/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990 Mentat Inc. */ #pragma ident "%Z%%M% %I% %E% SMI" #include <sys/types.h> #include <sys/stream.h> #include <sys/stropts.h> #include <sys/strlog.h> #include <sys/strsun.h> #define _SUN_TPI_VERSION 2 #include <sys/tihdr.h> #include <sys/timod.h> #include <sys/ddi.h> #include <sys/sunddi.h> #include <sys/strsubr.h> #include <sys/cmn_err.h> #include <sys/debug.h> #include <sys/kmem.h> #include <sys/policy.h> #include <sys/priv.h> #include <sys/zone.h> #include <sys/time.h> #include <sys/socket.h> #include <sys/isa_defs.h> #include <sys/suntpi.h> #include <sys/xti_inet.h> #include <sys/netstack.h> #include <net/route.h> #include <net/if.h> #include <netinet/in.h> #include <netinet/ip6.h> #include <netinet/icmp6.h> #include <inet/common.h> #include <inet/ip.h> #include <inet/ip6.h> #include <inet/mi.h> #include <inet/nd.h> #include <inet/optcom.h> #include <inet/snmpcom.h> #include <inet/kstatcom.h> #include <inet/rawip_impl.h> #include <netinet/ip_mroute.h> #include <inet/tcp.h> #include <net/pfkeyv2.h> #include <inet/ipsec_info.h> #include <inet/ipclassifier.h> #include <sys/tsol/label.h> #include <sys/tsol/tnet.h> #include <inet/ip_ire.h> #include <inet/ip_if.h> #include <inet/ip_impl.h> /* * Synchronization notes: * * RAWIP is MT and uses the usual kernel synchronization primitives. There is * locks, which is icmp_rwlock. We also use conn_lock when updating things * which affect the IP classifier lookup. * The lock order is icmp_rwlock -> conn_lock. * * The icmp_rwlock: * This protects most of the other fields in the icmp_t. The exact list of * fields which are protected by each of the above locks is documented in * the icmp_t structure definition. * * Plumbing notes: * ICMP is always a device driver. For compatibility with mibopen() code * it is possible to I_PUSH "icmp", but that results in pushing a passthrough * dummy module. */ static void icmp_addr_req(queue_t *q, mblk_t *mp); static void icmp_bind(queue_t *q, mblk_t *mp); static void icmp_bind_proto(queue_t *q); static void icmp_bind_result(conn_t *, mblk_t *); static void icmp_bind_ack(conn_t *, mblk_t *mp); static void icmp_bind_error(conn_t *, mblk_t *mp); static int icmp_build_hdrs(icmp_t *icmp); static void icmp_capability_req(queue_t *q, mblk_t *mp); static int icmp_close(queue_t *q); static void icmp_connect(queue_t *q, mblk_t *mp); static void icmp_disconnect(queue_t *q, mblk_t *mp); static void icmp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error); static void icmp_err_ack_prim(queue_t *q, mblk_t *mp, t_scalar_t primitive, t_scalar_t t_error, int sys_error); static void icmp_icmp_error(queue_t *q, mblk_t *mp); static void icmp_icmp_error_ipv6(queue_t *q, mblk_t *mp); static void icmp_info_req(queue_t *q, mblk_t *mp); static void icmp_input(void *, mblk_t *, void *); static mblk_t *icmp_ip_bind_mp(icmp_t *icmp, t_scalar_t bind_prim, t_scalar_t addr_length, in_port_t); static int icmp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, boolean_t isv6); static int icmp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp); static int icmp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp); static void icmp_output(queue_t *q, mblk_t *mp); static int icmp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, void *thisdg_attrs); static boolean_t icmp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); int icmp_opt_set(queue_t *q, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk); int icmp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); static int icmp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static boolean_t icmp_param_register(IDP *ndp, icmpparam_t *icmppa, int cnt); static int icmp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int icmp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr, int len); static int icmp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static void icmp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err); static void icmp_unbind(queue_t *q, mblk_t *mp); static void icmp_wput(queue_t *q, mblk_t *mp); static void icmp_wput_ipv6(queue_t *q, mblk_t *mp, sin6_t *sin6, t_scalar_t tudr_optlen); static void icmp_wput_other(queue_t *q, mblk_t *mp); static void icmp_wput_iocdata(queue_t *q, mblk_t *mp); static void icmp_wput_restricted(queue_t *q, mblk_t *mp); static void *rawip_stack_init(netstackid_t stackid, netstack_t *ns); static void rawip_stack_fini(netstackid_t stackid, void *arg); static void *rawip_kstat_init(netstackid_t stackid); static void rawip_kstat_fini(netstackid_t stackid, kstat_t *ksp); static int rawip_kstat_update(kstat_t *kp, int rw); static struct module_info icmp_mod_info = { 5707, "icmp", 1, INFPSZ, 512, 128 }; /* * Entry points for ICMP as a device. * We have separate open functions for the /dev/icmp and /dev/icmp6 devices. */ static struct qinit icmprinitv4 = { NULL, NULL, icmp_openv4, icmp_close, NULL, &icmp_mod_info }; static struct qinit icmprinitv6 = { NULL, NULL, icmp_openv6, icmp_close, NULL, &icmp_mod_info }; static struct qinit icmpwinit = { (pfi_t)icmp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, &icmp_mod_info }; /* For AF_INET aka /dev/icmp */ struct streamtab icmpinfov4 = { &icmprinitv4, &icmpwinit }; /* For AF_INET6 aka /dev/icmp6 */ struct streamtab icmpinfov6 = { &icmprinitv6, &icmpwinit }; static sin_t sin_null; /* Zero address for quick clears */ static sin6_t sin6_null; /* Zero address for quick clears */ /* Default structure copied into T_INFO_ACK messages */ static struct T_info_ack icmp_g_t_info_ack = { T_INFO_ACK, IP_MAXPACKET, /* TSDU_size. icmp allows maximum size messages. */ T_INVALID, /* ETSDU_size. icmp does not support expedited data. */ T_INVALID, /* CDATA_size. icmp does not support connect data. */ T_INVALID, /* DDATA_size. icmp does not support disconnect data. */ 0, /* ADDR_size - filled in later. */ 0, /* OPT_size - not initialized here */ IP_MAXPACKET, /* TIDU_size. icmp allows maximum size messages. */ T_CLTS, /* SERV_type. icmp supports connection-less. */ TS_UNBND, /* CURRENT_state. This is set from icmp_state. */ (XPG4_1|SENDZERO) /* PROVIDER_flag */ }; /* * Table of ND variables supported by icmp. These are loaded into is_nd * when the stack instance is created. * All of these are alterable, within the min/max values given, at run time. */ static icmpparam_t icmp_param_arr[] = { /* min max value name */ { 0, 128, 32, "icmp_wroff_extra" }, { 1, 255, 255, "icmp_ipv4_ttl" }, { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "icmp_ipv6_hoplimit"}, { 0, 1, 1, "icmp_bsd_compat" }, { 4096, 65536, 8192, "icmp_xmit_hiwat"}, { 0, 65536, 1024, "icmp_xmit_lowat"}, { 4096, 65536, 8192, "icmp_recv_hiwat"}, { 65536, 1024*1024*1024, 256*1024, "icmp_max_buf"}, }; #define is_wroff_extra is_param_arr[0].icmp_param_value #define is_ipv4_ttl is_param_arr[1].icmp_param_value #define is_ipv6_hoplimit is_param_arr[2].icmp_param_value #define is_bsd_compat is_param_arr[3].icmp_param_value #define is_xmit_hiwat is_param_arr[4].icmp_param_value #define is_xmit_lowat is_param_arr[5].icmp_param_value #define is_recv_hiwat is_param_arr[6].icmp_param_value #define is_max_buf is_param_arr[7].icmp_param_value /* * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message * passed to icmp_wput. * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the ICMP * protocol type placed in the message following the address. A T_BIND_ACK * message is returned by ip_bind_v4/v6. */ static void icmp_bind(queue_t *q, mblk_t *mp) { sin_t *sin; sin6_t *sin6; mblk_t *mp1; struct T_bind_req *tbr; icmp_t *icmp; conn_t *connp = Q_TO_CONN(q); icmp = connp->conn_icmp; if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "icmp_bind: bad req, len %u", (uint_t)(mp->b_wptr - mp->b_rptr)); icmp_err_ack(q, mp, TPROTO, 0); return; } if (icmp->icmp_state != TS_UNBND) { (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "icmp_bind: bad state, %d", icmp->icmp_state); icmp_err_ack(q, mp, TOUTSTATE, 0); return; } /* * Reallocate the message to make sure we have enough room for an * address and the protocol type. */ mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); if (!mp1) { icmp_err_ack(q, mp, TSYSERR, ENOMEM); return; } mp = mp1; tbr = (struct T_bind_req *)mp->b_rptr; switch (tbr->ADDR_length) { case 0: /* Generic request */ tbr->ADDR_offset = sizeof (struct T_bind_req); if (icmp->icmp_family == AF_INET) { tbr->ADDR_length = sizeof (sin_t); sin = (sin_t *)&tbr[1]; *sin = sin_null; sin->sin_family = AF_INET; mp->b_wptr = (uchar_t *)&sin[1]; } else { ASSERT(icmp->icmp_family == AF_INET6); tbr->ADDR_length = sizeof (sin6_t); sin6 = (sin6_t *)&tbr[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; mp->b_wptr = (uchar_t *)&sin6[1]; } break; case sizeof (sin_t): /* Complete IP address */ sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin_t)); if (sin == NULL || !OK_32PTR((char *)sin)) { icmp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (icmp->icmp_family != AF_INET || sin->sin_family != AF_INET) { icmp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } break; case sizeof (sin6_t): /* Complete IP address */ sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin6_t)); if (sin6 == NULL || !OK_32PTR((char *)sin6)) { icmp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (icmp->icmp_family != AF_INET6 || sin6->sin6_family != AF_INET6) { icmp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } /* No support for mapped addresses on raw sockets */ if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { icmp_err_ack(q, mp, TSYSERR, EADDRNOTAVAIL); return; } break; default: (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "icmp_bind: bad ADDR_length %d", tbr->ADDR_length); icmp_err_ack(q, mp, TBADADDR, 0); return; } /* * The state must be TS_UNBND. TPI mandates that users must send * TPI primitives only 1 at a time and wait for the response before * sending the next primitive. */ rw_enter(&icmp->icmp_rwlock, RW_WRITER); if (icmp->icmp_state != TS_UNBND || icmp->icmp_pending_op != -1) { rw_exit(&icmp->icmp_rwlock); (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "icmp_bind: bad state, %d", icmp->icmp_state); icmp_err_ack(q, mp, TOUTSTATE, 0); return; } icmp->icmp_pending_op = tbr->PRIM_type; /* * Copy the source address into our icmp structure. This address * may still be zero; if so, ip will fill in the correct address * each time an outbound packet is passed to it. * If we are binding to a broadcast or multicast address then * icmp_bind_ack will clear the source address when it receives * the T_BIND_ACK. */ icmp->icmp_state = TS_IDLE; if (icmp->icmp_family == AF_INET) { ASSERT(sin != NULL); ASSERT(icmp->icmp_ipversion == IPV4_VERSION); IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &icmp->icmp_v6src); icmp->icmp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + icmp->icmp_ip_snd_options_len; icmp->icmp_bound_v6src = icmp->icmp_v6src; } else { int error; ASSERT(sin6 != NULL); ASSERT(icmp->icmp_ipversion == IPV6_VERSION); icmp->icmp_v6src = sin6->sin6_addr; icmp->icmp_max_hdr_len = icmp->icmp_sticky_hdrs_len; icmp->icmp_bound_v6src = icmp->icmp_v6src; /* Rebuild the header template */ error = icmp_build_hdrs(icmp); if (error != 0) { icmp->icmp_pending_op = -1; rw_exit(&icmp->icmp_rwlock); icmp_err_ack(q, mp, TSYSERR, error); return; } } /* * Place protocol type in the O_T_BIND_REQ/T_BIND_REQ following * the address. */ *mp->b_wptr++ = icmp->icmp_proto; if (!(V6_OR_V4_INADDR_ANY(icmp->icmp_v6src))) { /* * Append a request for an IRE if src not 0 (INADDR_ANY) */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (!mp->b_cont) { icmp->icmp_pending_op = -1; rw_exit(&icmp->icmp_rwlock); icmp_err_ack(q, mp, TSYSERR, ENOMEM); return; } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; } rw_exit(&icmp->icmp_rwlock); /* Pass the O_T_BIND_REQ/T_BIND_REQ to ip. */ if (icmp->icmp_family == AF_INET6) mp = ip_bind_v6(q, mp, connp, NULL); else mp = ip_bind_v4(q, mp, connp); /* The above return NULL if the bind needs to be deferred */ if (mp != NULL) icmp_bind_result(connp, mp); else CONN_INC_REF(connp); } /* * Send message to IP to just bind to the protocol. */ static void icmp_bind_proto(queue_t *q) { mblk_t *mp; struct T_bind_req *tbr; icmp_t *icmp; conn_t *connp = Q_TO_CONN(q); icmp = connp->conn_icmp; mp = allocb(sizeof (struct T_bind_req) + sizeof (sin6_t) + 1, BPRI_MED); if (!mp) { return; } mp->b_datap->db_type = M_PROTO; tbr = (struct T_bind_req *)mp->b_rptr; tbr->PRIM_type = O_T_BIND_REQ; /* change to T_BIND_REQ ? */ tbr->ADDR_offset = sizeof (struct T_bind_req); rw_enter(&icmp->icmp_rwlock, RW_WRITER); if (icmp->icmp_ipversion == IPV4_VERSION) { sin_t *sin; tbr->ADDR_length = sizeof (sin_t); sin = (sin_t *)&tbr[1]; *sin = sin_null; sin->sin_family = AF_INET; mp->b_wptr = (uchar_t *)&sin[1]; } else { sin6_t *sin6; ASSERT(icmp->icmp_ipversion == IPV6_VERSION); tbr->ADDR_length = sizeof (sin6_t); sin6 = (sin6_t *)&tbr[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; mp->b_wptr = (uchar_t *)&sin6[1]; } /* Place protocol type in the O_T_BIND_REQ following the address. */ *mp->b_wptr++ = icmp->icmp_proto; rw_exit(&icmp->icmp_rwlock); /* Pass the O_T_BIND_REQ to ip. */ if (icmp->icmp_family == AF_INET6) mp = ip_bind_v6(q, mp, connp, NULL); else mp = ip_bind_v4(q, mp, connp); /* The above return NULL if the bind needs to be deferred */ if (mp != NULL) icmp_bind_result(connp, mp); else CONN_INC_REF(connp); } /* * This is called from ip_wput_nondata to handle the results of a * deferred RAWIP bind. It is called once the bind has been completed. */ void rawip_resume_bind(conn_t *connp, mblk_t *mp) { ASSERT(connp != NULL && IPCL_IS_RAWIP(connp)); icmp_bind_result(connp, mp); CONN_OPER_PENDING_DONE(connp); } /* * This routine handles each T_CONN_REQ message passed to icmp. It * associates a default destination address with the stream. * * This routine sends down a T_BIND_REQ to IP with the following mblks: * T_BIND_REQ - specifying local and remote address. * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src * T_OK_ACK - for the T_CONN_REQ * T_CONN_CON - to keep the TPI user happy * * The connect completes in icmp_bind_result. * When a T_BIND_ACK is received information is extracted from the IRE * and the two appended messages are sent to the TPI user. * Should icmp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will * convert it to an error ack for the appropriate primitive. */ static void icmp_connect(queue_t *q, mblk_t *mp) { sin_t *sin; sin6_t *sin6; mblk_t *mp1, *mp2; struct T_conn_req *tcr; icmp_t *icmp; ipaddr_t v4dst; in6_addr_t v6dst; uint32_t flowinfo; conn_t *connp = Q_TO_CONN(q); icmp = connp->conn_icmp; tcr = (struct T_conn_req *)mp->b_rptr; /* Sanity checks */ if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { icmp_err_ack(q, mp, TPROTO, 0); return; } if (tcr->OPT_length != 0) { icmp_err_ack(q, mp, TBADOPT, 0); return; } switch (tcr->DEST_length) { default: icmp_err_ack(q, mp, TBADADDR, 0); return; case sizeof (sin_t): sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin_t)); if (sin == NULL || !OK_32PTR((char *)sin)) { icmp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (icmp->icmp_family != AF_INET || sin->sin_family != AF_INET) { icmp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } v4dst = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); ASSERT(icmp->icmp_ipversion == IPV4_VERSION); icmp->icmp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + icmp->icmp_ip_snd_options_len; break; case sizeof (sin6_t): sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin6_t)); if (sin6 == NULL || !OK_32PTR((char *)sin6)) { icmp_err_ack(q, mp, TSYSERR, EINVAL); return; } if (icmp->icmp_family != AF_INET6 || sin6->sin6_family != AF_INET6) { icmp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); return; } /* No support for mapped addresses on raw sockets */ if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { icmp_err_ack(q, mp, TSYSERR, EADDRNOTAVAIL); return; } v6dst = sin6->sin6_addr; ASSERT(icmp->icmp_ipversion == IPV6_VERSION); icmp->icmp_max_hdr_len = icmp->icmp_sticky_hdrs_len; flowinfo = sin6->sin6_flowinfo; break; } if (icmp->icmp_ipversion == IPV4_VERSION) { /* * Interpret a zero destination to mean loopback. