN: /* addr_ucp points at IP addr */ break; case sizeof (sin_t): { sin_t *sin; /* * got complete (sockaddr) address - increment addr_ucp to point * at the ip_addr field. */ sin = (sin_t *)addr_ucp; addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; break; } default: return (EINVAL); } /* Extract the destination address. */ bcopy(addr_ucp, &addr, IP_ADDR_LEN); /* Try to find the CACHED IRE. */ ire = ire_cache_lookup(addr, zoneid); /* Nail it. */ if (ire) { /* Allow delete only on CACHE entries */ if (ire->ire_type != IRE_CACHE) { ire_refrele(ire); return (EINVAL); } /* * Verify that the IRE has been around for a while. * This is to protect against transport protocols * that are too eager in sending delete messages. */ if (gethrestime_sec() < ire->ire_create_time + ip_ignore_delete_time) { ire_refrele(ire); return (EINVAL); } /* * Now we have a potentially dead cache entry. We need * to remove it. * If this cache entry is generated from a default route, * search the default list and mark it dead and some * background process will try to activate it. */ if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { /* * Make sure that we pick a different * IRE_DEFAULT next time. * The ip_ire_default_count tracks the number of * IRE_DEFAULT entries. However, the * ip_forwarding_table[0] also contains * interface routes thus the count can be zero. */ ire_t *gw_ire; irb_t *irb_ptr; irb_t *irb; if (((irb_ptr = ip_forwarding_table[0]) != NULL) && (irb = &irb_ptr[0])->irb_ire != NULL && ip_ire_default_count != 0) { uint_t index; /* * We grab it as writer just to serialize * multiple threads trying to bump up * ip_ire_default_index. */ rw_enter(&irb->irb_lock, RW_WRITER); if ((gw_ire = irb->irb_ire) == NULL) { rw_exit(&irb->irb_lock); goto done; } index = ip_ire_default_index % ip_ire_default_count; while (index-- && gw_ire->ire_next != NULL) gw_ire = gw_ire->ire_next; /* Skip past the potentially bad gateway */ if (ire->ire_gateway_addr == gw_ire->ire_gateway_addr) ip_ire_default_index++; rw_exit(&irb->irb_lock); } } done: /* report the bad route to routing sockets */ ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, ire->ire_mask, ire->ire_src_addr, 0, 0, 0, (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); routing_sock_info = B_TRUE; ire_delete(ire); ire_refrele(ire); } /* Also look for an IRE_HOST_REDIRECT and remove it if present */ ire = ire_route_lookup(addr, 0, 0, IRE_HOST_REDIRECT, NULL, NULL, ALL_ZONES, MATCH_IRE_TYPE); /* Nail it. */ if (ire) { if (!routing_sock_info) { ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, ire->ire_mask, ire->ire_src_addr, 0, 0, 0, (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); } ire_delete(ire); ire_refrele(ire); } return (0); } /* * Named Dispatch routine to produce a formatted report on all IREs. * This report is accessed by using the ndd utility to "get" ND variable * "ipv4_ire_status". */ /* ARGSUSED */ int ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) { zoneid_t zoneid; (void) mi_mpprintf(mp, "IRE " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ "rfq " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ "stq " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ " zone " /* 12345 */ "addr mask " /* 123.123.123.123 123.123.123.123 */ "src gateway mxfrg rtt rtt_sd ssthresh ref " /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ "recvpipe in/out/forward type"); /* 12345678 in/out/forward xxxxxxxxxx */ /* * Because of the ndd constraint, at most we can have 64K buffer * to put in all IRE info. So to be more efficient, just * allocate a 64K buffer here, assuming we need that large buffer. * This should be OK as only root can do ndd /dev/ip. */ if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { /* The following may work even if we cannot get a large buf. */ (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); return (0); } zoneid = Q_TO_CONN(q)->conn_zoneid; if (zoneid == GLOBAL_ZONEID) zoneid = ALL_ZONES; ire_walk_v4(ire_report_ftable, (char *)mp->b_cont, zoneid); ire_walk_v4(ire_report_ctable, (char *)mp->b_cont, zoneid); return (0); } /* ire_walk routine invoked for ip_ire_report for each IRE. */ static void ire_report_ftable(ire_t *ire, char *mp) { char buf1[16]; char buf2[16]; char buf3[16]; char buf4[16]; uint_t fo_pkt_count; uint_t ib_pkt_count; int ref; uint_t print_len, buf_len; if (ire->ire_type & IRE_CACHETABLE) return; buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; if (buf_len <= 0) return; /* Number of active references of this ire */ ref = ire->ire_refcnt; /* "inbound" to a non local address is a forward */ ib_pkt_count = ire->ire_ib_pkt_count; fo_pkt_count = 0; if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { fo_pkt_count = ib_pkt_count; ib_pkt_count = 0; } print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " "%04d %08d %08d %d/%d/%d %s\n", (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, (int)ire->ire_zoneid, ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), ip_dot_addr(ire->ire_src_addr, buf3), ip_dot_addr(ire->ire_gateway_addr, buf4), ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, ire->ire_uinfo.iulp_rtomax, (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), ire->ire_uinfo.iulp_sack, ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); if (print_len < buf_len) { ((mblk_t *)mp)->b_wptr += print_len; } else { ((mblk_t *)mp)->b_wptr += buf_len; } } /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ static void ire_report_ctable(ire_t *ire, char *mp) { char buf1[16]; char buf2[16]; char buf3[16]; char buf4[16]; uint_t fo_pkt_count; uint_t ib_pkt_count; int ref; uint_t print_len, buf_len; if ((ire->ire_type & IRE_CACHETABLE) == 0) return; buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; if (buf_len <= 0) return; /* Number of active references of this ire */ ref = ire->ire_refcnt; /* "inbound" to a non local address is a forward */ ib_pkt_count = ire->ire_ib_pkt_count; fo_pkt_count = 0; if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { fo_pkt_count = ib_pkt_count; ib_pkt_count = 0; } print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " "%04d %08d %08d %d/%d/%d %s\n", (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, (int)ire->ire_zoneid, ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), ip_dot_addr(ire->ire_src_addr, buf3), ip_dot_addr(ire->ire_gateway_addr, buf4), ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, ire->ire_uinfo.iulp_rtomax, (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), ire->ire_uinfo.iulp_sack, ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); if (print_len < buf_len) { ((mblk_t *)mp)->b_wptr += print_len; } else { ((mblk_t *)mp)->b_wptr += buf_len; } } /* ARGSUSED */ int ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) { (void) mi_mpprintf(mp, "IRE " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ "stq " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ "in_ill " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ "in_src_addr " /* 123.123.123.123 */ "max_frag " /* 12345 */ "ref "); /* 123 */ ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, (char *)mp, NULL); return (0); } /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */ static void ire_report_mrtun_table(ire_t *ire, char *mp) { char buf1[INET_ADDRSTRLEN]; int ref; /* Number of active references of this ire */ ref = ire->ire_refcnt; ASSERT(ire->ire_type == IRE_MIPRTUN); (void) mi_mpprintf((mblk_t *)mp, MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%s %05d %03d", (void *)ire, (void *)ire->ire_stq, (void *)ire->ire_in_ill, ip_dot_addr(ire->ire_in_src_addr, buf1), ire->ire_max_frag, ref); } /* * Dispatch routine to format ires in interface based routine */ /* ARGSUSED */ int ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) { /* Report all interface based ires */ (void) mi_mpprintf(mp, "IRE " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ "stq " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ "in_ill " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ "addr " /* 123.123.123.123 */ "gateway " /* 123.123.123.123 */ "max_frag " /* 12345 */ "ref " /* 123 */ "type " /* ABCDEFGH */ "in/out/forward"); ire_walk_srcif_table_v4(ire_report_srcif_table, (char *)mp); return (0); } /* Reports the interface table ires */ static void ire_report_srcif_table(ire_t *ire, char *mp) { char buf1[INET_ADDRSTRLEN]; char buf2[INET_ADDRSTRLEN]; int ref; ref = ire->ire_refcnt; (void) mi_mpprintf((mblk_t *)mp, MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%s %s %05d %03d %s %d", (void *)ire, (void *)ire->ire_stq, (void *)ire->ire_in_ill, ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_gateway_addr, buf2), ire->ire_max_frag, ref, ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), ire->ire_ib_pkt_count); } /* * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed * down from the Upper Level Protocol to request a copy of the IRE (to check * its type or to extract information like round-trip time estimates or the * MTU.) * The address is assumed to be in the ire_addr field. If no IRE is found * an IRE is returned with ire_type being zero. * Note that the upper lavel protocol has to check for broadcast * (IRE_BROADCAST) and multicast (CLASSD(addr)). * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the * end of the returned message. * * TCP sends down a message of this type with a connection request packet * chained on. UDP and ICMP send it down to verify that a route exists for * the destination address when they get connected. */ void ip_ire_req(queue_t *q, mblk_t *mp) { ire_t *inire; ire_t *ire; mblk_t *mp1; ire_t *sire = NULL; zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || !OK_32PTR(mp->b_rptr)) { freemsg(mp); return; } inire = (ire_t *)mp->b_rptr; /* * Got it, now take our best shot at an IRE. */ if (inire->ire_ipversion == IPV6_VERSION) { ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, NULL, &sire, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); } else { ASSERT(inire->ire_ipversion == IPV4_VERSION); ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, NULL, &sire, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); } /* * We prevent returning IRES with source address INADDR_ANY * as these were temporarily created for sending packets * from endpoints that have conn_unspec_src set. */ if (ire == NULL || (ire->ire_ipversion == IPV4_VERSION && ire->ire_src_addr == INADDR_ANY) || (ire->ire_ipversion == IPV6_VERSION && IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { inire->ire_type = 0; } else { bcopy(ire, inire, sizeof (ire_t)); /* Copy the route metrics from the parent. */ if (sire != NULL) { bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), sizeof (iulp_t)); } /* * As we don't lookup global policy here, we may not * pass the right size if per-socket policy is not * present. For these cases, path mtu discovery will * do the right thing. */ inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); /* Pass the latest setting of the ip_path_mtu_discovery */ inire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; } if (ire != NULL) ire_refrele(ire); if (sire != NULL) ire_refrele(sire); mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; mp->b_datap->db_type = IRE_DB_TYPE; /* Put the IRE_DB_TYPE mblk last in the chain */ mp1 = mp->b_cont; if (mp1 != NULL) { mp->b_cont = NULL; linkb(mp1, mp); mp = mp1; } qreply(q, mp); } /* * Send a packet using the specified IRE. * If ire_src_addr_v6 is all zero then discard the IRE after * the packet has been sent. */ static void ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) { mblk_t *mp; mblk_t *ipsec_mp; boolean_t is_secure; uint_t ifindex; ill_t *ill; ASSERT(ire->ire_ipversion == IPV4_VERSION); ipsec_mp = pkt; is_secure = (pkt->b_datap->db_type == M_CTL); if (is_secure) pkt = pkt->b_cont; /* If the packet originated externally then */ if (pkt->b_prev) { ire_refrele(ire); /* * Extract the ifindex from b_prev (set in ip_rput_noire). * Look up interface to see if it still exists (it could have * been unplumbed by the time the reply came back from ARP) */ ifindex = (uint_t)(uintptr_t)pkt->b_prev; ill = ill_lookup_on_ifindex(ifindex, B_FALSE, NULL, NULL, NULL, NULL); if (ill == NULL) { pkt->b_prev = NULL; pkt->b_next = NULL; freemsg(ipsec_mp); return; } q = ill->ill_rq; pkt->b_prev = NULL; mp = allocb(0, BPRI_HI); if (mp == NULL) { ill_refrele(ill); pkt->b_next = NULL; freemsg(ipsec_mp); return; } mp->b_datap->db_type = M_BREAK; /* * This packet has not gone through IPSEC processing * and hence we should not have any IPSEC message * prepended. */ ASSERT(ipsec_mp == pkt); mp->b_cont = ipsec_mp; put(q, mp); ill_refrele(ill); } else if (pkt->b_next) { /* Packets from multicast router */ pkt->b_next = NULL; /* * We never get the IPSEC_OUT while forwarding the * packet for multicast router. */ ASSERT(ipsec_mp == pkt); ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); ire_refrele(ire); } else { /* Locally originated packets */ boolean_t is_inaddr_any; ipha_t *ipha = (ipha_t *)pkt->b_rptr; /* * We need to do an ire_delete below for which * we need to make sure that the IRE will be * around even after calling ip_wput_ire - * which does ire_refrele. Otherwise somebody * could potentially delete this ire and hence * free this ire and we will be calling ire_delete * on a freed ire below. */ is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); if (is_inaddr_any) { IRE_REFHOLD(ire); } /* * If we were resolving a router we can not use the * routers IRE for sending the packet (since it would * violate the uniqness of the IP idents) thus we * make another pass through ip_wput to create the IRE_CACHE * for the destination. * When IRE_MARK_NOADD is set, ire_add() is not called. * Thus ip_wput() will never find a ire and result in an * infinite loop. Thus we check whether IRE_MARK_NOADD is * is set. This also implies that IRE_MARK_NOADD can only be * used to send packets to directly connected hosts. */ if (ipha->ipha_dst != ire->ire_addr && !(ire->ire_marks & IRE_MARK_NOADD)) { ire_refrele(ire); /* Held in ire_add */ (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, IRE_SEND); } else { if (is_secure) { ipsec_out_t *oi; ipha_t *ipha; oi = (ipsec_out_t *)ipsec_mp->b_rptr; ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; if (oi->ipsec_out_proc_begin) { /* * This is the case where * ip_wput_ipsec_out could not find * the IRE and recreated a new one. * As ip_wput_ipsec_out does ire * lookups, ire_refrele for the extra * bump in ire_add. */ ire_refrele(ire); ip_wput_ipsec_out(q, ipsec_mp, ipha, NULL, NULL); } else { /* * IRE_REFRELE will be done in * ip_wput_ire. */ ip_wput_ire(q, ipsec_mp, ire, NULL, IRE_SEND); } } else { /* * IRE_REFRELE will be done in ip_wput_ire. */ ip_wput_ire(q, ipsec_mp, ire, NULL, IRE_SEND); } } /* * Special code to support sending a single packet with * conn_unspec_src using an IRE which has no source address. * The IRE is deleted here after sending the packet to avoid * having other code trip on it. But before we delete the * ire, somebody could have looked up this ire. * We prevent returning/using this IRE by the upper layers * by making checks to NULL source address in other places * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. * Though, this does not completely prevent other threads * from using this ire, this should not cause any problems. * * NOTE : We use is_inaddr_any instead of using ire_src_addr * because for the normal case i.e !is_inaddr_any, ire_refrele * above could have potentially freed the ire. */ if (is_inaddr_any) { /* * If this IRE has been deleted by another thread, then * ire_bucket won't be NULL, but ire_ptpn will be NULL. * Thus, ire_delete will do nothing. This check * guards against calling ire_delete when the IRE was * never inserted in the table, which is handled by * ire_delete as dropping another reference. */ if (ire->ire_bucket != NULL) { ip1dbg(("ire_send: delete IRE\n")); ire_delete(ire); } ire_refrele(ire); /* Held above */ } } } /* * Send a packet using the specified IRE. * If ire_src_addr_v6 is all zero then discard the IRE after * the packet has been sent. */ static void ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) { mblk_t *ipsec_mp; boolean_t secure; uint_t ifindex; ASSERT(ire->ire_ipversion == IPV6_VERSION); if (pkt->b_datap->db_type == M_CTL) { ipsec_mp = pkt; pkt = pkt->b_cont; secure = B_TRUE; } else { ipsec_mp = pkt; secure = B_FALSE; } /* If the packet originated externally then */ if (pkt->b_prev) { ill_t *ill; /* * Extract the ifindex from b_prev (set in ip_rput_data_v6). * Look up interface to see if it still exists (it could have * been unplumbed by the time the reply came back from the * resolver). Unlike IPv4 there is no need for a prepended * M_BREAK since ip_rput_data_v6 does not process options * before finding an IRE. */ ifindex = (uint_t)(uintptr_t)pkt->b_prev; ill = ill_lookup_on_ifindex(ifindex, B_TRUE, NULL, NULL, NULL, NULL); if (ill == NULL) { pkt->b_prev = NULL; pkt->b_next = NULL; freemsg(ipsec_mp); ire_refrele(ire); /* Held in ire_add */ return; } q = ill->ill_rq; pkt->b_prev = NULL; /* * This packet has not gone through IPSEC processing * and hence we should not have any IPSEC message * prepended. */ ASSERT(ipsec_mp == pkt); put(q, pkt); ill_refrele(ill); } else if (pkt->b_next) { /* Packets from multicast router */ pkt->b_next = NULL; /* * We never get the IPSEC_OUT while forwarding the * packet for multicast router. */ ASSERT(ipsec_mp == pkt); /* * XXX TODO IPv6. */ freemsg(pkt); #ifdef XXX ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); #endif } else { if (secure) { ipsec_out_t *oi; ip6_t *ip6h; oi = (ipsec_out_t *)ipsec_mp->b_rptr; ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; if (oi->ipsec_out_proc_begin) { /* * This is the case where * ip_wput_ipsec_out could not find * the IRE and recreated a new one. */ ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, NULL, NULL); } else { (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, IRE_SEND); } } else { /* * Send packets through ip_output_v6 so that any * ip6_info header can be processed again. */ (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, IRE_SEND); } /* * Special code to support sending a single packet with * conn_unspec_src using an IRE which has no source address. * The IRE is deleted here after sending the packet to avoid * having other code trip on it. But before we delete the * ire, somebody could have looked up this ire. * We prevent returning/using this IRE by the upper layers * by making checks to NULL source address in other places * like e.g ip_ire_append_v6, ip_ire_req and * ip_bind_connected_v6. Though, this does not completely * prevent other threads from using this ire, this should * not cause any problems. */ if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { ip1dbg(("ire_send_v6: delete IRE\n")); ire_delete(ire); } } ire_refrele(ire); /* Held in ire_add */ } /* * Make sure that IRE bucket does not get too long. * This can cause lock up because ire_cache_lookup() * may take "forever" to finish. * * We just remove cnt IREs each time. This means that * the bucket length will stay approximately constant, * depending on cnt. This should be enough to defend * against DoS attack based on creating temporary IREs * (for forwarding and non-TCP traffic). * * Note that new IRE is normally added at the tail of the * bucket. This means that we are removing the "oldest" * temporary IRE added. Only if there are IREs with * the same ire_addr, do we not add it at the tail. Refer * to ire_add_v*(). It should be OK for our purpose. * * For non-temporary cached IREs, we make sure that they * have not been used for some time (defined below), they * are non-local destinations, and there is no one using * them at the moment (refcnt == 1). * * The above means that the IRE bucket length may become * very long, consisting of mostly non-temporary IREs. * This can happen when the hash function does a bad job * so that most TCP connections