/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 1990 Mentat Inc. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * This file contains routines that manipulate Internet Routing Entries (IREs). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include irb_t *ip_forwarding_table_v6[IP6_MASK_TABLE_SIZE]; /* This is dynamically allocated in ip_ire_init */ irb_t *ip_cache_table_v6; static ire_t ire_null; static ire_t *ire_ihandle_lookup_onlink_v6(ire_t *cire); static void ire_report_ftable_v6(ire_t *ire, char *mp); static void ire_report_ctable_v6(ire_t *ire, char *mp); static boolean_t ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, const in6_addr_t *mask, const in6_addr_t *gateway, int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, const ts_label_t *tsl, int match_flags); /* * Named Dispatch routine to produce a formatted report on all IREs. * This report is accessed by using the ndd utility to "get" ND variable * "ip_ire_status_v6". */ /* ARGSUSED */ int ip_ire_report_v6(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) { zoneid_t zoneid; (void) mi_mpprintf(mp, "IRE " MI_COL_HDRPAD_STR "rfq " MI_COL_HDRPAD_STR "stq " MI_COL_HDRPAD_STR " zone mxfrg rtt rtt_sd ssthresh ref " "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe recvpipe " "in/out/forward type addr mask " "src gateway"); /* * 01234567 01234567 01234567 12345 12345 12345 12345 12345678 123 * 123456 123456789 123456789 123456 12345678 1234 12345678 12345678 * in/out/forward xxxxxxxxxx * xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx * xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx * xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx * xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx */ /* * Because of the ndd constraint, at most we can have 64K buffer * to put in all IRE info. So to be more efficient, just * allocate a 64K buffer here, assuming we need that large buffer. * This should be OK as only root can do ndd /dev/ip. */ if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { /* The following may work even if we cannot get a large buf. */ (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); return (0); } zoneid = Q_TO_CONN(q)->conn_zoneid; if (zoneid == GLOBAL_ZONEID) zoneid = ALL_ZONES; ire_walk_v6(ire_report_ftable_v6, (char *)mp->b_cont, zoneid); ire_walk_v6(ire_report_ctable_v6, (char *)mp->b_cont, zoneid); return (0); } /* * ire_walk routine invoked for ip_ire_report_v6 for each IRE. */ static void ire_report_ftable_v6(ire_t *ire, char *mp) { char buf1[INET6_ADDRSTRLEN]; char buf2[INET6_ADDRSTRLEN]; char buf3[INET6_ADDRSTRLEN]; char buf4[INET6_ADDRSTRLEN]; uint_t fo_pkt_count; uint_t ib_pkt_count; int ref; in6_addr_t gw_addr_v6; uint_t print_len, buf_len; ASSERT(ire->ire_ipversion == IPV6_VERSION); if (ire->ire_type & IRE_CACHETABLE) return; buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; if (buf_len <= 0) return; /* Number of active references of this ire */ ref = ire->ire_refcnt; /* "inbound" to a non local address is a forward */ ib_pkt_count = ire->ire_ib_pkt_count; fo_pkt_count = 0; ASSERT(!(ire->ire_type & IRE_BROADCAST)); if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { fo_pkt_count = ib_pkt_count; ib_pkt_count = 0; } mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " "%05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " "%04d %08d %08d %d/%d/%d %s\n\t%s\n\t%s\n\t%s\n\t%s\n", (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, (int)ire->ire_zoneid, ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, ire->ire_uinfo.iulp_rtomax, (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), ire->ire_uinfo.iulp_sack, ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), inet_ntop(AF_INET6, &ire->ire_addr_v6, buf1, sizeof (buf1)), inet_ntop(AF_INET6, &ire->ire_mask_v6, buf2, sizeof (buf2)), inet_ntop(AF_INET6, &ire->ire_src_addr_v6, buf3, sizeof (buf3)), inet_ntop(AF_INET6, &gw_addr_v6, buf4, sizeof (buf4))); if (print_len < buf_len) { ((mblk_t *)mp)->b_wptr += print_len; } else { ((mblk_t *)mp)->b_wptr += buf_len; } } /* ire_walk routine invoked for ip_ire_report_v6 for each IRE. */ static void ire_report_ctable_v6(ire_t *ire, char *mp) { char buf1[INET6_ADDRSTRLEN]; char buf2[INET6_ADDRSTRLEN]; char buf3[INET6_ADDRSTRLEN]; char buf4[INET6_ADDRSTRLEN]; uint_t fo_pkt_count; uint_t ib_pkt_count; int ref; in6_addr_t gw_addr_v6; uint_t print_len, buf_len; if ((ire->ire_type & IRE_CACHETABLE) == 0) return; buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; if (buf_len <= 0) return; /* Number of active references of this ire */ ref = ire->ire_refcnt; /* "inbound" to a non local address is a forward */ ib_pkt_count = ire->ire_ib_pkt_count; fo_pkt_count = 0; ASSERT(!(ire->ire_type & IRE_BROADCAST)); if (ire->ire_type & IRE_LOCAL) { fo_pkt_count = ib_pkt_count; ib_pkt_count = 0; } mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " "%05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " "%04d %08d %08d %d/%d/%d %s\n\t%s\n\t%s\n\t%s\n\t%s\n", (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, (int)ire->ire_zoneid, ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, ire->ire_uinfo.iulp_rtomax, (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), ire->ire_uinfo.iulp_sack, ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), inet_ntop(AF_INET6, &ire->ire_addr_v6, buf1, sizeof (buf1)), inet_ntop(AF_INET6, &ire->ire_mask_v6, buf2, sizeof (buf2)), inet_ntop(AF_INET6, &ire->ire_src_addr_v6, buf3, sizeof (buf3)), inet_ntop(AF_INET6, &gw_addr_v6, buf4, sizeof (buf4))); if (print_len < buf_len) { ((mblk_t *)mp)->b_wptr += print_len; } else { ((mblk_t *)mp)->b_wptr += buf_len; } } /* * Initialize the ire that is specific to IPv6 part and call * ire_init_common to finish it. */ ire_t * ire_init_v6(ire_t *ire, const in6_addr_t *v6addr, const in6_addr_t *v6mask, const in6_addr_t *v6src_addr, const in6_addr_t *v6gateway, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, const in6_addr_t *v6cmask, uint32_t phandle, uint32_t ihandle, uint_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) { /* * Reject IRE security attribute creation/initialization * if system is not running in Trusted mode. */ if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) return (NULL); if (fp_mp != NULL) { /* * We can't dupb() here as multiple threads could be * calling dupb on the same mp which is incorrect. * First dupb() should be called only by one thread. */ fp_mp = copyb(fp_mp); if (fp_mp == NULL) return (NULL); } if (dlureq_mp != NULL) { /* * We can't dupb() here as multiple threads could be * calling dupb on the same mp which is incorrect. * First dupb() should be called only by one thread. */ dlureq_mp = copyb(dlureq_mp); if (dlureq_mp == NULL) { if (fp_mp != NULL) freeb(fp_mp); return (NULL); } } BUMP_IRE_STATS(ire_stats_v6, ire_stats_alloced); ire->ire_addr_v6 = *v6addr; if (v6src_addr != NULL) ire->ire_src_addr_v6 = *v6src_addr; if (v6mask != NULL) { ire->ire_mask_v6 = *v6mask; ire->ire_masklen = ip_mask_to_plen_v6(&ire->ire_mask_v6); } if (v6gateway != NULL) ire->ire_gateway_addr_v6 = *v6gateway; if (type == IRE_CACHE && v6cmask != NULL) ire->ire_cmask_v6 = *v6cmask; /* * Multirouted packets need to have a fragment header added so that * the receiver is able to discard duplicates according to their * fragment identifier. */ if (type == IRE_CACHE && (flags & RTF_MULTIRT)) { ire->ire_frag_flag = IPH_FRAG_HDR; } /* ire_init_common will free the mblks upon encountering any failure */ if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, NULL, phandle, ihandle, flags, IPV6_VERSION, ulp_info, gc, gcgrp)) return (NULL); return (ire); } /* * Similar to ire_create_v6 except that it is called only when * we want to allocate ire as an mblk e.g. we have a external * resolver. Do we need this in IPv6 ? */ ire_t * ire_create_mp_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask, const in6_addr_t *v6src_addr, const in6_addr_t *v6gateway, mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, const in6_addr_t *v6cmask, uint32_t phandle, uint32_t ihandle, uint_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) { ire_t *ire; ire_t *ret_ire; mblk_t *mp; ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr)); /* Allocate the new IRE. */ mp = allocb(sizeof (ire_t), BPRI_MED); if (mp == NULL) { ip1dbg(("ire_create_mp_v6: alloc failed\n")); return (NULL); } ire = (ire_t *)mp->b_rptr; mp->b_wptr = (uchar_t *)&ire[1]; /* Start clean. */ *ire = ire_null; ire->ire_mp = mp; mp->b_datap->db_type = IRE_DB_TYPE; ret_ire = ire_init_v6(ire, v6addr, v6mask, v6src_addr, v6gateway, NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, v6cmask, phandle, ihandle, flags, ulp_info, gc, gcgrp); if (ret_ire == NULL) { freeb(ire->ire_mp); return (NULL); } return (ire); } /* * ire_create_v6 is called to allocate and initialize a new IRE. * * NOTE : This is called as writer sometimes though not required * by this function. */ ire_t * ire_create_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask, const in6_addr_t *v6src_addr, const in6_addr_t *v6gateway, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, const in6_addr_t *v6cmask, uint32_t phandle, uint32_t ihandle, uint_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) { ire_t *ire; ire_t *ret_ire; ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr)); ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); if (ire == NULL) { ip1dbg(("ire_create_v6: alloc failed\n")); return (NULL); } *ire = ire_null; ret_ire = ire_init_v6(ire, v6addr, v6mask, v6src_addr, v6gateway, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, v6cmask, phandle, ihandle, flags, ulp_info, gc, gcgrp); if (ret_ire == NULL) { kmem_cache_free(ire_cache, ire); return (NULL); } ASSERT(ret_ire == ire); return (ire); } /* * Find an IRE_INTERFACE for the multicast group. * Allows different routes for multicast addresses * in the unicast routing table (akin to FF::0/8 but could be more specific) * which point at different interfaces. This is used when IPV6_MULTICAST_IF * isn't specified (when sending) and when IPV6_JOIN_GROUP doesn't * specify the interface to join on. * * Supports link-local addresses by following the ipif/ill when recursing. */ ire_t * ire_lookup_multi_v6(const in6_addr_t *group, zoneid_t zoneid) { ire_t *ire; ipif_t *ipif = NULL; int match_flags = MATCH_IRE_TYPE; in6_addr_t gw_addr_v6; ire = ire_ftable_lookup_v6(group, 0, 0, 0, NULL, NULL, zoneid, 0, NULL, MATCH_IRE_DEFAULT); /* We search a resolvable ire in case of multirouting. */ if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) { ire_t *cire = NULL; /* * If the route is not resolvable, the looked up ire * may be changed here. In that case, ire_multirt_lookup() * IRE_REFRELE the original ire and change it. */ (void) ire_multirt_lookup_v6(&cire, &ire, MULTIRT_CACHEGW, NULL); if (cire != NULL) ire_refrele(cire); } if (ire == NULL) return (NULL); /* * Make sure we follow ire_ipif. * * We need to determine the interface route through * which the gateway will be reached. We don't really * care which interface is picked if the interface is * part of a group. */ if (ire->ire_ipif != NULL) { ipif = ire->ire_ipif; match_flags |= MATCH_IRE_ILL_GROUP; } switch (ire->ire_type) { case IRE_DEFAULT: case IRE_PREFIX: case IRE_HOST: mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); ire_refrele(ire); ire = ire_ftable_lookup_v6(&gw_addr_v6, 0, 0, IRE_INTERFACE, ipif, NULL, zoneid, 0, NULL, match_flags); return (ire); case IRE_IF_NORESOLVER: case IRE_IF_RESOLVER: return (ire); default: ire_refrele(ire); return (NULL); } } /* * Return any local address. We use this to target ourselves * when the src address was specified as 'default'. * Preference for IRE_LOCAL entries. */ ire_t * ire_lookup_local_v6(zoneid_t zoneid) { ire_t *ire; irb_t *irb; ire_t *maybe = NULL; int i; for (i = 0; i < ip6_cache_table_size; i++) { irb = &ip_cache_table_v6[i]; if (irb->irb_ire == NULL) continue; rw_enter(&irb->irb_lock, RW_READER); for (ire = irb->irb_ire; ire; ire = ire->ire_next) { if ((ire->ire_marks & IRE_MARK_CONDEMNED) || ire->ire_zoneid != zoneid && ire->ire_zoneid != ALL_ZONES) continue; switch (ire->ire_type) { case IRE_LOOPBACK: if (maybe == NULL) { IRE_REFHOLD(ire); maybe = ire; } break; case IRE_LOCAL: if (maybe != NULL) { ire_refrele(maybe); } IRE_REFHOLD(ire); rw_exit(&irb->irb_lock); return (ire); } } rw_exit(&irb->irb_lock); } return (maybe); } /* * This function takes a mask and returns number of bits set in the * mask (the represented prefix length). Assumes a contiguous mask. */ int ip_mask_to_plen_v6(const in6_addr_t *v6mask) { int bits; int plen = IPV6_ABITS; int i; for (i = 3; i >= 0; i--) { if (v6mask->s6_addr32[i] == 0) { plen -= 32; continue; } bits = ffs(ntohl(v6mask->s6_addr32[i])) - 1; if (bits == 0) break; plen -= bits; } return (plen); } /* * Convert a prefix length to the mask for that prefix. * Returns the argument bitmask. */ in6_addr_t * ip_plen_to_mask_v6(uint_t plen, in6_addr_t *bitmask) { uint32_t *ptr; if (plen < 0 || plen > IPV6_ABITS) return (NULL); *bitmask = ipv6_all_zeros; ptr = (uint32_t *)bitmask; while (plen > 32) { *ptr++ = 0xffffffffU; plen -= 32; } *ptr = htonl(0xffffffffU << (32 - plen)); return (bitmask); } /* * Add a fully initialized IRE to an appropriate * table based on ire_type. * * The forward table contains IRE_PREFIX/IRE_HOST/IRE_HOST_REDIRECT * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. * * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK * and IRE_CACHE. * * NOTE : This function is called as writer though not required * by this function. */ int ire_add_v6(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) { ire_t *ire1; int mask_table_index; irb_t *irb_ptr; ire_t **irep; int flags; ire_t *pire = NULL; ill_t *stq_ill; boolean_t ndp_g_lock_held = B_FALSE; ire_t *ire = *ire_p; int error; ASSERT(ire->ire_ipversion == IPV6_VERSION); ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ ASSERT(ire->ire_nce == NULL); /* Find the appropriate list head. */ switch (ire->ire_type) { case IRE_HOST: ire->ire_mask_v6 = ipv6_all_ones; ire->ire_masklen = IPV6_ABITS; if ((ire->ire_flags & RTF_SETSRC) == 0) ire->ire_src_addr_v6 = ipv6_all_zeros; break; case IRE_HOST_REDIRECT: ire->ire_mask_v6 = ipv6_all_ones; ire->ire_masklen = IPV6_ABITS; ire->ire_src_addr_v6 = ipv6_all_zeros; break; case IRE_CACHE: case IRE_LOCAL: case IRE_LOOPBACK: ire->ire_mask_v6 = ipv6_all_ones; ire->ire_masklen = IPV6_ABITS; break; case IRE_PREFIX: if ((ire->ire_flags & RTF_SETSRC) == 0) ire->ire_src_addr_v6 = ipv6_all_zeros; break; case IRE_DEFAULT: if ((ire->ire_flags & RTF_SETSRC) == 0) ire->ire_src_addr_v6 = ipv6_all_zeros; break; case IRE_IF_RESOLVER: case IRE_IF_NORESOLVER: break; default: printf("ire_add_v6: ire %p has unrecognized IRE type (%d)\n", (void *)ire, ire->ire_type); ire_delete(ire); *ire_p = NULL; return (EINVAL); } /* Make sure the address is properly masked. */ V6_MASK_COPY(ire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6); if ((ire->ire_type & IRE_CACHETABLE) == 0) { /* IRE goes into Forward Table */ mask_table_index = ip_mask_to_plen_v6(&ire->ire_mask_v6); if ((ip_forwarding_table_v6[mask_table_index]) == NULL) { irb_t *ptr; int i; ptr = (irb_t *)mi_zalloc((ip6_ftable_hash_size * sizeof (irb_t))); if (ptr == NULL) { ire_delete(ire); *ire_p = NULL; return (ENOMEM); } for (i = 0; i < ip6_ftable_hash_size; i++) { rw_init(&ptr[i].irb_lock, NULL, RW_DEFAULT, NULL); } mutex_enter(&ire_ft_init_lock); if (ip_forwarding_table_v6[mask_table_index] == NULL) { ip_forwarding_table_v6[mask_table_index] = ptr; mutex_exit(&ire_ft_init_lock); } else { /* * Some other thread won the race in * initializing the forwarding table at the * same index. */ mutex_exit(&ire_ft_init_lock); for (i = 0; i < ip6_ftable_hash_size; i++) { rw_destroy(&ptr[i].irb_lock); } mi_free(ptr); } } irb_ptr = &(ip_forwarding_table_v6[mask_table_index][ IRE_ADDR_MASK_HASH_V6(ire->ire_addr_v6, ire->ire_mask_v6, ip6_ftable_hash_size)]); } else { irb_ptr = &(ip_cache_table_v6[IRE_ADDR_HASH_V6( ire->ire_addr_v6, ip6_cache_table_size)]); } /* * For xresolv interfaces (v6 interfaces with an external * address resolver), ip_newroute_v6/ip_newroute_ipif_v6 * are unable to prevent the deletion of the interface route * while adding an IRE_CACHE for an on-link destination * in the IRE_IF_RESOLVER case, since the ire has to go to * the external resolver and return. We can't do a REFHOLD on the * associated interface ire for fear of the message being freed * if the external resolver can't resolve the address. * Here we look up the interface ire in the forwarding table * and make sure that the interface route has not been deleted. */ if (ire->ire_type == IRE_CACHE && IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6) && (((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) && (((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_XRESOLV)) { pire = ire_ihandle_lookup_onlink_v6(ire); if (pire == NULL) { ire_delete(ire); *ire_p = NULL; return (EINVAL); } /* Prevent pire from getting deleted */ IRB_REFHOLD(pire->ire_bucket); /* Has it been removed already? */ if (pire->ire_marks & IRE_MARK_CONDEMNED) { IRB_REFRELE(pire->ire_bucket); ire_refrele(pire); ire_delete(ire); *ire_p = NULL; return (EINVAL); } } flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); /* * For IRE_CACHES, MATCH_IRE_IPIF is not enough to check * for duplicates because : * * 1) ire_ipif->ipif_ill and ire_stq->q_ptr could be * pointing at different ills. A real duplicate is * a match on both ire_ipif and ire_stq. * * 2) We could have multiple packets trying to create * an IRE_CACHE for the same ill. * * Moreover, IPIF_NOFAILOVER and IPV6_BOUND_PIF endpoints wants * to go out on a particular ill. Rather than looking at the * packet, we depend on the above for MATCH_IRE_ILL here. * * Unlike IPv4, MATCH_IRE_IPIF is needed here as we could have * multiple IRE_CACHES for an ill for the same destination * with various scoped addresses i.e represented by ipifs. * * MATCH_IRE_ILL is done implicitly below for IRE_CACHES. */ if (ire->ire_ipif != NULL) flags |= MATCH_IRE_IPIF; /* * If we are creating hidden ires, make sure we search on * this ill (MATCH_IRE_ILL) and a hidden ire, while we are * searching for duplicates below. Otherwise we could * potentially find an IRE on some other interface * and it may not be a IRE marked with IRE_MARK_HIDDEN. We * shouldn't do this as this will lead to an infinite loop as * eventually we need an hidden ire for this packet to go * out. MATCH_IRE_ILL is already marked above. */ if (ire->ire_marks & IRE_MARK_HIDDEN) { ASSERT(ire->ire_type == IRE_CACHE); flags |= MATCH_IRE_MARK_HIDDEN; } /* * Start the atomic add of the ire. Grab the ill locks, * ill_g_usesrc_lock and the bucket lock. Check for condemned. * To avoid lock order problems, get the ndp6.ndp_g_lock now itself. */ if (ire->ire_type == IRE_CACHE) { mutex_enter(&ndp6.ndp_g_lock); ndp_g_lock_held = B_TRUE; } /* * If ipif or ill is changing