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ if (v4dst == INADDR_ANY) { v4dst = htonl(INADDR_LOOPBACK); IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); if (icmp->icmp_family == AF_INET) { sin->sin_addr.s_addr = v4dst; } else { sin6->sin6_addr = v6dst; } } icmp->icmp_v6dst = v6dst; icmp->icmp_flowinfo = 0; /* * If the destination address is multicast and * an outgoing multicast interface has been set, * use the address of that interface as our * source address if no source address has been set. */ if (V4_PART_OF_V6(icmp->icmp_v6src) == INADDR_ANY && CLASSD(v4dst) && icmp->icmp_multicast_if_addr != INADDR_ANY) { IN6_IPADDR_TO_V4MAPPED(icmp->icmp_multicast_if_addr, &icmp->icmp_v6src); } } else { ASSERT(icmp->icmp_ipversion == IPV6_VERSION); /* * Interpret a zero destination to mean loopback. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { v6dst = ipv6_loopback; sin6->sin6_addr = v6dst; } icmp->icmp_v6dst = v6dst; icmp->icmp_flowinfo = flowinfo; /* * If the destination address is multicast and * an outgoing multicast interface has been set, * then the ip bind logic will pick the correct source * address (i.e. matching the outgoing multicast interface). */ } rw_enter(&icmp->icmp_rwlock, RW_WRITER); if (icmp->icmp_state == TS_UNBND || icmp->icmp_pending_op != -1) { rw_exit(&icmp->icmp_rwlock); (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "icmp_connect: bad state, %d", icmp->icmp_state); icmp_err_ack(q, mp, TOUTSTATE, 0); return; } icmp->icmp_pending_op = T_CONN_REQ; if (icmp->icmp_state == TS_DATA_XFER) { /* Already connected - clear out state */ icmp->icmp_v6src = icmp->icmp_bound_v6src; icmp->icmp_state = TS_IDLE; } /* * Send down bind to IP to verify that there is a route * and to determine the source address. * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. */ if (icmp->icmp_family == AF_INET) { mp1 = icmp_ip_bind_mp(icmp, O_T_BIND_REQ, sizeof (ipa_conn_t), sin->sin_port); } else { ASSERT(icmp->icmp_family == AF_INET6); mp1 = icmp_ip_bind_mp(icmp, O_T_BIND_REQ, sizeof (ipa6_conn_t), sin6->sin6_port); } if (mp1 == NULL) { icmp->icmp_pending_op = -1; rw_exit(&icmp->icmp_rwlock); icmp_err_ack(q, mp, TSYSERR, ENOMEM); return; } /* * We also have to send a connection confirmation to * keep TLI happy. Prepare it for icmp_bind_result. */ if (icmp->icmp_family == AF_INET) { mp2 = mi_tpi_conn_con(NULL, (char *)sin, sizeof (*sin), NULL, 0); } else { ASSERT(icmp->icmp_family == AF_INET6); mp2 = mi_tpi_conn_con(NULL, (char *)sin6, sizeof (*sin6), NULL, 0); } if (mp2 == NULL) { freemsg(mp1); icmp->icmp_pending_op = -1; rw_exit(&icmp->icmp_rwlock); icmp_err_ack(q, mp, TSYSERR, ENOMEM); return; } mp = mi_tpi_ok_ack_alloc(mp); if (mp == NULL) { /* Unable to reuse the T_CONN_REQ for the ack. */ freemsg(mp2); icmp->icmp_pending_op = -1; rw_exit(&icmp->icmp_rwlock); icmp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); return; } icmp->icmp_state = TS_DATA_XFER; rw_exit(&icmp->icmp_rwlock); /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ linkb(mp1, mp); linkb(mp1, mp2); mblk_setcred(mp1, connp->conn_cred); if (icmp->icmp_family == AF_INET) mp1 = ip_bind_v4(q, mp1, connp); else mp1 = ip_bind_v6(q, mp1, connp, NULL); /* The above return NULL if the bind needs to be deferred */ if (mp1 != NULL) icmp_bind_result(connp, mp1); else CONN_INC_REF(connp); } static void icmp_close_free(conn_t *connp) { icmp_t *icmp = connp->conn_icmp; /* If there are any options associated with the stream, free them. */ if (icmp->icmp_ip_snd_options != NULL) { mi_free((char *)icmp->icmp_ip_snd_options); icmp->icmp_ip_snd_options = NULL; icmp->icmp_ip_snd_options_len = 0; } if (icmp->icmp_filter != NULL) { kmem_free(icmp->icmp_filter, sizeof (icmp6_filter_t)); icmp->icmp_filter = NULL; } /* Free memory associated with sticky options */ if (icmp->icmp_sticky_hdrs_len != 0) { kmem_free(icmp->icmp_sticky_hdrs, icmp->icmp_sticky_hdrs_len); icmp->icmp_sticky_hdrs = NULL; icmp->icmp_sticky_hdrs_len = 0; } ip6_pkt_free(&icmp->icmp_sticky_ipp); /* * Clear any fields which the kmem_cache constructor clears. * Only icmp_connp needs to be preserved. * TBD: We should make this more efficient to avoid clearing * everything. */ ASSERT(icmp->icmp_connp == connp); bzero(icmp, sizeof (icmp_t)); icmp->icmp_connp = connp; } static int icmp_close(queue_t *q) { conn_t *connp = (conn_t *)q->q_ptr; ASSERT(connp != NULL && IPCL_IS_RAWIP(connp)); ip_quiesce_conn(connp); qprocsoff(connp->conn_rq); icmp_close_free(connp); /* * Now we are truly single threaded on this stream, and can * delete the things hanging off the connp, and finally the connp. * We removed this connp from the fanout list, it cannot be * accessed thru the fanouts, and we already waited for the * conn_ref to drop to 0. We are already in close, so * there cannot be any other thread from the top. qprocsoff * has completed, and service has completed or won't run in * future. */ ASSERT(connp->conn_ref == 1); inet_minor_free(connp->conn_minor_arena, connp->conn_dev); connp->conn_ref--; ipcl_conn_destroy(connp); q->q_ptr = WR(q)->q_ptr = NULL; return (0); } /* * This routine handles each T_DISCON_REQ message passed to icmp * as an indicating that ICMP is no longer connected. This results * in sending a T_BIND_REQ to IP to restore the binding to just * the local address. * * This routine sends down a T_BIND_REQ to IP with the following mblks: * T_BIND_REQ - specifying just the local address. * T_OK_ACK - for the T_DISCON_REQ * * The disconnect completes in icmp_bind_result. * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. * Should icmp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will * convert it to an error ack for the appropriate primitive. */ static void icmp_disconnect(queue_t *q, mblk_t *mp) { icmp_t *icmp; mblk_t *mp1; conn_t *connp = Q_TO_CONN(q); icmp = connp->conn_icmp; rw_enter(&icmp->icmp_rwlock, RW_WRITER); if (icmp->icmp_state != TS_DATA_XFER || icmp->icmp_pending_op != -1) { rw_exit(&icmp->icmp_rwlock); (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, "icmp_disconnect: bad state, %d", icmp->icmp_state); icmp_err_ack(q, mp, TOUTSTATE, 0); return; } icmp->icmp_pending_op = T_DISCON_REQ; icmp->icmp_v6src = icmp->icmp_bound_v6src; icmp->icmp_state = TS_IDLE; /* * Send down bind to IP to remove the full binding and revert * to the local address binding. */ if (icmp->icmp_family == AF_INET) { mp1 = icmp_ip_bind_mp(icmp, O_T_BIND_REQ, sizeof (sin_t), 0); } else { ASSERT(icmp->icmp_family == AF_INET6); mp1 = icmp_ip_bind_mp(icmp, O_T_BIND_REQ, sizeof (sin6_t), 0); } if (mp1 == NULL) { icmp->icmp_pending_op = -1; rw_exit(&icmp->icmp_rwlock); icmp_err_ack(q, mp, TSYSERR, ENOMEM); return; } mp = mi_tpi_ok_ack_alloc(mp); if (mp == NULL) { /* Unable to reuse the T_DISCON_REQ for the ack. */ icmp->icmp_pending_op = -1; rw_exit(&icmp->icmp_rwlock); icmp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); return; } if (icmp->icmp_family == AF_INET6) { int error; /* Rebuild the header template */ error = icmp_build_hdrs(icmp); if (error != 0) { icmp->icmp_pending_op = -1; rw_exit(&icmp->icmp_rwlock); icmp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); freemsg(mp1); return; } } rw_exit(&icmp->icmp_rwlock); /* Append the T_OK_ACK to the T_BIND_REQ for icmp_bind_result */ linkb(mp1, mp); if (icmp->icmp_family == AF_INET6) mp1 = ip_bind_v6(q, mp1, connp, NULL); else mp1 = ip_bind_v4(q, mp1, connp); /* The above return NULL if the bind needs to be deferred */ if (mp1 != NULL) icmp_bind_result(connp, mp1); else CONN_INC_REF(connp); } /* This routine creates a T_ERROR_ACK message and passes it upstream. */ static void icmp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) { if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) qreply(q, mp); } /* Shorthand to generate and send TPI error acks to our client */ static void icmp_err_ack_prim(queue_t *q, mblk_t *mp, t_scalar_t primitive, t_scalar_t t_error, int sys_error) { struct T_error_ack *teackp; if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), M_PCPROTO, T_ERROR_ACK)) != NULL) { teackp = (struct T_error_ack *)mp->b_rptr; teackp->ERROR_prim = primitive; teackp->TLI_error = t_error; teackp->UNIX_error = sys_error; qreply(q, mp); } } /* * icmp_icmp_error is called by icmp_input to process ICMP * messages passed up by IP. * Generates the appropriate T_UDERROR_IND for permanent * (non-transient) errors. * Assumes that IP has pulled up everything up to and including * the ICMP header. */ static void icmp_icmp_error(queue_t *q, mblk_t *mp) { icmph_t *icmph; ipha_t *ipha; int iph_hdr_length; sin_t sin; sin6_t sin6; mblk_t *mp1; int error = 0; icmp_t *icmp = Q_TO_ICMP(q); ipha = (ipha_t *)mp->b_rptr; ASSERT(OK_32PTR(mp->b_rptr)); if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); icmp_icmp_error_ipv6(q, mp); return; } ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); /* Skip past the outer IP and ICMP headers */ iph_hdr_length = IPH_HDR_LENGTH(ipha); icmph = (icmph_t *)(&mp->b_rptr[iph_hdr_length]); ipha = (ipha_t *)&icmph[1]; iph_hdr_length = IPH_HDR_LENGTH(ipha); switch (icmph->icmph_type) { case ICMP_DEST_UNREACHABLE: switch (icmph->icmph_code) { case ICMP_FRAGMENTATION_NEEDED: /* * IP has already adjusted the path MTU. */ break; case ICMP_PORT_UNREACHABLE: case ICMP_PROTOCOL_UNREACHABLE: error = ECONNREFUSED; break; default: /* Transient errors */ break; } break; default: /* Transient errors */ break; } if (error == 0) { freemsg(mp); return; } /* * Deliver T_UDERROR_IND when the application has asked for it. * The socket layer enables this automatically when connected. */ if (!icmp->icmp_dgram_errind) { freemsg(mp); return; } switch (icmp->icmp_family) { case AF_INET: sin = sin_null; sin.sin_family = AF_INET; sin.sin_addr.s_addr = ipha->ipha_dst; mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, error); break; case AF_INET6: sin6 = sin6_null; sin6.sin6_family = AF_INET6; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, error); break; } if (mp1) putnext(q, mp1); freemsg(mp); } /* * icmp_icmp_error_ipv6 is called by icmp_icmp_error to process ICMPv6 * for IPv6 packets. * Send permanent (non-transient) errors upstream. * Assumes that IP has pulled up all the extension headers as well * as the ICMPv6 header. */ static void icmp_icmp_error_ipv6(queue_t *q, mblk_t *mp) { icmp6_t *icmp6; ip6_t *ip6h, *outer_ip6h; uint16_t iph_hdr_length; uint8_t *nexthdrp; sin6_t sin6; mblk_t *mp1; int error = 0; icmp_t *icmp = Q_TO_ICMP(q); outer_ip6h = (ip6_t *)mp->b_rptr; if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6) iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h); else iph_hdr_length = IPV6_HDR_LEN; icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; ip6h = (ip6_t *)&icmp6[1]; if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) { freemsg(mp); return; } switch (icmp6->icmp6_type) { case ICMP6_DST_UNREACH: switch (icmp6->icmp6_code) { case ICMP6_DST_UNREACH_NOPORT: error = ECONNREFUSED; break; case ICMP6_DST_UNREACH_ADMIN: case ICMP6_DST_UNREACH_NOROUTE: case ICMP6_DST_UNREACH_BEYONDSCOPE: case ICMP6_DST_UNREACH_ADDR: /* Transient errors */ break; default: break; } break; case ICMP6_PACKET_TOO_BIG: { struct T_unitdata_ind *tudi; struct T_opthdr *toh; size_t udi_size; mblk_t *newmp; t_scalar_t opt_length = sizeof (struct T_opthdr) + sizeof (struct ip6_mtuinfo); sin6_t *sin6; struct ip6_mtuinfo *mtuinfo; /* * If the application has requested to receive path mtu * information, send up an empty message containing an * IPV6_PATHMTU ancillary data item. */ if (!icmp->icmp_ipv6_recvpathmtu) break; udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + opt_length; if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { BUMP_MIB(&icmp->icmp_is->is_rawip_mib, rawipInErrors); break; } /* * newmp->b_cont is left to NULL on purpose. This is an * empty message containing only ancillary data. */ newmp->b_datap->db_type = M_PROTO; tudi = (struct T_unitdata_ind *)newmp->b_rptr; newmp->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin6_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); tudi->OPT_length = opt_length; sin6 = (sin6_t *)&tudi[1]; bzero(sin6, sizeof (sin6_t)); sin6->sin6_family = AF_INET6; sin6->sin6_addr = icmp->icmp_v6dst; toh = (struct T_opthdr *)&sin6[1]; toh->level = IPPROTO_IPV6; toh->name = IPV6_PATHMTU; toh->len = opt_length; toh->status = 0; mtuinfo = (struct ip6_mtuinfo *)&toh[1]; bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); mtuinfo->ip6m_addr.sin6_family = AF_INET6; mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; /* * We've consumed everything we need from the original * message. Free it, then send our empty message. */ freemsg(mp); putnext(q, newmp); return; } case ICMP6_TIME_EXCEEDED: /* Transient errors */ break; case ICMP6_PARAM_PROB: /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && (uchar_t *)ip6h + icmp6->icmp6_pptr == (uchar_t *)nexthdrp) { error = ECONNREFUSED; break; } break; } if (error == 0) { freemsg(mp); return; } /* * Deliver T_UDERROR_IND when the application has asked for it. * The socket layer enables this automatically when connected. */ if (!icmp->icmp_dgram_errind) { freemsg(mp); return; } sin6 = sin6_null; sin6.sin6_family = AF_INET6; sin6.sin6_addr = ip6h->ip6_dst; sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, error); if (mp1) putnext(q, mp1); freemsg(mp); } /* * This routine responds to T_ADDR_REQ messages. It is called by icmp_wput. * The local address is filled in if endpoint is bound. The remote address * is filled in if remote address has been precified ("connected endpoint") * (The concept of connected CLTS sockets is alien to published TPI * but we support it anyway). */ static void icmp_addr_req(queue_t *q, mblk_t *mp) { icmp_t *icmp = Q_TO_ICMP(q); mblk_t *ackmp; struct T_addr_ack *taa; /* Make it large enough for worst case */ ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2 * sizeof (sin6_t), 1); if (ackmp == NULL) { icmp_err_ack(q, mp, TSYSERR, ENOMEM); return; } taa = (struct T_addr_ack *)ackmp->b_rptr; bzero(taa, sizeof (struct T_addr_ack)); ackmp->b_wptr = (uchar_t *)&taa[1]; taa->PRIM_type = T_ADDR_ACK; ackmp->b_datap->db_type = M_PCPROTO; rw_enter(&icmp->icmp_rwlock, RW_READER); /* * Note: Following code assumes 32 bit alignment of basic * data structures like sin_t and struct T_addr_ack. */ if (icmp->icmp_state != TS_UNBND) { /* * Fill in local address */ taa->LOCADDR_offset = sizeof (*taa); if (icmp->icmp_family == AF_INET) { sin_t *sin; taa->LOCADDR_length = sizeof (sin_t); sin = (sin_t *)&taa[1]; /* Fill zeroes and then intialize non-zero fields */ *sin = sin_null; sin->sin_family = AF_INET; if (!IN6_IS_ADDR_V4MAPPED_ANY(&icmp->icmp_v6src) && !IN6_IS_ADDR_UNSPECIFIED(&icmp->icmp_v6src)) { IN6_V4MAPPED_TO_IPADDR(&icmp->icmp_v6src, sin->sin_addr.s_addr); } else { /* * INADDR_ANY * icmp_v6src is not set, we might be bound to * broadcast/multicast. Use icmp_bound_v6src as * local address instead (that could * also still be INADDR_ANY) */ IN6_V4MAPPED_TO_IPADDR(&icmp->icmp_bound_v6src, sin->sin_addr.s_addr); } ackmp->b_wptr = (uchar_t *)&sin[1]; } else { sin6_t *sin6; ASSERT(icmp->icmp_family == AF_INET6); taa->LOCADDR_length = sizeof (sin6_t); sin6 = (sin6_t *)&taa[1]; /* Fill zeroes and then intialize non-zero fields */ *sin6 = sin6_null; sin6->sin6_family = AF_INET6; if (!IN6_IS_ADDR_UNSPECIFIED(&icmp->icmp_v6src)) { sin6->sin6_addr = icmp->icmp_v6src; } else { /* * UNSPECIFIED * icmp_v6src is not set, we might be bound to * broadcast/multicast. Use icmp_bound_v6src as * local address instead (that could * also still be UNSPECIFIED) */ sin6->sin6_addr = icmp->icmp_bound_v6src; } ackmp->b_wptr = (uchar_t *)&sin6[1]; } } rw_exit(&icmp->icmp_rwlock); ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); qreply(q, ackmp); } static void icmp_copy_info(struct T_info_ack *tap, icmp_t *icmp) { *tap = icmp_g_t_info_ack; if (icmp->icmp_family == AF_INET6) tap->ADDR_size = sizeof (sin6_t); else tap->ADDR_size = sizeof (sin_t); tap->CURRENT_state = icmp->icmp_state; tap->OPT_size = icmp_max_optsize; } /* * This routine responds to T_CAPABILITY_REQ messages. It is called by * icmp_wput. Much of the T_CAPABILITY_ACK information is copied from * icmp_g_t_info_ack. The current state of the stream is copied from * icmp_state. */ static void icmp_capability_req(queue_t *q, mblk_t *mp) { icmp_t *icmp = Q_TO_ICMP(q); t_uscalar_t cap_bits1; struct T_capability_ack *tcap; cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), mp->b_datap->db_type, T_CAPABILITY_ACK); if (!mp) return; tcap = (struct T_capability_ack *)mp->b_rptr; tcap->CAP_bits1 = 0; if (cap_bits1 & TC1_INFO) { icmp_copy_info(&tcap->INFO_ack, icmp); tcap->CAP_bits1 |= TC1_INFO; } qreply(q, mp); } /* * This routine responds to T_INFO_REQ messages. It is called by icmp_wput. * Most of the T_INFO_ACK information is copied from icmp_g_t_info_ack. * The current state of the stream is copied from icmp_state. */ static void icmp_info_req(queue_t *q, mblk_t *mp) { icmp_t *icmp = Q_TO_ICMP(q); mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, T_INFO_ACK); if (!mp) return; icmp_copy_info((struct T_info_ack *)mp->b_rptr, icmp); qreply(q, mp); } /* * IP recognizes seven kinds of bind requests: * * - A zero-length address binds only to the protocol number. * * - A 4-byte address is treated as a request to * validate that the address is a valid local IPv4 * address, appropriate for an application to bind to. * IP does the verification, but does not make any note * of the address at this time. * * - A 16-byte address contains is treated as a request * to validate a local IPv6 address, as the 4-byte * address case above. * * - A 16-byte sockaddr_in to validate the local IPv4 address and also * use it for the inbound fanout of packets. * * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also * use it for the inbound fanout of packets. * * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout * information consisting of local and remote addresses * and ports (unused for raw sockets). In this case, the addresses are both * validated as appropriate for this operation, and, if * so, the information is retained for use in the * inbound fanout. * * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 * fanout information, like the 12-byte case above. * * IP will also fill in the IRE request mblk with information * regarding our peer. In all cases, we notify IP of our protocol * type by appending a single protocol byte to the bind request. */ static mblk_t * icmp_ip_bind_mp(icmp_t *icmp, t_scalar_t bind_prim, t_scalar_t addr_length, in_port_t fport) { char *cp; mblk_t *mp; struct T_bind_req *tbr; ipa_conn_t *ac; ipa6_conn_t *ac6; sin_t *sin; sin6_t *sin6; ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); ASSERT(RW_LOCK_HELD(&icmp->icmp_rwlock)); mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); if (mp == NULL) return (NULL); mp->b_datap->db_type = M_PROTO; tbr = (struct T_bind_req *)mp->b_rptr; tbr->PRIM_type = bind_prim; tbr->ADDR_offset = sizeof (*tbr); tbr->CONIND_number = 0; tbr->ADDR_length = addr_length; cp = (char *)&tbr[1]; switch (addr_length) { case sizeof (ipa_conn_t): ASSERT(icmp->icmp_family == AF_INET); /* Append a request for an IRE */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (mp->b_cont == NULL) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; /* cp known to be 32 bit aligned */ ac = (ipa_conn_t *)cp; ac->ac_laddr = V4_PART_OF_V6(icmp->icmp_v6src); ac->ac_faddr = V4_PART_OF_V6(icmp->icmp_v6dst); ac->ac_fport = fport; ac->ac_lport = 0; break; case sizeof (ipa6_conn_t): ASSERT(icmp->icmp_family == AF_INET6); /* Append a request for an IRE */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (mp->b_cont == NULL) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; /* cp known to be 32 bit aligned */ ac6 = (ipa6_conn_t *)cp; ac6->ac6_laddr = icmp->icmp_v6src; ac6->ac6_faddr = icmp->icmp_v6dst; ac6->ac6_fport = fport; ac6->ac6_lport = 0; break; case sizeof (sin_t): ASSERT(icmp->icmp_family == AF_INET); /* Append a request for an IRE */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (!mp->b_cont) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; sin = (sin_t *)cp; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = V4_PART_OF_V6(icmp->icmp_bound_v6src); break; case sizeof (sin6_t): ASSERT(icmp->icmp_family == AF_INET6); /* Append a request for an IRE */ mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (!mp->b_cont) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; sin6 = (sin6_t *)cp; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = icmp->icmp_bound_v6src; break; } /* Add protocol number to end */ cp[addr_length] = icmp->icmp_proto; mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; return (mp); } /* For /dev/icmp aka AF_INET open */ static int icmp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { return (icmp_open(q, devp, flag, sflag, credp, B_FALSE)); } /* For /dev/icmp6 aka AF_INET6 open */ static int icmp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { return (icmp_open(q, devp, flag, sflag, credp, B_TRUE)); } /* * This is the open routine for icmp. It allocates a icmp_t structure for * the stream and, on the first open of the module, creates an ND table. */ /*ARGSUSED2*/ static int icmp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, boolean_t isv6) { int err; icmp_t *icmp; conn_t *connp; dev_t conn_dev; zoneid_t zoneid; netstack_t *ns; icmp_stack_t *is; /* If the stream is already open, return immediately. */ if (q->q_ptr != NULL) return (0); if (sflag == MODOPEN) return (EINVAL); ns = netstack_find_by_cred(credp); ASSERT(ns != NULL); is = ns->netstack_icmp; ASSERT(is != NULL); /* * For exclusive stacks we set the zoneid to zero * to make ICMP operate as if in the global zone. */ if (ns->netstack_stackid != GLOBAL_NETSTACKID) zoneid = GLOBAL_ZONEID; else zoneid = crgetzoneid(credp); /* * Since ICMP is not used so heavily, allocating from the small * arena should be sufficient. */ if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { netstack_rele(ns); return (EBUSY); } *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); connp = ipcl_conn_create(IPCL_RAWIPCONN, KM_SLEEP, ns); connp->conn_dev = conn_dev; connp->conn_minor_arena = ip_minor_arena_sa; icmp = connp->conn_icmp; /* * ipcl_conn_create did a netstack_hold. Undo the hold that was * done by netstack_find_by_cred() */ netstack_rele(ns); /* * Initialize the icmp_t structure for this stream. */ q->q_ptr = connp; WR(q)->q_ptr = connp; connp->conn_rq = q; connp->conn_wq = WR(q); rw_enter(&icmp->icmp_rwlock, RW_WRITER); ASSERT(connp->conn_ulp == IPPROTO_ICMP); ASSERT(connp->conn_icmp == icmp); ASSERT(icmp->icmp_connp == connp); /* Set the initial state of the stream and the privilege status. */ icmp->icmp_state = TS_UNBND; if (isv6) { icmp->icmp_ipversion = IPV6_VERSION; icmp->icmp_family = AF_INET6; connp->conn_ulp = IPPROTO_ICMPV6; /* May be changed by a SO_PROTOTYPE socket option. */ icmp->icmp_proto = IPPROTO_ICMPV6; icmp->icmp_checksum_off = 2; /* Offset for icmp6_cksum */ icmp->icmp_max_hdr_len = IPV6_HDR_LEN; icmp->icmp_ttl = (uint8_t)is->is_ipv6_hoplimit; connp->conn_af_isv6 = B_TRUE; connp->conn_flags |= IPCL_ISV6; } else { icmp->icmp_ipversion = IPV4_VERSION; icmp->icmp_family = AF_INET; /* May be changed by a SO_PROTOTYPE socket option. */ icmp->icmp_proto = IPPROTO_ICMP; icmp->icmp_max_hdr_len = IP_SIMPLE_HDR_LENGTH; icmp->icmp_ttl = (uint8_t)is->is_ipv4_ttl; connp->conn_af_isv6 = B_FALSE; connp->conn_flags &= ~IPCL_ISV6; } icmp->icmp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; icmp->icmp_pending_op = -1; connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; connp->conn_zoneid = zoneid; /* * If the caller has the process-wide flag set, then default to MAC * exempt mode. This allows read-down to unlabeled hosts. */ if (getpflags(NET_MAC_AWARE, credp) != 0) connp->conn_mac_exempt = B_TRUE; connp->conn_ulp_labeled = is_system_labeled(); icmp->icmp_is = is; q->q_hiwat = is->is_recv_hiwat; WR(q)->q_hiwat = is->is_xmit_hiwat; WR(q)->q_lowat = is->is_xmit_lowat; connp->conn_recv = icmp_input; crhold(credp); connp->conn_cred = credp; mutex_enter(&connp->conn_lock); connp->conn_state_flags &= ~CONN_INCIPIENT; mutex_exit(&connp->conn_lock); qprocson(q); if (icmp->icmp_family == AF_INET6) { /* Build initial header template for transmit */ if ((err = icmp_build_hdrs(icmp)) != 0) { rw_exit(&icmp->icmp_rwlock); qprocsoff(q); ipcl_conn_destroy(connp); return (err); } } rw_exit(&icmp->icmp_rwlock); /* Set the Stream head write offset. */ (void) mi_set_sth_wroff(q, icmp->icmp_max_hdr_len + is->is_wroff_extra); (void) mi_set_sth_hiwat(q, q->q_hiwat); return (0); } /* * Which ICMP options OK to set through T_UNITDATA_REQ... */ /* ARGSUSED */ static boolean_t icmp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) { return (B_TRUE); } /* * This routine gets default values of certain options whose default * values are maintained by protcol specific code */ /* ARGSUSED */ int icmp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) { icmp_t *icmp = Q_TO_ICMP(q); icmp_stack_t *is = icmp->icmp_is; int *i1 = (int *)ptr; switch (level) { case IPPROTO_IP: switch (name) { case IP_MULTICAST_TTL: *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; return (sizeof (uchar_t)); case IP_MULTICAST_LOOP: *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; return (sizeof (uchar_t)); } break; case IPPROTO_IPV6: switch (name) { case IPV6_MULTICAST_HOPS: *i1 = IP_DEFAULT_MULTICAST_TTL; return (sizeof (int)); case IPV6_MULTICAST_LOOP: *i1 = IP_DEFAULT_MULTICAST_LOOP; return (sizeof (int)); case IPV6_UNICAST_HOPS: *i1 = is->is_ipv6_hoplimit; return (sizeof (int)); } break; case IPPROTO_ICMPV6: switch (name) { case ICMP6_FILTER: /* Make it look like "pass all" */ ICMP6_FILTER_SETPASSALL((icmp6_filter_t *)ptr); return (sizeof (icmp6_filter_t)); } break; } return (-1); } /* * This routine retrieves the current status of socket options. * It returns the size of the option retrieved. */ int icmp_opt_get_locked(queue_t *q, int level, int name, uchar_t *ptr) { conn_t *connp = Q_TO_CONN(q); icmp_t *icmp = connp->conn_icmp; icmp_stack_t *is = icmp->icmp_is; int *i1 = (int *)ptr; ip6_pkt_t *ipp = &icmp->icmp_sticky_ipp; switch (level) { case SOL_SOCKET: switch (name) { case SO_DEBUG: *i1 = icmp->icmp_debug; break; case SO_TYPE: *i1 = SOCK_RAW; break; case SO_PROTOTYPE: *i1 = icmp->icmp_proto; break; case SO_REUSEADDR: *i1 = icmp->icmp_reuseaddr; break; /* * The following three items are available here, * but are only meaningful to IP. */ case SO_DONTROUTE: *i1 = icmp->icmp_dontroute; break; case SO_USELOOPBACK: *i1 = icmp->icmp_useloopback; break; case SO_BROADCAST: *i1 = icmp->icmp_broadcast; break; case SO_SNDBUF: ASSERT(q->q_hiwat <= INT_MAX); *i1 = (int)q->q_hiwat; break; case SO_RCVBUF: ASSERT(RD(q)->q_hiwat <= INT_MAX); *i1 = (int)RD(q)->q_hiwat; break; case SO_DGRAM_ERRIND: *i1 = icmp->icmp_dgram_errind; break; case SO_TIMESTAMP: *i1 = icmp->icmp_timestamp; break; case SO_MAC_EXEMPT: *i1 = connp->conn_mac_exempt; break; case SO_DOMAIN: *i1 = icmp->icmp_family; break; /* * Following four not meaningful for icmp * Action is same as "default" to which we fallthrough * so we keep them in comments. * case SO_LINGER: * case SO_KEEPALIVE: * case SO_OOBINLINE: * case SO_ALLZONES: */ default: return (-1); } break; case IPPROTO_IP: /* * Only allow IPv4 option processing on IPv4 sockets. */ if (icmp->icmp_family != AF_INET) return (-1); switch (name) { case IP_OPTIONS: case T_IP_OPTIONS: /* Options are passed up with each packet */ return (0); case IP_HDRINCL: *i1 = (int)icmp->icmp_hdrincl; break; case IP_TOS: case T_IP_TOS: *i1 = (int)icmp->icmp_type_of_service; break; case IP_TTL: *i1 = (int)icmp->icmp_ttl; break; case IP_MULTICAST_IF: /* 0 address if not set */ *(ipaddr_t *)ptr = icmp->icmp_multicast_if_addr; return (sizeof (ipaddr_t)); case IP_MULTICAST_TTL: *(uchar_t *)ptr = icmp->icmp_multicast_ttl; return (sizeof (uchar_t)); case IP_MULTICAST_LOOP: *ptr = connp->conn_multicast_loop; return (sizeof (uint8_t)); case IP_BOUND_IF: /* Zero if not set */ *i1 = icmp->icmp_bound_if; break; /* goto sizeof (int) option return */ case IP_UNSPEC_SRC: *ptr = icmp->icmp_unspec_source; break; /* goto sizeof (int) option return */ case IP_BROADCAST_TTL: *(uchar_t *)ptr = connp->conn_broadcast_ttl; return (sizeof (uchar_t)); case IP_RECVIF: *ptr = icmp->icmp_recvif; break; /* goto sizeof (int) option return */ case IP_RECVPKTINFO: /* * This also handles IP_PKTINFO. * IP_PKTINFO and IP_RECVPKTINFO have the same value. * Differentiation is based on the size of the argument * passed in. * This option is handled in IP which will return an * error for IP_PKTINFO as it's not supported as a * sticky option. */ return (-EINVAL); /* * Cannot "get" the value of following options * at this level. Action is same as "default" to * which we fallthrough so we keep them in comments. * * case IP_ADD_MEMBERSHIP: * case IP_DROP_MEMBERSHIP: * case IP_BLOCK_SOURCE: * case IP_UNBLOCK_SOURCE: * case IP_ADD_SOURCE_MEMBERSHIP: * case IP_DROP_SOURCE_MEMBERSHIP: * case MCAST_JOIN_GROUP: * case MCAST_LEAVE_GROUP: * case MCAST_BLOCK_SOURCE: * case MCAST_UNBLOCK_SOURCE: * case MCAST_JOIN_SOURCE_GROUP: * case MCAST_LEAVE_SOURCE_GROUP: * case MRT_INIT: * case MRT_DONE: * case MRT_ADD_VIF: * case MRT_DEL_VIF: * case MRT_ADD_MFC: * case MRT_DEL_MFC: * case MRT_VERSION: * case MRT_ASSERT: * case IP_SEC_OPT: * case IP_DONTFAILOVER_IF: * case IP_NEXTHOP: */ default: return (-1); } break; case IPPROTO_IPV6: /* * Only allow IPv6 option processing on native IPv6 sockets. */ if (icmp->icmp_family != AF_INET6) return (-1); switch (name) { case IPV6_UNICAST_HOPS: *i1 = (unsigned int)icmp->icmp_ttl; break; case IPV6_MULTICAST_IF: /* 0 index if not set */ *i1 = icmp->icmp_multicast_if_index; break; case IPV6_MULTICAST_HOPS: *i1 = icmp->icmp_multicast_ttl; break; case IPV6_MULTICAST_LOOP: *i1 = connp->conn_multicast_loop; break; case IPV6_BOUND_IF: /* Zero if not set */ *i1 = icmp->icmp_bound_if; break; case IPV6_UNSPEC_SRC: *i1 = icmp->icmp_unspec_source; break; case IPV6_CHECKSUM: /* * Return offset or -1 if no checksum offset. * Does not apply to IPPROTO_ICMPV6 */ if (icmp->icmp_proto == IPPROTO_ICMPV6) return (-1); if (icmp->icmp_raw_checksum) { *i1 = icmp->icmp_checksum_off; } else { *i1 = -1; } break; case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: /* cannot "get" the value for these */ return (-1); case IPV6_RECVPKTINFO: *i1 = icmp->icmp_ip_recvpktinfo; break; case IPV6_RECVTCLASS: *i1 = icmp->icmp_ipv6_recvtclass; break; case IPV6_RECVPATHMTU: *i1 = icmp->icmp_ipv6_recvpathmtu; break; case IPV6_V6ONLY: *i1 = 1; break; case IPV6_RECVHOPLIMIT: *i1 = icmp->icmp_ipv6_recvhoplimit; break; case IPV6_RECVHOPOPTS: *i1 = icmp->icmp_ipv6_recvhopopts; break; case IPV6_RECVDSTOPTS: *i1 = icmp->icmp_ipv6_recvdstopts; break; case _OLD_IPV6_RECVDSTOPTS: *i1 = icmp->icmp_old_ipv6_recvdstopts; break; case IPV6_RECVRTHDRDSTOPTS: *i1 = icmp->icmp_ipv6_recvrtdstopts; break; case IPV6_RECVRTHDR: *i1 = icmp->icmp_ipv6_recvrthdr; break; case IPV6_PKTINFO: { /* XXX assumes that caller has room for max size! */ struct in6_pktinfo *pkti; pkti = (struct in6_pktinfo *)ptr; if (ipp->ipp_fields & IPPF_IFINDEX) pkti->ipi6_ifindex = ipp->ipp_ifindex; else pkti->ipi6_ifindex = 0; if (ipp->ipp_fields & IPPF_ADDR) pkti->ipi6_addr = ipp->ipp_addr; else pkti->ipi6_addr = ipv6_all_zeros; return (sizeof (struct in6_pktinfo)); } case IPV6_NEXTHOP: { sin6_t *sin6 = (sin6_t *)ptr; if (!