cluster to a specific bucket. * This "hopefully" should never happen. It can also * happen if most TCP connections have very long lives. * Even with the minimal hash table size of 256, there * has to be a lot of such connections to make the bucket * length unreasonably long. This should probably not * happen either. The third can when this can happen is * when the machine is under attack, such as SYN flooding. * TCP should already have the proper mechanism to protect * that. So we should be safe. * * This function is called by ire_add_then_send() after * a new IRE is added and the packet is sent. * * The idle cutoff interval is set to 60s. It can be * changed using /etc/system. */ uint32_t ire_idle_cutoff_interval = 60000; static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) { ire_t *ire; int tmp_cnt = cnt; clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); /* * irb is NULL if the IRE is not added to the hash. This * happens when IRE_MARK_NOADD is set in ire_add_then_send() * and when ires are returned from ire_update_srcif_v4() routine. */ if (irb == NULL) return; IRB_REFHOLD(irb); if (irb->irb_tmp_ire_cnt > threshold) { for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire->ire_marks & IRE_MARK_TEMPORARY) { ASSERT(ire->ire_type == IRE_CACHE); ire_delete(ire); tmp_cnt--; } } } if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { for (ire = irb->irb_ire; ire != NULL && cnt > 0; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED || ire->ire_gateway_addr == 0) { continue; } if ((ire->ire_type == IRE_CACHE) && (lbolt - ire->ire_last_used_time > cut_off) && (ire->ire_refcnt == 1)) { ire_delete(ire); cnt--; } } } IRB_REFRELE(irb); } /* * ire_add_then_send is called when a new IRE has been created in order to * route an outgoing packet. Typically, it is called from ip_wput when * a response comes back down from a resolver. We add the IRE, and then * possibly run the packet through ip_wput or ip_rput, as appropriate. * However, we do not add the newly created IRE in the cache when * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get * deleted. * Multirouting support: the packet is silently discarded when the new IRE * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the * RTF_MULTIRT flag for the same destination address. * In this case, we just want to register this additional ire without * sending the packet, as it has already been replicated through * existing multirt routes in ip_wput(). */ void ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) { irb_t *irb; boolean_t drop = B_FALSE; /* LINTED : set but not used in function */ boolean_t mctl_present; mblk_t *first_mp = NULL; mblk_t *save_mp = NULL; ire_t *dst_ire; ipha_t *ipha; ip6_t *ip6h; if (mp != NULL) { /* * We first have to retrieve the destination address carried * by the packet. * We can't rely on ire as it can be related to a gateway. * The destination address will help in determining if * other RTF_MULTIRT ires are already registered. * * We first need to know where we are going : v4 or V6. * the ire version is enough, as there is no risk that * we resolve an IPv6 address with an IPv4 ire * or vice versa. */ if (ire->ire_ipversion == IPV4_VERSION) { EXTRACT_PKT_MP(mp, first_mp, mctl_present); ipha = (ipha_t *)mp->b_rptr; save_mp = mp; mp = first_mp; dst_ire = ire_cache_lookup(ipha->ipha_dst, ire->ire_zoneid); } else { /* * Get a pointer to the beginning of the IPv6 header. * Ignore leading IPsec control mblks. */ first_mp = mp; if (mp->b_datap->db_type == M_CTL) { mp = mp->b_cont; } ip6h = (ip6_t *)mp->b_rptr; save_mp = mp; mp = first_mp; dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, ire->ire_zoneid); } if (dst_ire != NULL) { if (dst_ire->ire_flags & RTF_MULTIRT) { /* * At least one resolved multirt route * already exists for the destination, * don't sent this packet: either drop it * or complete the pending resolution, * depending on the ire. */ drop = B_TRUE; } ip1dbg(("ire_add_then_send: dst_ire %p " "[dst %08x, gw %08x], drop %d\n", (void *)dst_ire, (dst_ire->ire_ipversion == IPV4_VERSION) ? \ ntohl(dst_ire->ire_addr) : \ ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), (dst_ire->ire_ipversion == IPV4_VERSION) ? \ ntohl(dst_ire->ire_gateway_addr) : \ ntohl(V4_PART_OF_V6( dst_ire->ire_gateway_addr_v6)), drop)); ire_refrele(dst_ire); } } if (!(ire->ire_marks & IRE_MARK_NOADD)) { /* * Regular packets with cache bound ires and * the packets from ARP response for ires which * belong to the ire_srcif_v4 table, are here. */ if (ire->ire_in_ill == NULL) { /* Add the ire */ (void) ire_add(&ire, NULL, NULL, NULL); } else { /* * This must be ARP response for ire in interface based * table. Note that we don't add them in cache table, * instead we update the existing table with dlureq_mp * information. The reverse tunnel ires do not come * here, as reverse tunnel is non-resolver interface. * XXX- another design alternative was to mark the * ires in interface based table with a special mark to * make absolutely sure that we operate in right ires. * This idea was not implemented as part of code review * suggestion, as ire_in_ill suffice to distinguish * between the regular ires and interface based * ires now and thus we save a bit in the ire_marks. */ ire = ire_update_srcif_v4(ire); } if (ire == NULL) { mp->b_prev = NULL; mp->b_next = NULL; MULTIRT_DEBUG_UNTAG(mp); freemsg(mp); return; } if (mp == NULL) { ire_refrele(ire); /* Held in ire_add_v4/v6 */ return; } } if (drop) { /* * If we're adding an RTF_MULTIRT ire, the resolution * is over: we just drop the packet. */ if (ire->ire_flags & RTF_MULTIRT) { if (save_mp) { save_mp->b_prev = NULL; save_mp->b_next = NULL; } MULTIRT_DEBUG_UNTAG(mp); freemsg(mp); } else { /* * Otherwise, we're adding the ire to a gateway * for a multirt route. * Invoke ip_newroute() to complete the resolution * of the route. We will then come back here and * finally drop this packet in the above code. */ if (ire->ire_ipversion == IPV4_VERSION) { /* * TODO: in order for CGTP to work in non-global * zones, ip_newroute() must create the IRE * cache in the zone indicated by * ire->ire_zoneid. */ ip_newroute(q, mp, ipha->ipha_dst, 0, (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); } else { ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, NULL, ire->ire_zoneid); } } ire_refrele(ire); /* As done by ire_send(). */ return; } /* * Need to remember ire_bucket here as ire_send*() may delete * the ire so we cannot reference it after that. */ irb = ire->ire_bucket; if (ire->ire_ipversion == IPV6_VERSION) { ire_send_v6(q, mp, ire); /* * Clean up more than 1 IRE so that the clean up does not * need to be done every time when a new IRE is added and * the threshold is reached. */ ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); } else { ire_send(q, mp, ire); ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); } } /* * Initialize the ire that is specific to IPv4 part and call * ire_init_common to finish it. */ ire_t * ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info) { if (fp_mp != NULL) { /* * We can't dupb() here as multiple threads could be * calling dupb on the same mp which is incorrect. * First dupb() should be called only by one thread. */ fp_mp = copyb(fp_mp); if (fp_mp == NULL) return (NULL); } if (dlureq_mp != NULL) { /* * We can't dupb() here as multiple threads could be * calling dupb on the same mp which is incorrect. * First dupb() should be called only by one thread. */ dlureq_mp = copyb(dlureq_mp); if (dlureq_mp == NULL) { if (fp_mp != NULL) freeb(fp_mp); return (NULL); } } /* * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER. */ if ((type & IRE_INTERFACE) && dlureq_mp == NULL) { ASSERT(fp_mp == NULL); ip0dbg(("ire_init: no dlureq_mp\n")); return (NULL); } BUMP_IRE_STATS(ire_stats_v4, ire_stats_alloced); if (addr != NULL) bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); if (src_addr != NULL) bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); if (mask != NULL) { bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); } if (gateway != NULL) { bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); } if (in_src_addr != NULL) { bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN); } if (type == IRE_CACHE) ire->ire_cmask = cmask; ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info); return (ire); } /* * Similar to ire_create except that it is called only when * we want to allocate ire as an mblk e.g. we have an external * resolver ARP. */ ire_t * ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info) { ire_t *ire; ire_t *ret_ire; mblk_t *mp; /* Allocate the new IRE. */ mp = allocb(sizeof (ire_t), BPRI_MED); if (mp == NULL) { ip1dbg(("ire_create_mp: alloc failed\n")); return (NULL); } ire = (ire_t *)mp->b_rptr; mp->b_wptr = (uchar_t *)&ire[1]; /* Start clean. */ *ire = ire_null; ire->ire_mp = mp; mp->b_datap->db_type = IRE_DB_TYPE; ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, phandle, ihandle, flags, ulp_info); if (ret_ire == NULL) { freeb(ire->ire_mp); return (NULL); } ASSERT(ret_ire == ire); /* * ire_max_frag is normally zero here and is atomically set * under the irebucket lock in ire_add_v[46] except for the * case of IRE_MARK_NOADD. In that event the the ire_max_frag * is non-zero here. */ ire->ire_max_frag = max_frag; return (ire); } /* * ire_create is called to allocate and initialize a new IRE. * * NOTE : This is called as writer sometimes though not required * by this function. */ ire_t * ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info) { ire_t *ire; ire_t *ret_ire; ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); if (ire == NULL) { ip1dbg(("ire_create: alloc failed\n")); return (NULL); } *ire = ire_null; ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, phandle, ihandle, flags, ulp_info); if (ret_ire == NULL) { kmem_cache_free(ire_cache, ire); return (NULL); } ASSERT(ret_ire == ire); return (ire); } /* * Common to IPv4 and IPv6 */ void ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle, uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info) { ire->ire_max_fragp = max_fragp; ire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA); if (ipif) { if (ipif->ipif_isv6) ASSERT(ipversion == IPV6_VERSION); else ASSERT(ipversion == IPV4_VERSION); } ire->ire_fp_mp = fp_mp; ire->ire_dlureq_mp = dlureq_mp; ire->ire_stq = stq; ire->ire_rfq = rfq; ire->ire_type = type; ire->ire_flags = RTF_UP | flags; ire->ire_ident = TICK_TO_MSEC(lbolt); bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; ire->ire_last_used_time = lbolt; ire->ire_create_time = (uint32_t)gethrestime_sec(); /* * If this IRE is an IRE_CACHE, inherit the handles from the * parent IREs. For others in the forwarding table, assign appropriate * new ones. * * The mutex protecting ire_handle is because ire_create is not always * called as a writer. */ if (ire->ire_type & IRE_OFFSUBNET) { mutex_enter(&ire_handle_lock); ire->ire_phandle = (uint32_t)ire_handle++; mutex_exit(&ire_handle_lock); } else if (ire->ire_type & IRE_INTERFACE) { mutex_enter(&ire_handle_lock); ire->ire_ihandle = (uint32_t)ire_handle++; mutex_exit(&ire_handle_lock); } else if (ire->ire_type == IRE_CACHE) { ire->ire_phandle = phandle; ire->ire_ihandle = ihandle; } ire->ire_in_ill = in_ill; ire->ire_ipif = ipif; if (ipif != NULL) { ire->ire_ipif_seqid = ipif->ipif_seqid; ire->ire_zoneid = ipif->ipif_zoneid; } else { ire->ire_zoneid = GLOBAL_ZONEID; } ire->ire_ipversion = ipversion; ire->ire_refcnt = 1; mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); #ifdef IRE_DEBUG bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX); #endif } /* * This routine is called repeatedly by ipif_up to create broadcast IREs. * It is passed a pointer to a slot in an IRE pointer array into which to * place the pointer to the new IRE, if indeed we create one. If the * IRE corresponding to the address passed in would be a duplicate of an * existing one, we don't create the new one. irep is incremented before * return only if we do create a new IRE. (Always called as writer.) * * Note that with the "match_flags" parameter, we can match on either * a particular logical interface (MATCH_IRE_IPIF) or for all logical * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, * we only create broadcast ire's on a per physical interface basis. If * someone is going to be mucking with logical interfaces, it is important * to call "ipif_check_bcast_ires()" to make sure that any change to a * logical interface will not cause critical broadcast IRE's to be deleted. */ ire_t ** ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, int match_flags) { ire_t *ire; uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; /* * No broadcast IREs for the LOOPBACK interface * or others such as point to point and IPIF_NOXMIT. */ if (!(ipif->ipif_flags & IPIF_BROADCAST) || (ipif->ipif_flags & IPIF_NOXMIT)) return (irep); /* If this would be a duplicate, don't bother. */ if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, ipif->ipif_zoneid, match_flags)) != NULL) { /* * We look for non-deprecated (and non-anycast, non-nolocal) * ipifs as the best choice. ipifs with check_flags matching * (deprecated, etc) are used only if non-deprecated ipifs * are not available. if the existing ire's ipif is deprecated * and the new ipif is non-deprecated, switch to the new ipif */ if ((!(ire->ire_ipif->ipif_flags & check_flags)) || (ipif->ipif_flags & check_flags)) { ire_refrele(ire); return (irep); } /* * Bcast ires exist in pairs. Both have to be deleted, * Since we are exclusive we can make the above assertion. * The 1st has to be refrele'd since it was ctable_lookup'd. */ ASSERT(IAM_WRITER_IPIF(ipif)); ASSERT(ire->ire_next->ire_addr == ire->ire_addr); ire_delete(ire->ire_next); ire_delete(ire); ire_refrele(ire); } irep = ire_create_bcast(ipif, addr, irep); return (irep); } uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; /* * This routine is called from ipif_check_bcast_ires and ire_check_bcast. * It leaves all the verifying and deleting to those routines. So it always * creates 2 bcast ires and chains them into the ire array passed in. */ ire_t ** ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) { *irep++ = ire_create( (uchar_t *)&addr, /* dest addr */ (uchar_t *)&ip_g_all_ones, /* mask */ (uchar_t *)&ipif->ipif_src_addr, /* source addr */ NULL, /* no gateway */ NULL, /* no in_src_addr */ &ipif->ipif_mtu, /* max frag */ NULL, /* fast path header */ ipif->ipif_rq, /* recv-from queue */ ipif->ipif_wq, /* send-to queue */ IRE_BROADCAST, ipif->ipif_bcast_mp, /* xmit header */ ipif, NULL, 0, 0, 0, 0, &ire_uinfo_null); *irep++ = ire_create( (uchar_t *)&addr, /* dest address */ (uchar_t *)&ip_g_all_ones, /* mask */ (uchar_t *)&ipif->ipif_src_addr, /* source address */ NULL, /* no gateway */ NULL, /* no in_src_addr */ &ip_loopback_mtu, /* max frag size */ NULL, /* Fast Path header */ ipif->ipif_rq, /* recv-from queue */ NULL, /* no send-to queue */ IRE_BROADCAST, /* Needed for fanout in wput */ NULL, ipif, NULL, 0, 0, 0, 0, &ire_uinfo_null); return (irep); } /* * ire_walk routine to delete or update any IRE_CACHE that might contain * stale information. * The flags state which entries to delete or update. * Garbage collection is done separately using kmem alloc callbacks to * ip_trash_ire_reclaim. * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME * since other stale information is cleaned up using NUD. */ void ire_expire(ire_t *ire, char *arg) { int flush_flags = (int)(uintptr_t)arg; ill_t *stq_ill; if ((flush_flags & FLUSH_REDIRECT_TIME) && ire->ire_type == IRE_HOST_REDIRECT) { /* Make sure we delete the corresponding IRE_CACHE */ ip1dbg(("ire_expire: all redirects\n")); ip_rts_rtmsg(RTM_DELETE, ire, 0); ire_delete(ire); return; } if (ire->ire_type != IRE_CACHE) return; if (flush_flags & FLUSH_ARP_TIME) { /* * Remove all IRE_CACHE. * Verify that create time is more than * ip_ire_arp_interval milliseconds ago. */ if (((uint32_t)gethrestime_sec() - ire->ire_create_time) * MILLISEC > ip_ire_arp_interval) { ip1dbg(("ire_expire: all IRE_CACHE\n")); ire_delete(ire); return; } } if (ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && (ire->ire_ipif != NULL)) { /* Increase pmtu if it is less than the interface mtu */ mutex_enter(&ire->ire_lock); /* * If the ipif is a vni (whose mtu is 0, since it's virtual) * get the mtu from the sending interfaces' ipif */ if (IS_VNI(ire->ire_ipif->ipif_ill)) { stq_ill = ire->ire_stq->q_ptr; ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, IP_MAXPACKET); } else { ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, IP_MAXPACKET); } ire->ire_frag_flag |= IPH_DF; mutex_exit(&ire->ire_lock); } } /* * Do fast path probing if necessary. */ static void ire_fastpath(ire_t *ire) { ill_t *ill; int res; if (ire->ire_fp_mp != NULL || ire->ire_dlureq_mp == NULL || (ire->ire_stq == NULL)) { /* * Already contains fastpath info or * doesn't have DL_UNITDATA_REQ header * or is a loopback broadcast ire i.e. no stq. */ return; } ill = ire_to_ill(ire); if (ill == NULL) return; ire_fastpath_list_add(ill, ire); res = ill_fastpath_probe(ill, ire->ire_dlureq_mp); /* * EAGAIN is an indication of a transient error * i.e. allocation failure etc. leave the ire in the list it will * be updated when another probe happens for another ire if not * it will be taken out of the list when the ire is deleted. */ if (res != 0 && res != EAGAIN) ire_fastpath_list_delete(ill, ire); } /* * Update all IRE's that are not in fastpath mode and * have an dlureq_mp that matches mp. mp->b_cont contains * the fastpath header. * * Returns TRUE if entry should be dequeued, or FALSE otherwise. */ boolean_t ire_fastpath_update(ire_t *ire, void *arg) { mblk_t *mp, *fp_mp; uchar_t *up, *up2; ptrdiff_t cmplen; ASSERT((ire->ire_type & (IRE_CACHE | IRE_BROADCAST | IRE_MIPRTUN)) != 0); /* * Already contains fastpath info or doesn't have * DL_UNITDATA_REQ header. */ if (ire->ire_fp_mp != NULL || ire->ire_dlureq_mp == NULL) return (B_TRUE); ip2dbg(("ire_fastpath_update: trying\n")); mp = arg; up = mp->b_rptr; cmplen = mp->b_wptr - up; /* Serialize multiple fast path updates */ mutex_enter(&ire->ire_lock); up2 = ire->ire_dlureq_mp->b_rptr; ASSERT(cmplen >= 0); if (ire->ire_dlureq_mp->b_wptr - up2 != cmplen || bcmp(up, up2, cmplen) != 0) { mutex_exit(&ire->ire_lock); /* * Don't take the ire off the fastpath list yet, * since the response may come later. */ return (B_FALSE); } /* Matched - install mp as the ire_fp_mp */ ip1dbg(("ire_fastpath_update: match\n")); fp_mp = dupb(mp->b_cont); if (fp_mp) { /* * We checked ire_fp_mp above. Check it again with the * lock. Update fp_mp only if it has not been done * already. */ if (ire->ire_fp_mp == NULL) { /* * ire_ll_hdr_length is just an optimization to * store the length. It is used to return the * fast path header length to the upper layers. */ ire->ire_fp_mp = fp_mp; ire->ire_ll_hdr_length = (uint_t)(fp_mp->b_wptr - fp_mp->b_rptr); } else { freeb(fp_mp); } } mutex_exit(&ire->ire_lock); return (B_TRUE); } /* * This function handles the DL_NOTE_FASTPATH_FLUSH notification from the * driver. */ /* ARGSUSED */ void ire_fastpath_flush(ire_t *ire, void *arg) { ill_t *ill; int res; /* No fastpath info? */ if (ire->ire_fp_mp == NULL || ire->ire_dlureq_mp == NULL) return; /* * Just remove the IRE if it is for non-broadcast dest. Then * we will create another one which will have the correct * fastpath info. */ switch (ire->ire_type) { case IRE_CACHE: ire_delete(ire); break; case IRE_MIPRTUN: case IRE_BROADCAST: /* * We can't delete the ire since it is difficult to * recreate these ire's without going through the * ipif down/up dance. The ire_fp_mp is protected by the * ire_lock in the case of IRE_MIPRTUN and IRE_BROADCAST. * All access to ire_fp_mp in the case of these 2 ire types * is protected by ire_lock. */ mutex_enter(&ire->ire_lock); if (ire->ire_fp_mp != NULL) { freeb(ire->ire_fp_mp); ire->ire_fp_mp = NULL; mutex_exit(&ire->ire_lock); /* * No fastpath probe if there is no stq i.e. * i.e. the case of loopback