ire_atomic_start() may queue the * request and return EINPROGRESS. */ error = ire_atomic_start(irb_ptr, ire, q, mp, func); if (error != 0) { if (ndp_g_lock_held) mutex_exit(&ndp6.ndp_g_lock); /* * We don't know whether it is a valid ipif or not. * So, set it to NULL. This assumes that the ire has not added * a reference to the ipif. */ ire->ire_ipif = NULL; ire_delete(ire); if (pire != NULL) { IRB_REFRELE(pire->ire_bucket); ire_refrele(pire); } *ire_p = NULL; return (error); } /* * To avoid creating ires having stale values for the ire_max_frag * we get the latest value atomically here. For more details * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE * in ip_rput_dlpi_writer */ if (ire->ire_max_fragp == NULL) { if (IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) ire->ire_max_frag = ire->ire_ipif->ipif_mtu; else ire->ire_max_frag = pire->ire_max_frag; } else { uint_t max_frag; max_frag = *ire->ire_max_fragp; ire->ire_max_fragp = NULL; ire->ire_max_frag = max_frag; } /* * Atomically check for duplicate and insert in the table. */ for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { if (ire1->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire->ire_type == IRE_CACHE) { /* * We do MATCH_IRE_ILL implicitly here for IRE_CACHES. * As ire_ipif and ire_stq could point to two * different ills, we can't pass just ire_ipif to * ire_match_args and get a match on both ills. * This is just needed for duplicate checks here and * so we don't add an extra argument to * ire_match_args for this. Do it locally. * * NOTE : Currently there is no part of the code * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL * match for IRE_CACHEs. Thus we don't want to * extend the arguments to ire_match_args_v6. */ if (ire1->ire_stq != ire->ire_stq) continue; /* * Multiroute IRE_CACHEs for a given destination can * have the same ire_ipif, typically if their source * address is forced using RTF_SETSRC, and the same * send-to queue. We differentiate them using the parent * handle. */ if ((ire1->ire_flags & RTF_MULTIRT) && (ire->ire_flags & RTF_MULTIRT) && (ire1->ire_phandle != ire->ire_phandle)) continue; } if (ire1->ire_zoneid != ire->ire_zoneid) continue; if (ire_match_args_v6(ire1, &ire->ire_addr_v6, &ire->ire_mask_v6, &ire->ire_gateway_addr_v6, ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL, flags)) { /* * Return the old ire after doing a REFHOLD. * As most of the callers continue to use the IRE * after adding, we return a held ire. This will * avoid a lookup in the caller again. If the callers * don't want to use it, they need to do a REFRELE. */ ip1dbg(("found dup ire existing %p new %p", (void *)ire1, (void *)ire)); IRE_REFHOLD(ire1); if (ndp_g_lock_held) mutex_exit(&ndp6.ndp_g_lock); ire_atomic_end(irb_ptr, ire); ire_delete(ire); if (pire != NULL) { /* * Assert that it is * not yet removed from the list. */ ASSERT(pire->ire_ptpn != NULL); IRB_REFRELE(pire->ire_bucket); ire_refrele(pire); } *ire_p = ire1; return (0); } } if (ire->ire_type == IRE_CACHE) { in6_addr_t gw_addr_v6; ill_t *ill = ire_to_ill(ire); char buf[INET6_ADDRSTRLEN]; nce_t *nce; /* * All IRE_CACHE types must have a nce. If this is * not the case the entry will not be added. We need * to make sure that if somebody deletes the nce * after we looked up, they will find this ire and * delete the ire. To delete this ire one needs the * bucket lock which we are still holding here. So, * even if the nce gets deleted after we looked up, * this ire will get deleted. * * NOTE : Don't need the ire_lock for accessing * ire_gateway_addr_v6 as it is appearing first * time on the list and rts_setgwr_v6 could not * be changing this. */ gw_addr_v6 = ire->ire_gateway_addr_v6; if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, B_TRUE); } else { nce = ndp_lookup_v6(ill, &gw_addr_v6, B_TRUE); } if (nce == NULL) goto failed; /* Pair of refhold, refrele just to get the tracing right */ NCE_REFHOLD_TO_REFHOLD_NOTR(nce); /* * Atomically make sure that new IREs don't point * to an NCE that is logically deleted (CONDEMNED). * ndp_delete() first marks the NCE CONDEMNED. * This ensures that the nce_refcnt won't increase * due to new nce_lookups or due to addition of new IREs * pointing to this NCE. Then ndp_delete() cleans up * existing references. If we don't do it atomically here, * ndp_delete() -> nce_ire_delete() will not be able to * clean up the IRE list completely, and the nce_refcnt * won't go down to zero. */ mutex_enter(&nce->nce_lock); if (ill->ill_flags & ILLF_XRESOLV) { /* * If we used an external resolver, we may not * have gone through neighbor discovery to get here. * Must update the nce_state before the next check. */ if (nce->nce_state == ND_INCOMPLETE) nce->nce_state = ND_REACHABLE; } if (nce->nce_state == ND_INCOMPLETE || (nce->nce_flags & NCE_F_CONDEMNED) || (nce->nce_state == ND_UNREACHABLE)) { failed: if (ndp_g_lock_held) mutex_exit(&ndp6.ndp_g_lock); if (nce != NULL) mutex_exit(&nce->nce_lock); ire_atomic_end(irb_ptr, ire); ip1dbg(("ire_add_v6: No nce for dst %s \n", inet_ntop(AF_INET6, &ire->ire_addr_v6, buf, sizeof (buf)))); ire_delete(ire); if (pire != NULL) { /* * Assert that it is * not yet removed from the list. */ ASSERT(pire->ire_ptpn != NULL); IRB_REFRELE(pire->ire_bucket); ire_refrele(pire); } if (nce != NULL) NCE_REFRELE_NOTR(nce); *ire_p = NULL; return (EINVAL); } else { ire->ire_nce = nce; } mutex_exit(&nce->nce_lock); } /* * Find the first entry that matches ire_addr - provides * tail insertion. *irep will be null if no match. */ irep = (ire_t **)irb_ptr; while ((ire1 = *irep) != NULL && !IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &ire1->ire_addr_v6)) irep = &ire1->ire_next; ASSERT(!(ire->ire_type & IRE_BROADCAST)); if (*irep != NULL) { /* * Find the last ire which matches ire_addr_v6. * Needed to do tail insertion among entries with the same * ire_addr_v6. */ while (IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &ire1->ire_addr_v6)) { irep = &ire1->ire_next; ire1 = *irep; if (ire1 == NULL) break; } } if (ire->ire_type == IRE_DEFAULT) { /* * We keep a count of default gateways which is used when * assigning them as routes. */ ipv6_ire_default_count++; ASSERT(ipv6_ire_default_count != 0); /* Wraparound */ } /* Insert at *irep */ ire1 = *irep; if (ire1 != NULL) ire1->ire_ptpn = &ire->ire_next; ire->ire_next = ire1; /* Link the new one in. */ ire->ire_ptpn = irep; /* * ire_walk routines de-reference ire_next without holding * a lock. Before we point to the new ire, we want to make * sure the store that sets the ire_next of the new ire * reaches global visibility, so that ire_walk routines * don't see a truncated list of ires i.e if the ire_next * of the new ire gets set after we do "*irep = ire" due * to re-ordering, the ire_walk thread will see a NULL * once it accesses the ire_next of the new ire. * membar_producer() makes sure that the following store * happens *after* all of the above stores. */ membar_producer(); *irep = ire; ire->ire_bucket = irb_ptr; /* * We return a bumped up IRE above. Keep it symmetrical * so that the callers will always have to release. This * helps the callers of this function because they continue * to use the IRE after adding and hence they don't have to * lookup again after we return the IRE. * * NOTE : We don't have to use atomics as this is appearing * in the list for the first time and no one else can bump * up the reference count on this yet. */ IRE_REFHOLD_LOCKED(ire); BUMP_IRE_STATS(ire_stats_v6, ire_stats_inserted); irb_ptr->irb_ire_cnt++; if (ire->ire_marks & IRE_MARK_TEMPORARY) irb_ptr->irb_tmp_ire_cnt++; if (ire->ire_ipif != NULL) { ire->ire_ipif->ipif_ire_cnt++; if (ire->ire_stq != NULL) { stq_ill = (ill_t *)ire->ire_stq->q_ptr; stq_ill->ill_ire_cnt++; } } else { ASSERT(ire->ire_stq == NULL); } if (ndp_g_lock_held) mutex_exit(&ndp6.ndp_g_lock); ire_atomic_end(irb_ptr, ire); if (pire != NULL) { /* Assert that it is not removed from the list yet */ ASSERT(pire->ire_ptpn != NULL); IRB_REFRELE(pire->ire_bucket); ire_refrele(pire); } if (ire->ire_type != IRE_CACHE) { /* * For ire's with with host mask see if there is an entry * in the cache. If there is one flush the whole cache as * there might be multiple entries due to RTF_MULTIRT (CGTP). * If no entry is found than there is no need to flush the * cache. */ if (ip_mask_to_plen_v6(&ire->ire_mask_v6) == IPV6_ABITS) { ire_t *lire; lire = ire_ctable_lookup_v6(&ire->ire_addr_v6, NULL, IRE_CACHE, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); if (lire != NULL) { ire_refrele(lire); ire_flush_cache_v6(ire, IRE_FLUSH_ADD); } } else { ire_flush_cache_v6(ire, IRE_FLUSH_ADD); } } *ire_p = ire; return (0); } /* * Search for all HOST REDIRECT routes that are * pointing at the specified gateway and * delete them. This routine is called only * when a default gateway is going away. */ static void ire_delete_host_redirects_v6(const in6_addr_t *gateway) { irb_t *irb_ptr; irb_t *irb; ire_t *ire; in6_addr_t gw_addr_v6; int i; /* get the hash table for HOST routes */ irb_ptr = ip_forwarding_table_v6[(IP6_MASK_TABLE_SIZE - 1)]; if (irb_ptr == NULL) return; for (i = 0; (i < ip6_ftable_hash_size); i++) { irb = &irb_ptr[i]; IRB_REFHOLD(irb); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_type != IRE_HOST_REDIRECT) continue; mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); if (IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) ire_delete(ire); } IRB_REFRELE(irb); } } /* * Delete all the cache entries with this 'addr'. This is the IPv6 