(ipp->ipp_fields & IPPF_NEXTHOP)) return (0); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipp->ipp_nexthop; return (sizeof (sin6_t)); } case IPV6_HOPOPTS: if (!(ipp->ipp_fields & IPPF_HOPOPTS)) return (0); if (ipp->ipp_hopoptslen <= icmp->icmp_label_len_v6) return (0); bcopy((char *)ipp->ipp_hopopts + icmp->icmp_label_len_v6, ptr, ipp->ipp_hopoptslen - icmp->icmp_label_len_v6); if (icmp->icmp_label_len_v6 > 0) { ptr[0] = ((char *)ipp->ipp_hopopts)[0]; ptr[1] = (ipp->ipp_hopoptslen - icmp->icmp_label_len_v6 + 7) / 8 - 1; } return (ipp->ipp_hopoptslen - icmp->icmp_label_len_v6); case IPV6_RTHDRDSTOPTS: if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) return (0); bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); return (ipp->ipp_rtdstoptslen); case IPV6_RTHDR: if (!(ipp->ipp_fields & IPPF_RTHDR)) return (0); bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); return (ipp->ipp_rthdrlen); case IPV6_DSTOPTS: if (!(ipp->ipp_fields & IPPF_DSTOPTS)) return (0); bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); return (ipp->ipp_dstoptslen); case IPV6_PATHMTU: if (!(ipp->ipp_fields & IPPF_PATHMTU)) return (0); return (ip_fill_mtuinfo(&icmp->icmp_v6dst, 0, (struct ip6_mtuinfo *)ptr, is->is_netstack)); case IPV6_TCLASS: if (ipp->ipp_fields & IPPF_TCLASS) *i1 = ipp->ipp_tclass; else *i1 = IPV6_FLOW_TCLASS( IPV6_DEFAULT_VERS_AND_FLOW); break; default: return (-1); } break; case IPPROTO_ICMPV6: /* * Only allow IPv6 option processing on native IPv6 sockets. */ if (icmp->icmp_family != AF_INET6) return (-1); if (icmp->icmp_proto != IPPROTO_ICMPV6) return (-1); switch (name) { case ICMP6_FILTER: if (icmp->icmp_filter == NULL) { /* Make it look like "pass all" */ ICMP6_FILTER_SETPASSALL((icmp6_filter_t *)ptr); } else { (void) bcopy(icmp->icmp_filter, ptr, sizeof (icmp6_filter_t)); } return (sizeof (icmp6_filter_t)); default: return (-1); } default: return (-1); } return (sizeof (int)); } /* * This routine retrieves the current status of socket options. * It returns the size of the option retrieved. */ int icmp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) { icmp_t *icmp = Q_TO_ICMP(q); int err; rw_enter(&icmp->icmp_rwlock, RW_READER); err = icmp_opt_get_locked(q, level, name, ptr); rw_exit(&icmp->icmp_rwlock); return (err); } /* This routine sets socket options. */ /* ARGSUSED */ int icmp_opt_set_locked(queue_t *q, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) { conn_t *connp = Q_TO_CONN(q); icmp_t *icmp = connp->conn_icmp; icmp_stack_t *is = icmp->icmp_is; int *i1 = (int *)invalp; boolean_t onoff = (*i1 == 0) ? 0 : 1; boolean_t checkonly; int error; switch (optset_context) { case SETFN_OPTCOM_CHECKONLY: checkonly = B_TRUE; /* * Note: Implies T_CHECK semantics for T_OPTCOM_REQ * inlen != 0 implies value supplied and * we have to "pretend" to set it. * inlen == 0 implies that there is no * value part in T_CHECK request and just validation * done elsewhere should be enough, we just return here. */ if (inlen == 0) { *outlenp = 0; return (0); } break; case SETFN_OPTCOM_NEGOTIATE: checkonly = B_FALSE; break; case SETFN_UD_NEGOTIATE: case SETFN_CONN_NEGOTIATE: checkonly = B_FALSE; /* * Negotiating local and "association-related" options * through T_UNITDATA_REQ. * * Following routine can filter out ones we do not * want to be "set" this way. */ if (!icmp_opt_allow_udr_set(level, name)) { *outlenp = 0; return (EINVAL); } break; default: /* * We should never get here */ *outlenp = 0; return (EINVAL); } ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); /* * For fixed length options, no sanity check * of passed in length is done. It is assumed *_optcom_req() * routines do the right thing. */ switch (level) { case SOL_SOCKET: switch (name) { case SO_DEBUG: if (!checkonly) icmp->icmp_debug = onoff; break; case SO_PROTOTYPE: if ((*i1 & 0xFF) != IPPROTO_ICMP && (*i1 & 0xFF) != IPPROTO_ICMPV6 && secpolicy_net_rawaccess(cr) != 0) { *outlenp = 0; return (EACCES); } /* Can't use IPPROTO_RAW with IPv6 */ if ((*i1 & 0xFF) == IPPROTO_RAW && icmp->icmp_family == AF_INET6) { *outlenp = 0; return (EPROTONOSUPPORT); } if (checkonly) { /* T_CHECK case */ *(int *)outvalp = (*i1 & 0xFF); break; } icmp->icmp_proto = *i1 & 0xFF; if ((icmp->icmp_proto == IPPROTO_RAW || icmp->icmp_proto == IPPROTO_IGMP) && icmp->icmp_family == AF_INET) icmp->icmp_hdrincl = 1; else icmp->icmp_hdrincl = 0; if (icmp->icmp_family == AF_INET6 && icmp->icmp_proto == IPPROTO_ICMPV6) { /* Set offset for icmp6_cksum */ icmp->icmp_raw_checksum = 0; icmp->icmp_checksum_off = 2; } if (icmp->icmp_proto == IPPROTO_UDP || icmp->icmp_proto == IPPROTO_TCP || icmp->icmp_proto == IPPROTO_SCTP) { icmp->icmp_no_tp_cksum = 1; icmp->icmp_sticky_ipp.ipp_fields |= IPPF_NO_CKSUM; } else { icmp->icmp_no_tp_cksum = 0; icmp->icmp_sticky_ipp.ipp_fields &= ~IPPF_NO_CKSUM; } if (icmp->icmp_filter != NULL && icmp->icmp_proto != IPPROTO_ICMPV6) { kmem_free(icmp->icmp_filter, sizeof (icmp6_filter_t)); icmp->icmp_filter = NULL; } /* Rebuild the header template */ error = icmp_build_hdrs(icmp); if (error != 0) { *outlenp = 0; return (error); } /* * For SCTP, we don't use icmp_bind_proto() for * raw socket binding. Note that we do not need * to set *outlenp. * FIXME: how does SCTP work? */ if (icmp->icmp_proto == IPPROTO_SCTP) return (0); *outlenp = sizeof (int); *(int *)outvalp = *i1 & 0xFF; /* Drop lock across the bind operation */ rw_exit(&icmp->icmp_rwlock); icmp_bind_proto(q); rw_enter(&icmp->icmp_rwlock, RW_WRITER); return (0); case SO_REUSEADDR: if (!checkonly) icmp->icmp_reuseaddr = onoff; break; /* * The following three items are available here, * but are only meaningful to IP. */ case SO_DONTROUTE: if (!checkonly) icmp->icmp_dontroute = onoff; break; case SO_USELOOPBACK: if (!checkonly) icmp->icmp_useloopback = onoff; break; case SO_BROADCAST: if (!checkonly) icmp->icmp_broadcast = onoff; break; case SO_SNDBUF: if (*i1 > is->is_max_buf) { *outlenp = 0; return (ENOBUFS); } if (!checkonly) { q->q_hiwat = *i1; } break; case SO_RCVBUF: if (*i1 > is->is_max_buf) { *outlenp = 0; return (ENOBUFS); } if (!checkonly) { RD(q)->q_hiwat = *i1; rw_exit(&icmp->icmp_rwlock); (void) mi_set_sth_hiwat(RD(q), *i1); rw_enter(&icmp->icmp_rwlock, RW_WRITER); } break; case SO_DGRAM_ERRIND: if (!checkonly) icmp->icmp_dgram_errind = onoff; break; case SO_ALLZONES: /* * "soft" error (negative) * option not handled at this level * Note: Do not modify *outlenp */ return (-EINVAL); case SO_TIMESTAMP: if (!checkonly) { icmp->icmp_timestamp = onoff; } break; case SO_MAC_EXEMPT: /* * "soft" error (negative) * option not handled at this level * Note: Do not modify *outlenp */ return (-EINVAL); /* * Following three not meaningful for icmp * Action is same as "default" so we keep them * in comments. * case SO_LINGER: * case SO_KEEPALIVE: * case SO_OOBINLINE: */ default: *outlenp = 0; return (EINVAL); } break; case IPPROTO_IP: /* * Only allow IPv4 option processing on IPv4 sockets. */ if (icmp->icmp_family != AF_INET) { *outlenp = 0; return (ENOPROTOOPT); } switch (name) { case IP_OPTIONS: case T_IP_OPTIONS: /* Save options for use by IP. */ if ((inlen & 0x3) || inlen + icmp->icmp_label_len > IP_MAX_OPT_LENGTH) { *outlenp = 0; return (EINVAL); } if (checkonly) break; if (!tsol_option_set(&icmp->icmp_ip_snd_options, &icmp->icmp_ip_snd_options_len, icmp->icmp_label_len, invalp, inlen)) { *outlenp = 0; return (ENOMEM); } icmp->icmp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + icmp->icmp_ip_snd_options_len; rw_exit(&icmp->icmp_rwlock); (void) mi_set_sth_wroff(RD(q), icmp->icmp_max_hdr_len + is->is_wroff_extra); rw_enter(&icmp->icmp_rwlock, RW_WRITER); break; case IP_HDRINCL: if (!checkonly) icmp->icmp_hdrincl = onoff; break; case IP_TOS: case T_IP_TOS: if (!checkonly) { icmp->icmp_type_of_service = (uint8_t)*i1; } break; case IP_TTL: if (!checkonly) { icmp->icmp_ttl = (uint8_t)*i1; } break; case IP_MULTICAST_IF: /* * TODO should check OPTMGMT reply and undo this if * there is an error. */ if (!checkonly) icmp->icmp_multicast_if_addr = *i1; break; case IP_MULTICAST_TTL: if (!checkonly) icmp->icmp_multicast_ttl = *invalp; break; case IP_MULTICAST_LOOP: if (!checkonly) { connp->conn_multicast_loop = (*invalp == 0) ? 0 : 1; } break; case IP_BOUND_IF: if (!checkonly) icmp->icmp_bound_if = *i1; break; case IP_UNSPEC_SRC: if (!checkonly) icmp->icmp_unspec_source = onoff; break; case IP_BROADCAST_TTL: if (!checkonly) connp->conn_broadcast_ttl = *invalp; break; case IP_RECVIF: if (!checkonly) icmp->icmp_recvif = onoff; /* * pass to ip */ return (-EINVAL); case IP_PKTINFO: { /* * This also handles IP_RECVPKTINFO. * IP_PKTINFO and IP_RECVPKTINFO have the same value. * Differentiation is based on the size of the argument * passed in. */ struct in_pktinfo *pktinfop; ip4_pkt_t *attr_pktinfop; if (checkonly) break; if (inlen == sizeof (int)) { /* * This is IP_RECVPKTINFO option. * Keep a local copy of wether this option is * set or not and pass it down to IP for * processing. */ icmp->icmp_ip_recvpktinfo = onoff; return (-EINVAL); } if (inlen != sizeof (struct in_pktinfo)) return (EINVAL); if ((attr_pktinfop = (ip4_pkt_t *)thisdg_attrs) == NULL) { /* * sticky option is not supported */ return (EINVAL); } pktinfop = (struct in_pktinfo *)invalp; /* * Atleast one of the values should be specified */ if (pktinfop->ipi_ifindex == 0 && pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) { return (EINVAL); } attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr; attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex; } break; case IP_ADD_MEMBERSHIP: case IP_DROP_MEMBERSHIP: case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case IP_ADD_SOURCE_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case IP_SEC_OPT: case IP_DONTFAILOVER_IF: case IP_NEXTHOP: /* * "soft" error (negative) * option not handled at this level * Note: Do not modify *outlenp */ return (-EINVAL); default: *outlenp = 0; return (EINVAL); } break; case IPPROTO_IPV6: { ip6_pkt_t *ipp; boolean_t sticky; if (icmp->icmp_family != AF_INET6) { *outlenp = 0; return (ENOPROTOOPT); } /* * Deal with both sticky options and ancillary data */ if (thisdg_attrs == NULL) { /* sticky options, or none */ ipp = &icmp->icmp_sticky_ipp; sticky = B_TRUE; } else { /* ancillary data */ ipp = (ip6_pkt_t *)thisdg_attrs; sticky = B_FALSE; } switch (name) { case IPV6_MULTICAST_IF: if (!checkonly) icmp->icmp_multicast_if_index = *i1; break; case IPV6_UNICAST_HOPS: /* -1 means use default */ if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { *outlenp = 0; return (EINVAL); } if (!checkonly) { if (*i1 == -1) { icmp->icmp_ttl = ipp->ipp_unicast_hops = is->is_ipv6_hoplimit; ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; /* Pass modified value to IP. */ *i1 = ipp->ipp_hoplimit; } else { icmp->icmp_ttl = ipp->ipp_unicast_hops = (uint8_t)*i1; ipp->ipp_fields |= IPPF_UNICAST_HOPS; } /* Rebuild the header template */ error = icmp_build_hdrs(icmp); if (error != 0) { *outlenp = 0; return (error); } } break; case IPV6_MULTICAST_HOPS: /* -1 means use default */ if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { *outlenp = 0; return (EINVAL); } if (!checkonly) { if (*i1 == -1) { icmp->icmp_multicast_ttl = ipp->ipp_multicast_hops = IP_DEFAULT_MULTICAST_TTL; ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS; /* Pass modified value to IP. */ *i1 = icmp->icmp_multicast_ttl; } else { icmp->icmp_multicast_ttl = ipp->ipp_multicast_hops = (uint8_t)*i1; ipp->ipp_fields |= IPPF_MULTICAST_HOPS; } } break; case IPV6_MULTICAST_LOOP: if (*i1 != 0 && *i1 != 1) { *outlenp = 0; return (EINVAL); } if (!checkonly) connp->conn_multicast_loop = *i1; break; case IPV6_CHECKSUM: /* * Integer offset into the user data of where the * checksum is located. * Offset of -1 disables option. * Does not apply to IPPROTO_ICMPV6. */ if (icmp->icmp_proto == IPPROTO_ICMPV6 || !sticky) { *outlenp = 0; return (EINVAL); } if ((*i1 != -1) && ((*i1 < 0) || (*i1 & 0x1) != 0)) { /* Negative or not 16 bit aligned offset */ *outlenp = 0; return (EINVAL); } if (checkonly) break; if (*i1 == -1) { icmp->icmp_raw_checksum = 0; ipp->ipp_fields &= ~IPPF_RAW_CKSUM; } else { icmp->icmp_raw_checksum = 1; icmp->icmp_checksum_off = *i1; ipp->ipp_fields |= IPPF_RAW_CKSUM; } /* Rebuild the header template */ error = icmp_build_hdrs(icmp); if (error != 0) { *outlenp = 0; return (error); } break; case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: /* * "soft" error (negative) * option not handled at this level * Note: Do not modify *outlenp */ return (-EINVAL); case IPV6_BOUND_IF: if (!checkonly) icmp->icmp_bound_if = *i1; break; case IPV6_UNSPEC_SRC: if (!checkonly) icmp->icmp_unspec_source = onoff; break; case IPV6_RECVTCLASS: if (!checkonly) icmp->icmp_ipv6_recvtclass = onoff; break; /* * Set boolean switches for ancillary data delivery */ case IPV6_RECVPKTINFO: if (!checkonly) icmp->icmp_ip_recvpktinfo = onoff; break; case IPV6_RECVPATHMTU: if (!checkonly) icmp->icmp_ipv6_recvpathmtu = onoff; break; case IPV6_RECVHOPLIMIT: if (!checkonly) icmp->icmp_ipv6_recvhoplimit = onoff; break; case IPV6_RECVHOPOPTS: if (!checkonly) icmp->icmp_ipv6_recvhopopts = onoff; break; case IPV6_RECVDSTOPTS: if (!checkonly) icmp->icmp_ipv6_recvdstopts = onoff; break; case _OLD_IPV6_RECVDSTOPTS: if (!checkonly) icmp->icmp_old_ipv6_recvdstopts = onoff; break; case IPV6_RECVRTHDRDSTOPTS: if (!checkonly) icmp->icmp_ipv6_recvrtdstopts = onoff; break; case IPV6_RECVRTHDR: if (!checkonly) icmp->icmp_ipv6_recvrthdr = onoff; break; /* * Set sticky options or ancillary data. * If sticky options, (re)build any extension headers * that might be needed as a result. */ case IPV6_PKTINFO: /* * The source address and ifindex are verified * in ip_opt_set(). For ancillary data the * source address is checked in ip_wput_v6. */ if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); ipp->ipp_sticky_ignored |= (IPPF_IFINDEX|IPPF_ADDR); } else { struct in6_pktinfo *pkti; pkti = (struct in6_pktinfo *)invalp; ipp->ipp_ifindex = pkti->ipi6_ifindex; ipp->ipp_addr = pkti->ipi6_addr; if (ipp->ipp_ifindex != 0) ipp->ipp_fields |= IPPF_IFINDEX; else ipp->ipp_fields &= ~IPPF_IFINDEX; if (!IN6_IS_ADDR_UNSPECIFIED( &ipp->ipp_addr)) ipp->ipp_fields |= IPPF_ADDR; else ipp->ipp_fields &= ~IPPF_ADDR; } if (sticky) { error = icmp_build_hdrs(icmp); if (error != 0) return (error); } break; case IPV6_HOPLIMIT: /* This option can only be used as ancillary data. */ if (sticky) return (EINVAL); if (inlen != 0 && inlen != sizeof (int)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~IPPF_HOPLIMIT; ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT; } else { if (*i1 > 255 || *i1 < -1) return (EINVAL); if (*i1 == -1) ipp->ipp_hoplimit = is->is_ipv6_hoplimit; else ipp->ipp_hoplimit = *i1; ipp->ipp_fields |= IPPF_HOPLIMIT; } break; case IPV6_TCLASS: /* * IPV6_RECVTCLASS accepts -1 as use kernel default * and [0, 255] as the actualy traffic class. */ if (inlen != 0 && inlen != sizeof (int)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~IPPF_TCLASS; ipp->ipp_sticky_ignored |= IPPF_TCLASS; } else { if (*i1 >= 256 || *i1 < -1) return (EINVAL); if (*i1 == -1) { ipp->ipp_tclass = IPV6_FLOW_TCLASS( IPV6_DEFAULT_VERS_AND_FLOW); } else { ipp->ipp_tclass = *i1; } ipp->ipp_fields |= IPPF_TCLASS; } if (sticky) { error = icmp_build_hdrs(icmp); if (error != 0) return (error); } break; case IPV6_NEXTHOP: /* * IP will verify that the nexthop is reachable * and fail for sticky options. */ if (inlen != 0 && inlen != sizeof (sin6_t)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~IPPF_NEXTHOP; ipp->ipp_sticky_ignored |= IPPF_NEXTHOP; } else { sin6_t *sin6 = (sin6_t *)invalp; if (sin6->sin6_family != AF_INET6) return (EAFNOSUPPORT); if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) return (EADDRNOTAVAIL); ipp->ipp_nexthop = sin6->sin6_addr; if (!IN6_IS_ADDR_UNSPECIFIED( &ipp->ipp_nexthop)) ipp->ipp_fields |= IPPF_NEXTHOP; else ipp->ipp_fields &= ~IPPF_NEXTHOP; } if (sticky) { error = icmp_build_hdrs(icmp); if (error != 0) return (error); } break; case IPV6_HOPOPTS: { ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (hopts->ip6h_len + 1))) return (EINVAL); if (checkonly) break; error = optcom_pkt_set(invalp, inlen, sticky, (uchar_t **)&ipp->ipp_hopopts, &ipp->ipp_hopoptslen, sticky ? icmp->icmp_label_len_v6 : 0); if (error != 0) return (error); if (ipp->ipp_hopoptslen == 0) { ipp->ipp_fields &= ~IPPF_HOPOPTS; ipp->ipp_sticky_ignored |= IPPF_HOPOPTS; } else { ipp->ipp_fields |= IPPF_HOPOPTS; } if (sticky) { error = icmp_build_hdrs(icmp); if (error != 0) return (error); } break; } case IPV6_RTHDRDSTOPTS: { ip6_dest_t *dopts = (ip6_dest_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (dopts->ip6d_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if (sticky && (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); ipp->ipp_rtdstopts = NULL; ipp->ipp_rtdstoptslen = 0; } ipp->ipp_fields &= ~IPPF_RTDSTOPTS; ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS; } else { error = optcom_pkt_set(invalp, inlen, sticky, (uchar_t **)&ipp->ipp_rtdstopts, &ipp->ipp_rtdstoptslen, 0); if (error != 0) return (error); ipp->ipp_fields |= IPPF_RTDSTOPTS; } if (sticky) { error = icmp_build_hdrs(icmp); if (error != 0) return (error); } break; } case IPV6_DSTOPTS: { ip6_dest_t *dopts = (ip6_dest_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (dopts->ip6d_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if (sticky && (ipp->ipp_fields & IPPF_DSTOPTS) != 0) { kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); ipp->ipp_dstopts = NULL; ipp->ipp_dstoptslen = 0; } ipp->ipp_fields &= ~IPPF_DSTOPTS; ipp->ipp_sticky_ignored |= IPPF_DSTOPTS; } else { error = optcom_pkt_set(invalp, inlen, sticky, (uchar_t **)&ipp->ipp_dstopts, &ipp->ipp_dstoptslen, 0); if (error != 0) return (error); ipp->ipp_fields |= IPPF_DSTOPTS; } if (sticky) { error = icmp_build_hdrs(icmp); if (error != 0) return (error); } break; } case IPV6_RTHDR: { ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (rt->ip6r_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if (sticky && (ipp->ipp_fields & IPPF_RTHDR) != 0) { kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); ipp->ipp_rthdr = NULL; ipp->ipp_rthdrlen = 0; } ipp->ipp_fields &= ~IPPF_RTHDR; ipp->ipp_sticky_ignored |= IPPF_RTHDR; } else { error = optcom_pkt_set(invalp, inlen, sticky, (uchar_t **)&ipp->ipp_rthdr, &ipp->ipp_rthdrlen, 0); if (error != 0) return (error); ipp->ipp_fields |= IPPF_RTHDR; } if (sticky) { error = icmp_build_hdrs(icmp); if (error != 0) return (error); } break; } case IPV6_DONTFRAG: if (checkonly) break; if (onoff) { ipp->ipp_fields |= IPPF_DONTFRAG; } else { ipp->ipp_fields &= ~IPPF_DONTFRAG; } break; case IPV6_USE_MIN_MTU: if (inlen != sizeof (int)) return (EINVAL); if (*i1 < -1 || *i1 > 1) return (EINVAL); if (checkonly) break; ipp->ipp_fields |= IPPF_USE_MIN_MTU; ipp->ipp_use_min_mtu = *i1; break; /* * This option can't be set. Its only returned via * getsockopt() or ancillary data. */ case IPV6_PATHMTU: return (EINVAL); case IPV6_BOUND_PIF: case IPV6_SEC_OPT: case IPV6_DONTFAILOVER_IF: case IPV6_SRC_PREFERENCES: case IPV6_V6ONLY: /* Handled at IP level */ return (-EINVAL); default: *outlenp = 0; return (EINVAL); } break; } /* end IPPROTO_IPV6 */ case IPPROTO_ICMPV6: /* * Only allow IPv6 option processing on IPv6 sockets. */ if (icmp->icmp_family != AF_INET6) { *outlenp = 0; return (ENOPROTOOPT); } if (icmp->icmp_proto != IPPROTO_ICMPV6) { *outlenp = 0; return (ENOPROTOOPT); } switch (name) { case ICMP6_FILTER: if (!checkonly) { if ((inlen != 0) && (inlen != sizeof (icmp6_filter_t))) return (EINVAL); if (inlen == 0) { if (icmp->icmp_filter != NULL) { kmem_free(icmp->icmp_filter, sizeof (icmp6_filter_t)); icmp->icmp_filter = NULL; } } else { if (icmp->icmp_filter == NULL) { icmp->icmp_filter = kmem_alloc( sizeof (icmp6_filter_t), KM_NOSLEEP); if (icmp->icmp_filter == NULL) { *outlenp = 0; return (ENOBUFS); } } (void) bcopy(invalp, icmp->icmp_filter, inlen); } } break; default: *outlenp = 0; return (EINVAL); } break; default: *outlenp = 0; return (EINVAL); } /* * Common case of OK return with outval same as inval. */ if (invalp != outvalp) { /* don't trust bcopy for identical src/dst */ (void) bcopy(invalp, outvalp, inlen); } *outlenp = inlen; return (0); } /* This routine sets socket options. */ /* ARGSUSED */ int icmp_opt_set(queue_t *q, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) { icmp_t *icmp; int err; icmp = Q_TO_ICMP(q); rw_enter(&icmp->icmp_rwlock, RW_WRITER); err = icmp_opt_set_locked(q, optset_context, level, name, inlen, invalp, outlenp, outvalp, thisdg_attrs, cr, mblk); rw_exit(&icmp->icmp_rwlock); return (err); } /* * Update icmp_sticky_hdrs based on icmp_sticky_ipp, icmp_v6src, icmp_ttl, * icmp_proto, icmp_raw_checksum and icmp_no_tp_cksum. * The headers include ip6i_t (if needed), ip6_t, and any sticky extension * headers. * Returns failure if can't allocate memory. */ static int icmp_build_hdrs(icmp_t *icmp) { icmp_stack_t *is = icmp->icmp_is; uchar_t *hdrs; uint_t hdrs_len; ip6_t *ip6h; ip6i_t *ip6i; ip6_pkt_t *ipp = &icmp->icmp_sticky_ipp; ASSERT(RW_WRITE_HELD(&icmp->icmp_rwlock)); hdrs_len = ip_total_hdrs_len_v6(ipp); ASSERT(hdrs_len != 0); if (hdrs_len != icmp->icmp_sticky_hdrs_len) { /* Need to reallocate */ if (hdrs_len != 0) { hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP); if (hdrs == NULL) return (ENOMEM); } else { hdrs = NULL; } if (icmp->icmp_sticky_hdrs_len != 0) { kmem_free(icmp->icmp_sticky_hdrs, icmp->icmp_sticky_hdrs_len); } icmp->icmp_sticky_hdrs = hdrs; icmp->icmp_sticky_hdrs_len = hdrs_len; } ip_build_hdrs_v6(icmp->icmp_sticky_hdrs, icmp->icmp_sticky_hdrs_len, ipp, icmp->icmp_proto); /* Set header fields not in ipp */ if (ipp->ipp_fields & IPPF_HAS_IP6I) { ip6i = (ip6i_t *)icmp->icmp_sticky_hdrs; ip6h = (ip6_t *)&ip6i[1]; if (ipp->ipp_fields & IPPF_RAW_CKSUM) { ip6i->ip6i_flags |= IP6I_RAW_CHECKSUM; ip6i->ip6i_checksum_off = icmp->icmp_checksum_off; } if (ipp->ipp_fields & IPPF_NO_CKSUM) { ip6i->ip6i_flags |= IP6I_NO_ULP_CKSUM; } } else { ip6h = (ip6_t *)icmp->icmp_sticky_hdrs; } if (!(ipp->ipp_fields & IPPF_ADDR)) ip6h->ip6_src = icmp->icmp_v6src; /* Try to get everything in a single mblk */ if (hdrs_len > icmp->icmp_max_hdr_len) { icmp->icmp_max_hdr_len = hdrs_len; rw_exit(&icmp->icmp_rwlock); (void) mi_set_sth_wroff(icmp->icmp_connp->conn_rq, icmp->icmp_max_hdr_len + is->is_wroff_extra); rw_enter(&icmp->icmp_rwlock, RW_WRITER); } return (0); } /* * This routine retrieves the value of an ND variable in a icmpparam_t * structure. It is called through nd_getset when a user reads the * variable. */ /* ARGSUSED */ static int icmp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { icmpparam_t *icmppa = (icmpparam_t *)cp; (void) mi_mpprintf(mp, "%d", icmppa->icmp_param_value); return (0); } /* * Walk through the param array specified registering each element with the * named dispatch (ND) handler. */ static boolean_t icmp_param_register(IDP *ndp, icmpparam_t *icmppa, int cnt) { for (; cnt-- > 0; icmppa++) { if (icmppa->icmp_param_name && icmppa->icmp_param_name[0]) { if (!nd_load(ndp, icmppa->icmp_param_name, icmp_param_get, icmp_param_set, (caddr_t)icmppa)) { nd_free(ndp); return (B_FALSE); } } } if (!nd_load(ndp, "icmp_status", icmp_status_report, NULL, NULL)) { nd_free(ndp); return (B_FALSE); } return (B_TRUE); } /* This routine sets an ND variable in a icmpparam_t structure. */ /* ARGSUSED */ static int icmp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; icmpparam_t *icmppa = (icmpparam_t *)cp; /* * Fail the request if the new value does not lie within the * required bounds. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value < icmppa->icmp_param_min || new_value > icmppa->icmp_param_max) { return (EINVAL); } /* Set the new value */ icmppa->icmp_param_value = new_value; return (0); } /*ARGSUSED2*/ static void icmp_input(void *arg1, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg1; struct T_unitdata_ind *tudi; uchar_t *rptr; icmp_t *icmp; icmp_stack_t *is; sin_t *sin; sin6_t *sin6; ip6_t *ip6h; ip6i_t *ip6i; mblk_t *mp1; int hdr_len; ipha_t *ipha; int udi_size; /* Size of T_unitdata_ind */ uint_t ipvers; ip6_pkt_t ipp; uint8_t nexthdr; ip_pktinfo_t *pinfo = NULL; mblk_t *options_mp = NULL; uint_t icmp_opt = 0; boolean_t icmp_ipv6_recvhoplimit = B_FALSE; uint_t hopstrip; ASSERT(connp->conn_flags & IPCL_RAWIPCONN); icmp = connp->conn_icmp; is = icmp->icmp_is; rptr = mp->b_rptr; ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL); ASSERT(OK_32PTR(rptr)); /* * IP should have prepended the options data in an M_CTL * Check M_CTL "type" to make sure are not here bcos of * a valid ICMP message */ if (DB_TYPE(mp) == M_CTL) { /* * FIXME: does IP still do this? * IP sends up the IPSEC_IN message for handling IPSEC * policy at the TCP level. We don't need it here. */ if (*(uint32_t *)(mp->b_rptr) == IPSEC_IN) { mp1 = mp->b_cont; freeb(mp); mp = mp1; rptr = mp->b_rptr; } else if (MBLKL(mp) == sizeof (ip_pktinfo_t) && ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type == IN_PKTINFO) { /* * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information * has been prepended to the packet by IP. We need to * extract the mblk and adjust the rptr */ pinfo = (ip_pktinfo_t *)mp->b_rptr; options_mp = mp; mp = mp->b_cont; rptr = mp->b_rptr; } else { /* * ICMP messages. */ icmp_icmp_error(connp->conn_rq, mp); return; } } /* * Discard message if it is misaligned or smaller than the IP header. */ if (!OK_32PTR(rptr) || (mp->b_wptr - rptr) < sizeof (ipha_t)) { freemsg(mp); if (options_mp != NULL) freeb(options_mp); BUMP_MIB(&is->is_rawip_mib, rawipInErrors); return; } ipvers = IPH_HDR_VERSION((ipha_t *)rptr); /* Handle M_DATA messages containing IP packets messages */ if (ipvers == IPV4_VERSION) { /* * Special case where IP attaches * the IRE needs to be handled so that we don't send up * IRE to the user land. */ ipha = (ipha_t *)rptr; hdr_len = IPH_HDR_LENGTH(ipha); if (ipha->ipha_protocol == IPPROTO_TCP) { tcph_t *tcph = (tcph_t *)&mp->b_rptr[hdr_len]; if (((tcph->th_flags[0] & (TH_SYN|TH_ACK)) == TH_SYN) && mp->b_cont != NULL) { mp1 = mp->b_cont; if (mp1->b_datap->db_type == IRE_DB_TYPE) { freeb(mp1); mp->b_cont = NULL; } } } if (is->is_bsd_compat) { ushort_t len; len = ntohs(ipha->ipha_length); if (mp->b_datap->db_ref > 1) { /* * Allocate a new IP header so that we can * modify ipha_length. */ mblk_t *mp1; mp1 = allocb(hdr_len, BPRI_MED); if (!mp1) { freemsg(mp); if (options_mp != NULL) freeb(options_mp); BUMP_MIB(&is->is_rawip_mib, rawipInErrors); return; } bcopy(rptr, mp1->b_rptr, hdr_len); mp->b_rptr = rptr + hdr_len; rptr = mp1->b_rptr; ipha = (ipha_t *)rptr; mp1->b_cont = mp; mp1->b_wptr = rptr + hdr_len; mp = mp1; } len -= hdr_len; ipha->ipha_length = htons(len); } } /* * This is the inbound data path. Packets are passed upstream as * T_UNITDATA_IND messages with full IP headers still attached. */ if (icmp->icmp_family == AF_INET) { ASSERT(ipvers == IPV4_VERSION); udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); if (icmp->icmp_recvif && (pinfo != NULL) && (pinfo->ip_pkt_flags & IPF_RECVIF)) { udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); } if (icmp->icmp_ip_recvpktinfo && (pinfo != NULL) && (pinfo->ip_pkt_flags & IPF_RECVADDR)) { udi_size += sizeof (struct T_opthdr) + sizeof (struct in_pktinfo); } /* * If SO_TIMESTAMP is set allocate the appropriate sized * buffer. Since gethrestime() expects a pointer aligned * argument, we allocate space necessary for extra * alignment (even though it might not be used). */ if (icmp->icmp_timestamp) { udi_size += sizeof (struct T_opthdr) + sizeof (timestruc_t) + _POINTER_ALIGNMENT; } mp1 = allocb(udi_size, BPRI_MED); if (mp1 == NULL) { freemsg(mp); if (options_mp != NULL) freeb(options_mp); BUMP_MIB(&is->is_rawip_mib, rawipInErrors); return; } mp1->b_cont = mp; mp = mp1; tudi = (struct T_unitdata_ind *)mp->b_rptr; mp->b_datap->db_type = M_PROTO; mp->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); sin = (sin_t *)&tudi[1]; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipha->ipha_src; tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t); udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); tudi->OPT_length = udi_size; /* * Add options if IP_RECVIF is set */ if (udi_size != 0) { char *dstopt; dstopt = (char *)&sin[1]; if (icmp->icmp_recvif && (pinfo != NULL) && (pinfo->ip_pkt_flags & IPF_RECVIF)) { struct T_opthdr *toh; uint_t *dstptr; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_RECVIF; toh->len = sizeof (struct T_opthdr) + sizeof (uint_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); dstptr = (uint_t *)dstopt; *dstptr = pinfo->ip_pkt_ifindex; dstopt += sizeof (uint_t); udi_size -= toh->len; } if (icmp->icmp_timestamp) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = SOL_SOCKET; toh->name = SCM_TIMESTAMP; toh->len = sizeof (struct T_opthdr) + sizeof (timestruc_t) + _POINTER_ALIGNMENT; toh->status = 0; dstopt += sizeof (struct T_opthdr); /* Align for gethrestime() */ dstopt = (char *)P2ROUNDUP((intptr_t)dstopt, sizeof (intptr_t)); gethrestime((timestruc_t *)dstopt); dstopt = (char *)toh + toh->len; udi_size -= toh->len; } if (icmp->icmp_ip_recvpktinfo && (pinfo != NULL) && (pinfo->ip_pkt_flags & IPF_RECVADDR)) { struct T_opthdr *toh; struct in_pktinfo *pktinfop; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IP; toh->name = IP_PKTINFO; toh->len = sizeof (struct T_opthdr) + sizeof (in_pktinfo_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); pktinfop = (struct in_pktinfo *)dstopt; pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex; pktinfop->ipi_spec_dst = pinfo->ip_pkt_match_addr; pktinfop->ipi_addr.s_addr = ipha->ipha_dst; dstopt += sizeof (struct in_pktinfo); udi_size -= toh->len; } /* Consumed all of allocated space */ ASSERT(udi_size == 0); } if (options_mp != NULL) freeb(options_mp); BUMP_MIB(&is->is_rawip_mib, rawipInDatagrams); putnext(connp->conn_rq, mp); return; } /* * We don't need options_mp in the IPv6 path. */ if (options_mp != NULL) { freeb(options_mp); options_mp = NULL; } /* * Discard message if it is smaller than the IPv6 header * or if the header is malformed. */ if ((mp->b_wptr - rptr) < sizeof (ip6_t) || IPH_HDR_VERSION((ipha_t *)rptr) != IPV6_VERSION || icmp->icmp_family != AF_INET6) { freemsg(mp); BUMP_MIB(&is->is_rawip_mib, rawipInErrors); return; } /* Initialize */ ipp.ipp_fields = 0; hopstrip = 0; ip6h = (ip6_t *)rptr; /* * Call on ip_find_hdr_v6 which gets the total hdr len * as well as individual lenghts of ext hdrs (and ptrs to * them). */ if (ip6h->ip6_nxt != icmp->icmp_proto) { /* Look for ifindex information */ if (ip6h->ip6_nxt == IPPROTO_RAW) { ip6i = (ip6i_t *)ip6h; if (ip6i->ip6i_flags & IP6I_IFINDEX) { ASSERT(ip6i->ip6i_ifindex != 0); ipp.ipp_fields |= IPPF_IFINDEX; ipp.ipp_ifindex = ip6i->ip6i_ifindex; } rptr = (uchar_t *)&ip6i[1]; mp->b_rptr = rptr; if (rptr == mp->b_wptr) { mp1 = mp->b_cont; freeb(mp); mp = mp1; rptr = mp->b_rptr; } ASSERT(mp->b_wptr - rptr >= IPV6_HDR_LEN); ip6h = (ip6_t *)rptr; } hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdr); /* * We