broadcast ire. */ if (ire->ire_stq == NULL) break; ill = (ill_t *)((ire->ire_stq)->q_ptr); ire_fastpath_list_add(ill, ire); res = ill_fastpath_probe(ill, ire->ire_dlureq_mp); /* * EAGAIN is an indication of a transient error * i.e. allocation failure etc. leave the ire in the * list it will be updated when another probe happens * for another ire if not it will be taken out of the * list when the ire is deleted. */ if (res != 0 && res != EAGAIN) ire_fastpath_list_delete(ill, ire); } else { mutex_exit(&ire->ire_lock); } break; default: /* This should not happen! */ ip0dbg(("ire_fastpath_flush: Wrong ire type %s\n", ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type))); break; } } /* * Drain the list of ire's waiting for fastpath response. */ void ire_fastpath_list_dispatch(ill_t *ill, boolean_t (*func)(ire_t *, void *), void *arg) { ire_t *next_ire; ire_t *current_ire; ire_t *first_ire; ire_t *prev_ire = NULL; ASSERT(ill != NULL); mutex_enter(&ill->ill_lock); first_ire = current_ire = (ire_t *)ill->ill_fastpath_list; while (current_ire != (ire_t *)&ill->ill_fastpath_list) { next_ire = current_ire->ire_fastpath; /* * Take it off the list if we're flushing, or if the callback * routine tells us to do so. Otherwise, leave the ire in the * fastpath list to handle any pending response from the lower * layer. We can't drain the list when the callback routine * comparison failed, because the response is asynchronous in * nature, and may not arrive in the same order as the list * insertion. */ if (func == NULL || func(current_ire, arg)) { current_ire->ire_fastpath = NULL; if (current_ire == first_ire) ill->ill_fastpath_list = first_ire = next_ire; else prev_ire->ire_fastpath = next_ire; } else { /* previous element that is still in the list */ prev_ire = current_ire; } current_ire = next_ire; } mutex_exit(&ill->ill_lock); } /* * Add ire to the ire fastpath list. */ static void ire_fastpath_list_add(ill_t *ill, ire_t *ire) { ASSERT(ill != NULL); ASSERT(ire->ire_stq != NULL); rw_enter(&ire->ire_bucket->irb_lock, RW_READER); mutex_enter(&ill->ill_lock); /* * if ire has not been deleted and * is not already in the list add it. */ if (((ire->ire_marks & IRE_MARK_CONDEMNED) == 0) && (ire->ire_fastpath == NULL)) { ire->ire_fastpath = (ire_t *)ill->ill_fastpath_list; ill->ill_fastpath_list = ire; } mutex_exit(&ill->ill_lock); rw_exit(&ire->ire_bucket->irb_lock); } /* * remove ire from the ire fastpath list. */ void ire_fastpath_list_delete(ill_t *ill, ire_t *ire) { ire_t *ire_ptr; ASSERT(ire->ire_stq != NULL && ill != NULL); mutex_enter(&ill->ill_lock); if (ire->ire_fastpath == NULL) goto done; ASSERT(ill->ill_fastpath_list != &ill->ill_fastpath_list); if (ill->ill_fastpath_list == ire) { ill->ill_fastpath_list = ire->ire_fastpath; } else { ire_ptr = ill->ill_fastpath_list; while (ire_ptr != (ire_t *)&ill->ill_fastpath_list) { if (ire_ptr->ire_fastpath == ire) { ire_ptr->ire_fastpath = ire->ire_fastpath; break; } ire_ptr = ire_ptr->ire_fastpath; } } ire->ire_fastpath = NULL; done: mutex_exit(&ill->ill_lock); } /* * Find an IRE_INTERFACE for the multicast group. * Allows different routes for multicast addresses * in the unicast routing table (akin to 224.0.0.0 but could be more specific) * which point at different interfaces. This is used when IP_MULTICAST_IF * isn't specified (when sending) and when IP_ADD_MEMBERSHIP doesn't * specify the interface to join on. * * Supports IP_BOUND_IF by following the ipif/ill when recursing. */ ire_t * ire_lookup_multi(ipaddr_t group, zoneid_t zoneid) { ire_t *ire; ipif_t *ipif = NULL; int match_flags = MATCH_IRE_TYPE; ipaddr_t gw_addr; ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, zoneid, 0, MATCH_IRE_DEFAULT); /* We search a resolvable ire in case of multirouting. */ if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) { ire_t *cire = NULL; /* * If the route is not resolvable, the looked up ire * may be changed here. In that case, ire_multirt_lookup() * IRE_REFRELE the original ire and change it. */ (void) ire_multirt_lookup(&cire, &ire, MULTIRT_CACHEGW); if (cire != NULL) ire_refrele(cire); } if (ire == NULL) return (NULL); /* * Make sure we follow ire_ipif. * * We need to determine the interface route through * which the gateway will be reached. We don't really * care which interface is picked if the interface is * part of a group. */ if (ire->ire_ipif != NULL) { ipif = ire->ire_ipif; match_flags |= MATCH_IRE_ILL_GROUP; } switch (ire->ire_type) { case IRE_DEFAULT: case IRE_PREFIX: case IRE_HOST: gw_addr = ire->ire_gateway_addr; ire_refrele(ire); ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif, NULL, zoneid, 0, match_flags); return (ire); case IRE_IF_NORESOLVER: case IRE_IF_RESOLVER: return (ire); default: ire_refrele(ire); return (NULL); } } /* * Return any local address. We use this to target ourselves * when the src address was specified as 'default'. * Preference for IRE_LOCAL entries. */ ire_t * ire_lookup_local(zoneid_t zoneid) { ire_t *ire; irb_t *irb; ire_t *maybe = NULL; int i; for (i = 0; i < ip_cache_table_size; i++) { irb = &ip_cache_table[i]; if (irb->irb_ire == NULL) continue; rw_enter(&irb->irb_lock, RW_READER); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if ((ire->ire_marks & IRE_MARK_CONDEMNED) || ire->ire_zoneid != zoneid) continue; switch (ire->ire_type) { case IRE_LOOPBACK: if (maybe == NULL) { IRE_REFHOLD(ire); maybe = ire; } break; case IRE_LOCAL: if (maybe != NULL) { ire_refrele(maybe); } IRE_REFHOLD(ire); rw_exit(&irb->irb_lock); return (ire); } } rw_exit(&irb->irb_lock); } return (maybe); } /* * If the specified IRE is associated with a particular ILL, return * that ILL pointer (May be called as writer.). * * NOTE : This is not a generic function that can be used always. * This function always returns the ill of the outgoing packets * if this ire is used. */ ill_t * ire_to_ill(ire_t *ire) { ill_t *ill = NULL; /* * 1) For an IRE_CACHE, ire_ipif is the one where it obtained * the source address from. ire_stq is the one where the * packets will be sent out on. We return that here. * * 2) IRE_BROADCAST normally has a loopback and a non-loopback * copy and they always exist next to each other with loopback * copy being the first one. If we are called on the non-loopback * copy, return the one pointed by ire_stq. If it was called on * a loopback copy, we still return the one pointed by the next * ire's ire_stq pointer i.e the one pointed by the non-loopback * copy. We don't want use ire_ipif as it might represent the * source address (if we borrow source addresses for * IRE_BROADCASTS in the future). * However if an interface is currently coming up, the above * condition may not hold during that period since the ires * are added one at a time. Thus one of the pair could have been * added and the other not yet added. * 3) For all others return the ones pointed by ire_ipif->ipif_ill. */ if (ire->ire_type == IRE_CACHE) { ill = (ill_t *)ire->ire_stq->q_ptr; } else if (ire->ire_type == IRE_BROADCAST) { if (ire->ire_stq != NULL) { ill = (ill_t *)ire->ire_stq->q_ptr; } else { ire_t *ire_next; ire_next = ire->ire_next; if (ire_next != NULL && ire_next->ire_type == IRE_BROADCAST && ire_next->ire_addr == ire->ire_addr && ire_next->ire_ipif == ire->ire_ipif) { ill = (ill_t *)ire_next->ire_stq->q_ptr; } } } else if (ire->ire_ipif != NULL) { ill = ire->ire_ipif->ipif_ill; } return (ill); } /* Arrange to call the specified function for every IRE in the world. */ void ire_walk(pfv_t func, char *arg) { ire_walk_ipvers(func, arg, 0, ALL_ZONES); } void ire_walk_v4(pfv_t func, char *arg, zoneid_t zoneid) { ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid); } void ire_walk_v6(pfv_t func, char *arg, zoneid_t zoneid) { ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid); } /* * Walk a particular version. version == 0 means both v4 and v6. */ static void ire_walk_ipvers(pfv_t func, char *arg, uchar_t vers, zoneid_t zoneid) { if (vers != IPV6_VERSION) { ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, ip_ftable_hash_size, ip_forwarding_table, ip_cache_table_size, ip_cache_table, NULL, zoneid); } if (vers != IPV4_VERSION) { ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size, ip_forwarding_table_v6, ip6_cache_table_size, ip_cache_table_v6, NULL, zoneid); } } /* * Arrange to call the specified * function for every IRE that matches the ill. */ void ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, char *arg, ill_t *ill) { ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); } void ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, char *arg, ill_t *ill) { ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, ill); } void ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, char *arg, ill_t *ill) { ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, ill); } /* * Walk a particular ill and version. version == 0 means both v4 and v6. */ static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, char *arg, uchar_t vers, ill_t *ill) { if (vers != IPV6_VERSION) { ire_walk_ill_tables(match_flags, ire_type, func, arg, IP_MASK_TABLE_SIZE, ip_ftable_hash_size, ip_forwarding_table, ip_cache_table_size, ip_cache_table, ill, ALL_ZONES); } if (vers != IPV4_VERSION) { ire_walk_ill_tables(match_flags, ire_type, func, arg, IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size, ip_forwarding_table_v6, ip6_cache_table_size, ip_cache_table_v6, ill, ALL_ZONES); } } static boolean_t ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, ill_t *ill, zoneid_t zoneid) { ill_t *ire_stq_ill = NULL; ill_t *ire_ipif_ill = NULL; ill_group_t *ire_ill_group = NULL; ASSERT(match_flags != 0 || zoneid != ALL_ZONES); /* * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq. * The fast path update uses this to make sure it does not * update the fast path header of interface X with the fast * path updates it recieved on interface Y. It is similar * in handling DL_NOTE_FASTPATH_FLUSH. * * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill * pointed by ire_stq and ire_ipif. Only in the case of * IRE_CACHEs can ire_stq and ire_ipif be pointing to * different ills. But we want to keep this function generic * enough for future use. So, we always try to match on both. * The only caller of this function ire_walk_ill_tables, will * call "func" after we return from this function. We expect * "func" to do the right filtering of ires in this case. * * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups * pointed by ire_stq and ire_ipif should always be the same. * So, we just match on only one of them. */ if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { if (ire->ire_stq != NULL) ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; if (ire->ire_ipif != NULL) ire_ipif_ill = ire->ire_ipif->ipif_ill; if (ire_stq_ill != NULL) ire_ill_group = ire_stq_ill->ill_group; if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) ire_ill_group = ire_ipif_ill->ill_group; } if (zoneid != ALL_ZONES) { /* * We're walking the IREs for a specific zone. The only relevant * IREs are: * - all IREs with a matching ire_zoneid * - all IRE_OFFSUBNETs as they're shared across all zones * - IRE_INTERFACE IREs for interfaces with a usable source addr * with a matching zone * - IRE_DEFAULTs with a gateway reachable from the zone * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs * using the same rule; but the above rules are consistent with * the behavior of ire_ftable_lookup[_v6]() so that all the * routes that can be matched during lookup are also matched * here. */ if (zoneid != ire->ire_zoneid) { /* * Note, IRE_INTERFACE can have the stq as NULL. For * example, if the default multicast route is tied to * the loopback address. */ if ((ire->ire_type & IRE_INTERFACE) && (ire->ire_stq != NULL)) { ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; if (ire->ire_ipversion == IPV4_VERSION) { if (!ipif_usesrc_avail(ire_stq_ill, zoneid)) /* No usable src addr in zone */ return (B_FALSE); } else if (ire_stq_ill->ill_usesrc_ifindex != 0) { /* * For IPv6 use ipif_select_source_v6() * so the right scope selection is done */ ipif_t *src_ipif; src_ipif = ipif_select_source_v6(ire_stq_ill, &ire->ire_addr_v6, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); if (src_ipif != NULL) { ipif_refrele(src_ipif); } else { return (B_FALSE); } } else { return (B_FALSE); } } else if (!(ire->ire_type & IRE_OFFSUBNET)) { return (B_FALSE); } } /* * Match all default routes from the global zone, irrespective * of reachability. */ if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { int ire_match_flags = 0; in6_addr_t gw_addr_v6; ire_t *rire; if (ire->ire_ipif != NULL) { ire_match_flags |= MATCH_IRE_ILL_GROUP; } if (ire->ire_ipversion == IPV4_VERSION) { rire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, 0, ire->ire_ipif, NULL, zoneid, ire_match_flags); } else { ASSERT(ire->ire_ipversion == IPV6_VERSION); mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); rire = ire_route_lookup_v6(&gw_addr_v6, NULL, NULL, 0, ire->ire_ipif, NULL, zoneid, ire_match_flags); } if (rire == NULL) { return (B_FALSE); } ire_refrele(rire); } } if (((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & ire_type)) && ((!(match_flags & MATCH_IRE_WQ)) || (ire->ire_stq == ill->ill_wq)) && ((!(match_flags & MATCH_IRE_ILL)) || (ire_stq_ill == ill || ire_ipif_ill == ill)) && ((!(match_flags & MATCH_IRE_ILL_GROUP)) || (ire_stq_ill == ill) || (ire_ipif_ill == ill) || (ire_ill_group != NULL && ire_ill_group == ill->ill_group))) { return (B_TRUE); } return (B_FALSE); } /* * Walk the ftable and the ctable entries that match the ill. */ static void ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, char *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid) { irb_t *irb_ptr; irb_t *irb; ire_t *ire; int i, j; boolean_t ret; ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP))) || (ill != NULL)); ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); /* * Optimize by not looking at the forwarding table if there * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE * specified in ire_type. */ if (!(match_flags & MATCH_IRE_TYPE) || ((ire_type & IRE_FORWARDTABLE) != 0)) { for (i = (ftbl_sz - 1); i >= 0; i--) { if ((irb_ptr = ipftbl[i]) == NULL) continue; for (j = 0; j < htbl_sz; j++) { irb = &irb_ptr[j]; if (irb->irb_ire == NULL) continue; IRB_REFHOLD(irb); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (match_flags == 0 && zoneid == ALL_ZONES) { ret = B_TRUE; } else { ret = ire_walk_ill_match( match_flags, ire_type, ire, ill, zoneid); } if (ret) (*func)(ire, arg); } IRB_REFRELE(irb); } } } /* * Optimize by not looking at the cache table if there * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE * specified in ire_type. */ if (!(match_flags & MATCH_IRE_TYPE) || ((ire_type & IRE_CACHETABLE) != 0)) { for (i = 0; i < ctbl_sz; i++) { irb = &ipctbl[i]; if (irb->irb_ire == NULL) continue; IRB_REFHOLD(irb); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (match_flags == 0 && zoneid == ALL_ZONES) { ret = B_TRUE; } else { ret = ire_walk_ill_match( match_flags, ire_type, ire, ill, zoneid); } if (ret) (*func)(ire, arg); } IRB_REFRELE(irb); } } } /* * This routine walks through the ill chain to find if there is any * ire linked to the ill's interface based forwarding table * The arg could be ill or mp. This routine is called when a ill goes * down/deleted or the 'ipv4_ire_srcif_status' report is printed. */ void ire_walk_srcif_table_v4(pfv_t func, char *arg) { irb_t *irb; ire_t *ire; ill_t *ill, *next_ill; int i; int total_count; ill_walk_context_t ctx; /* * Take care of ire's in other ill's per-interface forwarding * table. Check if any ire in any of the ill's ill_srcif_table * is pointing to this ill. */ mutex_enter(&ire_srcif_table_lock); if (ire_srcif_table_count == 0) { mutex_exit(&ire_srcif_table_lock); return; } mutex_exit(&ire_srcif_table_lock); #ifdef DEBUG /* Keep accounting of all interface based table ires */ total_count = 0; rw_enter(&ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx); while (ill != NULL) { mutex_enter(&ill->ill_lock); total_count += ill->ill_srcif_refcnt; next_ill = ill_next(&ctx, ill); mutex_exit(&ill->ill_lock); ill = next_ill; } rw_exit(&ill_g_lock); /* Hold lock here to make sure ire_srcif_table_count is stable */ mutex_enter(&ire_srcif_table_lock); i = ire_srcif_table_count; mutex_exit(&ire_srcif_table_lock); ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d " "total ill_srcif_refcnt %d\n", i, total_count)); #endif rw_enter(&ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx); while (ill != NULL) { mutex_enter(&ill->ill_lock); if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) { next_ill = ill_next(&ctx, ill); mutex_exit(&ill->ill_lock); ill = next_ill; continue; } ill_refhold_locked(ill); mutex_exit(&ill->ill_lock); rw_exit(&ill_g_lock); if (ill->ill_srcif_table != NULL) { for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { irb = &(ill->ill_srcif_table[i]); if (irb->irb_ire == NULL) continue; IRB_REFHOLD(irb); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { (*func)(ire, arg); } IRB_REFRELE(irb); } } rw_enter(&ill_g_lock, RW_READER); next_ill = ill_next(&ctx, ill); ill_refrele(ill); ill = next_ill; } rw_exit(&ill_g_lock); } /* * This function takes a mask and returns * number of bits set in the mask. If no * bit is set it returns 0. * Assumes a contiguous mask. */ int ip_mask_to_plen(ipaddr_t mask) { return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); } /* * Convert length for a mask to the mask. */ ipaddr_t ip_plen_to_mask(uint_t masklen) { return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); } void ire_atomic_end(irb_t *irb_ptr, ire_t *ire) { ill_t *ill_list[NUM_ILLS]; ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; ill_list[2] = ire->ire_in_ill; ill_unlock_ills(ill_list, NUM_ILLS); rw_exit(&irb_ptr->irb_lock); rw_exit(&ill_g_usesrc_lock); } /* * ire_add_v[46] atomically make sure that the ipif or ill associated * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING * before adding the ire to the table. This ensures that we don't create * new IRE_CACHEs with stale values for parameters that are passed to * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer * to the ipif_mtu, and not the value. The actual value is derived from the * parent ire or ipif under the bucket lock. */ int ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, ipsq_func_t func) { ill_t *stq_ill; ill_t *ipif_ill; ill_t *in_ill; ill_t *ill_list[NUM_ILLS]; int cnt = NUM_ILLS; int error = 0; ill_t *ill = NULL; ill_list[0] = stq_ill = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; ill_list[1] = ipif_ill = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; ill_list[2] = in_ill = ire->ire_in_ill; ASSERT((q != NULL && mp != NULL && func != NULL) || (q == NULL && mp == NULL && func == NULL)); rw_enter(&ill_g_usesrc_lock, RW_READER); GRAB_CONN_LOCK(q); rw_enter(&irb_ptr->irb_lock, RW_WRITER); ill_lock_ills(ill_list, cnt); /* * While the IRE is in the process of being added, a user may have * invoked the ifconfig usesrc option on the stq_ill to make it a * usesrc client ILL. Check for this possibility here, if it is true * then we fail adding the IRE_CACHE. Another check is to make sure * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc * group. The ill_g_usesrc_lock is released in ire_atomic_end */ if ((ire->ire_type & IRE_CACHE) && (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { if (stq_ill->ill_usesrc_ifindex != 0) { ASSERT(stq_ill->ill_usesrc_grp_next != NULL); if ((ipif_ill->ill_phyint->phyint_ifindex != stq_ill->ill_usesrc_ifindex) || (ipif_ill->ill_usesrc_grp_next == NULL) || (ipif_ill->ill_usesrc_ifindex != 0)) { error = EINVAL; goto done; } } else if (ipif_ill->ill_usesrc_grp_next != NULL) { error = EINVAL; goto done; } } /* * IPMP flag settings happen without taking the exclusive route * in ip_sioctl_flags. So we need to make an atomic check here * for FAILED/OFFLINE/INACTIVE flags or if it has hit the * FAILBACK=no case. */ if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { if (stq_ill->ill_state_flags & ILL_CHANGING) { ill = stq_ill; error = EAGAIN; } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || (ill_is_probeonly(stq_ill) && !