counterpart * of ip_ire_clookup_and_delete. The difference being this function does not * return any value. IPv6 processing of a gratuitous ARP, as it stands, is * different than IPv4 in that, regardless of the presence of a cache entry * for this address, an ire_walk_v6 is done. Another difference is that unlike * in the case of IPv4 this does not take an ipif_t argument, since it is only * called by ip_arp_news and the match is always only on the address. */ void ip_ire_clookup_and_delete_v6(const in6_addr_t *addr) { irb_t *irb; ire_t *cire; boolean_t found = B_FALSE; irb = &ip_cache_table_v6[IRE_ADDR_HASH_V6(*addr, ip6_cache_table_size)]; IRB_REFHOLD(irb); for (cire = irb->irb_ire; cire != NULL; cire = cire->ire_next) { if (cire->ire_marks == IRE_MARK_CONDEMNED) continue; if (IN6_ARE_ADDR_EQUAL(&cire->ire_addr_v6, addr)) { /* This signifies start of a match */ if (!found) found = B_TRUE; if (cire->ire_type == IRE_CACHE) { if (cire->ire_nce != NULL) ndp_delete(cire->ire_nce); ire_delete_v6(cire); } /* End of the match */ } else if (found) break; } IRB_REFRELE(irb); } /* * Delete the specified IRE. * All calls should use ire_delete(). * Sometimes called as writer though not required by this function. * * NOTE : This function is called only if the ire was added * in the list. */ void ire_delete_v6(ire_t *ire) { in6_addr_t gw_addr_v6; ASSERT(ire->ire_refcnt >= 1); ASSERT(ire->ire_ipversion == IPV6_VERSION); if (ire->ire_type != IRE_CACHE) ire_flush_cache_v6(ire, IRE_FLUSH_DELETE); if (ire->ire_type == IRE_DEFAULT) { /* * when a default gateway is going away * delete all the host redirects pointing at that * gateway. */ mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); ire_delete_host_redirects_v6(&gw_addr_v6); } } /* * ire_walk routine to delete all IRE_CACHE and IRE_HOST_REDIRECT * entries. */ /*ARGSUSED1*/ void ire_delete_cache_v6(ire_t *ire, char *arg) { char addrstr1[INET6_ADDRSTRLEN]; char addrstr2[INET6_ADDRSTRLEN]; if (ire->ire_type & (IRE_CACHE | IRE_HOST_REDIRECT)) { ip1dbg(("ire_delete_cache_v6: deleted %s type %d through %s\n", inet_ntop(AF_INET6, &ire->ire_addr_v6, addrstr1, sizeof (addrstr1)), ire->ire_type, inet_ntop(AF_INET6, &ire->ire_gateway_addr_v6, addrstr2, sizeof (addrstr2)))); ire_delete(ire); } } /* * ire_walk routine to delete all IRE_CACHE/IRE_HOST_REDIRECT entries * that have a given gateway address. */ void ire_delete_cache_gw_v6(ire_t *ire, char *addr) { in6_addr_t *gw_addr = (in6_addr_t *)addr; char buf1[INET6_ADDRSTRLEN]; char buf2[INET6_ADDRSTRLEN]; in6_addr_t ire_gw_addr_v6; if (!(ire->ire_type & (IRE_CACHE|IRE_HOST_REDIRECT))) return; mutex_enter(&ire->ire_lock); ire_gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); if (IN6_ARE_ADDR_EQUAL(&ire_gw_addr_v6, gw_addr)) { ip1dbg(("ire_delete_cache_gw_v6: deleted %s type %d to %s\n", inet_ntop(AF_INET6, &ire->ire_src_addr_v6, buf1, sizeof (buf1)), ire->ire_type, inet_ntop(AF_INET6, &ire_gw_addr_v6, buf2, sizeof (buf2)))); ire_delete(ire); } } /* * Remove all IRE_CACHE entries that match * the ire specified. (Sometimes called * as writer though not required by this function.) * * The flag argument indicates if the * flush request is due to addition * of new route (IRE_FLUSH_ADD) or deletion of old * route (IRE_FLUSH_DELETE). * * This routine takes only the IREs from the forwarding * table and flushes the corresponding entries from * the cache table. * * When flushing due to the deletion of an old route, it * just checks the cache handles (ire_phandle and ire_ihandle) and * deletes the ones that match. * * When flushing due to the creation of a new route, it checks * if a cache entry's address matches the one in the IRE and * that the cache entry's parent has a less specific mask than the * one in IRE. The destination of such a cache entry could be the * gateway for other cache entries, so we need to flush those as * well by looking for gateway addresses matching the IRE's address. */ void ire_flush_cache_v6(ire_t *ire, int flag) { int i; ire_t *cire; irb_t *irb; if (ire->ire_type & IRE_CACHE) return; /* * If a default is just created, there is no point * in going through the cache, as there will not be any * cached ires. */ if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) return; if (flag == IRE_FLUSH_ADD) { /* * This selective flush is * due to the addition of * new IRE. */ for (i = 0; i < ip6_cache_table_size; i++) { irb = &ip_cache_table_v6[i]; if ((cire = irb->irb_ire) == NULL) continue; IRB_REFHOLD(irb); for (cire = irb->irb_ire; cire != NULL; cire = cire->ire_next) { if (cire->ire_type != IRE_CACHE) continue; /* * If 'cire' belongs to the same subnet * as the new ire being added, and 'cire' * is derived from a prefix that is less * specific than the new ire being added, * we need to flush 'cire'; for instance, * when a new interface comes up. */ if ((V6_MASK_EQ_2(cire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6) && (ip_mask_to_plen_v6(&cire->ire_cmask_v6) <= ire->ire_masklen))) { ire_delete(cire); continue; } /* * This is the case when the ire_gateway_addr * of 'cire' belongs to the same subnet as * the new ire being added. * Flushing such ires is sometimes required to * avoid misrouting: say we have a machine with * two interfaces (I1 and I2), a default router * R on the I1 subnet, and a host route to an * off-link destination D with a gateway G on * the I2 subnet. * Under normal operation, we will have an * on-link cache entry for G and an off-link * cache entry for D with G as ire_gateway_addr, * traffic to D will reach its destination * through gateway G. * If the administrator does 'ifconfig I2 down', * the cache entries for D and G will be * flushed. However, G will now be resolved as * an off-link destination using R (the default * router) as gateway. Then D will also be * resolved as an off-link destination using G * as gateway - this behavior is due to * compatibility reasons, see comment in * ire_ihandle_lookup_offlink(). Traffic to D * will go to the router R and probably won't * reach the destination. * The administrator then does 'ifconfig I2 up'. * Since G is on the I2 subnet, this routine * will flush its cache entry. It must also * flush the cache entry for D, otherwise * traffic will stay misrouted until the IRE * times out. */ if (V6_MASK_EQ_2(cire->ire_gateway_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6)) { ire_delete(cire); continue; } } IRB_REFRELE(irb); } } else { /* * delete the cache entries based on * handle in the IRE as this IRE is * being deleted/changed. */ for (i = 0; i < ip6_cache_table_size; i++) { irb = &ip_cache_table_v6[i]; if ((cire = irb->irb_ire) == NULL) continue; IRB_REFHOLD(irb); for (cire = irb->irb_ire; cire != NULL; cire = cire->ire_next) { if (cire->ire_type != IRE_CACHE) continue; if ((cire->ire_phandle == 0 || cire->ire_phandle != ire->ire_phandle) && (cire->ire_ihandle == 0 || cire->ire_ihandle != ire->ire_ihandle)) continue; ire_delete(cire); } IRB_REFRELE(irb); } } } /* * Matches the arguments passed with the values in the ire. * * Note: for match types that match using "ipif" passed in, ipif * must be checked for non-NULL before calling this routine. */ static boolean_t ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, const in6_addr_t *mask, const in6_addr_t *gateway, int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, const ts_label_t *tsl, int match_flags) { in6_addr_t masked_addr; in6_addr_t gw_addr_v6; ill_t *ire_ill = NULL, *dst_ill; ill_t *ipif_ill = NULL; ill_group_t *ire_ill_group = NULL; ill_group_t *ipif_ill_group = NULL; ipif_t *src_ipif; ASSERT(ire->ire_ipversion == IPV6_VERSION); ASSERT(addr != NULL); ASSERT(mask != NULL); ASSERT((!(match_flags & MATCH_IRE_GW)) || gateway != NULL); ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || (ipif != NULL && ipif->ipif_isv6)); ASSERT(!(match_flags & MATCH_IRE_WQ)); /* * HIDDEN cache entries have to be looked up specifically with * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set * when the interface is FAILED or INACTIVE. In that case, * any IRE_CACHES that exists should be marked with * IRE_MARK_HIDDEN. So, we don't really need to match below * for IRE_MARK_HIDDEN. But we do so for consistency. */ if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && (ire->ire_marks & IRE_MARK_HIDDEN)) return (B_FALSE); if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { /* * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is * valid and does not match that of ire_zoneid, a failure to * match is reported at this point. Otherwise, since some IREs * that are available in the global zone can be used in local * zones, additional checks need to be performed: * * IRE_CACHE and IRE_LOOPBACK entries should * never be matched in this situation. * * IRE entries that have an interface associated with them * should in general not match unless they are an IRE_LOCAL * or in the case when MATCH_IRE_DEFAULT has been set in * the caller. In the case of the former, checking of the * other fields supplied should take place. * * In the case where MATCH_IRE_DEFAULT has been set, * all of the ipif's associated with the IRE's ill are * checked to see if there is a matching zoneid. If any * one ipif has a matching zoneid, this IRE is a * potential candidate so checking of the other fields * takes place. * * In the case where the IRE_INTERFACE has a usable source * address (indicated by ill_usesrc_ifindex) in the * correct zone then it's permitted to return this IRE */ if (match_flags & MATCH_IRE_ZONEONLY) return (B_FALSE); if (ire->ire_type & (IRE_CACHE | IRE_LOOPBACK)) return (B_FALSE); /* * Note, IRE_INTERFACE can have the stq as NULL. For * example, if the default multicast route is tied to * the loopback address. */ if ((ire->ire_type & IRE_INTERFACE) && (ire->ire_stq != NULL)) { dst_ill = (ill_t *)ire->ire_stq->q_ptr; /* * If there is a usable source address in the * zone, then it's ok to return an * IRE_INTERFACE */ if ((dst_ill->ill_usesrc_ifindex != 0) && (src_ipif = ipif_select_source_v6(dst_ill, addr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, zoneid)) != NULL) { ip3dbg(("ire_match_args: src_ipif %p" " dst_ill %p", (void *)src_ipif, (void *)dst_ill)); ipif_refrele(src_ipif); } else { ip3dbg(("ire_match_args: src_ipif NULL" " dst_ill %p\n", (void *)dst_ill)); return (B_FALSE); } } if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && !(ire->ire_type & IRE_INTERFACE)) { ipif_t *tipif; if ((match_flags & MATCH_IRE_DEFAULT) == 0) return (B_FALSE); mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; tipif != NULL; tipif = tipif->ipif_next) { if (IPIF_CAN_LOOKUP(tipif) && (tipif->ipif_flags & IPIF_UP) && (tipif->ipif_zoneid == zoneid || tipif->ipif_zoneid == ALL_ZONES)) break; } mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); if (tipif == NULL) return (B_FALSE); } } if (match_flags & MATCH_IRE_GW) { mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); } /* * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that * somebody wants to send out on a particular interface which * is given by ire_stq and hence use ire_stq to derive the ill * value. ire_ipif for IRE_CACHES is just the * means of getting a source address i.e ire_src_addr_v6 = * ire->ire_ipif->ipif_src_addr_v6. */ if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { ire_ill = ire_to_ill(ire); if (ire_ill != NULL) ire_ill_group = ire_ill->ill_group; ipif_ill = ipif->ipif_ill; ipif_ill_group = ipif_ill->ill_group; } /* No ire_addr_v6 bits set past the mask */ ASSERT(V6_MASK_EQ(ire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6)); V6_MASK_COPY(*addr, *mask, masked_addr); if (V6_MASK_EQ(*addr, *mask, ire->ire_addr_v6) && ((!(match_flags & MATCH_IRE_GW)) || IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) && ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && ((!(match_flags & MATCH_IRE_SRC)) || IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, &ipif->ipif_v6src_addr)) && ((!(match_flags & MATCH_IRE_IPIF)) || (ire->ire_ipif == ipif)) && ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || (ire->ire_type != IRE_CACHE || ire->ire_marks & IRE_MARK_HIDDEN)) && ((!(match_flags & MATCH_IRE_ILL)) || (ire_ill == ipif_ill)) && ((!(match_flags & MATCH_IRE_IHANDLE)) || (ire->ire_ihandle == ihandle)) && ((!(match_flags & MATCH_IRE_ILL_GROUP)) || (ire_ill == ipif_ill) || (ire_ill_group != NULL && ire_ill_group == ipif_ill_group)) && ((!(match_flags & MATCH_IRE_SECATTR)) || (!is_system_labeled()) || (tsol_ire_match_gwattr(ire, tsl) == 0))) { /* We found the matched IRE */ return (B_TRUE); } return (B_FALSE); } /* * Lookup for a route in all the tables */ ire_t * ire_route_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask, const in6_addr_t *gateway, int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, const ts_label_t *tsl, int flags) { ire_t *ire = NULL; /* * ire_match_args_v6() will dereference ipif MATCH_IRE_SRC or * MATCH_IRE_ILL is set. */ if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && (ipif == NULL)) return (NULL); /* * might be asking for a cache lookup, * This is not best way to lookup cache, * user should call ire_cache_lookup directly. * * If MATCH_IRE_TYPE was set, first lookup in the cache table and then * in the forwarding table, if the applicable type flags were set. */ if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { ire = ire_ctable_lookup_v6(addr, gateway, type, ipif, zoneid, tsl, flags); if (ire != NULL) return (ire); } if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { ire = ire_ftable_lookup_v6(addr, mask, gateway, type, ipif, pire, zoneid, 0, tsl, flags); } return (ire); } /* * Lookup a route in forwarding table. * specific lookup is indicated by passing the * required parameters and indicating the * match required in flag field. * * Looking for default route can be done in three ways * 1) pass mask as ipv6_all_zeros and set MATCH_IRE_MASK in flags field * along with other matches. * 2) pass type as IRE_DEFAULT and set MATCH_IRE_TYPE in flags * field along with other matches. * 3) if the destination and mask are passed as zeros. * * A request to return a default route if no route * is found, can be specified by setting MATCH_IRE_DEFAULT * in flags. * * It does not support recursion more than one level. It * will do recursive lookup only when the lookup maps to * a prefix or default route and MATCH_IRE_RECURSIVE flag is passed. * * If the routing table is setup to allow more than one level * of recursion, the cleaning up cache table will not work resulting * in invalid routing. * * Supports link-local addresses by following the ipif/ill when recursing. * * NOTE : When this function returns NULL, pire has already been released. * pire is valid only when this function successfully returns an * ire. */ ire_t * ire_ftable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask, const in6_addr_t *gateway, int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, uint32_t ihandle, const ts_label_t *tsl, int flags) { irb_t *irb_ptr; ire_t *rire; ire_t *ire = NULL; ire_t *saved_ire; nce_t *nce; int i; in6_addr_t gw_addr_v6; ASSERT(addr != NULL); ASSERT((!(flags & MATCH_IRE_MASK)) || mask != NULL); ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL); ASSERT(ipif == NULL || ipif->ipif_isv6); ASSERT(!(flags & MATCH_IRE_WQ)); /* * When we return NULL from this function, we should make * sure that *pire is NULL so that the callers will not * wrongly REFRELE the pire. */ if (pire != NULL) *pire = NULL; /* * ire_match_args_v6() will dereference ipif MATCH_IRE_SRC or * MATCH_IRE_ILL is set. */ if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && (ipif == NULL)) return (NULL); /* * If the mask is known, the lookup * is simple, if the mask is not known * we need to search. */ if (flags & MATCH_IRE_MASK) { uint_t masklen; masklen = ip_mask_to_plen_v6(mask); if (ip_forwarding_table_v6[masklen] == NULL) return (NULL); irb_ptr = &(ip_forwarding_table_v6[masklen][ IRE_ADDR_MASK_HASH_V6(*addr, *mask, ip6_ftable_hash_size)]); rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire_match_args_v6(ire, addr, mask, gateway, type, ipif, zoneid, ihandle, tsl, flags)) goto found_ire; } rw_exit(&irb_ptr->irb_lock); } else { /* * In this case we don't know the mask, we need to * search the table assuming different mask sizes. * we start with 128 bit mask, we don't allow default here. */ for (i = (IP6_MASK_TABLE_SIZE - 1); i > 0; i--) { in6_addr_t tmpmask; if ((ip_forwarding_table_v6[i]) == NULL) continue; (void) ip_plen_to_mask_v6(i, &tmpmask); irb_ptr = &ip_forwarding_table_v6[i][ IRE_ADDR_MASK_HASH_V6(*addr, tmpmask, ip6_ftable_hash_size)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire_match_args_v6(ire, addr, &ire->ire_mask_v6, gateway, type, ipif, zoneid, ihandle, tsl, flags)) goto found_ire; } rw_exit(&irb_ptr->irb_lock); } } /* * We come here if no route has yet been found. * * Handle the case where default route is * requested by specifying type as one of the possible * types for that can have a zero mask (IRE_DEFAULT and IRE_INTERFACE). * * If MATCH_IRE_MASK is specified, then the appropriate default route * would have been found above if it exists so it isn't looked up here. * If MATCH_IRE_DEFAULT was also specified, then a default route will be * searched for later. */ if ((flags & (MATCH_IRE_TYPE | MATCH_IRE_MASK)) == MATCH_IRE_TYPE && (type & (IRE_DEFAULT | IRE_INTERFACE))) { if (ip_forwarding_table_v6[0] != NULL) { /* addr & mask is zero for defaults */ irb_ptr = &ip_forwarding_table_v6[0][ IRE_ADDR_HASH_V6(ipv6_all_zeros, ip6_ftable_hash_size)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire_match_args_v6(ire, addr, &ipv6_all_zeros, gateway, type, ipif, zoneid, ihandle, tsl, flags)) goto found_ire; } rw_exit(&irb_ptr->irb_lock); } } /* * We come here only if no route is found. * see if the default route can be used which is allowed * only if the default matching criteria is specified. * The ipv6_ire_default_count tracks the number of IRE_DEFAULT * entries. However, the ip_forwarding_table_v6[0] also contains * interface routes thus the count can be zero. */ saved_ire = NULL; if ((flags & (MATCH_IRE_DEFAULT | MATCH_IRE_MASK)) == MATCH_IRE_DEFAULT) { ire_t *ire_origin; uint_t g_index; uint_t index; if (ip_forwarding_table_v6[0] == NULL) return (NULL); irb_ptr = &(ip_forwarding_table_v6[0])[0]; /* * Keep a tab on the bucket while looking the IRE_DEFAULT * entries. We need to keep track of a particular IRE * (ire_origin) so this ensures that it will not be unlinked * from the hash list during the recursive lookup below. */ IRB_REFHOLD(irb_ptr); ire = irb_ptr->irb_ire; if (ire == NULL) { IRB_REFRELE(irb_ptr); return (NULL); } /* * Get the index first, since it can be changed by other * threads. Then get to the right default route skipping * default interface routes if any. As we hold a reference on * the IRE bucket, ipv6_ire_default_count can only increase so * we can't reach the end of the hash list unexpectedly. */ if (ipv6_ire_default_count != 0) { g_index = ipv6_ire_default_index++; index = g_index % ipv6_ire_default_count; while (index != 0) { if (!