need to lie a bit to the user because users inside * labeled compartments should not see their own labels. We * assume that in all other respects IP has checked the label, * and that the label is always first among the options. (If * it's not first, then this code won't see it, and the option * will be passed along to the user.) * * If we had multilevel ICMP sockets, then the following code * should be skipped for them to allow the user to see the * label. * * Alignment restrictions in the definition of IP options * (namely, the requirement that the 4-octet DOI goes on a * 4-octet boundary) mean that we know exactly where the option * should start, but we're lenient for other hosts. * * Note that there are no multilevel ICMP or raw IP sockets * yet, thus nobody ever sees the IP6OPT_LS option. */ if ((ipp.ipp_fields & IPPF_HOPOPTS) && ipp.ipp_hopoptslen > 5 && is_system_labeled()) { const uchar_t *ucp = (const uchar_t *)ipp.ipp_hopopts + 2; int remlen = ipp.ipp_hopoptslen - 2; while (remlen > 0) { if (*ucp == IP6OPT_PAD1) { remlen--; ucp++; } else if (*ucp == IP6OPT_PADN) { remlen -= ucp[1] + 2; ucp += ucp[1] + 2; } else if (*ucp == ip6opt_ls) { hopstrip = (ucp - (const uchar_t *)ipp.ipp_hopopts) + ucp[1] + 2; hopstrip = (hopstrip + 7) & ~7; break; } else { /* label option must be first */ break; } } } } else { hdr_len = IPV6_HDR_LEN; ip6i = NULL; nexthdr = ip6h->ip6_nxt; } /* * One special case where IP attaches the IRE needs to * be handled so that we don't send up IRE to the user land. */ if (nexthdr == IPPROTO_TCP) { tcph_t *tcph = (tcph_t *)&mp->b_rptr[hdr_len]; if (((tcph->th_flags[0] & (TH_SYN|TH_ACK)) == TH_SYN) && mp->b_cont != NULL) { mp1 = mp->b_cont; if (mp1->b_datap->db_type == IRE_DB_TYPE) { freeb(mp1); mp->b_cont = NULL; } } } /* * Check a filter for ICMPv6 types if needed. * Verify raw checksums if needed. */ if (icmp->icmp_filter != NULL || icmp->icmp_raw_checksum) { if (icmp->icmp_filter != NULL) { int type; /* Assumes that IP has done the pullupmsg */ type = mp->b_rptr[hdr_len]; ASSERT(mp->b_rptr + hdr_len <= mp->b_wptr); if (ICMP6_FILTER_WILLBLOCK(type, icmp->icmp_filter)) { freemsg(mp); return; } } else { /* Checksum */ uint16_t *up; uint32_t sum; int remlen; up = (uint16_t *)&ip6h->ip6_src; remlen = msgdsize(mp) - hdr_len; sum = htons(icmp->icmp_proto + remlen) + up[0] + up[1] + up[2] + up[3] + up[4] + up[5] + up[6] + up[7] + up[8] + up[9] + up[10] + up[11] + up[12] + up[13] + up[14] + up[15]; sum = (sum & 0xffff) + (sum >> 16); sum = IP_CSUM(mp, hdr_len, sum); if (sum != 0) { /* IPv6 RAW checksum failed */ ip0dbg(("icmp_rput: RAW checksum " "failed %x\n", sum)); freemsg(mp); BUMP_MIB(&is->is_rawip_mib, rawipInCksumErrs); return; } } } /* Skip all the IPv6 headers per API */ mp->b_rptr += hdr_len; udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); /* * We use local variables icmp_opt and icmp_ipv6_recvhoplimit to * maintain state information, instead of relying on icmp_t * structure, since there arent any locks protecting these members * and there is a window where there might be a race between a * thread setting options on the write side and a thread reading * these options on the read size. */ if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS| IPPF_RTHDR|IPPF_IFINDEX)) { if (icmp->icmp_ipv6_recvhopopts && (ipp.ipp_fields & IPPF_HOPOPTS) && ipp.ipp_hopoptslen > hopstrip) { udi_size += sizeof (struct T_opthdr) + ipp.ipp_hopoptslen - hopstrip; icmp_opt |= IPPF_HOPOPTS; } if ((icmp->icmp_ipv6_recvdstopts || icmp->icmp_old_ipv6_recvdstopts) && (ipp.ipp_fields & IPPF_DSTOPTS)) { udi_size += sizeof (struct T_opthdr) + ipp.ipp_dstoptslen; icmp_opt |= IPPF_DSTOPTS; } if (((icmp->icmp_ipv6_recvdstopts && icmp->icmp_ipv6_recvrthdr && (ipp.ipp_fields & IPPF_RTHDR)) || icmp->icmp_ipv6_recvrtdstopts) && (ipp.ipp_fields & IPPF_RTDSTOPTS)) { udi_size += sizeof (struct T_opthdr) + ipp.ipp_rtdstoptslen; icmp_opt |= IPPF_RTDSTOPTS; } if (icmp->icmp_ipv6_recvrthdr && (ipp.ipp_fields & IPPF_RTHDR)) { udi_size += sizeof (struct T_opthdr) + ipp.ipp_rthdrlen; icmp_opt |= IPPF_RTHDR; } if (icmp->icmp_ip_recvpktinfo && (ipp.ipp_fields & IPPF_IFINDEX)) { udi_size += sizeof (struct T_opthdr) + sizeof (struct in6_pktinfo); icmp_opt |= IPPF_IFINDEX; } } if (icmp->icmp_ipv6_recvhoplimit) { udi_size += sizeof (struct T_opthdr) + sizeof (int); icmp_ipv6_recvhoplimit = B_TRUE; } if (icmp->icmp_ipv6_recvtclass) udi_size += sizeof (struct T_opthdr) + sizeof (int); /* * If SO_TIMESTAMP is set allocate the appropriate sized * buffer. Since gethrestime() expects a pointer aligned * argument, we allocate space necessary for extra * alignment (even though it might not be used). */ if (icmp->icmp_timestamp) { udi_size += sizeof (struct T_opthdr) + sizeof (timestruc_t) + _POINTER_ALIGNMENT; } mp1 = allocb(udi_size, BPRI_MED); if (mp1 == NULL) { freemsg(mp); BUMP_MIB(&is->is_rawip_mib, rawipInErrors); return; } mp1->b_cont = mp; mp = mp1; mp->b_datap->db_type = M_PROTO; tudi = (struct T_unitdata_ind *)mp->b_rptr; mp->b_wptr = (uchar_t *)tudi + udi_size; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sizeof (sin6_t); tudi->SRC_offset = sizeof (struct T_unitdata_ind); tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t)); tudi->OPT_length = udi_size; sin6 = (sin6_t *)&tudi[1]; sin6->sin6_port = 0; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ip6h->ip6_src; /* No sin6_flowinfo per API */ sin6->sin6_flowinfo = 0; /* For link-scope source pass up scope id */ if ((ipp.ipp_fields & IPPF_IFINDEX) && IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) sin6->sin6_scope_id = ipp.ipp_ifindex; else sin6->sin6_scope_id = 0; sin6->__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, icmp->icmp_zoneid, is->is_netstack); if (udi_size != 0) { uchar_t *dstopt; dstopt = (uchar_t *)&sin6[1]; if (icmp_opt & IPPF_IFINDEX) { struct T_opthdr *toh; struct in6_pktinfo *pkti; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_PKTINFO; toh->len = sizeof (struct T_opthdr) + sizeof (*pkti); toh->status = 0; dstopt += sizeof (struct T_opthdr); pkti = (struct in6_pktinfo *)dstopt; pkti->ipi6_addr = ip6h->ip6_dst; pkti->ipi6_ifindex = ipp.ipp_ifindex; dstopt += sizeof (*pkti); udi_size -= toh->len; } if (icmp_ipv6_recvhoplimit) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPLIMIT; toh->len = sizeof (struct T_opthdr) + sizeof (uint_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); *(uint_t *)dstopt = ip6h->ip6_hops; dstopt += sizeof (uint_t); udi_size -= toh->len; } if (icmp->icmp_ipv6_recvtclass) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_TCLASS; toh->len = sizeof (struct T_opthdr) + sizeof (uint_t); toh->status = 0; dstopt += sizeof (struct T_opthdr); *(uint_t *)dstopt = IPV6_FLOW_TCLASS(ip6h->ip6_flow); dstopt += sizeof (uint_t); udi_size -= toh->len; } if (icmp->icmp_timestamp) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = SOL_SOCKET; toh->name = SCM_TIMESTAMP; toh->len = sizeof (struct T_opthdr) + sizeof (timestruc_t) + _POINTER_ALIGNMENT; toh->status = 0; dstopt += sizeof (struct T_opthdr); /* Align for gethrestime() */ dstopt = (uchar_t *)P2ROUNDUP((intptr_t)dstopt, sizeof (intptr_t)); gethrestime((timestruc_t *)dstopt); dstopt = (uchar_t *)toh + toh->len; udi_size -= toh->len; } if (icmp_opt & IPPF_HOPOPTS) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPOPTS; toh->len = sizeof (struct T_opthdr) + ipp.ipp_hopoptslen - hopstrip; toh->status = 0; dstopt += sizeof (struct T_opthdr); bcopy((char *)ipp.ipp_hopopts + hopstrip, dstopt, ipp.ipp_hopoptslen - hopstrip); if (hopstrip > 0) { /* copy next header value and fake length */ dstopt[0] = ((uchar_t *)ipp.ipp_hopopts)[0]; dstopt[1] = ((uchar_t *)ipp.ipp_hopopts)[1] - hopstrip / 8; } dstopt += ipp.ipp_hopoptslen - hopstrip; udi_size -= toh->len; } if (icmp_opt & IPPF_RTDSTOPTS) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_DSTOPTS; toh->len = sizeof (struct T_opthdr) + ipp.ipp_rtdstoptslen; toh->status = 0; dstopt += sizeof (struct T_opthdr); bcopy(ipp.ipp_rtdstopts, dstopt, ipp.ipp_rtdstoptslen); dstopt += ipp.ipp_rtdstoptslen; udi_size -= toh->len; } if (icmp_opt & IPPF_RTHDR) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_RTHDR; toh->len = sizeof (struct T_opthdr) + ipp.ipp_rthdrlen; toh->status = 0; dstopt += sizeof (struct T_opthdr); bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen); dstopt += ipp.ipp_rthdrlen; udi_size -= toh->len; } if (icmp_opt & IPPF_DSTOPTS) { struct T_opthdr *toh; toh = (struct T_opthdr *)dstopt; toh->level = IPPROTO_IPV6; toh->name = IPV6_DSTOPTS; toh->len = sizeof (struct T_opthdr) + ipp.ipp_dstoptslen; toh->status = 0; dstopt += sizeof (struct T_opthdr); bcopy(ipp.ipp_dstopts, dstopt, ipp.ipp_dstoptslen); dstopt += ipp.ipp_dstoptslen; udi_size -= toh->len; } /* Consumed all of allocated space */ ASSERT(udi_size == 0); } BUMP_MIB(&is->is_rawip_mib, rawipInDatagrams); putnext(connp->conn_rq, mp); } /* * Handle the results of a T_BIND_REQ whether deferred by IP or handled * immediately. */ static void icmp_bind_result(conn_t *connp, mblk_t *mp) { struct T_error_ack *tea; switch (mp->b_datap->db_type) { case M_PROTO: case M_PCPROTO: /* M_PROTO messages contain some type of TPI message. */ if ((mp->b_wptr - mp->b_rptr) < sizeof (t_scalar_t)) { freemsg(mp); return; } tea = (struct T_error_ack *)mp->b_rptr; switch (tea->PRIM_type) { case T_ERROR_ACK: switch (tea->ERROR_prim) { case O_T_BIND_REQ: case T_BIND_REQ: icmp_bind_error(connp, mp); return; default: break; } ASSERT(0); freemsg(mp); return; case T_BIND_ACK: icmp_bind_ack(connp, mp); return; default: break; } freemsg(mp); return; default: /* FIXME: other cases? */ ASSERT(0); freemsg(mp); return; } } /* * Process a T_BIND_ACK */ static void icmp_bind_ack(conn_t *connp, mblk_t *mp) { icmp_t *icmp = connp->conn_icmp; mblk_t *mp1; ire_t *ire; struct T_bind_ack *tba; uchar_t *addrp; ipa_conn_t *ac; ipa6_conn_t *ac6; rw_enter(&icmp->icmp_rwlock, RW_WRITER); /* * We know if headers are included or not so we can * safely do this. */ if (icmp->icmp_state == TS_UNBND) { /* * TPI has not yet bound - bind sent by * icmp_bind_proto. */ freemsg(mp); rw_exit(&icmp->icmp_rwlock); return; } ASSERT(icmp->icmp_pending_op != -1); /* * If a broadcast/multicast address was bound set * the source address to 0. * This ensures no datagrams with broadcast address * as source address are emitted (which would violate * RFC1122 - Hosts requirements) * * Note that when connecting the returned IRE is * for the destination address and we only perform * the broadcast check for the source address (it * is OK to connect to a broadcast/multicast address.) */ mp1 = mp->b_cont; if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) { ire = (ire_t *)mp1->b_rptr; /* * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast * local address. */ if (ire->ire_type == IRE_BROADCAST && icmp->icmp_state != TS_DATA_XFER) { ASSERT(icmp->icmp_pending_op == T_BIND_REQ || icmp->icmp_pending_op == O_T_BIND_REQ); /* This was just a local bind to a MC/broadcast addr */ V6_SET_ZERO(icmp->icmp_v6src); if (icmp->icmp_family == AF_INET6) (void) icmp_build_hdrs(icmp); } else if (V6_OR_V4_INADDR_ANY(icmp->icmp_v6src)) { /* * Local address not yet set - pick it from the * T_bind_ack */ tba = (struct T_bind_ack *)mp->b_rptr; addrp = &mp->b_rptr[tba->ADDR_offset]; switch (icmp->icmp_family) { case AF_INET: if (tba->ADDR_length == sizeof (ipa_conn_t)) { ac = (ipa_conn_t *)addrp; } else { ASSERT(tba->ADDR_length == sizeof (ipa_conn_x_t)); ac = &((ipa_conn_x_t *)addrp)->acx_conn; } IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr, &icmp->icmp_v6src); break; case AF_INET6: if (tba->ADDR_length == sizeof (ipa6_conn_t)) { ac6 = (ipa6_conn_t *)addrp; } else { ASSERT(tba->ADDR_length == sizeof (ipa6_conn_x_t)); ac6 = &((ipa6_conn_x_t *) addrp)->ac6x_conn; } icmp->icmp_v6src = ac6->ac6_laddr; (void) icmp_build_hdrs(icmp); } } mp1 = mp1->b_cont; } icmp->icmp_pending_op = -1; rw_exit(&icmp->icmp_rwlock); /* * Look for one or more appended ACK message added by * icmp_connect or icmp_disconnect. * If none found just send up the T_BIND_ACK. * icmp_connect has appended a T_OK_ACK and a * T_CONN_CON. * icmp_disconnect has appended a T_OK_ACK. */ if (mp1 != NULL) { if (mp->b_cont == mp1) mp->b_cont = NULL; else { ASSERT(mp->b_cont->b_cont == mp1); mp->b_cont->b_cont = NULL; } freemsg(mp); mp = mp1; while (mp != NULL) { mp1 = mp->b_cont; mp->b_cont = NULL; putnext(connp->conn_rq, mp); mp = mp1; } return; } freemsg(mp->b_cont); mp->b_cont = NULL; putnext(connp->conn_rq, mp); } static void icmp_bind_error(conn_t *connp, mblk_t *mp) { icmp_t *icmp = connp->conn_icmp; struct T_error_ack *tea; tea = (struct T_error_ack *)mp->b_rptr; /* * If our O_T_BIND_REQ/T_BIND_REQ fails, * clear out the source address before * passing the message upstream. * If this was caused by a T_CONN_REQ * revert back to bound state. */ rw_enter(&icmp->icmp_rwlock, RW_WRITER); if (icmp->icmp_state == TS_UNBND) { /* * TPI has not yet bound - bind sent by icmp_bind_proto. */ freemsg(mp); rw_exit(&icmp->icmp_rwlock); return; } ASSERT(icmp->icmp_pending_op != -1); tea->ERROR_prim = icmp->icmp_pending_op; icmp->icmp_pending_op = -1; switch (tea->ERROR_prim) { case T_CONN_REQ: ASSERT(icmp->icmp_state == TS_DATA_XFER); /* Connect failed */ /* Revert back to the bound source */ icmp->icmp_v6src = icmp->icmp_bound_v6src; icmp->icmp_state = TS_IDLE; if (icmp->icmp_family == AF_INET6) (void) icmp_build_hdrs(icmp); break; case T_DISCON_REQ: case T_BIND_REQ: case O_T_BIND_REQ: V6_SET_ZERO(icmp->icmp_v6src); V6_SET_ZERO(icmp->icmp_bound_v6src); icmp->icmp_state = TS_UNBND; if (icmp->icmp_family == AF_INET6) (void) icmp_build_hdrs(icmp); break; default: break; } rw_exit(&icmp->icmp_rwlock); putnext(connp->conn_rq, mp); } /* * return SNMP stuff in buffer in mpdata */ mblk_t * icmp_snmp_get(queue_t *q, mblk_t *mpctl) { mblk_t *mpdata; struct opthdr *optp; conn_t *connp = Q_TO_CONN(q); icmp_stack_t *is = connp->conn_netstack->netstack_icmp; mblk_t *mp2ctl; /* * make a copy of the original message */ mp2ctl = copymsg(mpctl); if (mpctl == NULL || (mpdata = mpctl->b_cont) == NULL) { freemsg(mpctl); freemsg(mp2ctl); return (0); } /* fixed length structure for IPv4 and IPv6 counters */ optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; optp->level = EXPER_RAWIP; optp->name = 0; (void) snmp_append_data(mpdata, (char *)&is->is_rawip_mib, sizeof (is->is_rawip_mib)); optp->len = msgdsize(mpdata); qreply(q, mpctl); return (mp2ctl); } /* * Return 0 if invalid set request, 1 otherwise, including non-rawip requests. * TODO: If this ever actually tries to set anything, it needs to be * to do the appropriate locking. */ /* ARGSUSED */ int icmp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr, int len) { switch (level) { case EXPER_RAWIP: return (0); default: return (1); } } /* Report for ndd "icmp_status" */ /* ARGSUSED */ static int icmp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { conn_t *connp; ip_stack_t *ipst; char laddrbuf[INET6_ADDRSTRLEN]; char faddrbuf[INET6_ADDRSTRLEN]; int i; (void) mi_mpprintf(mp, "RAWIP " MI_COL_HDRPAD_STR /* 01234567[89ABCDEF] */ " src addr dest addr state"); /* xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx UNBOUND */ connp = Q_TO_CONN(q); ipst = connp->conn_netstack->netstack_ip; for (i = 0; i < CONN_G_HASH_SIZE; i++) { connf_t *connfp; char *state; connfp = &ipst->ips_ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_RAWIPCONN)) != NULL) { icmp_t *icmp; mutex_enter(&(connp)->conn_lock); icmp = connp->conn_icmp; if (icmp->icmp_state == TS_UNBND) state = "UNBOUND"; else if (icmp->icmp_state == TS_IDLE) state = "IDLE"; else if (icmp->icmp_state == TS_DATA_XFER) state = "CONNECTED"; else state = "UnkState"; (void) mi_mpprintf(mp, MI_COL_PTRFMT_STR "%s %s %s", (void *)icmp, inet_ntop(AF_INET6, &icmp->icmp_v6dst, faddrbuf, sizeof (faddrbuf)), inet_ntop(AF_INET6, &icmp->icmp_v6src, laddrbuf, sizeof (laddrbuf)), state); mutex_exit(&(connp)->conn_lock); } } return (0); } /* * This routine creates a T_UDERROR_IND message and passes it upstream. * The address and options are copied from the T_UNITDATA_REQ message * passed in mp. This message is freed. */ static void icmp_ud_err(queue_t *q, mblk_t *mp, t_scalar_t err) { mblk_t *mp1; uchar_t *rptr = mp->b_rptr; struct T_unitdata_req *tudr = (struct T_unitdata_req *)rptr; mp1 = mi_tpi_uderror_ind((char *)&rptr[tudr->DEST_offset], tudr->DEST_length, (char *)&rptr[tudr->OPT_offset], tudr->OPT_length, err); if (mp1) qreply(q, mp1); freemsg(mp); } /* * This routine is called by icmp_wput to handle T_UNBIND_REQ messages. * After some error checking, the message is passed downstream to ip. */ static void icmp_unbind(queue_t *q, mblk_t *mp) { icmp_t *icmp = Q_TO_ICMP(q); rw_enter(&icmp->icmp_rwlock, RW_WRITER); /* If a bind has not been done, we can't unbind. */ if (icmp->icmp_state == TS_UNBND || icmp->icmp_pending_op != -1) { rw_exit(&icmp->icmp_rwlock); icmp_err_ack(q, mp, TOUTSTATE, 0); return; } icmp->icmp_pending_op = T_UNBIND_REQ; rw_exit(&icmp->icmp_rwlock); /* * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK * and therefore ip_unbind must never return NULL. */ mp = ip_unbind(q, mp); ASSERT(mp != NULL); ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK); /* * Once we're unbound from IP, the pending operation may be cleared * here. */ rw_enter(&icmp->icmp_rwlock, RW_WRITER); V6_SET_ZERO(icmp->icmp_v6src); V6_SET_ZERO(icmp->icmp_bound_v6src); icmp->icmp_pending_op = -1; icmp->icmp_state = TS_UNBND; if (icmp->icmp_family == AF_INET6) (void) icmp_build_hdrs(icmp); rw_exit(&icmp->icmp_rwlock); qreply(q, mp); } /* * Process IPv4 packets that already include an IP header. * Used when IP_HDRINCL has been set (implicit for IPPROTO_RAW and * IPPROTO_IGMP). */ static void icmp_wput_hdrincl(queue_t *q, mblk_t *mp, icmp_t *icmp, ip4_pkt_t *pktinfop) { icmp_stack_t *is = icmp->icmp_is; ipha_t *ipha; int ip_hdr_length; int tp_hdr_len; mblk_t *mp1; uint_t pkt_len; ip_opt_info_t optinfo; conn_t *connp = icmp->icmp_connp; optinfo.ip_opt_flags = 0; optinfo.ip_opt_ill_index = 0; ipha = (ipha_t *)mp->b_rptr; ip_hdr_length = IP_SIMPLE_HDR_LENGTH + icmp->icmp_ip_snd_options_len; if ((mp->b_wptr - mp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { ASSERT(icmp != NULL); BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); freemsg(mp); return; } ipha = (ipha_t *)mp->b_rptr; } ipha->ipha_version_and_hdr_length = (IP_VERSION<<4) | (ip_hdr_length>>2); /* * For the socket of SOCK_RAW type, the checksum is provided in the * pre-built packet. We set the ipha_ident field to IP_HDR_INCLUDED to * tell IP that the application has sent a complete IP header and not * to compute the transport checksum nor change the DF flag. */ ipha->ipha_ident = IP_HDR_INCLUDED; ipha->ipha_hdr_checksum = 0; ipha->ipha_fragment_offset_and_flags &= htons(IPH_DF); /* Insert options if any */ if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) { /* * Put the IP header plus any transport header that is * checksumed by ip_wput into the first mblk. (ip_wput assumes * that at least the checksum field is in the first mblk.) */ switch (ipha->ipha_protocol) { case IPPROTO_UDP: tp_hdr_len = 8; break; case IPPROTO_TCP: tp_hdr_len = 20; break; default: tp_hdr_len = 0; break; } /* * The code below assumes that IP_SIMPLE_HDR_LENGTH plus * tp_hdr_len bytes will be in a single mblk. */ if ((mp->b_wptr - mp->b_rptr) < (IP_SIMPLE_HDR_LENGTH + tp_hdr_len)) { if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH + tp_hdr_len)) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); freemsg(mp); return; } ipha = (ipha_t *)mp->b_rptr; } /* * if the length is larger then the max allowed IP packet, * then send an error and abort the processing. */ pkt_len = ntohs(ipha->ipha_length) + icmp->icmp_ip_snd_options_len; if (pkt_len > IP_MAXPACKET) { icmp_ud_err(q, mp, EMSGSIZE); return; } if (!(mp1 = allocb(ip_hdr_length + is->is_wroff_extra + tp_hdr_len, BPRI_LO))) { icmp_ud_err(q, mp, ENOMEM); return; } mp1->b_rptr += is->is_wroff_extra; mp1->b_wptr = mp1->b_rptr + ip_hdr_length; ipha->ipha_length = htons((uint16_t)pkt_len); bcopy(ipha, mp1->b_rptr, IP_SIMPLE_HDR_LENGTH); /* Copy transport header if any */ bcopy(&ipha[1], mp1->b_wptr, tp_hdr_len); mp1->b_wptr += tp_hdr_len; /* Add options */ ipha = (ipha_t *)mp1->b_rptr; bcopy(icmp->icmp_ip_snd_options, &ipha[1], icmp->icmp_ip_snd_options_len); /* Drop IP header and transport header from original */ (void) adjmsg(mp, IP_SIMPLE_HDR_LENGTH + tp_hdr_len); mp1->b_cont = mp; mp = mp1; /* * Massage source route putting first source * route in ipha_dst. */ (void) ip_massage_options(ipha, is->is_netstack); } if (pktinfop != NULL) { /* * Over write the source address provided in the header */ if (pktinfop->ip4_addr != INADDR_ANY) { ipha->ipha_src = pktinfop->ip4_addr; optinfo.ip_opt_flags = IP_VERIFY_SRC; } if (pktinfop->ip4_ill_index != 0) { optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index; } } mblk_setcred(mp, connp->conn_cred); ip_output_options(connp, mp, q, IP_WPUT, &optinfo); } static boolean_t icmp_update_label(queue_t *q, icmp_t *icmp, mblk_t *mp, ipaddr_t dst) { int err; uchar_t opt_storage[IP_MAX_OPT_LENGTH]; icmp_stack_t *is = icmp->icmp_is; conn_t *connp = icmp->icmp_connp; err = tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst, opt_storage, connp->conn_mac_exempt, is->is_netstack->netstack_ip); if (err == 0) { err = tsol_update_options(&icmp->icmp_ip_snd_options, &icmp->icmp_ip_snd_options_len, &icmp->icmp_label_len, opt_storage); } if (err != 0) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); DTRACE_PROBE4( tx__ip__log__drop__updatelabel__icmp, char *, "queue(1) failed to update options(2) on mp(3)", queue_t *, q, char *, opt_storage, mblk_t *, mp); icmp_ud_err(q, mp, err); return (B_FALSE); } IN6_IPADDR_TO_V4MAPPED(dst, &icmp->icmp_v6lastdst); return (B_TRUE); } /* * This routine handles all messages passed downstream. It either * consumes the message or passes it downstream; it never queues a * a message. */ static void icmp_wput(queue_t *q, mblk_t *mp) { uchar_t *rptr = mp->b_rptr; ipha_t *ipha; mblk_t *mp1; int ip_hdr_length; #define tudr ((struct T_unitdata_req *)rptr) size_t ip_len; conn_t *connp = Q_TO_CONN(q); icmp_t *icmp = connp->conn_icmp; icmp_stack_t *is = icmp->icmp_is; sin6_t *sin6; sin_t *sin; ipaddr_t v4dst; ip4_pkt_t pktinfo; ip4_pkt_t *pktinfop = &pktinfo; ip_opt_info_t optinfo; switch (mp->b_datap->db_type) { case M_DATA: if (icmp->icmp_hdrincl) { ASSERT(icmp->icmp_ipversion == IPV4_VERSION); ipha = (ipha_t *)mp->b_rptr; if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) { if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); freemsg(mp); return; } ipha = (ipha_t *)mp->b_rptr; } /* * If this connection was used for v6 (inconceivable!) * or if we have a new destination, then it's time to * figure a new label. */ if (is_system_labeled() && (!IN6_IS_ADDR_V4MAPPED(&icmp->icmp_v6lastdst) || V4_PART_OF_V6(icmp->icmp_v6lastdst) != ipha->ipha_dst) && !icmp_update_label(q, icmp, mp, ipha->ipha_dst)) { return; } icmp_wput_hdrincl(q, mp, icmp, NULL); return; } freemsg(mp); return; case M_PROTO: case M_PCPROTO: ip_len = mp->b_wptr - rptr; if (ip_len >= sizeof (struct T_unitdata_req)) { /* Expedite valid T_UNITDATA_REQ to below the switch */ if (((union T_primitives *)rptr)->type == T_UNITDATA_REQ) break; } /* FALLTHRU */ default: icmp_wput_other(q, mp); return; } /* Handle T_UNITDATA_REQ messages here. */ if (icmp->icmp_state == TS_UNBND) { /* If a port has not been bound to the stream, fail. */ BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, EPROTO); return; } mp1 = mp->b_cont; if (mp1 == NULL) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, EPROTO); return; } if ((rptr + tudr->DEST_offset + tudr->DEST_length) > mp->b_wptr) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, EADDRNOTAVAIL); return; } switch (icmp->icmp_family) { case AF_INET6: sin6 = (sin6_t *)&rptr[tudr->DEST_offset]; if (!OK_32PTR((char *)sin6) || tudr->DEST_length != sizeof (sin6_t) || sin6->sin6_family != AF_INET6) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, EADDRNOTAVAIL); return; } /* No support for mapped addresses on raw sockets */ if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, EADDRNOTAVAIL); return; } /* * Destination is a native IPv6 address. * Send out an IPv6 format packet. */ icmp_wput_ipv6(q, mp, sin6, tudr->OPT_length); return; case AF_INET: sin = (sin_t *)&rptr[tudr->DEST_offset]; if (!OK_32PTR((char *)sin) || tudr->DEST_length != sizeof (sin_t) || sin->sin_family != AF_INET) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, EADDRNOTAVAIL); return; } /* Extract and ipaddr */ v4dst = sin->sin_addr.s_addr; break; default: ASSERT(0); } pktinfop->ip4_ill_index = 0; pktinfop->ip4_addr = INADDR_ANY; optinfo.ip_opt_flags = 0; optinfo.ip_opt_ill_index = 0; /* * If options passed in, feed it for verification and handling */ if (tudr->OPT_length != 0) { int error; error = 0; if (icmp_unitdata_opt_process(q, mp, &error, (void *)pktinfop) < 0) { /* failure */ BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, error); return; } ASSERT(error == 0); /* * Note: Success in processing options. * mp option buffer represented by * OPT_length/offset now potentially modified * and contain option setting results */ } if (v4dst == INADDR_ANY) v4dst = htonl(INADDR_LOOPBACK); /* Check if our saved options are valid; update if not */ if (is_system_labeled() && (!IN6_IS_ADDR_V4MAPPED(&icmp->icmp_v6lastdst) || V4_PART_OF_V6(icmp->icmp_v6lastdst) != v4dst) && !icmp_update_label(q, icmp, mp, v4dst)) { return; } /* Protocol 255 contains full IP headers */ if (icmp->icmp_hdrincl) { freeb(mp); icmp_wput_hdrincl(q, mp1, icmp, pktinfop); return; } /* Add an IP header */ ip_hdr_length = IP_SIMPLE_HDR_LENGTH + icmp->icmp_ip_snd_options_len; ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length]; if ((uchar_t *)ipha < mp1->b_datap->db_base || mp1->b_datap->db_ref != 1 || !OK_32PTR(ipha)) { if (!(mp1 = allocb(ip_hdr_length + is->is_wroff_extra, BPRI_LO))) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, ENOMEM); return; } mp1->b_cont = mp->b_cont; ipha = (ipha_t *)mp1->b_datap->db_lim; mp1->b_wptr = (uchar_t *)ipha; ipha = (ipha_t *)((uchar_t *)ipha - ip_hdr_length); } #ifdef _BIG_ENDIAN /* Set version, header length, and tos */ *(uint16_t *)&ipha->ipha_version_and_hdr_length = ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) | icmp->icmp_type_of_service); /* Set ttl and protocol */ *(uint16_t *)&ipha->ipha_ttl = (icmp->icmp_ttl << 8) | icmp->icmp_proto; #else /* Set version, header length, and tos */ *(uint16_t *)&ipha->ipha_version_and_hdr_length = ((icmp->icmp_type_of_service << 8) | ((IP_VERSION << 4) | (ip_hdr_length>>2))); /* Set ttl and protocol */ *(uint16_t *)&ipha->ipha_ttl = (icmp->icmp_proto << 8) | icmp->icmp_ttl; #endif if (pktinfop->ip4_addr != INADDR_ANY) { ipha->ipha_src = pktinfop->ip4_addr; optinfo.ip_opt_flags = IP_VERIFY_SRC; } else { /* * Copy our address into the packet. If this is zero, * ip will fill in the real source address. */ IN6_V4MAPPED_TO_IPADDR(&icmp->icmp_v6src, ipha->ipha_src); } ipha->ipha_fragment_offset_and_flags = 0; if (pktinfop->ip4_ill_index != 0) { optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index; } /* * For the socket of SOCK_RAW type, the checksum is provided in the * pre-built packet. We set the ipha_ident field to IP_HDR_INCLUDED to * tell IP that the application has sent a complete IP header and not * to compute the transport checksum nor change the DF flag. */ ipha->ipha_ident = IP_HDR_INCLUDED; /* Finish common formatting of the packet. */ mp1->b_rptr = (uchar_t *)ipha; ip_len = mp1->b_wptr - (uchar_t *)ipha; if (mp1->b_cont != NULL) ip_len += msgdsize(mp1->b_cont); /* * Set the length into the IP header. * If the length is greater than the maximum allowed by IP, * then free the message and return. Do not try and send it * as this can cause problems in layers below. */ if (ip_len > IP_MAXPACKET) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, EMSGSIZE); return; } ipha->ipha_length = htons((uint16_t)ip_len); /* * Copy in the destination address from the T_UNITDATA * request */ ipha->ipha_dst = v4dst; /* * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic. */ if (CLASSD(v4dst)) ipha->ipha_ttl = icmp->icmp_multicast_ttl; /* Copy in options if any */ if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) { bcopy(icmp->icmp_ip_snd_options, &ipha[1], icmp->icmp_ip_snd_options_len); /* * Massage source route putting first source route in ipha_dst. * Ignore the destination in the T_unitdata_req. */ (void) ip_massage_options(ipha, is->is_netstack); } freeb(mp); BUMP_MIB(&is->is_rawip_mib, rawipOutDatagrams); mblk_setcred(mp1, connp->conn_cred); ip_output_options(Q_TO_CONN(q), mp1, q, IP_WPUT, &optinfo); #undef ipha #undef tudr } static boolean_t icmp_update_label_v6(queue_t *wq, icmp_t *icmp, mblk_t *mp, in6_addr_t *dst) { int err; uchar_t opt_storage[TSOL_MAX_IPV6_OPTION]; icmp_stack_t *is = icmp->icmp_is; conn_t *connp = icmp->icmp_connp; err = tsol_compute_label_v6(DB_CREDDEF(mp, connp->conn_cred), dst, opt_storage, connp->conn_mac_exempt, is->is_netstack->netstack_ip); if (err == 0) { err = tsol_update_sticky(&icmp->icmp_sticky_ipp, &icmp->icmp_label_len_v6, opt_storage); } if (err != 0) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); DTRACE_PROBE4( tx__ip__log__drop__updatelabel__icmp6, char *, "queue(1) failed to update options(2) on mp(3)", queue_t *, wq, char *, opt_storage, mblk_t *, mp); icmp_ud_err(wq, mp, err); return (B_FALSE); } icmp->icmp_v6lastdst = *dst; return (B_TRUE); } /* * icmp_wput_ipv6(): * Assumes that icmp_wput did some sanity checking on the destination * address, but that the label may not yet be correct. */ void icmp_wput_ipv6(queue_t *q, mblk_t *mp, sin6_t *sin6, t_scalar_t tudr_optlen) { ip6_t *ip6h; ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */ mblk_t *mp1; int ip_hdr_len = IPV6_HDR_LEN; size_t ip_len; icmp_t *icmp = Q_TO_ICMP(q); icmp_stack_t *is = icmp->icmp_is; ip6_pkt_t ipp_s; /* For ancillary data options */ ip6_pkt_t *ipp = &ipp_s; ip6_pkt_t *tipp; uint32_t csum = 0; uint_t ignore = 0; uint_t option_exists = 0, is_sticky = 0; uint8_t *cp; uint8_t *nxthdr_ptr; in6_addr_t ip6_dst; /* * If the local address is a mapped address return * an error. * It would be possible to send an IPv6 packet but the * response would never make it back to the application * since it is bound to a mapped address. */ if (IN6_IS_ADDR_V4MAPPED(&icmp->icmp_v6src)) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, EADDRNOTAVAIL); return; } ipp->ipp_fields = 0; ipp->ipp_sticky_ignored = 0; /* * If TPI options passed in, feed it for verification and handling */ if (tudr_optlen != 0) { int error; if (icmp_unitdata_opt_process(q, mp, &error, (void *)ipp) < 0) { /* failure */ BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, error); return; } ignore = ipp->ipp_sticky_ignored; ASSERT(error == 0); } if (sin6->sin6_scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) { /* * IPPF_SCOPE_ID is special. It's neither a sticky * option nor ancillary data. It needs to be * explicitly set in options_exists. */ option_exists |= IPPF_SCOPE_ID; } /* * Compute the destination address */ ip6_dst = sin6->sin6_addr; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) ip6_dst = ipv6_loopback; /* * If we're not going to the same destination as last time, then * recompute the label required. This is done in a separate routine to * avoid blowing up our stack here. */ if (is_system_labeled() && !IN6_ARE_ADDR_EQUAL(&icmp->icmp_v6lastdst, &ip6_dst) && !icmp_update_label_v6(q, icmp, mp, &ip6_dst)) { return; } /* * If there's a security label here, then we ignore any options the * user may try to set. We keep the peer's label as a hidden sticky * option. */ if (icmp->icmp_label_len_v6 > 0) { ignore &= ~IPPF_HOPOPTS; ipp->ipp_fields &= ~IPPF_HOPOPTS; } if ((icmp->icmp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) { /* No sticky options nor ancillary data. */ goto no_options; } /* * Go through the options figuring out where each is going to * come from and build two masks. The first mask indicates if * the option exists at all. The second mask indicates if the * option is sticky or ancillary. */ if (!