(ire->ire_marks & IRE_MARK_HIDDEN))) { error = EINVAL; } goto done; } /* * We don't check for OFFLINE/FAILED in this case because * the source address selection logic (ipif_select_source) * may still select a source address from such an ill. The * assumption is that these addresses will be moved by in.mpathd * soon. (i.e. this is a race). However link local addresses * will not move and hence ipif_select_source_v6 tries to avoid * FAILED ills. Please see ipif_select_source_v6 for more info */ if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && (ipif_ill->ill_state_flags & ILL_CHANGING)) { ill = ipif_ill; error = EAGAIN; goto done; } if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) && (in_ill->ill_state_flags & ILL_CHANGING)) { ill = in_ill; error = EAGAIN; goto done; } if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { ill = ire->ire_ipif->ipif_ill; ASSERT(ill != NULL); error = EAGAIN; goto done; } done: if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); ire_atomic_end(irb_ptr, ire); ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); mutex_exit(&ipsq->ipsq_lock); error = EINPROGRESS; } else if (error != 0) { ire_atomic_end(irb_ptr, ire); } RELEASE_CONN_LOCK(q); return (error); } /* * Add a fully initialized IRE to an appropriate table based on * ire_type. */ int ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func) { ire_t *ire1; ill_t *stq_ill = NULL; ill_t *ill; ipif_t *ipif = NULL; ill_walk_context_t ctx; ire_t *ire = *irep; int error; ASSERT(ire->ire_type != IRE_MIPRTUN); /* get ready for the day when original ire is not created as mblk */ if (ire->ire_mp != NULL) { /* Copy the ire to a kmem_alloc'ed area */ ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); if (ire1 == NULL) { ip1dbg(("ire_add: alloc failed\n")); ire_delete(ire); *irep = NULL; return (ENOMEM); } *ire1 = *ire; ire1->ire_mp = NULL; freeb(ire->ire_mp); ire = ire1; } if (ire->ire_stq != NULL) stq_ill = (ill_t *)ire->ire_stq->q_ptr; if (ire->ire_type == IRE_CACHE) { /* * If this interface is FAILED, or INACTIVE or has hit * the FAILBACK=no case, we create IRE_CACHES marked * HIDDEN for some special cases e.g. bind to * IPIF_NOFAILOVER address etc. So, if this interface * is FAILED/INACTIVE/hit FAILBACK=no case, and we are * not creating hidden ires, we should not allow that. * This happens because the state of the interface * changed while we were waiting in ARP. If this is the * daemon sending probes, the next probe will create * HIDDEN ires and we will create an ire then. This * cannot happen with NDP currently because IRE is * never queued in NDP. But it can happen in the * future when we have external resolvers with IPv6. * If the interface gets marked with OFFLINE while we * are waiting in ARP, don't add the ire. */ if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || (ill_is_probeonly(stq_ill) && !(ire->ire_marks & IRE_MARK_HIDDEN))) { /* * We don't know whether it is a valid ipif or not. * unless we do the check below. So, set it to NULL. */ ire->ire_ipif = NULL; ire_delete(ire); *irep = NULL; return (EINVAL); } } if (stq_ill != NULL && ire->ire_type == IRE_CACHE && stq_ill->ill_net_type == IRE_IF_RESOLVER) { rw_enter(&ill_g_lock, RW_READER); ill = ILL_START_WALK_ALL(&ctx); for (; ill != NULL; ill = ill_next(&ctx, ill)) { mutex_enter(&ill->ill_lock); if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); continue; } /* * We need to make sure that the ipif is a valid one * before adding the IRE_CACHE. This happens only * with IRE_CACHE when there is an external resolver. * * We can unplumb a logical interface while the * packet is waiting in ARP with the IRE. Then, * later on when we feed the IRE back, the ipif * has to be re-checked. This can't happen with * NDP currently, as we never queue the IRE with * the packet. We always try to recreate the IRE * when the resolution is completed. But, we do * it for IPv6 also here so that in future if * we have external resolvers, it will work without * any change. */ ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); if (ipif != NULL) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); break; } mutex_exit(&ill->ill_lock); } rw_exit(&ill_g_lock); if (ipif == NULL || (ipif->ipif_isv6 && !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, &ipif->ipif_v6src_addr)) || (!ipif->ipif_isv6 && ire->ire_src_addr != ipif->ipif_src_addr) || (ire->ire_zoneid != ipif->ipif_zoneid)) { if (ipif != NULL) ipif_refrele(ipif); ire->ire_ipif = NULL; ire_delete(ire); *irep = NULL; return (EINVAL); } ASSERT(ill != NULL); /* * If this group was dismantled while this packets was * queued in ARP, don't add it here. */ if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { /* We don't want ire_inactive bump stats for this */ ipif_refrele(ipif); ire->ire_ipif = NULL; ire_delete(ire); *irep = NULL; return (EINVAL); } } /* * In case ire was changed */ *irep = ire; if (ire->ire_ipversion == IPV6_VERSION) { error = ire_add_v6(irep, q, mp, func); } else { if (ire->ire_in_ill == NULL) error = ire_add_v4(irep, q, mp, func); else error = ire_add_srcif_v4(irep, q, mp, func); } if (ipif != NULL) ipif_refrele(ipif); return (error); } /* * Add a fully initialized IRE to an appropriate * table based on ire_type. * * The forward table contains IRE_PREFIX/IRE_HOST/IRE_HOST_REDIRECT * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. * * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK * and IRE_CACHE. * * NOTE : This function is called as writer though not required * by this function. */ static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) { ire_t *ire1; int mask_table_index; irb_t *irb_ptr; ire_t **irep; int flags; ire_t *pire = NULL; ill_t *stq_ill; ire_t *ire = *ire_p; int error; if (ire->ire_ipif != NULL) ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); if (ire->ire_stq != NULL) ASSERT(!MUTEX_HELD( &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); ASSERT(ire->ire_ipversion == IPV4_VERSION); ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */ /* Find the appropriate list head. */ switch (ire->ire_type) { case IRE_HOST: ire->ire_mask = IP_HOST_MASK; ire->ire_masklen = IP_ABITS; if ((ire->ire_flags & RTF_SETSRC) == 0) ire->ire_src_addr = 0; break; case IRE_HOST_REDIRECT: ire->ire_mask = IP_HOST_MASK; ire->ire_masklen = IP_ABITS; ire->ire_src_addr = 0; break; case IRE_CACHE: case IRE_BROADCAST: case IRE_LOCAL: case IRE_LOOPBACK: ire->ire_mask = IP_HOST_MASK; ire->ire_masklen = IP_ABITS; break; case IRE_PREFIX: if ((ire->ire_flags & RTF_SETSRC) == 0) ire->ire_src_addr = 0; break; case IRE_DEFAULT: if ((ire->ire_flags & RTF_SETSRC) == 0) ire->ire_src_addr = 0; break; case IRE_IF_RESOLVER: case IRE_IF_NORESOLVER: break; default: printf("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", (void *)ire, ire->ire_type); ire_delete(ire); *ire_p = NULL; return (EINVAL); } /* Make sure the address is properly masked. */ ire->ire_addr &= ire->ire_mask; if ((ire->ire_type & IRE_CACHETABLE) == 0) { /* IRE goes into Forward Table */ mask_table_index = ire->ire_masklen; if ((ip_forwarding_table[mask_table_index]) == NULL) { irb_t *ptr; int i; ptr = (irb_t *)mi_zalloc((ip_ftable_hash_size * sizeof (irb_t))); if (ptr == NULL) { ire_delete(ire); *ire_p = NULL; return (ENOMEM); } for (i = 0; i < ip_ftable_hash_size; i++) { rw_init(&ptr[i].irb_lock, NULL, RW_DEFAULT, NULL); } mutex_enter(&ire_ft_init_lock); if (ip_forwarding_table[mask_table_index] == NULL) { ip_forwarding_table[mask_table_index] = ptr; mutex_exit(&ire_ft_init_lock); } else { /* * Some other thread won the race in * initializing the forwarding table at the * same index. */ mutex_exit(&ire_ft_init_lock); for (i = 0; i < ip_ftable_hash_size; i++) { rw_destroy(&ptr[i].irb_lock); } mi_free(ptr); } } irb_ptr = &(ip_forwarding_table[mask_table_index][ IRE_ADDR_HASH(ire->ire_addr, ip_ftable_hash_size)]); } else { irb_ptr = &(ip_cache_table[IRE_ADDR_HASH(ire->ire_addr, ip_cache_table_size)]); } /* * ip_newroute/ip_newroute_multi are unable to prevent the deletion * of the interface route while adding an IRE_CACHE for an on-link * destination in the IRE_IF_RESOLVER case, since the ire has to * go to ARP and return. We can't do a REFHOLD on the * associated interface ire for fear of ARP freeing the message. * Here we look up the interface ire in the forwarding table and * make sure that the interface route has not been deleted. */ if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { ASSERT(ire->ire_max_fragp == NULL); if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { /* * The ihandle that we used in ip_newroute_multi * comes from the interface route corresponding * to ire_ipif. Lookup here to see if it exists * still. * If the ire has a source address assigned using * RTF_SETSRC, ire_ipif is the logical interface holding * this source address, so we can't use it to check for * the existence of the interface route. Instead we rely * on the brute force ihandle search in * ire_ihandle_lookup_onlink() below. */ pire = ipif_to_ire(ire->ire_ipif); if (pire == NULL) { ire_delete(ire); *ire_p = NULL; return (EINVAL); } else if (pire->ire_ihandle != ire->ire_ihandle) { ire_refrele(pire); ire_delete(ire); *ire_p = NULL; return (EINVAL); } } else { pire = ire_ihandle_lookup_onlink(ire); if (pire == NULL) { ire_delete(ire); *ire_p = NULL; return (EINVAL); } } /* Prevent pire from getting deleted */ IRB_REFHOLD(pire->ire_bucket); /* Has it been removed already ? */ if (pire->ire_marks & IRE_MARK_CONDEMNED) { IRB_REFRELE(pire->ire_bucket); ire_refrele(pire); ire_delete(ire); *ire_p = NULL; return (EINVAL); } } else { ASSERT(ire->ire_max_fragp != NULL); } flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); if (ire->ire_ipif != NULL) { /* * We use MATCH_IRE_IPIF while adding IRE_CACHES only * for historic reasons and to maintain symmetry with * IPv6 code path. Historically this was used by * multicast code to create multiple IRE_CACHES on * a single ill with different ipifs. This was used * so that multicast packets leaving the node had the * right source address. This is no longer needed as * ip_wput initializes the address correctly. */ flags |= MATCH_IRE_IPIF; /* * If we are creating hidden ires, make sure we search on * this ill (MATCH_IRE_ILL) and a hidden ire, * while we are searching for duplicates below. Otherwise we * could potentially find an IRE on some other interface * and it may not be a IRE marked with IRE_MARK_HIDDEN. We * shouldn't do this as this will lead to an infinite loop * (if we get to ip_wput again) eventually we need an hidden * ire for this packet to go out. MATCH_IRE_ILL is explicitly * done below. */ if (ire->ire_type == IRE_CACHE && (ire->ire_marks & IRE_MARK_HIDDEN)) flags |= (MATCH_IRE_MARK_HIDDEN); } /* * Start the atomic add of the ire. Grab the ill locks, * ill_g_usesrc_lock and the bucket lock. Check for condemned * * If ipif or ill is changing ire_atomic_start() may queue the * request and return EINPROGRESS. */ error = ire_atomic_start(irb_ptr, ire, q, mp, func); if (error != 0) { /* * We don't know whether it is a valid ipif or not. * So, set it to NULL. This assumes that the ire has not added * a reference to the ipif. */ ire->ire_ipif = NULL; ire_delete(ire); if (pire != NULL) { IRB_REFRELE(pire->ire_bucket); ire_refrele(pire); } *ire_p = NULL; return (error); } /* * To avoid creating ires having stale values for the ire_max_frag * we get the latest value atomically here. For more details * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE * in ip_rput_dlpi_writer */ if (ire->ire_max_fragp == NULL) { if (CLASSD(ire->ire_addr)) ire->ire_max_frag = ire->ire_ipif->ipif_mtu; else ire->ire_max_frag = pire->ire_max_frag; } else { uint_t max_frag; max_frag = *ire->ire_max_fragp; ire->ire_max_fragp = NULL; ire->ire_max_frag = max_frag; } /* * Atomically check for duplicate and insert in the table. */ for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { if (ire1->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire->ire_ipif != NULL) { /* * We do MATCH_IRE_ILL implicitly here for IREs * with a non-null ire_ipif, including IRE_CACHEs. * As ire_ipif and ire_stq could point to two * different ills, we can't pass just ire_ipif to * ire_match_args and get a match on both ills. * This is just needed for duplicate checks here and * so we don't add an extra argument to * ire_match_args for this. Do it locally. * * NOTE : Currently there is no part of the code * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL * match for IRE_CACHEs. Thus we don't want to * extend the arguments to ire_match_args. */ if (ire1->ire_stq != ire->ire_stq) continue; /* * Multiroute IRE_CACHEs for a given destination can * have the same ire_ipif, typically if their source * address is forced using RTF_SETSRC, and the same * send-to queue. We differentiate them using the parent * handle. */ if (ire->ire_type == IRE_CACHE && (ire1->ire_flags & RTF_MULTIRT) && (ire->ire_flags & RTF_MULTIRT) && (ire1->ire_phandle != ire->ire_phandle)) continue; } if (ire1->ire_zoneid != ire->ire_zoneid) continue; if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, flags)) { /* * Return the old ire after doing a REFHOLD. * As most of the callers continue to use the IRE * after adding, we return a held ire. This will * avoid a lookup in the caller again. If the callers * don't want to use it, they need to do a REFRELE. */ ip1dbg(("found dup ire existing %p new %p", (void *)ire1, (void *)ire)); IRE_REFHOLD(ire1); ire_atomic_end(irb_ptr, ire); ire_delete(ire); if (pire != NULL) { /* * Assert that it is not removed from the * list yet. */ ASSERT(pire->ire_ptpn != NULL); IRB_REFRELE(pire->ire_bucket); ire_refrele(pire); } *ire_p = ire1; return (0); } } /* * Make it easy for ip_wput_ire() to hit multiple broadcast ires by * grouping identical addresses together on the hash chain. We also * don't want to send multiple copies out if there are two ills part * of the same group. Thus we group the ires with same addr and same * ill group together so that ip_wput_ire can easily skip all the * ires with same addr and same group after sending the first copy. * We do this only for IRE_BROADCASTs as ip_wput_ire is currently * interested in such groupings only for broadcasts. * * NOTE : If the interfaces are brought up first and then grouped, * illgrp_insert will handle it. We come here when the interfaces * are already in group and we are bringing them UP. * * Find the first entry that matches ire_addr. *irep will be null * if no match. */ irep = (ire_t **)irb_ptr; while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) irep = &ire1->ire_next; if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { /* * We found some ire (i.e *irep) with a matching addr. We * want to group ires with same addr and same ill group * together. * * First get to the entry that matches our address and * ill group i.e stop as soon as we find the first ire * matching the ill group and address. If there is only * an address match, we should walk and look for some * group match. These are some of the possible scenarios : * * 1) There are no groups at all i.e all ire's ill_group * are NULL. In that case we will essentially group * all the ires with the same addr together. Same as * the "else" block of this "if". * * 2) There are some groups and this ire's ill_group is * NULL. In this case, we will first find the group * that matches the address and a NULL group. Then * we will insert the ire at the end of that group. * * 3) There are some groups and this ires's ill_group is * non-NULL. In this case we will first find the group * that matches the address and the ill_group. Then * we will insert the ire at the end of that group. */ /* LINTED : constant in conditional context */ while (1) { ire1 = *irep; if ((ire1->ire_next == NULL) || (ire1->ire_next->ire_addr != ire->ire_addr) || (ire1->ire_type != IRE_BROADCAST) || (ire1->ire_ipif->ipif_ill->ill_group == ire->ire_ipif->ipif_ill->ill_group)) break; irep = &ire1->ire_next; } ASSERT(*irep != NULL); irep = &((*irep)->ire_next); /* * Either we have hit the end of the list or the address * did not match or the group *matched*. If we found * a match on the group, skip to the end of the group. */ while (*irep != NULL) { ire1 = *irep; if ((ire1->ire_addr != ire->ire_addr) || (ire1->ire_type != IRE_BROADCAST) || (ire1->ire_ipif->ipif_ill->ill_group != ire->ire_ipif->ipif_ill->ill_group)) break; if (ire1->ire_ipif->ipif_ill->ill_group == NULL && ire1->ire_ipif == ire->ire_ipif) { irep = &ire1->ire_next; break; } irep = &ire1->ire_next; } } else if (*irep != NULL) { /* * Find the last ire which matches ire_addr. * Needed to do tail insertion among entries with the same * ire_addr. */ while (ire->ire_addr == ire1->ire_addr) { irep = &ire1->ire_next; ire1 = *irep; if (ire1 == NULL) break; } } if (ire->ire_type == IRE_DEFAULT) { /* * We keep a count of default gateways which is used when * assigning them as routes. */ ip_ire_default_count++; ASSERT(ip_ire_default_count != 0); /* Wraparound */ } /* Insert at *irep */ ire1 = *irep; if (ire1 != NULL) ire1->ire_ptpn = &ire->ire_next; ire->ire_next = ire1; /* Link the new one in. */ ire->ire_ptpn = irep; /* * ire_walk routines de-reference ire_next without holding * a lock. Before we point to the new ire, we want to make * sure the store that sets the ire_next of the new ire * reaches global visibility, so that ire_walk routines * don't see a truncated list of ires i.e if the ire_next * of the new ire gets set after we do "*irep = ire" due * to re-ordering, the ire_walk thread will see a NULL * once it accesses the ire_next of the new ire. * membar_producer() makes sure that the following store * happens *after* all of the above stores. */ membar_producer(); *irep = ire; ire->ire_bucket = irb_ptr; /* * We return a bumped up IRE above. Keep it symmetrical * so that the callers will always have to release. This * helps the callers of this function because they continue * to use the IRE after adding and hence they don't have to * lookup again after we return the IRE. * * NOTE : We don't have to use atomics as this is appearing * in the list for the first time and no one else can bump * up the reference count on this yet. */ IRE_REFHOLD_LOCKED(ire); BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); irb_ptr->irb_ire_cnt++; if (ire->ire_marks & IRE_MARK_TEMPORARY) irb_ptr->irb_tmp_ire_cnt++; if (ire->ire_ipif != NULL) { ire->ire_ipif->ipif_ire_cnt++; if (ire->ire_stq != NULL) { stq_ill = (ill_t *)ire->ire_stq->q_ptr; stq_ill->ill_ire_cnt++; } } else { ASSERT(ire->ire_stq == NULL); } ire_atomic_end(irb_ptr, ire); if (pire != NULL) { /* Assert that it is not removed from the list yet */ ASSERT(pire->ire_ptpn != NULL); IRB_REFRELE(pire->ire_bucket); ire_refrele(pire); } if (ire->ire_type != IRE_CACHE) { /* * For ire's with with host mask see if there is an entry * in the cache. If there is one flush the whole cache as * there might be multiple entries due to RTF_MULTIRT (CGTP). * If no entry is found than there is no need to flush the * cache. */ if (ire->ire_mask == IP_HOST_MASK) { ire_t *lire; lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, NULL, ALL_ZONES, MATCH_IRE_TYPE); if (lire != NULL) { ire_refrele(lire); ire_flush_cache_v4(ire, IRE_FLUSH_ADD); } } else { ire_flush_cache_v4(ire, IRE_FLUSH_ADD); } } /* * We had to delay the fast path probe until the ire is inserted * in the list. Otherwise the fast path ack won't find the ire in * the table. */ if (ire->ire_type == IRE_CACHE || ire->ire_type == IRE_BROADCAST) ire_fastpath(ire); if (ire->ire_ipif != NULL) ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); *ire_p = ire; return (0); } /* * Search for all HOST REDIRECT routes that are * pointing at the specified gateway and * delete them. This routine is called only * when a