(ire->ire_type & IRE_INTERFACE)) index--; ire = ire->ire_next; } ASSERT(ire != NULL); } else { /* * No default route, so we only have default interface * routes: don't enter the first loop. */ ire = NULL; } /* * Round-robin the default routers list looking for a neighbor * that matches the passed in parameters and is reachable. If * none found, just return a route from the default router list * if it exists. If we can't find a default route (IRE_DEFAULT), * look for interface default routes. * We start with the ire we found above and we walk the hash * list until we're back where we started, see * ire_get_next_default_ire(). It doesn't matter if default * routes are added or deleted by other threads - we know this * ire will stay in the list because we hold a reference on the * ire bucket. * NB: if we only have interface default routes, ire is NULL so * we don't even enter this loop (see above). */ ire_origin = ire; for (; ire != NULL; ire = ire_get_next_default_ire(ire, ire_origin)) { if (ire_match_args_v6(ire, addr, &ipv6_all_zeros, gateway, type, ipif, zoneid, ihandle, tsl, flags)) { int match_flags; /* * We have something to work with. * If we can find a resolved/reachable * entry, we will use this. Otherwise * we'll try to find an entry that has * a resolved cache entry. We will fallback * on this if we don't find anything else. */ if (saved_ire == NULL) saved_ire = ire; mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; rire = ire_ctable_lookup_v6(&gw_addr_v6, NULL, 0, ire->ire_ipif, zoneid, tsl, match_flags); if (rire != NULL) { nce = rire->ire_nce; if (nce != NULL && NCE_ISREACHABLE(nce) && nce->nce_flags & NCE_F_ISROUTER) { ire_refrele(rire); IRE_REFHOLD(ire); IRB_REFRELE(irb_ptr); goto found_ire_held; } else if (nce != NULL && !(nce->nce_flags & NCE_F_ISROUTER)) { /* * Make sure we don't use * this ire */ if (saved_ire == ire) saved_ire = NULL; } ire_refrele(rire); } else if (ipv6_ire_default_count > 1 && zoneid != ALL_ZONES) { /* * When we're in a local zone, we're * only interested in default routers * that are reachable through ipifs * within our zone. * The potentially expensive call to * ire_route_lookup_v6() is avoided when * we have only one default route. */ rire = ire_route_lookup_v6(&gw_addr_v6, NULL, NULL, 0, ire->ire_ipif, NULL, zoneid, tsl, match_flags); if (rire != NULL) { ire_refrele(rire); saved_ire = ire; } else if (saved_ire == ire) { /* * Make sure we don't use * this ire */ saved_ire = NULL; } } } } if (saved_ire != NULL) { ire = saved_ire; IRE_REFHOLD(ire); IRB_REFRELE(irb_ptr); goto found_ire_held; } else { /* * Look for a interface default route matching the * args passed in. No round robin here. Just pick * the right one. */ for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (!(ire->ire_type & IRE_INTERFACE)) continue; if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (ire_match_args_v6(ire, addr, &ipv6_all_zeros, gateway, type, ipif, zoneid, ihandle, tsl, flags)) { IRE_REFHOLD(ire); IRB_REFRELE(irb_ptr); goto found_ire_held; } } IRB_REFRELE(irb_ptr); } } ASSERT(ire == NULL); ip1dbg(("ire_ftable_lookup_v6: returning NULL ire")); return (NULL); found_ire: ASSERT((ire->ire_marks & IRE_MARK_CONDEMNED) == 0); IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); found_ire_held: if ((flags & MATCH_IRE_RJ_BHOLE) && (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) { return (ire); } /* * At this point, IRE that was found must be an IRE_FORWARDTABLE * or IRE_CACHETABLE type. If this is a recursive lookup and an * IRE_INTERFACE type was found, return that. If it was some other * IRE_FORWARDTABLE type of IRE (one of the prefix types), then it * is necessary to fill in the parent IRE pointed to by pire, and * then lookup the gateway address of the parent. For backwards * compatiblity, if this lookup returns an * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level * of lookup is done. */ if (flags & MATCH_IRE_RECURSIVE) { const ipif_t *gw_ipif; int match_flags = MATCH_IRE_DSTONLY; if (ire->ire_type & IRE_INTERFACE) return (ire); if (pire != NULL) *pire = ire; /* * If we can't find an IRE_INTERFACE or the caller has not * asked for pire, we need to REFRELE the saved_ire. */ saved_ire = ire; /* * Currently MATCH_IRE_ILL is never used with * (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT) while * sending out packets as MATCH_IRE_ILL is used only * for communicating with on-link hosts. We can't assert * that here as RTM_GET calls this function with * MATCH_IRE_ILL | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE. * We have already used the MATCH_IRE_ILL in determining * the right prefix route at this point. To match the * behavior of how we locate routes while sending out * packets, we don't want to use MATCH_IRE_ILL below * while locating the interface route. */ if (ire->ire_ipif != NULL) match_flags |= MATCH_IRE_ILL_GROUP; mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); ire = ire_route_lookup_v6(&gw_addr_v6, NULL, NULL, 0, ire->ire_ipif, NULL, zoneid, tsl, match_flags); if (ire == NULL) { /* * In this case we have to deal with the * MATCH_IRE_PARENT flag, which means the * parent has to be returned if ire is NULL. * The aim of this is to have (at least) a starting * ire when we want to look at all of the ires in a * bucket aimed at a single destination (as is the * case in ip_newroute_v6 for the RTF_MULTIRT * flagged routes). */ if (flags & MATCH_IRE_PARENT) { if (pire != NULL) { /* * Need an extra REFHOLD, if the * parent ire is returned via both * ire and pire. */ IRE_REFHOLD(saved_ire); } ire = saved_ire; } else { ire_refrele(saved_ire); if (pire != NULL) *pire = NULL; } return (ire); } if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) { /* * If the caller did not ask for pire, release * it now. */ if (pire == NULL) { ire_refrele(saved_ire); } return (ire); } match_flags |= MATCH_IRE_TYPE; mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); gw_ipif = ire->ire_ipif; ire_refrele(ire); ire = ire_route_lookup_v6(&gw_addr_v6, NULL, NULL, (IRE_CACHETABLE | IRE_INTERFACE), gw_ipif, NULL, zoneid, NULL, match_flags); if (ire == NULL) { /* * In this case we have to deal with the * MATCH_IRE_PARENT flag, which means the * parent has to be returned if ire is NULL. * The aim of this is to have (at least) a starting * ire when we want to look at all of the ires in a * bucket aimed at a single destination (as is the * case in ip_newroute_v6 for the RTF_MULTIRT * flagged routes). */ if (flags & MATCH_IRE_PARENT) { if (pire != NULL) { /* * Need an extra REFHOLD, if the * parent ire is returned via both * ire and pire. */ IRE_REFHOLD(saved_ire); } ire = saved_ire; } else { ire_refrele(saved_ire); if (pire != NULL) *pire = NULL; } return (ire); } else if (pire == NULL) { /* * If the caller did not ask for pire, release * it now. */ ire_refrele(saved_ire); } return (ire); } ASSERT(pire == NULL || *pire == NULL); return (ire); } /* * Delete the IRE cache for the gateway and all IRE caches whose * ire_gateway_addr_v6 points to this gateway, and allow them to * be created on demand by ip_newroute_v6. */ void ire_clookup_delete_cache_gw_v6(const in6_addr_t *addr, zoneid_t zoneid) { irb_t *irb; ire_t *ire; irb = &ip_cache_table_v6[IRE_ADDR_HASH_V6(*addr, ip6_cache_table_size)]; IRB_REFHOLD(irb); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; ASSERT(IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, &ipv6_all_ones)); if (ire_match_args_v6(ire, addr, &ire->ire_mask_v6, 0, IRE_CACHE, NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { ire_delete(ire); } } IRB_REFRELE(irb); ire_walk_v6(ire_delete_cache_gw_v6, (char *)addr, zoneid); } /* * Looks up cache table for a route. * specific lookup can be indicated by * passing the MATCH_* flags and the * necessary parameters. */ ire_t * ire_ctable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *gateway, int type, const ipif_t *ipif, zoneid_t zoneid, const ts_label_t *tsl, int flags) { ire_t *ire; irb_t *irb_ptr; ASSERT(addr != NULL); ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL); /* * ire_match_args_v6() will dereference ipif MATCH_IRE_SRC or * MATCH_IRE_ILL is set. */ if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && (ipif == NULL)) return (NULL); irb_ptr = &ip_cache_table_v6[IRE_ADDR_HASH_V6(*addr, ip6_cache_table_size)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; ASSERT(IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, &ipv6_all_ones)); if (ire_match_args_v6(ire, addr, &ire->ire_mask_v6, gateway, type, ipif, zoneid, 0, tsl, flags)) { IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); return (ire); } } rw_exit(&irb_ptr->irb_lock); return (NULL); } /* * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get * to the hidden ones. */ ire_t * ire_cache_lookup_v6(const in6_addr_t *addr, zoneid_t zoneid, const ts_label_t *tsl) { irb_t *irb_ptr; ire_t *ire; irb_ptr = &ip_cache_table_v6[IRE_ADDR_HASH_V6(*addr, ip6_cache_table_size)]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire; ire = ire->ire_next) { if (ire->ire_marks & (IRE_MARK_CONDEMNED|IRE_MARK_HIDDEN)) continue; if (IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, addr)) { /* * Finally, check if the security policy has any * restriction on using this route for the specified * message. */ if (tsl != NULL && ire->ire_gw_secattr != NULL && tsol_ire_match_gwattr(ire, tsl) != 