default gateway is going away. */ static void ire_delete_host_redirects(ipaddr_t gateway) { irb_t *irb_ptr; irb_t *irb; ire_t *ire; int i; /* get the hash table for HOST routes */ irb_ptr = ip_forwarding_table[(IP_MASK_TABLE_SIZE - 1)]; if (irb_ptr == NULL) return; for (i = 0; (i < ip_ftable_hash_size); i++) { irb = &irb_ptr[i]; IRB_REFHOLD(irb); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_type != IRE_HOST_REDIRECT) continue; if (ire->ire_gateway_addr == gateway) { ire_delete(ire); } } IRB_REFRELE(irb); } } /* * IRB_REFRELE is the only caller of the function. ire_unlink calls to * do the final cleanup for this ire. */ void ire_cleanup(ire_t *ire) { ire_t *ire_next; ASSERT(ire != NULL); while (ire != NULL) { ire_next = ire->ire_next; if (ire->ire_ipversion == IPV4_VERSION) { ire_delete_v4(ire); BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); } else { ASSERT(ire->ire_ipversion == IPV6_VERSION); ire_delete_v6(ire); BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); } /* * Now it's really out of the list. Before doing the * REFRELE, set ire_next to NULL as ire_inactive asserts * so. */ ire->ire_next = NULL; IRE_REFRELE_NOTR(ire); ire = ire_next; } } /* * IRB_REFRELE is the only caller of the function. It calls to unlink * all the CONDEMNED ires from this bucket. */ ire_t * ire_unlink(irb_t *irb) { ire_t *ire; ire_t *ire1; ire_t **ptpn; ire_t *ire_list = NULL; ASSERT(RW_WRITE_HELD(&irb->irb_lock)); ASSERT(irb->irb_refcnt == 0); ASSERT(irb->irb_marks & IRE_MARK_CONDEMNED); ASSERT(irb->irb_ire != NULL); for (ire = irb->irb_ire; ire != NULL; ire = ire1) { ire1 = ire->ire_next; if (ire->ire_marks & IRE_MARK_CONDEMNED) { ptpn = ire->ire_ptpn; ire1 = ire->ire_next; if (ire1) ire1->ire_ptpn = ptpn; *ptpn = ire1; ire->ire_ptpn = NULL; ire->ire_next = NULL; if (ire->ire_type == IRE_DEFAULT) { /* * IRE is out of the list. We need to adjust * the accounting before the caller drops * the lock. */ if (ire->ire_ipversion == IPV6_VERSION) { ASSERT(ipv6_ire_default_count != 0); ipv6_ire_default_count--; } else { ASSERT(ip_ire_default_count != 0); ip_ire_default_count--; } } /* * We need to call ire_delete_v4 or ire_delete_v6 * to clean up the cache or the redirects pointing at * the default gateway. We need to drop the lock * as ire_flush_cache/ire_delete_host_redircts require * so. But we can't drop the lock, as ire_unlink needs * to atomically remove the ires from the list. * So, create a temporary list of CONDEMNED ires * for doing ire_delete_v4/ire_delete_v6 operations * later on. */ ire->ire_next = ire_list; ire_list = ire; } } ASSERT(irb->irb_refcnt == 0); irb->irb_marks &= ~IRE_MARK_CONDEMNED; ASSERT(ire_list != NULL); return (ire_list); } /* * Delete all the cache entries with this 'addr'. When IP gets a gratuitous * ARP message on any of its interface queue, it scans the cache table and * deletes all the cache entries for that address. This function is called * from ip_arp_news in ip.c and also for ARP ioctl processing in ip_if.c. * ip_ire_clookup_and_delete returns true if it finds at least one cache entry * which is used by ip_arp_news to determine if it needs to do an ire_walk_v4. * The return value is also used for the same purpose by ARP IOCTL processing * in ip_if.c when deleting ARP entries. For SIOC*IFARP ioctls in addition to * the address, ip_if->ipif_ill also needs to be matched. */ boolean_t ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif) { irb_t *irb; ire_t *cire; ill_t *ill; boolean_t found = B_FALSE, loop_end = B_FALSE; irb = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; IRB_REFHOLD(irb); for (cire = irb->irb_ire; cire != NULL; cire = cire->ire_next) { if (cire->ire_marks & IRE_MARK_CONDEMNED) continue; if (cire->ire_addr == addr) { /* This signifies start of an address match */ if (!loop_end) loop_end = B_TRUE; /* We are interested only in IRE_CACHEs */ if (cire->ire_type == IRE_CACHE) { /* If we want a match with the ILL */ if (ipif != NULL && ((ill = ire_to_ill(cire)) == NULL || ill != ipif->ipif_ill)) { continue; } if (!found) found = B_TRUE; ire_delete(cire); } /* End of the match */ } else if (loop_end) break; } IRB_REFRELE(irb); return (found); } /* * Delete the specified IRE. */ void ire_delete(ire_t *ire) { ire_t *ire1; ire_t **ptpn; irb_t *irb; /* * It was never inserted in the list. Should call REFRELE * to free this IRE. */ if ((irb = ire->ire_bucket) == NULL) { IRE_REFRELE_NOTR(ire); return; } rw_enter(&irb->irb_lock, RW_WRITER); /* * In case of V4 we might still be waiting for fastpath ack. */ if (ire->ire_nce == NULL && ire->ire_stq != NULL) { ill_t *ill; ill = ire_to_ill(ire); if (ill != NULL) ire_fastpath_list_delete(ill, ire); } if (ire->ire_ptpn == NULL) { /* * Some other thread has removed us from the list. * It should have done the REFRELE for us. */ rw_exit(&irb->irb_lock); return; } if (irb->irb_refcnt != 0) { /* * The last thread to leave this bucket will * delete this ire. */ if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { irb->irb_ire_cnt--; if (ire->ire_marks & IRE_MARK_TEMPORARY) irb->irb_tmp_ire_cnt--; ire->ire_marks |= IRE_MARK_CONDEMNED; } irb->irb_marks |= IRE_MARK_CONDEMNED; rw_exit(&irb->irb_lock); return; } /* * Normally to delete an ire, we walk the bucket. While we * walk the bucket, we normally bump up irb_refcnt and hence * we return from above where we mark CONDEMNED and the ire * gets deleted from ire_unlink. This case is where somebody * knows the ire e.g by doing a lookup, and wants to delete the * IRE. irb_refcnt would be 0 in this case if nobody is walking * the bucket. */ ptpn = ire->ire_ptpn; ire1 = ire->ire_next; if (ire1 != NULL) ire1->ire_ptpn = ptpn; ASSERT(ptpn != NULL); *ptpn = ire1; ire->ire_ptpn = NULL; ire->ire_next = NULL; if (ire->ire_ipversion == IPV6_VERSION) { BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); } else { BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); } /* * ip_wput/ip_wput_v6 checks this flag to see whether * it should still use the cached ire or not. */ ire->ire_marks |= IRE_MARK_CONDEMNED; if (ire->ire_type == IRE_DEFAULT) { /* * IRE is out of the list. We need to adjust the * accounting before we drop the lock. */ if (ire->ire_ipversion == IPV6_VERSION) { ASSERT(ipv6_ire_default_count != 0); ipv6_ire_default_count--; } else { ASSERT(ip_ire_default_count != 0); ip_ire_default_count--; } } irb->irb_ire_cnt--; if (ire->ire_marks & IRE_MARK_TEMPORARY) irb->irb_tmp_ire_cnt--; rw_exit(&irb->irb_lock); if (ire->ire_ipversion == IPV6_VERSION) { ire_delete_v6(ire); } else { ire_delete_v4(ire); } /* * We removed it from the list. Decrement the * reference count. */ IRE_REFRELE_NOTR(ire); } /* * Delete the specified IRE. * All calls should use ire_delete(). * Sometimes called as writer though not required by this function. * * NOTE : This function is called only if the ire was added * in the list. */ static void ire_delete_v4(ire_t *ire) { ASSERT(ire->ire_refcnt >= 1); ASSERT(ire->ire_ipversion == IPV4_VERSION); if (ire->ire_type != IRE_CACHE) ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); if (ire->ire_type == IRE_DEFAULT) { /* * when a default gateway is going away * delete all the host redirects pointing at that * gateway. */ ire_delete_host_redirects(ire->ire_gateway_addr); } } /* * IRE_REFRELE/ire_refrele are the only caller of the function. It calls * to free the ire when the reference count goes to zero. */ void ire_inactive(ire_t *ire) { mblk_t *mp; nce_t *nce; ill_t *ill = NULL; ill_t *stq_ill = NULL; ill_t *in_ill = NULL; ipif_t *ipif; boolean_t need_wakeup = B_FALSE; ASSERT(ire->ire_refcnt == 0); ASSERT(ire->ire_ptpn == NULL); ASSERT(ire->ire_next == NULL); if ((nce = ire->ire_nce) != NULL) { /* Only IPv6 IRE_CACHE type has an nce */ ASSERT(ire->ire_type == IRE_CACHE); ASSERT(ire->ire_ipversion == IPV6_VERSION); NCE_REFRELE_NOTR(nce); ire->ire_nce = NULL; } if (ire->ire_ipif == NULL) goto end; ipif = ire->ire_ipif; ill = ipif->ipif_ill; if (ire->ire_bucket == NULL) { /* The ire was never inserted in the table. */ goto end; } /* * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is * non-null ill_ire_count also goes down by 1. If the in_ill is * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1. * * The ipif that is associated with an ire is ire->ire_ipif and * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call * ipif_ill_refrele_tail. Usually stq_ill is null or the same as * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only * in the case of IRE_CACHES when IPMP is used, stq_ill can be * different. If this is different from ire->ire_ipif->ipif_ill and * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use * in_ill could be non-null. If it is a reverse tunnel related ire * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire * ill_srcif_refcnt is non-null. */ if (ire->ire_stq != NULL) stq_ill = (ill_t *)ire->ire_stq->q_ptr; if (ire->ire_in_ill != NULL) in_ill = ire->ire_in_ill; if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) { /* Optimize the most common case */ mutex_enter(&ill->ill_lock); ASSERT(ipif->ipif_ire_cnt != 0); ipif->ipif_ire_cnt--; if (ipif->ipif_ire_cnt == 0) need_wakeup = B_TRUE; if (stq_ill != NULL) { ASSERT(stq_ill->ill_ire_cnt != 0); stq_ill->ill_ire_cnt--; if (stq_ill->ill_ire_cnt == 0) need_wakeup = B_TRUE; } if (need_wakeup) { /* Drops the ill lock */ ipif_ill_refrele_tail(ill); } else { mutex_exit(&ill->ill_lock); } } else { /* * We can't grab all the ill locks at the same time. * It can lead to recursive lock enter in the call to * ipif_ill_refrele_tail and later. Instead do it 1 at * a time. */ mutex_enter(&ill->ill_lock); ASSERT(ipif->ipif_ire_cnt != 0); ipif->ipif_ire_cnt--; if (ipif->ipif_ire_cnt == 0) { /* Drops the lock */ ipif_ill_refrele_tail(ill); } else { mutex_exit(&ill->ill_lock); } if (stq_ill != NULL) { mutex_enter(&stq_ill->ill_lock); ASSERT(stq_ill->ill_ire_cnt != 0); stq_ill->ill_ire_cnt--; if (stq_ill->ill_ire_cnt == 0) { /* Drops the ill lock */ ipif_ill_refrele_tail(stq_ill); } else { mutex_exit(&stq_ill->ill_lock); } } if (in_ill != NULL) { mutex_enter(&in_ill->ill_lock); if (ire->ire_type == IRE_MIPRTUN) { /* * Mobile IP reverse tunnel ire. * Decrement table count and the * ill reference count. This signifies * mipagent is deleting reverse tunnel * route for a particular mobile node. */ mutex_enter(&ire_mrtun_lock); ire_mrtun_count--; mutex_exit(&ire_mrtun_lock); ASSERT(in_ill->ill_mrtun_refcnt != 0); in_ill->ill_mrtun_refcnt--; if (in_ill->ill_mrtun_refcnt == 0) { /* Drops the ill lock */ ipif_ill_refrele_tail(in_ill); } else { mutex_exit(&in_ill->ill_lock); } } else { mutex_enter(&ire_srcif_table_lock); ire_srcif_table_count--; mutex_exit(&ire_srcif_table_lock); ASSERT(in_ill->ill_srcif_refcnt != 0); in_ill->ill_srcif_refcnt--; if (in_ill->ill_srcif_refcnt == 0) { /* Drops the ill lock */ ipif_ill_refrele_tail(in_ill); } else { mutex_exit(&in_ill->ill_lock); } } } } end: /* This should be true for both V4 and V6 */ ASSERT(ire->ire_fastpath == NULL); ire->ire_ipif = NULL; /* Free the xmit header, and the IRE itself. */ if ((mp = ire->ire_dlureq_mp) != NULL) { freeb(mp); ire->ire_dlureq_mp = NULL; } if ((mp = ire->ire_fp_mp) != NULL) { freeb(mp); ire->ire_fp_mp = NULL; } if (ire->ire_in_ill != NULL) { ire->ire_in_ill = NULL; } #ifdef IRE_DEBUG ire_trace_inactive(ire); #endif mutex_destroy(&ire->ire_lock); if (ire->ire_ipversion == IPV6_VERSION) { BUMP_IRE_STATS(ire_stats_v6, ire_stats_freed); } else { BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); } if (ire->ire_mp != NULL) { /* Still in an mblk */ freeb(ire->ire_mp); } else { /* Has been allocated out of the cache */ kmem_cache_free(ire_cache, ire); } } /* * ire_walk routine to delete all IRE_CACHE/IRE_HOST_REDIRECT entries * that have a given gateway address. */ void ire_delete_cache_gw(ire_t *ire, char *cp) { ipaddr_t gw_addr; if (!(ire->ire_type & (IRE_CACHE|IRE_HOST_REDIRECT))) return; bcopy(cp, &gw_addr, sizeof (gw_addr)); if (ire->ire_gateway_addr == gw_addr) { ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", (int)ntohl(ire->ire_addr), ire->ire_type, (int)ntohl(ire->ire_gateway_addr))); ire_delete(ire); } } /* * Remove all IRE_CACHE entries that match the ire specified. * * The flag argument indicates if the flush request is due to addition * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). * * This routine takes only the IREs from the forwarding table and flushes * the corresponding entries from the cache table. * * When flushing due to the deletion of an old route, it * just checks the cache handles (ire_phandle and ire_ihandle) and * deletes the ones that match. * * When flushing due to the creation of a new route, it checks * if a cache entry's address matches the one in the IRE and * that the cache entry's parent has a less specific mask than the * one in IRE. The destination of such a cache entry could be the * gateway for other cache entries, so we need to flush those as * well by looking for gateway addresses matching the IRE's address. */ void ire_flush_cache_v4(ire_t *ire, int flag) { int i; ire_t *cire; irb_t *irb; if (ire->ire_type & IRE_CACHE) return; /* * If a default is just created, there is no point * in going through the cache, as there will not be any * cached ires. */ if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) return; if (flag == IRE_FLUSH_ADD) { /* * This selective flush is due to the addition of * new IRE. */ for (i = 0; i < ip_cache_table_size; i++) { irb = &ip_cache_table[i]; if ((cire = irb->irb_ire) == NULL) continue; IRB_REFHOLD(irb); for (cire = irb->irb_ire; cire != NULL; cire = cire->ire_next) { if (cire->ire_type != IRE_CACHE) continue; /* * If 'cire' belongs to the same subnet * as the new ire being added, and 'cire' * is derived from a prefix that is less * specific than the new ire being added, * we need to flush 'cire'; for instance, * when a new interface comes up. */ if (((cire->ire_addr & ire->ire_mask) == (ire->ire_addr & ire->ire_mask)) && (ip_mask_to_plen(cire->ire_cmask) <= ire->ire_masklen)) { ire_delete(cire); continue; } /* * This is the case when the ire_gateway_addr * of 'cire' belongs to the same subnet as * the new ire being added. * Flushing such ires is sometimes required to * avoid misrouting: say we have a machine with * two interfaces (I1 and I2), a default router * R on the I1 subnet, and a host route to an * off-link destination D with a gateway G on * the I2 subnet. * Under normal operation, we will have an * on-link cache entry for G and an off-link * cache entry for D with G as ire_gateway_addr, * traffic to D will reach its destination * through gateway G. * If the administrator does 'ifconfig I2 down', * the cache entries for D and G will be * flushed. However, G will now be resolved as * an off-link destination using R (the default * router) as gateway. Then D will also be * resolved as an off-link destination using G * as gateway - this behavior is due to * compatibility reasons, see comment in * ire_ihandle_lookup_offlink(). Traffic to D * will go to the router R and probably won't * reach the destination. * The administrator then does 'ifconfig I2 up'. * Since G is on the I2 subnet, this routine * will flush its cache entry. It must also * flush the cache entry for D, otherwise * traffic will stay misrouted until the IRE * times out. */ if ((cire->ire_gateway_addr & ire->ire_mask) == (ire->ire_addr & ire->ire_mask)) { ire_delete(cire); continue; } } IRB_REFRELE(irb); } } else { /* * delete the cache entries based on * handle in the IRE as this IRE is * being deleted/changed. */ for (i = 0; i < ip_cache_table_size; i++) { irb = &ip_cache_table[i]; if ((cire = irb->irb_ire) == NULL) continue; IRB_REFHOLD(irb); for (cire = irb->irb_ire; cire != NULL; cire = cire->ire_next) { if (cire->ire_type != IRE_CACHE) continue; if ((cire->ire_phandle == 0 || cire->ire_phandle != ire->ire_phandle) && (cire->ire_ihandle == 0 || cire->ire_ihandle != ire->ire_ihandle)) continue; ire_delete(cire); } IRB_REFRELE(irb); } } } /* * Matches the arguments passed with the values in the ire. * * Note: for match types that match using "ipif" passed in, ipif * must be checked for non-NULL before calling this routine. */ static boolean_t ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, int type, ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, int match_flags) { ill_t *ire_ill = NULL, *dst_ill; ill_t *ipif_ill = NULL; ill_group_t *ire_ill_group = NULL; ill_group_t *ipif_ill_group = NULL; ASSERT(ire->ire_ipversion == IPV4_VERSION); ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || (ipif != NULL && !ipif->ipif_isv6)); ASSERT(!(match_flags & MATCH_IRE_WQ)); /* * HIDDEN cache entries have to be looked up specifically with * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set * when the interface is FAILED or INACTIVE. In that case, * any IRE_CACHES that exists should be marked with * IRE_MARK_HIDDEN. So, we don't really need to match below * for IRE_MARK_HIDDEN. But we do so for consistency. */ if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && (ire->ire_marks & IRE_MARK_HIDDEN)) return (B_FALSE); if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid) { /* * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is * valid and does not match that of ire_zoneid, a failure to * match is reported at this point. Otherwise, since some IREs * that are available in the global zone can be used in local * zones, additional checks need to be performed: * * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK * entries should never be matched in this situation. * * IRE entries that have an interface associated with them * should in general not match unless they are an IRE_LOCAL * or in the case when MATCH_IRE_DEFAULT has been set in * the caller. In the case of the former, checking of the * other fields supplied should take place. * * In the case where MATCH_IRE_DEFAULT has been set, * all of the ipif's associated with the IRE's ill are * checked to see if there is a matching zoneid. If any * one ipif has a matching zoneid, this IRE is a * potential candidate so checking of the other fields * takes place. * * In the case where the IRE_INTERFACE has a usable source * address (indicated by ill_usesrc_ifindex) in the * correct zone then it's permitted to return this IRE */ if (match_flags & MATCH_IRE_ZONEONLY) return (B_FALSE); if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) return (B_FALSE); /* * Note, IRE_INTERFACE can have the stq as NULL. For * example, if the default multicast route is tied to * the loopback address. */ if ((ire->ire_type & IRE_INTERFACE) && (ire->ire_stq != NULL)) { dst_ill = (ill_t *)ire->ire_stq->q_ptr; /* * If there is a usable source address in the * zone, then it's ok to return an * IRE_INTERFACE */ if (ipif_usesrc_avail(dst_ill, zoneid)) { ip3dbg(("ire_match_args: dst_ill %p match %d\n", (void *)dst_ill, (ire->ire_addr == (addr & mask)))); } else { ip3dbg(("ire_match_args: src_ipif NULL" " dst_ill %p\n", (void *)dst_ill)); return (B_FALSE); } } if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && !(ire->ire_type & IRE_INTERFACE)) { ipif_t *tipif; if ((match_flags & MATCH_IRE_DEFAULT) == 0) { return (B_FALSE); } mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; tipif != NULL; tipif = tipif->ipif_next) { if (IPIF_CAN_LOOKUP(tipif) && (tipif->ipif_flags & IPIF_UP) && (tipif->ipif_zoneid == zoneid)) break; } mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); if (tipif == NULL) { return (B_FALSE); } } } /* * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that * somebody wants to send out on a particular interface which * is given by ire_stq and hence use ire_stq to derive the ill * value. ire_ipif for IRE_CACHES is just the means of getting * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. * ire_to_ill does the right thing for this. */ if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { ire_ill = ire_to_ill(ire); if (ire_ill != NULL) ire_ill_group = ire_ill->ill_group; ipif_ill = ipif->ipif_ill; ipif_ill_group = ipif_ill->ill_group; } if ((ire->ire_addr == (addr & mask)) && ((!