0) { continue; } if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES || ire->ire_type == IRE_LOCAL) { IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); return (ire); } } } rw_exit(&irb_ptr->irb_lock); return (NULL); } /* * Locate the interface ire that is tied to the cache ire 'cire' via * cire->ire_ihandle. * * We are trying to create the cache ire for an onlink destn. or * gateway in 'cire'. We are called from ire_add_v6() in the IRE_IF_RESOLVER * case for xresolv interfaces, after the ire has come back from * an external resolver. */ static ire_t * ire_ihandle_lookup_onlink_v6(ire_t *cire) { ire_t *ire; int match_flags; int i; int j; irb_t *irb_ptr; ASSERT(cire != NULL); match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; /* * We know that the mask of the interface ire equals cire->ire_cmask. * (When ip_newroute_v6() created 'cire' for an on-link destn. * it set its cmask from the interface ire's mask) */ ire = ire_ftable_lookup_v6(&cire->ire_addr_v6, &cire->ire_cmask_v6, NULL, IRE_INTERFACE, NULL, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags); if (ire != NULL) return (ire); /* * If we didn't find an interface ire above, we can't declare failure. * For backwards compatibility, we need to support prefix routes * pointing to next hop gateways that are not on-link. * * In the resolver/noresolver case, ip_newroute_v6() thinks * it is creating the cache ire for an onlink destination in 'cire'. * But 'cire' is not actually onlink, because ire_ftable_lookup_v6() * cheated it, by doing ire_route_lookup_v6() twice and returning an * interface ire. * * Eg. default - gw1 (line 1) * gw1 - gw2 (line 2) * gw2 - hme0 (line 3) * * In the above example, ip_newroute_v6() tried to create the cache ire * 'cire' for gw1, based on the interface route in line 3. The * ire_ftable_lookup_v6() above fails, because there is * no interface route to reach gw1. (it is gw2). We fall thru below. * * Do a brute force search based on the ihandle in a subset of the * forwarding tables, corresponding to cire->ire_cmask_v6. Otherwise * things become very complex, since we don't have 'pire' in this * case. (Also note that this method is not possible in the offlink * case because we don't know the mask) */ i = ip_mask_to_plen_v6(&cire->ire_cmask_v6); if ((ip_forwarding_table_v6[i]) == NULL) return (NULL); for (j = 0; j < ip6_ftable_hash_size; j++) { irb_ptr = &ip_forwarding_table_v6[i][j]; rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if ((ire->ire_type & IRE_INTERFACE) && (ire->ire_ihandle == cire->ire_ihandle)) { IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); return (ire); } } rw_exit(&irb_ptr->irb_lock); } return (NULL); } /* * Locate the interface ire that is tied to the cache ire 'cire' via * cire->ire_ihandle. * * We are trying to create the cache ire for an offlink destn based * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire * as found by ip_newroute_v6(). We are called from ip_newroute_v6() in * the IRE_CACHE case. */ ire_t * ire_ihandle_lookup_offlink_v6(ire_t *cire, ire_t *pire) { ire_t *ire; int match_flags; in6_addr_t gw_addr; ipif_t *gw_ipif; ASSERT(cire != NULL && pire != NULL); match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; /* * ip_newroute_v6 calls ire_ftable_lookup with MATCH_IRE_ILL only * for on-link hosts. We should never be here for onlink. * Thus, use MATCH_IRE_ILL_GROUP. */ if (pire->ire_ipif != NULL) match_flags |= MATCH_IRE_ILL_GROUP; /* * We know that the mask of the interface ire equals cire->ire_cmask. * (When ip_newroute_v6() created 'cire' for an on-link destn. it set * its cmask from the interface ire's mask) */ ire = ire_ftable_lookup_v6(&cire->ire_addr_v6, &cire->ire_cmask_v6, 0, IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags); if (ire != NULL) return (ire); /* * If we didn't find an interface ire above, we can't declare failure. * For backwards compatibility, we need to support prefix routes * pointing to next hop gateways that are not on-link. * * Assume we are trying to ping some offlink destn, and we have the * routing table below. * * Eg. default - gw1 <--- pire (line 1) * gw1 - gw2 (line 2) * gw2 - hme0 (line 3) * * If we already have a cache ire for gw1 in 'cire', the * ire_ftable_lookup_v6 above would have failed, since there is no * interface ire to reach gw1. We will fallthru below. * * Here we duplicate the steps that ire_ftable_lookup_v6() did in * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. * The differences are the following * i. We want the interface ire only, so we call * ire_ftable_lookup_v6() instead of ire_route_lookup_v6() * ii. We look for only prefix routes in the 1st call below. * ii. We want to match on the ihandle in the 2nd call below. */ match_flags = MATCH_IRE_TYPE; if (pire->ire_ipif != NULL) match_flags |= MATCH_IRE_ILL_GROUP; mutex_enter(&pire->ire_lock); gw_addr = pire->ire_gateway_addr_v6; mutex_exit(&pire->ire_lock); ire = ire_ftable_lookup_v6(&gw_addr, 0, 0, IRE_OFFSUBNET, pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags); if (ire == NULL) return (NULL); /* * At this point 'ire' corresponds to the entry shown in line 2. * gw_addr is 'gw2' in the example above. */ mutex_enter(&ire->ire_lock); gw_addr = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); gw_ipif = ire->ire_ipif; ire_refrele(ire); match_flags |= MATCH_IRE_IHANDLE; ire = ire_ftable_lookup_v6(&gw_addr, 0, 0, IRE_INTERFACE, gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags); return (ire); } /* * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER * ire associated with the specified ipif. * * This might occasionally be called when IPIF_UP is not set since * the IPV6_MULTICAST_IF as well as creating interface routes * allows specifying a down ipif (ipif_lookup* match ipifs that are down). * * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on * the ipif this routine might return NULL. * (Sometimes called as writer though not required by this function.) */ ire_t * ipif_to_ire_v6(const ipif_t *ipif) { ire_t *ire; ASSERT(ipif->ipif_isv6); if (ipif->ipif_ire_type == IRE_LOOPBACK) { ire = ire_ctable_lookup_v6(&ipif->ipif_v6lcl_addr, NULL, IRE_LOOPBACK, ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { /* In this case we need to lookup destination address. */ ire = ire_ftable_lookup_v6(&ipif->ipif_v6pp_dst_addr, &ipv6_all_ones, NULL, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK)); } else { ire = ire_ftable_lookup_v6(&ipif->ipif_v6subnet, &ipif->ipif_v6net_mask, NULL, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK)); } return (ire); } /* * Return B_TRUE if a multirt route is resolvable * (or if no route is resolved yet), B_FALSE otherwise. * This only works in the global zone. */ boolean_t ire_multirt_need_resolve_v6(const in6_addr_t *v6dstp, const ts_label_t *tsl) { ire_t *first_fire; ire_t *first_cire; ire_t *fire; ire_t *cire; irb_t *firb; irb_t *cirb; int unres_cnt = 0; boolean_t resolvable = B_FALSE; /* Retrieve the first IRE_HOST that matches the destination */ first_fire = ire_ftable_lookup_v6(v6dstp, &ipv6_all_ones, 0, IRE_HOST, NULL, NULL, ALL_ZONES, 0, tsl, MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR); /* No route at all */ if (first_fire == NULL) { return (B_TRUE); } firb = first_fire->ire_bucket; ASSERT(firb); /* Retrieve the first IRE_CACHE ire for that destination. */ first_cire = ire_cache_lookup_v6(v6dstp, GLOBAL_ZONEID, tsl); /* No resolved route. */ if (first_cire == NULL) { ire_refrele(first_fire); return (B_TRUE); } /* At least one route is resolved. */ cirb = first_cire->ire_bucket; ASSERT(cirb); /* Count the number of routes to that dest that are declared. */ IRB_REFHOLD(firb); for (fire = first_fire; fire != NULL; fire = fire->ire_next) { if (!(fire->ire_flags & RTF_MULTIRT)) continue; if (!IN6_ARE_ADDR_EQUAL(&fire->ire_addr_v6, v6dstp)) continue; unres_cnt++; } IRB_REFRELE(firb); /* Then subtract the number of routes to that dst that are resolved */ IRB_REFHOLD(cirb); for (cire = first_cire; cire != NULL; cire = cire->ire_next) { if (!(cire->ire_flags & RTF_MULTIRT)) continue; if (!IN6_ARE_ADDR_EQUAL(&cire->ire_addr_v6, v6dstp)) continue; if (cire->ire_marks & (IRE_MARK_CONDEMNED|IRE_MARK_HIDDEN)) continue; unres_cnt--; } IRB_REFRELE(cirb); /* At least one route is unresolved; search for a resolvable route. */ if (unres_cnt > 0) resolvable = ire_multirt_lookup_v6(&first_cire, &first_fire, MULTIRT_USESTAMP|MULTIRT_CACHEGW, tsl); if (first_fire) ire_refrele(first_fire); if (first_cire) ire_refrele(first_cire); return (resolvable); } /* * Return B_TRUE and update *ire_arg and *fire_arg * if at least one resolvable route is found. * Return B_FALSE otherwise (all routes are resolved or * the remaining unresolved routes are all unresolvable). * This only works in the global zone. */ boolean_t ire_multirt_lookup_v6(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, const ts_label_t *tsl) { clock_t delta; ire_t *best_fire = NULL; ire_t *best_cire = NULL; ire_t *first_fire; ire_t *first_cire; ire_t *fire; ire_t *cire; irb_t *firb = NULL; irb_t *cirb = NULL; ire_t *gw_ire; boolean_t already_resolved; boolean_t res; in6_addr_t v6dst; in6_addr_t v6gw; ip2dbg(("ire_multirt_lookup_v6: *ire_arg %p, *fire_arg %p, " "flags %04x\n", (void *)*ire_arg, (void *)*fire_arg, flags)); ASSERT(ire_arg); ASSERT(fire_arg); /* Not an IRE_HOST ire; give up. */ if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { return (B_FALSE); } /* This is the first IRE_HOST ire for that destination. */ first_fire = *fire_arg; firb = first_fire->ire_bucket; ASSERT(firb); mutex_enter(&first_fire->ire_lock); v6dst = first_fire->ire_addr_v6; mutex_exit(&first_fire->ire_lock); ip2dbg(("ire_multirt_lookup_v6: dst %08x\n", ntohl(V4_PART_OF_V6(v6dst)))); /* * Retrieve the first IRE_CACHE ire for that destination; * if we don't find one, no route for that dest is * resolved yet. */ first_cire = ire_cache_lookup_v6(&v6dst, GLOBAL_ZONEID, tsl); if (first_cire) { cirb = first_cire->ire_bucket; } ip2dbg(("ire_multirt_lookup_v6: first_cire %p\n", (void *)first_cire)); /* * Search for a resolvable route, giving the top priority * to routes that can be resolved without any call to the resolver. */ IRB_REFHOLD(firb); if (!IN6_IS_ADDR_MULTICAST(&v6dst)) { /* * For all multiroute IRE_HOST ires for that destination, * check if the route via the IRE_HOST's gateway is * resolved yet. */ for (fire = first_fire; fire != NULL; fire = fire->ire_next) { if (!