(match_flags & MATCH_IRE_GW)) || (ire->ire_gateway_addr == gateway)) && ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && ((!(match_flags & MATCH_IRE_SRC)) || (ire->ire_src_addr == ipif->ipif_src_addr)) && ((!(match_flags & MATCH_IRE_IPIF)) || (ire->ire_ipif == ipif)) && ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || (ire->ire_type != IRE_CACHE || ire->ire_marks & IRE_MARK_HIDDEN)) && ((!(match_flags & MATCH_IRE_ILL)) || (ire_ill == ipif_ill)) && ((!(match_flags & MATCH_IRE_IHANDLE)) || (ire->ire_ihandle == ihandle)) && ((!(match_flags & MATCH_IRE_ILL_GROUP)) || (ire_ill == ipif_ill) || (ire_ill_group != NULL && ire_ill_group == ipif_ill_group))) { /* We found the matched IRE */ return (B_TRUE); } return (B_FALSE); } /* * Lookup for a route in all the tables */ ire_t * ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, int type, ipif_t *ipif, ire_t **pire, zoneid_t zoneid, int flags) { ire_t *ire = NULL; /* * ire_match_args() will dereference ipif MATCH_IRE_SRC or * MATCH_IRE_ILL is set. */ if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && (ipif == NULL)) return (NULL); /* * might be asking for a cache lookup, * This is not best way to lookup cache, * user should call ire_cache_lookup directly. * * If MATCH_IRE_TYPE was set, first lookup in the cache table and then * in the forwarding table, if the applicable type flags were set. */ if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, flags); if (ire != NULL) return (ire); } if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, zoneid, 0, flags); } return (ire); } /* * Lookup a route in forwarding table. * specific lookup is indicated by passing the * required parameters and indicating the * match required in flag field. * * Looking for default route can be done in three ways * 1) pass mask as 0 and set MATCH_IRE_MASK in flags field * along with other matches. * 2) pass type as IRE_DEFAULT and set MATCH_IRE_TYPE in flags * field along with other matches. * 3) if the destination and mask are passed as zeros. * * A request to return a default route if no route * is found, can be specified by setting MATCH_IRE_DEFAULT * in flags. * * It does not support recursion more than one level. It * will do recursive lookup only when the lookup maps to * a prefix or default route and MATCH_IRE_RECURSIVE flag is passed. * * If the routing table is setup to allow more than one level * of recursion, the cleaning up cache table will not work resulting * in invalid routing. * * Supports IP_BOUND_IF by following the ipif/ill when recursing. * * NOTE : When this function returns NULL, pire has already been released. * pire is valid only when this function successfully returns an * ire. */ ire_t * ire_ftable_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, int type, ipif_t *ipif, ire_t **pire, zoneid_t zoneid, uint32_t ihandle, int flags) { irb_t *irb_ptr; ire_t *ire = NULL; int i; ipaddr_t gw_addr; ASSERT(ipif == NULL || !ipif->ipif_isv6); ASSERT(!(flags & MATCH_IRE_WQ)); /* * When we return NULL from this function, we should make * sure that *pire is NULL so that the callers will not * wrongly REFRELE the pire. */ if (pire != NULL) *pire = NULL; /* * ire_match_args() will dereference ipif MATCH_IRE_SRC or * MATCH_IRE_ILL is set. */ if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && (ipif == NULL)) return (NULL); /* * If the mask is known, the lookup * is simple, if the mask is not known * we need to search. */ if (flags & MATCH_IRE_MASK) { uint_t masklen; masklen = ip_mask_to_plen(mask); if (ip_forwarding_table[masklen] == NULL) return (NULL); irb_ptr = &(ip_forwarding_table[masklen][ IRE_ADDR_HASH(addr & mask, ip_ftable_hash_size)]); rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire_match_args(ire, addr, mask, gateway, type, ipif, zoneid, ihandle, flags)) goto found_ire; } rw_exit(&irb_ptr->irb_lock); } else { /* * In this case we don't know the mask, we need to * search the table assuming different mask sizes. * we start with 32 bit mask, we don't allow default here. */ for (i = (IP_MASK_TABLE_SIZE - 1); i > 0; i--) { ipaddr_t tmpmask; if ((ip_forwarding_table[i]) == NULL) continue; tmpmask = ip_plen_to_mask(i); irb_ptr = &ip_forwarding_table[i][ IRE_ADDR_HASH(addr & tmpmask, ip_ftable_hash_size)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, ipif, zoneid, ihandle, flags)) goto found_ire; } rw_exit(&irb_ptr->irb_lock); } } /* * We come here if no route has yet been found. * * Handle the case where default route is * requested by specifying type as one of the possible * types for that can have a zero mask (IRE_DEFAULT and IRE_INTERFACE). * * If MATCH_IRE_MASK is specified, then the appropriate default route * would have been found above if it exists so it isn't looked up here. * If MATCH_IRE_DEFAULT was also specified, then a default route will be * searched for later. */ if ((flags & (MATCH_IRE_TYPE | MATCH_IRE_MASK)) == MATCH_IRE_TYPE && (type & (IRE_DEFAULT | IRE_INTERFACE))) { if ((ip_forwarding_table[0])) { /* addr & mask is zero for defaults */ irb_ptr = &ip_forwarding_table[0][ IRE_ADDR_HASH(0, ip_ftable_hash_size)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire_match_args(ire, addr, (ipaddr_t)0, gateway, type, ipif, zoneid, ihandle, flags)) goto found_ire; } rw_exit(&irb_ptr->irb_lock); } } /* * we come here only if no route is found. * see if the default route can be used which is allowed * only if the default matching criteria is specified. * The ip_ire_default_count tracks the number of IRE_DEFAULT * entries. However, the ip_forwarding_table[0] also contains * interface routes thus the count can be zero. */ if ((flags & (MATCH_IRE_DEFAULT | MATCH_IRE_MASK)) == MATCH_IRE_DEFAULT) { ire_t *ire_origin; uint_t g_index; uint_t index; if (ip_forwarding_table[0] == NULL) return (NULL); irb_ptr = &(ip_forwarding_table[0])[0]; /* * Keep a tab on the bucket while looking the IRE_DEFAULT * entries. We need to keep track of a particular IRE * (ire_origin) so this ensures that it will not be unlinked * from the hash list during the recursive lookup below. */ IRB_REFHOLD(irb_ptr); ire = irb_ptr->irb_ire; if (ire == NULL) { IRB_REFRELE(irb_ptr); return (NULL); } /* * Get the index first, since it can be changed by other * threads. Then get to the right default route skipping * default interface routes if any. As we hold a reference on * the IRE bucket, ip_ire_default_count can only increase so we * can't reach the end of the hash list unexpectedly. */ if (ip_ire_default_count != 0) { g_index = ip_ire_default_index++; index = g_index % ip_ire_default_count; while (index != 0) { if (!(ire->ire_type & IRE_INTERFACE)) index--; ire = ire->ire_next; } ASSERT(ire != NULL); } else { /* * No default routes, so we only have default interface * routes: don't enter the first loop. */ ire = NULL; } /* * Round-robin the default routers list looking for a route that * matches the passed in parameters. If we can't find a default * route (IRE_DEFAULT), look for interface default routes. * We start with the ire we found above and we walk the hash * list until we're back where we started, see * ire_get_next_default_ire(). It doesn't matter if default * routes are added or deleted by other threads - we know this * ire will stay in the list because we hold a reference on the * ire bucket. * NB: if we only have interface default routes, ire is NULL so * we don't even enter this loop (see above). */ ire_origin = ire; for (; ire != NULL; ire = ire_get_next_default_ire(ire, ire_origin)) { if (ire_match_args(ire, addr, (ipaddr_t)0, gateway, type, ipif, zoneid, ihandle, flags)) { int match_flags = 0; ire_t *rire; /* * The potentially expensive call to * ire_route_lookup() is avoided when we have * only one default route. */ if (ip_ire_default_count == 1 || zoneid == ALL_ZONES) { IRE_REFHOLD(ire); IRB_REFRELE(irb_ptr); goto found_ire_held; } /* * When we're in a local zone, we're only * interested in default routers that are * reachable through ipifs within our zone. */ if (ire->ire_ipif != NULL) { match_flags |= MATCH_IRE_ILL_GROUP; } rire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, 0, ire->ire_ipif, NULL, zoneid, match_flags); if (rire != NULL) { ire_refrele(rire); IRE_REFHOLD(ire); IRB_REFRELE(irb_ptr); goto found_ire_held; } } } /* * Either there are no default routes or we could not * find a default route. Look for a interface default * route matching the args passed in. No round robin * here. Just pick the right one. */ for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (!(ire->ire_type & IRE_INTERFACE)) continue; if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire_match_args(ire, addr, (ipaddr_t)0, gateway, type, ipif, zoneid, ihandle, flags)) { IRE_REFHOLD(ire); IRB_REFRELE(irb_ptr); goto found_ire_held; } } IRB_REFRELE(irb_ptr); } ASSERT(ire == NULL); return (NULL); found_ire: ASSERT((ire->ire_marks & IRE_MARK_CONDEMNED) == 0); IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); found_ire_held: ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); if ((flags & MATCH_IRE_RJ_BHOLE) && (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) { return (ire); } /* * At this point, IRE that was found must be an IRE_FORWARDTABLE * type. If this is a recursive lookup and an IRE_INTERFACE type was * found, return that. If it was some other IRE_FORWARDTABLE type of * IRE (one of the prefix types), then it is necessary to fill in the * parent IRE pointed to by pire, and then lookup the gateway address of * the parent. For backwards compatiblity, if this lookup returns an * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level * of lookup is done. */ if (flags & MATCH_IRE_RECURSIVE) { ipif_t *gw_ipif; int match_flags = MATCH_IRE_DSTONLY; ire_t *save_ire; if (ire->ire_type & IRE_INTERFACE) return (ire); if (pire != NULL) *pire = ire; /* * If we can't find an IRE_INTERFACE or the caller has not * asked for pire, we need to REFRELE the save_ire. */ save_ire = ire; /* * Currently MATCH_IRE_ILL is never used with * (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT) while * sending out packets as MATCH_IRE_ILL is used only * for communicating with on-link hosts. We can't assert * that here as RTM_GET calls this function with * MATCH_IRE_ILL | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE. * We have already used the MATCH_IRE_ILL in determining * the right prefix route at this point. To match the * behavior of how we locate routes while sending out * packets, we don't want to use MATCH_IRE_ILL below * while locating the interface route. */ if (ire->ire_ipif != NULL) match_flags |= MATCH_IRE_ILL_GROUP; ire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, 0, ire->ire_ipif, NULL, zoneid, match_flags); if (ire == NULL) { /* * Do not release the parent ire if MATCH_IRE_PARENT * is set. Also return it via ire. */ if (flags & MATCH_IRE_PARENT) { if (pire != NULL) { /* * Need an extra REFHOLD, if the parent * ire is returned via both ire and * pire. */ IRE_REFHOLD(save_ire); } ire = save_ire; } else { ire_refrele(save_ire); if (pire != NULL) *pire = NULL; } return (ire); } if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) { /* * If the caller did not ask for pire, release * it now. */ if (pire == NULL) { ire_refrele(save_ire); } return (ire); } match_flags |= MATCH_IRE_TYPE; gw_addr = ire->ire_gateway_addr; gw_ipif = ire->ire_ipif; ire_refrele(ire); ire = ire_route_lookup(gw_addr, 0, 0, (IRE_CACHETABLE | IRE_INTERFACE), gw_ipif, NULL, zoneid, match_flags); if (ire == NULL) { /* * Do not release the parent ire if MATCH_IRE_PARENT * is set. Also return it via ire. */ if (flags & MATCH_IRE_PARENT) { if (pire != NULL) { /* * Need an extra REFHOLD, if the * parent ire is returned via both * ire and pire. */ IRE_REFHOLD(save_ire); } ire = save_ire; } else { ire_refrele(save_ire); if (pire != NULL) *pire = NULL; } return (ire); } else if (pire == NULL) { /* * If the caller did not ask for pire, release * it now. */ ire_refrele(save_ire); } return (ire); } ASSERT(pire == NULL || *pire == NULL); return (ire); } /* * Looks up cache table for a route. * specific lookup can be indicated by * passing the MATCH_* flags and the * necessary parameters. */ ire_t * ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, ipif_t *ipif, zoneid_t zoneid, int flags) { irb_t *irb_ptr; ire_t *ire; /* * ire_match_args() will dereference ipif MATCH_IRE_SRC or * MATCH_IRE_ILL is set. */ if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && (ipif == NULL)) return (NULL); irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; ASSERT(ire->ire_mask == IP_HOST_MASK); ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, ipif, zoneid, 0, flags)) { IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); return (ire); } } rw_exit(&irb_ptr->irb_lock); return (NULL); } /* * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get * to the hidden ones. */ ire_t * ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid) { irb_t *irb_ptr; ire_t *ire; irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) continue; if (ire->ire_addr == addr) { if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || ire->ire_type == IRE_LOCAL) { IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); return (ire); } } } rw_exit(&irb_ptr->irb_lock); return (NULL); } /* * Locate the interface ire that is tied to the cache ire 'cire' via * cire->ire_ihandle. * * We are trying to create the cache ire for an offlink destn based * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire * as found by ip_newroute(). We are called from ip_newroute() in * the IRE_CACHE case. */ ire_t * ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) { ire_t *ire; int match_flags; ipaddr_t gw_addr; ipif_t *gw_ipif; ASSERT(cire != NULL && pire != NULL); /* * We don't need to specify the zoneid to ire_ftable_lookup() below * because the ihandle refers to an ipif which can be in only one zone. */ match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; /* * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only * for on-link hosts. We should never be here for onlink. * Thus, use MATCH_IRE_ILL_GROUP. */ if (pire->ire_ipif != NULL) match_flags |= MATCH_IRE_ILL_GROUP; /* * We know that the mask of the interface ire equals cire->ire_cmask. * (When ip_newroute() created 'cire' for the gateway it set its * cmask from the interface ire's mask) */ ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, match_flags); if (ire != NULL) return (ire); /* * If we didn't find an interface ire above, we can't declare failure. * For backwards compatibility, we need to support prefix routes * pointing to next hop gateways that are not on-link. * * Assume we are trying to ping some offlink destn, and we have the * routing table below. * * Eg. default - gw1 <--- pire (line 1) * gw1 - gw2 (line 2) * gw2 - hme0 (line 3) * * If we already have a cache ire for gw1 in 'cire', the * ire_ftable_lookup above would have failed, since there is no * interface ire to reach gw1. We will fallthru below. * * Here we duplicate the steps that ire_ftable_lookup() did in * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. * The differences are the following * i. We want the interface ire only, so we call ire_ftable_lookup() * instead of ire_route_lookup() * ii. We look for only prefix routes in the 1st call below. * ii. We want to match on the ihandle in the 2nd call below. */ match_flags = MATCH_IRE_TYPE; if (pire->ire_ipif != NULL) match_flags |= MATCH_IRE_ILL_GROUP; ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, pire->ire_ipif, NULL, ALL_ZONES, 0, match_flags); if (ire == NULL) return (NULL); /* * At this point 'ire' corresponds to the entry shown in line 2. * gw_addr is 'gw2' in the example above. */ gw_addr = ire->ire_gateway_addr; gw_ipif = ire->ire_ipif; ire_refrele(ire); match_flags |= MATCH_IRE_IHANDLE; ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, match_flags); return (ire); } /* * Locate the interface ire that is tied to the cache ire 'cire' via * cire->ire_ihandle. * * We are trying to create the cache ire for an onlink destn. or * gateway in 'cire'. We are called from ire_add_v4() in the IRE_IF_RESOLVER * case, after the ire has come back from ARP. */ ire_t * ire_ihandle_lookup_onlink(ire_t *cire) { ire_t *ire; int match_flags; int i; int j; irb_t *irb_ptr; ASSERT(cire != NULL); /* * We don't need to specify the zoneid to ire_ftable_lookup() below * because the ihandle refers to an ipif which can be in only one zone. */ match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; /* * We know that the mask of the interface ire equals cire->ire_cmask. * (When ip_newroute() created 'cire' for an on-link destn. it set its * cmask from the interface ire's mask) */ ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, IRE_INTERFACE, NULL, NULL, ALL_ZONES, cire->ire_ihandle, match_flags); if (ire != NULL) return (ire); /* * If we didn't find an interface ire above, we can't declare failure. * For backwards compatibility, we need to support prefix routes * pointing to next hop gateways that are not on-link. * * In the resolver/noresolver case, ip_newroute() thinks it is creating * the cache ire for an onlink destination in 'cire'. But 'cire' is * not actually onlink, because ire_ftable_lookup() cheated it, by * doing ire_route_lookup() twice and returning an interface ire. * * Eg. default - gw1 (line 1) * gw1 - gw2 (line 2) * gw2 - hme0 (line 3) * * In the above example, ip_newroute() tried to create the cache ire * 'cire' for gw1, based on the interface route in line 3. The * ire_ftable_lookup() above fails, because there is no interface route * to reach gw1. (it is gw2). We fall thru below. * * Do a brute force search based on the ihandle in a subset of the * forwarding tables, corresponding to cire->ire_cmask. Otherwise * things become very complex, since we don't have 'pire' in this * case. (Also note that this method is not possible in the offlink * case because we don't know the mask) */ i = ip_mask_to_plen(cire->ire_cmask); if ((ip_forwarding_table[i]) == NULL) return (NULL); for (j = 0; j < ip_ftable_hash_size; j++) { irb_ptr = &ip_forwarding_table[i][j]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if ((ire->ire_type & IRE_INTERFACE) && (ire->ire_ihandle == cire->ire_ihandle)) { IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); return (ire); } } rw_exit(&irb_ptr->irb_lock); } return (NULL); } /* * ire_mrtun_lookup() is called by ip_rput() when packet is to be * tunneled through reverse tunnel. This is only supported for * IPv4 packets */ ire_t * ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill) { irb_t *irb_ptr; ire_t *ire; ASSERT(ill != NULL); ASSERT(!(ill->ill_isv6)); if (ip_mrtun_table == NULL) return (NULL); irb_ptr = &ip_mrtun_table[IRE_ADDR_HASH(srcaddr, IP_MRTUN_TABLE_SIZE)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if ((ire->ire_in_src_addr == srcaddr) && ire->ire_in_ill == ill) { IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); return (ire); } } rw_exit(&irb_ptr->irb_lock); return (NULL); } /* * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER * ire associated with the specified ipif. * * This might occasionally be called when IPIF_UP is not set since * the IP_MULTICAST_IF as well as creating interface routes * allows specifying a down ipif (ipif_lookup* match ipifs that are down). * * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on * the ipif, this routine might return NULL. */ ire_t * ipif_to_ire(ipif_t *ipif) { ire_t *ire; ASSERT(!ipif->ipif_isv6); if (ipif->ipif_ire_type == IRE_LOOPBACK) { ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { /* In this case we need to lookup destination address. */ ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK)); } else { ire = ire_ftable_lookup(ipif->ipif_subnet, ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK)); } return (ire); } /* * ire_walk function. * Count the number of IRE_CACHE entries in different categories. */ void ire_cache_count(ire_t *ire, char *arg) { ire_cache_count_t *icc = (ire_cache_count_t *)arg; if (ire->ire_type != IRE_CACHE) return; icc->icc_total++; if (ire->ire_ipversion == IPV6_VERSION) { mutex_enter(&ire->ire_lock); if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { mutex_exit(&ire->ire_lock); icc->icc_onlink++; return; } mutex_exit(&ire->ire_lock); } else { if (ire->ire_gateway_addr == 0) { icc->icc_onlink++; return; } } ASSERT(ire->ire_ipif != NULL); if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) icc->icc_pmtu++; else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + ire->ire_ib_pkt_count) icc->icc_offlink++; else icc->icc_unused++; } /* * ire_walk function called by ip_trash_ire_reclaim(). * Free a fraction of the IRE_CACHE cache entries. The fractions are * different for different categories of IRE_CACHE entries. * A fraction of zero means to not free any in that category. * Use the hash bucket id plus lbolt as a random number. Thus if the fraction * is N then every Nth hash bucket chain will be freed. */ void ire_cache_reclaim(ire_t *ire, char *arg) { ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; uint_t rand; if (ire->ire_type != IRE_CACHE) return; if (ire->ire_ipversion == IPV6_VERSION) { rand = (uint_t)lbolt + IRE_ADDR_HASH_V6(ire->ire_addr_v6, ip6_cache_table_size); mutex_enter(&ire->ire_lock); if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { mutex_exit(&ire->ire_lock); if (icr->icr_onlink != 0 && (rand/icr->icr_onlink)*icr->icr_onlink == rand) { ire_delete(ire); return; } goto done; } mutex_exit(&ire->ire_lock); } else { rand = (uint_t)lbolt + IRE_ADDR_HASH(ire->ire_addr, ip_cache_table_size); if (ire->ire_gateway_addr == 0) { if (icr->icr_onlink != 0 && (rand/icr->icr_onlink)*icr->icr_onlink == rand) { ire_delete(ire); return; } goto done; } } /* Not onlink IRE */ ASSERT(ire->ire_ipif != NULL); if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { /* Use ptmu fraction */ if (icr->icr_pmtu != 0 && (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { ire_delete(ire); return; } } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + ire->ire_ib_pkt_count) { /* Use offlink fraction */ if (icr->icr_offlink != 0 && (rand/icr->icr_offlink)*icr->icr_offlink == rand) { ire_delete(ire); return; } } else { /* Use unused fraction */ if (icr->icr_unused != 0 && (rand/icr->icr_unused)*icr->icr_unused == rand) { ire_delete(ire); return; } } done: /* * Update tire_mark so that those that haven't been used since this * reclaim will be considered unused next time we reclaim. */ ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; } static void power2_roundup(uint32_t *value) { int i; for (i = 1; i < 31; i++) { if (*value <= (1 << i)) break; } *value = (1 << i); } void ip_ire_init() { int i; mutex_init(&ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); mutex_init(&ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL); /* Calculate the IPv4 cache table size. */ ip_cache_table_size = MAX(ip_cache_table_size, ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / ip_ire_max_bucket_cnt)); if (ip_cache_table_size > ip_max_cache_table_size) ip_cache_table_size = ip_max_cache_table_size; /* * Make sure that the table size is always a power of 2. The * hash macro IRE_ADDR_HASH() depends on that. */ power2_roundup(&ip_cache_table_size); ip_cache_table = (irb_t *)kmem_zalloc(ip_cache_table_size * sizeof (irb_t), KM_SLEEP); for (i = 0; i < ip_cache_table_size; i++) { rw_init(&ip_cache_table[i].irb_lock, NULL, RW_DEFAULT, NULL); } /* Calculate the IPv6 cache table size. */ ip6_cache_table_size = MAX(ip6_cache_table_size, ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / ip6_ire_max_bucket_cnt)); if (ip6_cache_table_size > ip6_max_cache_table_size) ip6_cache_table_size = ip6_max_cache_table_size; /* * Make sure that the table size is always a power of 2. The * hash macro IRE_ADDR_HASH_V6() depends on that. */ power2_roundup(&ip6_cache_table_size); ip_cache_table_v6 = (irb_t *)kmem_zalloc(ip6_cache_table_size * sizeof (irb_t), KM_SLEEP); for (i = 0; i < ip6_cache_table_size; i++) { rw_init(&ip_cache_table_v6[i].irb_lock, NULL, RW_DEFAULT, NULL); } /* * Create ire caches, ire_reclaim() * will give IRE_CACHE back to system when needed. * This needs to be done here before anything else, since * ire_add() expects the cache to be created. */ ire_cache = kmem_cache_create("ire_cache", sizeof (ire_t), 0, ip_ire_constructor, ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); /* * Initialize ip_mrtun_table to NULL now, it will be * populated by ip_rt_add if reverse tunnel is created */ ip_mrtun_table = NULL; /* * Make sure that the forwarding table size is a power of 2. * The IRE*_ADDR_HASH() macroes depend on that. */ power2_roundup(&ip_ftable_hash_size); power2_roundup(&ip6_ftable_hash_size); } void ip_ire_fini() { int i; mutex_destroy(&ire_ft_init_lock); mutex_destroy(&ire_handle_lock); for (i = 0; i < ip_cache_table_size; i++) { rw_destroy(&ip_cache_table[i].irb_lock); } kmem_free(ip_cache_table, ip_cache_table_size * sizeof (irb_t)); for (i = 0; i < ip6_cache_table_size; i++) { rw_destroy(&ip_cache_table_v6[i].irb_lock); } kmem_free(ip_cache_table_v6, ip6_cache_table_size * sizeof (irb_t)); if (ip_mrtun_table != NULL) { for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { rw_destroy(&ip_mrtun_table[i].irb_lock); } kmem_free(ip_mrtun_table, IP_MRTUN_TABLE_SIZE * sizeof (irb_t)); } kmem_cache_destroy(ire_cache); } int ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) { ire_t *ire1; irb_t *irb_ptr; ire_t **irep; ire_t *ire; int i; uint_t max_frag; ill_t *stq_ill; int error; ire = *ire_p; ASSERT(ire->ire_ipversion == IPV4_VERSION); /* Is ip_mrtun_table empty ? */ if (ip_mrtun_table == NULL) { /* create the mrtun table */ mutex_enter(&ire_mrtun_lock); if (ip_mrtun_table == NULL) { ip_mrtun_table = (irb_t *)kmem_zalloc(IP_MRTUN_TABLE_SIZE * sizeof (irb_t), KM_NOSLEEP); if (ip_mrtun_table == NULL) { ip2dbg(("ire_add_mrtun: allocation failure\n")); mutex_exit(&ire_mrtun_lock); ire_refrele(ire); *ire_p = NULL; return (ENOMEM); } for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { rw_init(&ip_mrtun_table[i].irb_lock, NULL, RW_DEFAULT, NULL); } ip2dbg(("ire_add_mrtun: mrtun table is created\n")); } /* some other thread got it and created the table */ mutex_exit(&ire_mrtun_lock); } /* * Check for duplicate in the bucket and insert in the table */ irb_ptr = &(ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr, IP_MRTUN_TABLE_SIZE)]); /* * Start the atomic add of the ire. Grab the ill locks, * ill_g_usesrc_lock and the bucket lock. * * If ipif or ill is changing ire_atomic_start() may queue the * request and return EINPROGRESS. */ error = ire_atomic_start(irb_ptr, ire, q, mp, func); if (error != 0) { /* * We don't know whether it is a valid ipif or not. * So, set it to NULL. This assumes that the ire has not added * a reference to the ipif. */ ire->ire_ipif = NULL; ire_delete(ire); ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n")); *ire_p = NULL; return (error); } for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { if (ire1->ire_marks & IRE_MARK_CONDEMNED) continue; /* has anyone inserted the route in the meanwhile ? */ if (ire1->ire_in_ill == ire->ire_in_ill && ire1->ire_in_src_addr == ire->ire_in_src_addr) { ip1dbg(("ire_add_mrtun: Duplicate entry exists\n")); IRE_REFHOLD(ire1); ire_atomic_end(irb_ptr, ire); ire_delete(ire); /* Return the old ire */ *ire_p = ire1; return (0); } } /* Atomically set the ire_max_frag */ max_frag = *ire->ire_max_fragp; ire->ire_max_fragp = NULL; ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); irep = (ire_t **)irb_ptr; if (*irep != NULL) { /* Find the last ire which matches ire_in_src_addr */ ire1 = *irep; while (ire1->ire_in_src_addr == ire->ire_in_src_addr) { irep = &ire1->ire_next; ire1 = *irep; if (ire1 == NULL) break; } } ire1 = *irep; if (ire1 != NULL) ire1->ire_ptpn = &ire->ire_next; ire->ire_next = ire1; /* Link the new one in. */ ire->ire_ptpn = irep; membar_producer(); *irep = ire; ire->ire_bucket = irb_ptr; IRE_REFHOLD_LOCKED(ire); ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep)); /* * Protect ire_mrtun_count and ill_mrtun_refcnt from * another thread trying to add ire in the table */ mutex_enter(&ire_mrtun_lock); ire_mrtun_count++; mutex_exit(&ire_mrtun_lock); /* * ill_mrtun_refcnt is protected by the ill_lock held via * ire_atomic_start */ ire->ire_in_ill->ill_mrtun_refcnt++; if (ire->ire_ipif != NULL) { ire->ire_ipif->ipif_ire_cnt++; if (ire->ire_stq != NULL) { stq_ill = (ill_t *)ire->ire_stq->q_ptr; stq_ill->ill_ire_cnt++; } } else { ASSERT(ire->ire_stq == NULL); } ire_atomic_end(irb_ptr, ire); ire_fastpath(ire); *ire_p = ire; return (0); } /* Walks down the mrtun table */ void ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, ill_t *ill) { irb_t *irb; ire_t *ire; int i; int ret; ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP))) || (ill != NULL)); ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN); mutex_enter(&ire_mrtun_lock); if (ire_mrtun_count == 0) { mutex_exit(&ire_mrtun_lock); return; } mutex_exit(&ire_mrtun_lock); ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n")); for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { irb = &(ip_mrtun_table[i]); if (irb->irb_ire == NULL) continue; IRB_REFHOLD(irb); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { ASSERT(ire->ire_ipversion == IPV4_VERSION); if (match_flags != 0) { ret = ire_walk_ill_match( match_flags, ire_type, ire, ill, ALL_ZONES); } if (match_flags == 0 || ret) (*func)(ire, arg); } IRB_REFRELE(irb); } } /* * Source interface based lookup routine (IPV4 only). * This routine is called only when RTA_SRCIFP bitflag is set * by routing socket while adding/deleting the route and it is * also called from ip_rput() when packets arrive from an interface * for which ill_srcif_ref_cnt is positive. This function is useful * when a packet coming from one interface must be forwarded to another * designated interface to reach the correct node. This function is also * called from ip_newroute when the link-layer address of an ire is resolved. * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type * ires--thus the ire_type parameter is needed. */ ire_t * ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif, ill_t *in_ill, int flags) { irb_t *irb_ptr; ire_t *ire; irb_t *ire_srcif_table; ASSERT(in_ill != NULL && !in_ill->ill_isv6); ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) || (ipif != NULL && !ipif->ipif_isv6)); /* * No need to lock the ill since it is refheld by the caller of this * function */ if (in_ill->ill_srcif_table == NULL) { return (NULL); } if (!(flags & MATCH_IRE_TYPE)) { flags |= MATCH_IRE_TYPE; ire_type = IRE_INTERFACE; } ire_srcif_table = in_ill->ill_srcif_table; irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr, IP_SRCIF_TABLE_SIZE)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire_match_args(ire, dst_addr, ire->ire_mask, 0, ire_type, ipif, ire->ire_zoneid, 0, flags)) { IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); return (ire); } } /* Not Found */ rw_exit(&irb_ptr->irb_lock); return (NULL); } /* * Adds the ire into the special routing table which is hanging off of * the src_ipif->ipif_ill. It also increments the refcnt in the ill. * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL * for IRE_IF_RESOLVER entry because we do not have the dst_addr's * link-layer address at the time of addition. * Upon resolving the address from ARP, dlureq_mp field is updated with * proper information in ire_update_srcif_v4. */ static int ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) { ire_t *ire1; irb_t *ire_srcifp_table = NULL; irb_t *irb_ptr = NULL; ire_t **irep; ire_t *ire; int flags; int i; ill_t *stq_ill; uint_t max_frag; int error = 0; ire = *ire_p; ASSERT(ire->ire_in_ill != NULL); ASSERT(ire->ire_ipversion == IPV4_VERSION); ASSERT(ire->ire_type == IRE_IF_NORESOLVER || ire->ire_type == IRE_IF_RESOLVER); ire->ire_mask = IP_HOST_MASK; /* Update ire_dlureq_mp with NULL value upon creation */ if (ire->ire_type == IRE_IF_RESOLVER) { /* * assign NULL now, it will be updated * with correct value upon returning from * ARP */ ire->ire_dlureq_mp = NULL; } else { ire->ire_dlureq_mp = ill_dlur_gen(NULL, ire->ire_ipif->ipif_ill->ill_phys_addr_length, ire->ire_ipif->ipif_ill->ill_sap, ire->ire_ipif->ipif_ill->ill_sap_length); } /* Make sure the address is properly masked. */ ire->ire_addr &= ire->ire_mask; ASSERT(ire->ire_max_fragp != NULL); max_frag = *ire->ire_max_fragp; ire->ire_max_fragp = NULL; ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); mutex_enter(&ire->ire_in_ill->ill_lock); if (ire->ire_in_ill->ill_srcif_table == NULL) { /* create the incoming interface based table */ ire->ire_in_ill->ill_srcif_table = (irb_t *)kmem_zalloc(IP_SRCIF_TABLE_SIZE * sizeof (irb_t), KM_NOSLEEP); if (ire->ire_in_ill->ill_srcif_table == NULL) { ip1dbg(("ire_add_srcif_v4: Allocation fail\n")); mutex_exit(&ire->ire_in_ill->ill_lock); ire_delete(ire); *ire_p = NULL; return (ENOMEM); } ire_srcifp_table = ire->ire_in_ill->ill_srcif_table; for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { rw_init(&ire_srcifp_table[i].irb_lock, NULL, RW_DEFAULT, NULL); } ip2dbg(("ire_add_srcif_v4: table created for ill %p\n", (void *)ire->ire_in_ill)); } /* Check for duplicate and insert */ ASSERT(ire->ire_in_ill->ill_srcif_table != NULL); irb_ptr = &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr, IP_SRCIF_TABLE_SIZE)]); mutex_exit(&ire->ire_in_ill->ill_lock); flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); flags |= MATCH_IRE_IPIF; /* * Start the atomic add of the ire. Grab the ill locks, * ill_g_usesrc_lock and the bucket lock. * * If ipif or ill is changing ire_atomic_start() may queue the * request and return EINPROGRESS. */ error = ire_atomic_start(irb_ptr, ire, q, mp, func); if (error != 0) { /* * We don't know whether it is a valid ipif or not. * So, set it to NULL. This assumes that the ire has not added * a reference to the ipif. */ ire->ire_ipif = NULL; ire_delete(ire); ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n")); *ire_p = NULL; return (error); } for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { if (ire1->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire1->ire_zoneid != ire->ire_zoneid) continue; /* Has anyone inserted route in the meanwhile ? */ if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0, ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, flags)) { ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n")); IRE_REFHOLD(ire1); ire_atomic_end(irb_ptr, ire); ire_delete(ire); /* Return old ire as in ire_add_v4 */ *ire_p = ire1; return (0); } } irep = (ire_t **)irb_ptr; if (*irep != NULL) { /* Find the last ire which matches ire_addr */ ire1 = *irep; while (ire1->ire_addr == ire->ire_addr) { irep = &ire1->ire_next; ire1 = *irep; if (ire1 == NULL) break; } } ire1 = *irep; if (ire1 != NULL) ire1->ire_ptpn = &ire->ire_next; ire->ire_next = ire1; /* Link the new one in. */ ire->ire_ptpn = irep; membar_producer(); *irep = ire; ire->ire_bucket = irb_ptr; IRE_REFHOLD_LOCKED(ire); /* * Protect ire_in_ill->ill_srcif_refcnt and table reference count. * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock * so ill_srcif_refcnt is already protected. */ ire->ire_in_ill->ill_srcif_refcnt++; mutex_enter(&ire_srcif_table_lock); ire_srcif_table_count++; mutex_exit(&ire_srcif_table_lock); irb_ptr->irb_ire_cnt++; if (ire->ire_ipif != NULL) { ire->ire_ipif->ipif_ire_cnt++; if (ire->ire_stq != NULL) { stq_ill = (ill_t *)ire->ire_stq->q_ptr; stq_ill->ill_ire_cnt++; } } else { ASSERT(ire->ire_stq == NULL); } ire_atomic_end(irb_ptr, ire); *ire_p = ire; return (0); } /* * This function is called by ire_add_then_send when ARP request comes * back to ip_wput->ire_add_then_send for resolved ire in the interface * based routing table. At this point, it only needs to update the resolver * information for the ire. The passed ire is returned to the caller as it * is the ire which is created as mblk. */ static ire_t * ire_update_srcif_v4(ire_t *ire) { ire_t *ire1; irb_t *irb; int error; ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER); ASSERT(ire->ire_ipversion == IPV4_VERSION); /* * This ire is from ARP. Update * ire_dlureq_mp info */ ire1 = ire_srcif_table_lookup(ire->ire_addr, IRE_IF_RESOLVER, ire->ire_ipif, ire->ire_in_ill, MATCH_IRE_ILL | MATCH_IRE_TYPE); if (ire1 == NULL) { /* Mobile node registration expired ? */ ire_delete(ire); return (NULL); } irb = ire1->ire_bucket; ASSERT(irb != NULL); /* * Start the atomic add of the ire. Grab the ill locks, * ill_g_usesrc_lock and the bucket lock. */ error = ire_atomic_start(irb, ire1, NULL, NULL, NULL); if (error != 0) { /* * We don't know whether it is a valid ipif or not. * So, set it to NULL. This assumes that the ire has not added * a reference to the ipif. */ ire->ire_ipif = NULL; ire_delete(ire); ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n")); return (NULL); } ASSERT(ire->ire_max_fragp == NULL); ire->ire_max_frag = ire1->ire_max_frag; /* * Update resolver information and * send-to queue. */ ASSERT(ire->ire_dlureq_mp != NULL); ire1->ire_dlureq_mp = copyb(ire->ire_dlureq_mp); if (ire1->ire_dlureq_mp == NULL) { ip0dbg(("ire_update_srcif: copyb failed\n")); ire_refrele(ire1); ire_refrele(ire); ire_atomic_end(irb, ire1); return (NULL); } ire1->ire_stq = ire->ire_stq; ASSERT(ire->ire_fp_mp == NULL); ire_atomic_end(irb, ire1); ire_refrele(ire1); /* Return the passed ire */ return (ire); /* Update done */ } /* * Check if another multirt route resolution is needed. * B_TRUE is returned is there remain a resolvable route, * or if no route for that dst is resolved yet. * B_FALSE is returned if all routes for that dst are resolved * or if the remaining unresolved routes are actually not * resolvable. * This only works in the global zone. */ boolean_t ire_multirt_need_resolve(ipaddr_t dst) { ire_t *first_fire; ire_t *first_cire; ire_t *fire; ire_t *cire; irb_t *firb; irb_t *cirb; int unres_cnt = 0; boolean_t resolvable = B_FALSE; /* Retrieve the first IRE_HOST that matches the destination */ first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, NULL, ALL_ZONES, 0, MATCH_IRE_MASK | MATCH_IRE_TYPE); /* No route at all */ if (first_fire == NULL) { return (B_TRUE); } firb = first_fire->ire_bucket; ASSERT(firb != NULL); /* Retrieve the first IRE_CACHE ire for that destination. */ first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID); /* No resolved route. */ if (first_cire == NULL) { ire_refrele(first_fire); return (B_TRUE); } /* * At least one route is resolved. Here we look through the forward * and cache tables, to compare the number of declared routes * with the number of resolved routes. The search for a resolvable * route is performed only if at least one route remains * unresolved. */ cirb = first_cire->ire_bucket; ASSERT(cirb != NULL); /* Count the number of routes to that dest that are declared. */ IRB_REFHOLD(firb); for (fire = first_fire; fire != NULL; fire = fire->ire_next) { if (!(fire->ire_flags & RTF_MULTIRT)) continue; if (fire->ire_addr != dst) continue; unres_cnt++; } IRB_REFRELE(firb); /* Then subtract the number of routes to that dst that are resolved */ IRB_REFHOLD(cirb); for (cire = first_cire; cire != NULL; cire = cire->ire_next) { if (!