(fire->ire_flags & RTF_MULTIRT)) continue; if (!IN6_ARE_ADDR_EQUAL(&fire->ire_addr_v6, &v6dst)) continue; if (fire->ire_gw_secattr != NULL && tsol_ire_match_gwattr(fire, tsl) != 0) { continue; } mutex_enter(&fire->ire_lock); v6gw = fire->ire_gateway_addr_v6; mutex_exit(&fire->ire_lock); ip2dbg(("ire_multirt_lookup_v6: fire %p, " "ire_addr %08x, ire_gateway_addr %08x\n", (void *)fire, ntohl(V4_PART_OF_V6(fire->ire_addr_v6)), ntohl(V4_PART_OF_V6(v6gw)))); already_resolved = B_FALSE; if (first_cire) { ASSERT(cirb); IRB_REFHOLD(cirb); /* * For all IRE_CACHE ires for that * destination. */ for (cire = first_cire; cire != NULL; cire = cire->ire_next) { if (!(cire->ire_flags & RTF_MULTIRT)) continue; if (!IN6_ARE_ADDR_EQUAL( &cire->ire_addr_v6, &v6dst)) continue; if (cire->ire_marks & (IRE_MARK_CONDEMNED| IRE_MARK_HIDDEN)) continue; if (cire->ire_gw_secattr != NULL && tsol_ire_match_gwattr(cire, tsl) != 0) { continue; } /* * Check if the IRE_CACHE's gateway * matches the IRE_HOST's gateway. */ if (IN6_ARE_ADDR_EQUAL( &cire->ire_gateway_addr_v6, &v6gw)) { already_resolved = B_TRUE; break; } } IRB_REFRELE(cirb); } /* * This route is already resolved; * proceed with next one. */ if (already_resolved) { ip2dbg(("ire_multirt_lookup_v6: found cire %p, " "already resolved\n", (void *)cire)); continue; } /* * The route is unresolved; is it actually * resolvable, i.e. is there a cache or a resolver * for the gateway? */ gw_ire = ire_route_lookup_v6(&v6gw, 0, 0, 0, NULL, NULL, ALL_ZONES, tsl, MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR); ip2dbg(("ire_multirt_lookup_v6: looked up gw_ire %p\n", (void *)gw_ire)); /* * This route can be resolved without any call to the * resolver; if the MULTIRT_CACHEGW flag is set, * give the top priority to this ire and exit the * loop. * This occurs when an resolver reply is processed * through ip_wput_nondata() */ if ((flags & MULTIRT_CACHEGW) && (gw_ire != NULL) && (gw_ire->ire_type & IRE_CACHETABLE)) { /* * Release the resolver associated to the * previous candidate best ire, if any. */ if (best_cire) { ire_refrele(best_cire); ASSERT(best_fire); } best_fire = fire; best_cire = gw_ire; ip2dbg(("ire_multirt_lookup_v6: found top prio " "best_fire %p, best_cire %p\n", (void *)best_fire, (void *)best_cire)); break; } /* * Compute the time elapsed since our preceding * attempt to resolve that route. * If the MULTIRT_USESTAMP flag is set, we take that * route into account only if this time interval * exceeds ip_multirt_resolution_interval; * this prevents us from attempting to resolve a * broken route upon each sending of a packet. */ delta = lbolt - fire->ire_last_used_time; delta = TICK_TO_MSEC(delta); res = (boolean_t) ((delta > ip_multirt_resolution_interval) || (!(flags & MULTIRT_USESTAMP))); ip2dbg(("ire_multirt_lookup_v6: fire %p, delta %lu, " "res %d\n", (void *)fire, delta, res)); if (res) { /* * A resolver exists for the gateway: save * the current IRE_HOST ire as a candidate * best ire. If we later discover that a * top priority ire exists (i.e. no need to * call the resolver), then this new ire * will be preferred to the current one. */ if (gw_ire != NULL) { if (best_fire == NULL) { ASSERT(best_cire == NULL); best_fire = fire; best_cire = gw_ire; ip2dbg(("ire_multirt_lookup_v6:" "found candidate " "best_fire %p, " "best_cire %p\n", (void *)best_fire, (void *)best_cire)); /* * If MULTIRT_CACHEGW is not * set, we ignore the top * priority ires that can * be resolved without any * call to the resolver; * In that case, there is * actually no need * to continue the loop. */ if (!(flags & MULTIRT_CACHEGW)) { break; } continue; } } else { /* * No resolver for the gateway: the * route is not resolvable. * If the MULTIRT_SETSTAMP flag is * set, we stamp the IRE_HOST ire, * so we will not select it again * during this resolution interval. */ if (flags & MULTIRT_SETSTAMP) fire->ire_last_used_time = lbolt; } } if (gw_ire != NULL) ire_refrele(gw_ire); } } else { /* IN6_IS_ADDR_MULTICAST(&v6dst) */ for (fire = first_fire; fire != NULL; fire = fire->ire_next) { if (!(fire->ire_flags & RTF_MULTIRT)) continue; if (!IN6_ARE_ADDR_EQUAL(&fire->ire_addr_v6, &v6dst)) continue; if (fire->ire_gw_secattr != NULL && tsol_ire_match_gwattr(fire, tsl) != 0) { continue; } already_resolved = B_FALSE; mutex_enter(&fire->ire_lock); v6gw = fire->ire_gateway_addr_v6; mutex_exit(&fire->ire_lock); gw_ire = ire_ftable_lookup_v6(&v6gw, 0, 0, IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, tsl, MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | MATCH_IRE_SECATTR); /* No resolver for the gateway; we skip this ire. */ if (gw_ire == NULL) { continue; } if (first_cire) { IRB_REFHOLD(cirb); /* * For all IRE_CACHE ires for that * destination. */ for (cire = first_cire; cire != NULL; cire = cire->ire_next) { if (!(cire->ire_flags & RTF_MULTIRT)) continue; if (!IN6_ARE_ADDR_EQUAL( &cire->ire_addr_v6, &v6dst)) continue; if (cire->ire_marks & (IRE_MARK_CONDEMNED| IRE_MARK_HIDDEN)) continue; if (cire->ire_gw_secattr != NULL && tsol_ire_match_gwattr(cire, tsl) != 0) { continue; } /* * Cache entries are linked to the * parent routes using the parent handle * (ire_phandle). If no cache entry has * the same handle as fire, fire is * still unresolved. */ ASSERT(cire->ire_phandle != 0); if (cire->ire_phandle == fire->ire_phandle) { already_resolved = B_TRUE; break; } } IRB_REFRELE(cirb); } /* * This route is already resolved; proceed with * next one. */ if (already_resolved) { ire_refrele(gw_ire); continue; } /* * Compute the time elapsed since our preceding * attempt to resolve that route. * If the MULTIRT_USESTAMP flag is set, we take * that route into account only if this time * interval exceeds ip_multirt_resolution_interval; * this prevents us from attempting to resolve a * broken route upon each sending of a packet. */ delta = lbolt - fire->ire_last_used_time; delta = TICK_TO_MSEC(delta); res = (boolean_t) ((delta > ip_multirt_resolution_interval) || (!(flags & MULTIRT_USESTAMP))); ip3dbg(("ire_multirt_lookup_v6: fire %p, delta %lx, " "flags %04x, res %d\n", (void *)fire, delta, flags, res)); if (res) { if (best_cire) { /* * Release the resolver associated * to the preceding candidate best * ire, if any. */ ire_refrele(best_cire); ASSERT(best_fire); } best_fire = fire; best_cire = gw_ire; continue; } ire_refrele(gw_ire); } } if (best_fire) { IRE_REFHOLD(best_fire); } IRB_REFRELE(firb); /* Release the first IRE_CACHE we initially looked up, if any. */ if (first_cire) ire_refrele(first_cire); /* Found a resolvable route. */ if (best_fire) { ASSERT(best_cire); if (*fire_arg) ire_refrele(*fire_arg); if (*ire_arg) ire_refrele(*ire_arg); /* * Update the passed arguments with the * resolvable multirt route we found */ *fire_arg = best_fire; *ire_arg = best_cire; ip2dbg(("ire_multirt_lookup_v6: returning B_TRUE, " "*fire_arg %p, *ire_arg %p\n", (void *)best_fire, (void *)best_cire)); return (B_TRUE); } ASSERT(best_cire == NULL); ip2dbg(("ire_multirt_lookup_v6: returning B_FALSE, *fire_arg %p, " "*ire_arg %p\n", (void *)*fire_arg, (void *)*ire_arg)); /* No resolvable route. */ return (B_FALSE); } /* * Find an IRE_OFFSUBNET IRE entry for the multicast address 'v6dstp' * that goes through 'ipif'. As a fallback, a route that goes through * ipif->ipif_ill can be returned. */ ire_t * ipif_lookup_multi_ire_v6(ipif_t *ipif, const in6_addr_t *v6dstp) { ire_t *ire; ire_t *save_ire = NULL; ire_t *gw_ire; irb_t *irb; in6_addr_t v6gw; int match_flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; ire = ire_ftable_lookup_v6(v6dstp, 0, 0, 0, NULL, NULL, ALL_ZONES, 0, NULL, MATCH_IRE_DEFAULT); if (ire == NULL) return (NULL); irb = ire->ire_bucket; ASSERT(irb); IRB_REFHOLD(irb); ire_refrele(ire); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6dstp) || (ipif->ipif_zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES)) { continue; } switch (ire->ire_type) { case IRE_DEFAULT: case IRE_PREFIX: case IRE_HOST: mutex_enter(&ire->ire_lock); v6gw = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); gw_ire = ire_ftable_lookup_v6(&v6gw, 0, 0, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, match_flags); if (gw_ire != NULL) { if (save_ire != NULL) { ire_refrele(save_ire); } IRE_REFHOLD(ire); if (gw_ire->ire_ipif == ipif) { ire_refrele(gw_ire); IRB_REFRELE(irb); return (ire); } ire_refrele(gw_ire); save_ire = ire; } break; case IRE_IF_NORESOLVER: case IRE_IF_RESOLVER: if (ire->ire_ipif == ipif) { if (save_ire != NULL) { ire_refrele(save_ire); } IRE_REFHOLD(ire); IRB_REFRELE(irb); return (ire); } break; } } IRB_REFRELE(irb); return (save_ire); }