(cire->ire_flags & RTF_MULTIRT)) continue; if (cire->ire_addr != dst) continue; if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) continue; unres_cnt--; } IRB_REFRELE(cirb); /* At least one route is unresolved; search for a resolvable route. */ if (unres_cnt > 0) resolvable = ire_multirt_lookup(&first_cire, &first_fire, MULTIRT_USESTAMP | MULTIRT_CACHEGW); if (first_fire != NULL) ire_refrele(first_fire); if (first_cire != NULL) ire_refrele(first_cire); return (resolvable); } /* * Explore a forward_table bucket, starting from fire_arg. * fire_arg MUST be an IRE_HOST entry. * * Return B_TRUE and update *ire_arg and *fire_arg * if at least one resolvable route is found. *ire_arg * is the IRE entry for *fire_arg's gateway. * * Return B_FALSE otherwise (all routes are resolved or * the remaining unresolved routes are all unresolvable). * * The IRE selection relies on a priority mechanism * driven by the flags passed in by the caller. * The caller, such as ip_newroute_ipif(), can get the most * relevant ire at each stage of a multiple route resolution. * * The rules are: * * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE * ires are preferred for the gateway. This gives the highest * priority to routes that can be resolved without using * a resolver. * * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW * is specified but no IRE_CACHETABLE ire entry for the gateway * is found, the following rules apply. * * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE * ires for the gateway, that have not been tried since * a configurable amount of time, are preferred. * This applies when a resolver must be invoked for * a missing route, but we don't want to use the resolver * upon each packet emission. If no such resolver is found, * B_FALSE is returned. * The MULTIRT_USESTAMP flag can be combined with * MULTIRT_CACHEGW. * * - if MULTIRT_USESTAMP is not specified in flags, the first * unresolved but resolvable route is selected. * * - Otherwise, there is no resolvalble route, and * B_FALSE is returned. * * At last, MULTIRT_SETSTAMP can be specified in flags to * request the timestamp of unresolvable routes to * be refreshed. This prevents the useless exploration * of those routes for a while, when MULTIRT_USESTAMP is used. * * This only works in the global zone. */ boolean_t ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags) { clock_t delta; ire_t *best_fire = NULL; ire_t *best_cire = NULL; ire_t *first_fire; ire_t *first_cire; ire_t *fire; ire_t *cire; irb_t *firb = NULL; irb_t *cirb = NULL; ire_t *gw_ire; boolean_t already_resolved; boolean_t res; ipaddr_t dst; ipaddr_t gw; ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", (void *)*ire_arg, (void *)*fire_arg, flags)); ASSERT(ire_arg != NULL); ASSERT(fire_arg != NULL); /* Not an IRE_HOST ire; give up. */ if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { return (B_FALSE); } /* This is the first IRE_HOST ire for that destination. */ first_fire = *fire_arg; firb = first_fire->ire_bucket; ASSERT(firb != NULL); dst = first_fire->ire_addr; ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); /* * Retrieve the first IRE_CACHE ire for that destination; * if we don't find one, no route for that dest is * resolved yet. */ first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID); if (first_cire != NULL) { cirb = first_cire->ire_bucket; } ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); /* * Search for a resolvable route, giving the top priority * to routes that can be resolved without any call to the resolver. */ IRB_REFHOLD(firb); if (!CLASSD(dst)) { /* * For all multiroute IRE_HOST ires for that destination, * check if the route via the IRE_HOST's gateway is * resolved yet. */ for (fire = first_fire; fire != NULL; fire = fire->ire_next) { if (!(fire->ire_flags & RTF_MULTIRT)) continue; if (fire->ire_addr != dst) continue; gw = fire->ire_gateway_addr; ip2dbg(("ire_multirt_lookup: fire %p, " "ire_addr %08x, ire_gateway_addr %08x\n", (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); already_resolved = B_FALSE; if (first_cire != NULL) { ASSERT(cirb != NULL); IRB_REFHOLD(cirb); /* * For all IRE_CACHE ires for that * destination. */ for (cire = first_cire; cire != NULL; cire = cire->ire_next) { if (!(cire->ire_flags & RTF_MULTIRT)) continue; if (cire->ire_addr != dst) continue; if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) continue; /* * Check if the IRE_CACHE's gateway * matches the IRE_HOST's gateway. */ if (cire->ire_gateway_addr == gw) { already_resolved = B_TRUE; break; } } IRB_REFRELE(cirb); } /* * This route is already resolved; * proceed with next one. */ if (already_resolved) { ip2dbg(("ire_multirt_lookup: found cire %p, " "already resolved\n", (void *)cire)); continue; } /* * The route is unresolved; is it actually * resolvable, i.e. is there a cache or a resolver * for the gateway? */ gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, ALL_ZONES, MATCH_IRE_RECURSIVE); ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", (void *)gw_ire)); /* * If gw_ire is typed IRE_CACHETABLE, * this route can be resolved without any call to the * resolver. If the MULTIRT_CACHEGW flag is set, * give the top priority to this ire and exit the * loop. * This is typically the case when an ARP reply * is processed through ip_wput_nondata(). */ if ((flags & MULTIRT_CACHEGW) && (gw_ire != NULL) && (gw_ire->ire_type & IRE_CACHETABLE)) { /* * Release the resolver associated to the * previous candidate best ire, if any. */ if (best_cire != NULL) { ire_refrele(best_cire); ASSERT(best_fire != NULL); } best_fire = fire; best_cire = gw_ire; ip2dbg(("ire_multirt_lookup: found top prio " "best_fire %p, best_cire %p\n", (void *)best_fire, (void *)best_cire)); break; } /* * Compute the time elapsed since our preceding * attempt to resolve that route. * If the MULTIRT_USESTAMP flag is set, we take that * route into account only if this time interval * exceeds ip_multirt_resolution_interval; * this prevents us from attempting to resolve a * broken route upon each sending of a packet. */ delta = lbolt - fire->ire_last_used_time; delta = TICK_TO_MSEC(delta); res = (boolean_t) ((delta > ip_multirt_resolution_interval) || (!(flags & MULTIRT_USESTAMP))); ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " "res %d\n", (void *)fire, delta, res)); if (res) { /* * We are here if MULTIRT_USESTAMP flag is set * and the resolver for fire's gateway * has not been tried since * ip_multirt_resolution_interval, or if * MULTIRT_USESTAMP is not set but gw_ire did * not fill the conditions for MULTIRT_CACHEGW, * or if neither MULTIRT_USESTAMP nor * MULTIRT_CACHEGW are set. */ if (gw_ire != NULL) { if (best_fire == NULL) { ASSERT(best_cire == NULL); best_fire = fire; best_cire = gw_ire; ip2dbg(("ire_multirt_lookup:" "found candidate " "best_fire %p, " "best_cire %p\n", (void *)best_fire, (void *)best_cire)); /* * If MULTIRT_CACHEGW is not * set, we ignore the top * priority ires that can * be resolved without any * call to the resolver; * In that case, there is * actually no need * to continue the loop. */ if (!(flags & MULTIRT_CACHEGW)) { break; } continue; } } else { /* * No resolver for the gateway: the * route is not resolvable. * If the MULTIRT_SETSTAMP flag is * set, we stamp the IRE_HOST ire, * so we will not select it again * during this resolution interval. */ if (flags & MULTIRT_SETSTAMP) fire->ire_last_used_time = lbolt; } } if (gw_ire != NULL) ire_refrele(gw_ire); } } else { /* CLASSD(dst) */ for (fire = first_fire; fire != NULL; fire = fire->ire_next) { if (!(fire->ire_flags & RTF_MULTIRT)) continue; if (fire->ire_addr != dst) continue; already_resolved = B_FALSE; gw = fire->ire_gateway_addr; gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); /* No resolver for the gateway; we skip this ire. */ if (gw_ire == NULL) { continue; } if (first_cire != NULL) { IRB_REFHOLD(cirb); /* * For all IRE_CACHE ires for that * destination. */ for (cire = first_cire; cire != NULL; cire = cire->ire_next) { if (!(cire->ire_flags & RTF_MULTIRT)) continue; if (cire->ire_addr != dst) continue; if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) continue; /* * Cache entries are linked to the * parent routes using the parent handle * (ire_phandle). If no cache entry has * the same handle as fire, fire is * still unresolved. */ ASSERT(cire->ire_phandle != 0); if (cire->ire_phandle == fire->ire_phandle) { already_resolved = B_TRUE; break; } } IRB_REFRELE(cirb); } /* * This route is already resolved; proceed with * next one. */ if (already_resolved) { ire_refrele(gw_ire); continue; } /* * Compute the time elapsed since our preceding * attempt to resolve that route. * If the MULTIRT_USESTAMP flag is set, we take * that route into account only if this time * interval exceeds ip_multirt_resolution_interval; * this prevents us from attempting to resolve a * broken route upon each sending of a packet. */ delta = lbolt - fire->ire_last_used_time; delta = TICK_TO_MSEC(delta); res = (boolean_t) ((delta > ip_multirt_resolution_interval) || (!(flags & MULTIRT_USESTAMP))); ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " "flags %04x, res %d\n", (void *)fire, delta, flags, res)); if (res) { if (best_cire != NULL) { /* * Release the resolver associated * to the preceding candidate best * ire, if any. */ ire_refrele(best_cire); ASSERT(best_fire != NULL); } best_fire = fire; best_cire = gw_ire; continue; } ire_refrele(gw_ire); } } if (best_fire != NULL) { IRE_REFHOLD(best_fire); } IRB_REFRELE(firb); /* Release the first IRE_CACHE we initially looked up, if any. */ if (first_cire != NULL) ire_refrele(first_cire); /* Found a resolvable route. */ if (best_fire != NULL) { ASSERT(best_cire != NULL); if (*fire_arg != NULL) ire_refrele(*fire_arg); if (*ire_arg != NULL) ire_refrele(*ire_arg); /* * Update the passed-in arguments with the * resolvable multirt route we found. */ *fire_arg = best_fire; *ire_arg = best_cire; ip2dbg(("ire_multirt_lookup: returning B_TRUE, " "*fire_arg %p, *ire_arg %p\n", (void *)best_fire, (void *)best_cire)); return (B_TRUE); } ASSERT(best_cire == NULL); ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " "*ire_arg %p\n", (void *)*fire_arg, (void *)*ire_arg)); /* No resolvable route. */ return (B_FALSE); } /* * Find an IRE_OFFSUBNET IRE entry for the multicast address 'group' * that goes through 'ipif'. As a fallback, a route that goes through * ipif->ipif_ill can be returned. */ ire_t * ipif_lookup_multi_ire(ipif_t *ipif, ipaddr_t group) { ire_t *ire; ire_t *save_ire = NULL; ire_t *gw_ire; irb_t *irb; ipaddr_t gw_addr; int match_flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; ASSERT(CLASSD(group)); ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, ALL_ZONES, 0, MATCH_IRE_DEFAULT); if (ire == NULL) return (NULL); irb = ire->ire_bucket; ASSERT(irb); IRB_REFHOLD(irb); ire_refrele(ire); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_addr != group || ipif->ipif_zoneid != ire->ire_zoneid) { continue; } switch (ire->ire_type) { case IRE_DEFAULT: case IRE_PREFIX: case IRE_HOST: gw_addr = ire->ire_gateway_addr; gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, match_flags); if (gw_ire != NULL) { if (save_ire != NULL) { ire_refrele(save_ire); } IRE_REFHOLD(ire); if (gw_ire->ire_ipif == ipif) { ire_refrele(gw_ire); IRB_REFRELE(irb); return (ire); } ire_refrele(gw_ire); save_ire = ire; } break; case IRE_IF_NORESOLVER: case IRE_IF_RESOLVER: if (ire->ire_ipif == ipif) { if (save_ire != NULL) { ire_refrele(save_ire); } IRE_REFHOLD(ire); IRB_REFRELE(irb); return (ire); } break; } } IRB_REFRELE(irb); return (save_ire); } /* * The purpose of the next two functions is to provide some external access to * routing/l2 lookup functionality while hiding the implementation of routing * and interface data structures (IRE/ILL). Thus, interfaces are passed/ * returned by name instead of by ILL reference. These functions are used by * IP Filter. * Return a link layer header suitable for an IP packet being sent to the * dst_addr IP address. The interface associated with the route is put into * ifname, which must be a buffer of LIFNAMSIZ bytes. The dst_addr is the * packet's ultimate destination address, not a router address. * * This function is used when the caller wants to know the outbound interface * and MAC header for a packet given only the address. */ mblk_t * ip_nexthop_route(const struct sockaddr *target, char *ifname) { ire_t *dir, *gw; ill_t *ill; mblk_t *mp; /* parameter sanity */ if (ifname == NULL || target == NULL) return (NULL); gw = NULL; /* Find the route entry, if it exists. */ switch (target->sa_family) { case AF_INET: dir = ire_route_lookup( ((struct sockaddr_in *)target)->sin_addr.s_addr, 0xffffffff, 0, 0, NULL, &gw, ALL_ZONES, MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); break; case AF_INET6: dir = ire_route_lookup_v6( &((struct sockaddr_in6 *)target)->sin6_addr, NULL, 0, 0, NULL, &gw, ALL_ZONES, MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); break; default: dir = NULL; break; } if (dir == NULL) return (NULL); /* Map the IRE to an ILL so we can fill in ifname. */ ill = ire_to_ill(dir); if (ill == NULL) { ire_refrele(dir); return (NULL); } (void) strncpy(ifname, ill->ill_name, LIFNAMSIZ); /* Return a copy of the header to the caller. */ if (dir->ire_fp_mp != NULL) { if ((mp = dupb(dir->ire_fp_mp)) == NULL) mp = copyb(dir->ire_fp_mp); } else if (dir->ire_dlureq_mp != NULL) { if ((mp = dupb(dir->ire_dlureq_mp)) == NULL) mp = copyb(dir->ire_dlureq_mp); } else { mp = NULL; } ire_refrele(dir); return (mp); } /* * Return a link layer header suitable for an IP packet being sent to the * dst_addr IP address on the specified output interface. The dst_addr * may be the packet's ultimate destination or a predetermined next hop * router's address. * ifname must be nul-terminated. * * This function is used when the caller knows the outbound interface (usually * because it was specified by policy) and only needs the MAC header for a * packet. */ mblk_t * ip_nexthop(const struct sockaddr *target, const char *ifname) { ill_walk_context_t ctx; t_uscalar_t sap; ire_t *dir, *gw; ill_t *ill; mblk_t *mp; /* parameter sanity */ if (ifname == NULL || target == NULL) return (NULL); switch (target->sa_family) { case AF_INET : sap = IP_DL_SAP; break; case AF_INET6 : sap = IP6_DL_SAP; break; default: return (NULL); } /* Lock ill_g_lock before walking through the list */ rw_enter(&ill_g_lock, RW_READER); /* * Can we find the interface name among those currently configured? */ for (ill = ILL_START_WALK_ALL(&ctx); ill != NULL; ill = ill_next(&ctx, ill)) { if ((strcmp(ifname, ill->ill_name) == 0) && (ill->ill_sap == sap)) break; } if (ill == NULL || ill->ill_ipif == NULL) { rw_exit(&ill_g_lock); return (NULL); } mutex_enter(&ill->ill_lock); if (!ILL_CAN_LOOKUP(ill)) { mutex_exit(&ill->ill_lock); rw_exit(&ill_g_lock); return (NULL); } ill_refhold_locked(ill); mutex_exit(&ill->ill_lock); rw_exit(&ill_g_lock); gw = NULL; /* Find the resolver entry, if it exists. */ switch (target->sa_family) { case AF_INET: dir = ire_route_lookup( ((struct sockaddr_in *)target)->sin_addr.s_addr, 0xffffffff, 0, 0, ill->ill_ipif, &gw, ALL_ZONES, MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); break; case AF_INET6: dir = ire_route_lookup_v6( &((struct sockaddr_in6 *)target)->sin6_addr, NULL, 0, 0, ill->ill_ipif, &gw, ALL_ZONES, MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); break; default: dir = NULL; break; } ill_refrele(ill); if (dir == NULL) return (NULL); /* Return a copy of the header to the caller. */ if (dir->ire_fp_mp != NULL) { if ((mp = dupb(dir->ire_fp_mp)) == NULL) mp = copyb(dir->ire_fp_mp); } else if (dir->ire_dlureq_mp != NULL) { if ((mp = dupb(dir->ire_dlureq_mp)) == NULL) mp = copyb(dir->ire_dlureq_mp); } else { mp = NULL; } ire_refrele(dir); return (mp); } /* * IRE iterator for inbound and loopback broadcast processing. * Given an IRE_BROADCAST ire, walk the ires with the same destination * address, but skip over the passed-in ire. Returns the next ire without * a hold - assumes that the caller holds a reference on the IRE bucket. */ ire_t * ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) { ill_t *ill; if (curr == NULL) { for (curr = ire->ire_bucket->irb_ire; curr != NULL; curr = curr->ire_next) { if (curr->ire_addr == ire->ire_addr) break; } } else { curr = curr->ire_next; } ill = ire_to_ill(ire); for (; curr != NULL; curr = curr->ire_next) { if (curr->ire_addr != ire->ire_addr) { /* * All the IREs to a given destination are contiguous; * break out once the address doesn't match. */ break; } if (curr == ire) { /* skip over the passed-in ire */ continue; } if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || (curr->ire_stq == NULL && ire->ire_stq != NULL)) { /* * If the passed-in ire is loopback, skip over * non-loopback ires and vice versa. */ continue; } if (ire_to_ill(curr) != ill) { /* skip over IREs going through a different interface */ continue; } if (curr->ire_marks & IRE_MARK_CONDEMNED) { /* skip over deleted IREs */ continue; } return (curr); } return (NULL); } /* * IRE iterator used by ire_ftable_lookup[_v6]() to process multiple default * routes. Given a starting point in the hash list (ire_origin), walk the IREs * in the bucket skipping default interface routes and deleted entries. * Returns the next IRE (unheld), or NULL when we're back to the starting point. * Assumes that the caller holds a reference on the IRE bucket. */ ire_t * ire_get_next_default_ire(ire_t *ire, ire_t *ire_origin) { ASSERT(ire_origin->ire_bucket != NULL); ASSERT(ire != NULL); do { ire = ire->ire_next; if (ire == NULL) ire = ire_origin->ire_bucket->irb_ire; if (ire == ire_origin) return (NULL); } while ((ire->ire_type & IRE_INTERFACE) || (ire->ire_marks & IRE_MARK_CONDEMNED)); ASSERT(ire != NULL); return (ire); } #ifdef IRE_DEBUG th_trace_t * th_trace_ire_lookup(ire_t *ire) { int bucket_id; th_trace_t *th_trace; ASSERT(MUTEX_HELD(&ire->ire_lock)); bucket_id = IP_TR_HASH(curthread); ASSERT(bucket_id < IP_TR_HASH_MAX); for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL; th_trace = th_trace->th_next) { if (th_trace->th_id == curthread) return (th_trace); } return (NULL); } void ire_trace_ref(ire_t *ire) { int bucket_id; th_trace_t *th_trace; /* * Attempt to locate the trace buffer for the curthread. * If it does not exist, then allocate a new trace buffer * and link it in list of trace bufs for this ipif, at the head */ mutex_enter(&ire->ire_lock); if (ire->ire_trace_disable == B_TRUE) { mutex_exit(&ire->ire_lock); return; } th_trace = th_trace_ire_lookup(ire); if (th_trace == NULL) { bucket_id = IP_TR_HASH(curthread); th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); if (th_trace == NULL) { ire->ire_trace_disable = B_TRUE; mutex_exit(&ire->ire_lock); ire_trace_inactive(ire); return; } th_trace->th_id = curthread; th_trace->th_next = ire->ire_trace[bucket_id]; th_trace->th_prev = &ire->ire_trace[bucket_id]; if (th_trace->th_next != NULL) th_trace->th_next->th_prev = &th_trace->th_next; ire->ire_trace[bucket_id] = th_trace; } ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1); th_trace->th_refcnt++; th_trace_rrecord(th_trace); mutex_exit(&ire->ire_lock); } void ire_trace_free(th_trace_t *th_trace) { /* unlink th_trace and free it */ *th_trace->th_prev = th_trace->th_next; if (th_trace->th_next != NULL) th_trace->th_next->th_prev = th_trace->th_prev; th_trace->th_next = NULL; th_trace->th_prev = NULL; kmem_free(th_trace, sizeof (th_trace_t)); } void ire_untrace_ref(ire_t *ire) { th_trace_t *th_trace; mutex_enter(&ire->ire_lock); if (ire->ire_trace_disable == B_TRUE) { mutex_exit(&ire->ire_lock); return; } th_trace = th_trace_ire_lookup(ire); ASSERT(th_trace != NULL && th_trace->th_refcnt > 0); th_trace_rrecord(th_trace); th_trace->th_refcnt--; if (th_trace->th_refcnt == 0) ire_trace_free(th_trace); mutex_exit(&ire->ire_lock); } static void ire_trace_inactive(ire_t *ire) { th_trace_t *th_trace; int i; mutex_enter(&ire->ire_lock); for (i = 0; i < IP_TR_HASH_MAX; i++) { while (ire->ire_trace[i] != NULL) { th_trace = ire->ire_trace[i]; /* unlink th_trace and free it */ ire->ire_trace[i] = th_trace->th_next; if (th_trace->th_next != NULL) th_trace->th_next->th_prev = &ire->ire_trace[i]; th_trace->th_next = NULL; th_trace->th_prev = NULL; kmem_free(th_trace, sizeof (th_trace_t)); } } mutex_exit(&ire->ire_lock); } /* ARGSUSED */ void ire_thread_exit(ire_t *ire, caddr_t arg) { th_trace_t *th_trace; mutex_enter(&ire->ire_lock); th_trace = th_trace_ire_lookup(ire); if (th_trace == NULL) { mutex_exit(&ire->ire_lock); return; } ASSERT(th_trace->th_refcnt == 0); ire_trace_free(th_trace); mutex_exit(&ire->ire_lock); } #endif