(ignore & IPPF_HOPOPTS)) { if (ipp->ipp_fields & IPPF_HOPOPTS) { option_exists |= IPPF_HOPOPTS; ip_hdr_len += ipp->ipp_hopoptslen; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { option_exists |= IPPF_HOPOPTS; is_sticky |= IPPF_HOPOPTS; ip_hdr_len += icmp->icmp_sticky_ipp.ipp_hopoptslen; } } if (!(ignore & IPPF_RTHDR)) { if (ipp->ipp_fields & IPPF_RTHDR) { option_exists |= IPPF_RTHDR; ip_hdr_len += ipp->ipp_rthdrlen; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_RTHDR) { option_exists |= IPPF_RTHDR; is_sticky |= IPPF_RTHDR; ip_hdr_len += icmp->icmp_sticky_ipp.ipp_rthdrlen; } } if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) { /* * Need to have a router header to use these. */ if (ipp->ipp_fields & IPPF_RTDSTOPTS) { option_exists |= IPPF_RTDSTOPTS; ip_hdr_len += ipp->ipp_rtdstoptslen; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { option_exists |= IPPF_RTDSTOPTS; is_sticky |= IPPF_RTDSTOPTS; ip_hdr_len += icmp->icmp_sticky_ipp.ipp_rtdstoptslen; } } if (!(ignore & IPPF_DSTOPTS)) { if (ipp->ipp_fields & IPPF_DSTOPTS) { option_exists |= IPPF_DSTOPTS; ip_hdr_len += ipp->ipp_dstoptslen; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { option_exists |= IPPF_DSTOPTS; is_sticky |= IPPF_DSTOPTS; ip_hdr_len += icmp->icmp_sticky_ipp.ipp_dstoptslen; } } if (!(ignore & IPPF_IFINDEX)) { if (ipp->ipp_fields & IPPF_IFINDEX) { option_exists |= IPPF_IFINDEX; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_IFINDEX) { option_exists |= IPPF_IFINDEX; is_sticky |= IPPF_IFINDEX; } } if (!(ignore & IPPF_ADDR)) { if (ipp->ipp_fields & IPPF_ADDR) { option_exists |= IPPF_ADDR; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_ADDR) { option_exists |= IPPF_ADDR; is_sticky |= IPPF_ADDR; } } if (!(ignore & IPPF_DONTFRAG)) { if (ipp->ipp_fields & IPPF_DONTFRAG) { option_exists |= IPPF_DONTFRAG; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) { option_exists |= IPPF_DONTFRAG; is_sticky |= IPPF_DONTFRAG; } } if (!(ignore & IPPF_USE_MIN_MTU)) { if (ipp->ipp_fields & IPPF_USE_MIN_MTU) { option_exists |= IPPF_USE_MIN_MTU; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_USE_MIN_MTU) { option_exists |= IPPF_USE_MIN_MTU; is_sticky |= IPPF_USE_MIN_MTU; } } if (!(ignore & IPPF_NEXTHOP)) { if (ipp->ipp_fields & IPPF_NEXTHOP) { option_exists |= IPPF_NEXTHOP; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_NEXTHOP) { option_exists |= IPPF_NEXTHOP; is_sticky |= IPPF_NEXTHOP; } } if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT)) option_exists |= IPPF_HOPLIMIT; /* IPV6_HOPLIMIT can never be sticky */ ASSERT(!(icmp->icmp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT)); if (!(ignore & IPPF_UNICAST_HOPS) && (icmp->icmp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) { option_exists |= IPPF_UNICAST_HOPS; is_sticky |= IPPF_UNICAST_HOPS; } if (!(ignore & IPPF_MULTICAST_HOPS) && (icmp->icmp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) { option_exists |= IPPF_MULTICAST_HOPS; is_sticky |= IPPF_MULTICAST_HOPS; } if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_NO_CKSUM) { /* This is a sticky socket option only */ option_exists |= IPPF_NO_CKSUM; is_sticky |= IPPF_NO_CKSUM; } if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_RAW_CKSUM) { /* This is a sticky socket option only */ option_exists |= IPPF_RAW_CKSUM; is_sticky |= IPPF_RAW_CKSUM; } if (!(ignore & IPPF_TCLASS)) { if (ipp->ipp_fields & IPPF_TCLASS) { option_exists |= IPPF_TCLASS; } else if (icmp->icmp_sticky_ipp.ipp_fields & IPPF_TCLASS) { option_exists |= IPPF_TCLASS; is_sticky |= IPPF_TCLASS; } } no_options: /* * If any options carried in the ip6i_t were specified, we * need to account for the ip6i_t in the data we'll be sending * down. */ if (option_exists & IPPF_HAS_IP6I) ip_hdr_len += sizeof (ip6i_t); /* check/fix buffer config, setup pointers into it */ mp1 = mp->b_cont; ip6h = (ip6_t *)&mp1->b_rptr[-ip_hdr_len]; if ((mp1->b_datap->db_ref != 1) || ((unsigned char *)ip6h < mp1->b_datap->db_base) || !OK_32PTR(ip6h)) { /* Try to get everything in a single mblk next time */ if (ip_hdr_len > icmp->icmp_max_hdr_len) { icmp->icmp_max_hdr_len = ip_hdr_len; (void) mi_set_sth_wroff(RD(q), icmp->icmp_max_hdr_len + is->is_wroff_extra); } mp1 = allocb(ip_hdr_len + is->is_wroff_extra, BPRI_LO); if (!mp1) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, ENOMEM); return; } mp1->b_cont = mp->b_cont; mp1->b_wptr = mp1->b_datap->db_lim; ip6h = (ip6_t *)(mp1->b_wptr - ip_hdr_len); } mp1->b_rptr = (unsigned char *)ip6h; ip6i = (ip6i_t *)ip6h; #define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &icmp->icmp_sticky_ipp : ipp) if (option_exists & IPPF_HAS_IP6I) { ip6h = (ip6_t *)&ip6i[1]; ip6i->ip6i_flags = 0; ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW; /* sin6_scope_id takes precendence over IPPF_IFINDEX */ if (option_exists & IPPF_SCOPE_ID) { ip6i->ip6i_flags |= IP6I_IFINDEX; ip6i->ip6i_ifindex = sin6->sin6_scope_id; } else if (option_exists & IPPF_IFINDEX) { tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX); ASSERT(tipp->ipp_ifindex != 0); ip6i->ip6i_flags |= IP6I_IFINDEX; ip6i->ip6i_ifindex = tipp->ipp_ifindex; } if (option_exists & IPPF_RAW_CKSUM) { ip6i->ip6i_flags |= IP6I_RAW_CHECKSUM; ip6i->ip6i_checksum_off = icmp->icmp_checksum_off; } if (option_exists & IPPF_NO_CKSUM) { ip6i->ip6i_flags |= IP6I_NO_ULP_CKSUM; } if (option_exists & IPPF_ADDR) { /* * Enable per-packet source address verification if * IPV6_PKTINFO specified the source address. * ip6_src is set in the transport's _wput function. */ ip6i->ip6i_flags |= IP6I_VERIFY_SRC; } if (option_exists & IPPF_DONTFRAG) { ip6i->ip6i_flags |= IP6I_DONTFRAG; } if (option_exists & IPPF_USE_MIN_MTU) { ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU( ip6i->ip6i_flags, ipp->ipp_use_min_mtu); } if (option_exists & IPPF_NEXTHOP) { tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP); ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop)); ip6i->ip6i_flags |= IP6I_NEXTHOP; ip6i->ip6i_nexthop = tipp->ipp_nexthop; } /* * tell IP this is an ip6i_t private header */ ip6i->ip6i_nxt = IPPROTO_RAW; } /* Initialize IPv6 header */ ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src)); /* Set the hoplimit of the outgoing packet. */ if (option_exists & IPPF_HOPLIMIT) { /* IPV6_HOPLIMIT ancillary data overrides all other settings. */ ip6h->ip6_hops = ipp->ipp_hoplimit; ip6i->ip6i_flags |= IP6I_HOPLIMIT; } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { ip6h->ip6_hops = icmp->icmp_multicast_ttl; if (option_exists & IPPF_MULTICAST_HOPS) ip6i->ip6i_flags |= IP6I_HOPLIMIT; } else { ip6h->ip6_hops = icmp->icmp_ttl; if (option_exists & IPPF_UNICAST_HOPS) ip6i->ip6i_flags |= IP6I_HOPLIMIT; } if (option_exists & IPPF_ADDR) { tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR); ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr)); ip6h->ip6_src = tipp->ipp_addr; } else { /* * The source address was not set using IPV6_PKTINFO. * First look at the bound source. * If unspecified fallback to __sin6_src_id. */ ip6h->ip6_src = icmp->icmp_v6src; if (sin6->__sin6_src_id != 0 && IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { ip_srcid_find_id(sin6->__sin6_src_id, &ip6h->ip6_src, icmp->icmp_zoneid, is->is_netstack); } } nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt; cp = (uint8_t *)&ip6h[1]; /* * Here's where we have to start stringing together * any extension headers in the right order: * Hop-by-hop, destination, routing, and final destination opts. */ if (option_exists & IPPF_HOPOPTS) { /* Hop-by-hop options */ ip6_hbh_t *hbh = (ip6_hbh_t *)cp; tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS); *nxthdr_ptr = IPPROTO_HOPOPTS; nxthdr_ptr = &hbh->ip6h_nxt; bcopy(tipp->ipp_hopopts, cp, tipp->ipp_hopoptslen); cp += tipp->ipp_hopoptslen; } /* * En-route destination options * Only do them if there's a routing header as well */ if (option_exists & IPPF_RTDSTOPTS) { ip6_dest_t *dst = (ip6_dest_t *)cp; tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS); *nxthdr_ptr = IPPROTO_DSTOPTS; nxthdr_ptr = &dst->ip6d_nxt; bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen); cp += tipp->ipp_rtdstoptslen; } /* * Routing header next */ if (option_exists & IPPF_RTHDR) { ip6_rthdr_t *rt = (ip6_rthdr_t *)cp; tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR); *nxthdr_ptr = IPPROTO_ROUTING; nxthdr_ptr = &rt->ip6r_nxt; bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen); cp += tipp->ipp_rthdrlen; } /* * Do ultimate destination options */ if (option_exists & IPPF_DSTOPTS) { ip6_dest_t *dest = (ip6_dest_t *)cp; tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS); *nxthdr_ptr = IPPROTO_DSTOPTS; nxthdr_ptr = &dest->ip6d_nxt; bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen); cp += tipp->ipp_dstoptslen; } /* * Now set the last header pointer to the proto passed in */ ASSERT((int)(cp - (uint8_t *)ip6i) == ip_hdr_len); *nxthdr_ptr = icmp->icmp_proto; /* * Copy in the destination address */ ip6h->ip6_dst = ip6_dst; ip6h->ip6_vcf = (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK); if (option_exists & IPPF_TCLASS) { tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS); ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf, tipp->ipp_tclass); } if (option_exists & IPPF_RTHDR) { ip6_rthdr_t *rth; /* * Perform any processing needed for source routing. * We know that all extension headers will be in the same mblk * as the IPv6 header. */ rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr); if (rth != NULL && rth->ip6r_segleft != 0) { if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) { /* * Drop packet - only support Type 0 routing. * Notify the application as well. */ icmp_ud_err(q, mp, EPROTO); BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); return; } /* * rth->ip6r_len is twice the number of * addresses in the header */ if (rth->ip6r_len & 0x1) { icmp_ud_err(q, mp, EPROTO); BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); return; } /* * Shuffle the routing header and ip6_dst * addresses, and get the checksum difference * between the first hop (in ip6_dst) and * the destination (in the last routing hdr entry). */ csum = ip_massage_options_v6(ip6h, rth, is->is_netstack); /* * Verify that the first hop isn't a mapped address. * Routers along the path need to do this verification * for subsequent hops. */ if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) { icmp_ud_err(q, mp, EADDRNOTAVAIL); BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); return; } } } ip_len = mp1->b_wptr - (uchar_t *)ip6h - IPV6_HDR_LEN; if (mp1->b_cont != NULL) ip_len += msgdsize(mp1->b_cont); /* * Set the length into the IP header. * If the length is greater than the maximum allowed by IP, * then free the message and return. Do not try and send it * as this can cause problems in layers below. */ if (ip_len > IP_MAXPACKET) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); icmp_ud_err(q, mp, EMSGSIZE); return; } if (icmp->icmp_proto == IPPROTO_ICMPV6 || icmp->icmp_raw_checksum) { uint_t cksum_off; /* From ip6i == mp1->b_rptr */ uint16_t *cksum_ptr; uint_t ext_hdrs_len; /* ICMPv6 must have an offset matching icmp6_cksum offset */ ASSERT(icmp->icmp_proto != IPPROTO_ICMPV6 || icmp->icmp_checksum_off == 2); /* * We make it easy for IP to include our pseudo header * by putting our length in uh_checksum, modified (if * we have a routing header) by the checksum difference * between the ultimate destination and first hop addresses. * Note: ICMPv6 must always checksum the packet. */ cksum_off = ip_hdr_len + icmp->icmp_checksum_off; if (cksum_off + sizeof (uint16_t) > mp1->b_wptr - mp1->b_rptr) { if (!pullupmsg(mp1, cksum_off + sizeof (uint16_t))) { BUMP_MIB(&is->is_rawip_mib, rawipOutErrors); freemsg(mp); return; } ip6i = (ip6i_t *)mp1->b_rptr; if (ip6i->ip6i_nxt == IPPROTO_RAW) ip6h = (ip6_t *)&ip6i[1]; else ip6h = (ip6_t *)ip6i; } /* Add payload length to checksum */ ext_hdrs_len = ip_hdr_len - IPV6_HDR_LEN - (int)((uchar_t *)ip6h - (uchar_t *)ip6i); csum += htons(ip_len - ext_hdrs_len); cksum_ptr = (uint16_t *)((uchar_t *)ip6i + cksum_off); csum = (csum & 0xFFFF) + (csum >> 16); *cksum_ptr = (uint16_t)csum; } #ifdef _LITTLE_ENDIAN ip_len = htons(ip_len); #endif ip6h->ip6_plen = (uint16_t)ip_len; freeb(mp); /* We're done. Pass the packet to IP */ BUMP_MIB(&is->is_rawip_mib, rawipOutDatagrams); ip_output_v6(icmp->icmp_connp, mp1, q, IP_WPUT); } static void icmp_wput_other(queue_t *q, mblk_t *mp) { uchar_t *rptr = mp->b_rptr; struct iocblk *iocp; #define tudr ((struct T_unitdata_req *)rptr) conn_t *connp = Q_TO_CONN(q); icmp_t *icmp = connp->conn_icmp; icmp_stack_t *is = icmp->icmp_is; cred_t *cr; cr = DB_CREDDEF(mp, connp->conn_cred); switch (mp->b_datap->db_type) { case M_PROTO: case M_PCPROTO: if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { /* * If the message does not contain a PRIM_type, * throw it away. */ freemsg(mp); return; } switch (((union T_primitives *)rptr)->type) { case T_ADDR_REQ: icmp_addr_req(q, mp); return; case O_T_BIND_REQ: case T_BIND_REQ: icmp_bind(q, mp); return; case T_CONN_REQ: icmp_connect(q, mp); return; case T_CAPABILITY_REQ: icmp_capability_req(q, mp); return; case T_INFO_REQ: icmp_info_req(q, mp); return; case T_UNITDATA_REQ: /* * If a T_UNITDATA_REQ gets here, the address must * be bad. Valid T_UNITDATA_REQs are found above * and break to below this switch. */ icmp_ud_err(q, mp, EADDRNOTAVAIL); return; case T_UNBIND_REQ: icmp_unbind(q, mp); return; case T_SVR4_OPTMGMT_REQ: if (!snmpcom_req(q, mp, icmp_snmp_set, ip_snmp_get, cr)) { /* Only IP can return anything meaningful */ (void) svr4_optcom_req(q, mp, cr, &icmp_opt_obj, B_TRUE); } return; case T_OPTMGMT_REQ: /* Only IP can return anything meaningful */ (void) tpi_optcom_req(q, mp, cr, &icmp_opt_obj, B_TRUE); return; case T_DISCON_REQ: icmp_disconnect(q, mp); return; /* The following TPI message is not supported by icmp. */ case O_T_CONN_RES: case T_CONN_RES: icmp_err_ack(q, mp, TNOTSUPPORT, 0); return; /* The following 3 TPI requests are illegal for icmp. */ case T_DATA_REQ: case T_EXDATA_REQ: case T_ORDREL_REQ: freemsg(mp); (void) putctl1(RD(q), M_ERROR, EPROTO); return; default: break; } break; case M_IOCTL: iocp = (struct iocblk *)mp->b_rptr; switch (iocp->ioc_cmd) { case TI_GETPEERNAME: if (icmp->icmp_state != TS_DATA_XFER) { /* * If a default destination address has not * been associated with the stream, then we * don't know the peer's name. */ iocp->ioc_error = ENOTCONN; err_ret:; iocp->ioc_count = 0; mp->b_datap->db_type = M_IOCACK; qreply(q, mp); return; } /* FALLTHRU */ case TI_GETMYNAME: /* * For TI_GETPEERNAME and TI_GETMYNAME, we first * need to copyin the user's strbuf structure. * Processing will continue in the M_IOCDATA case * below. */ mi_copyin(q, mp, NULL, SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); return; case ND_SET: /* nd_getset performs the necessary error checking */ case ND_GET: if (nd_getset(q, is->is_nd, mp)) { qreply(q, mp); return; } break; default: break; } break; case M_IOCDATA: icmp_wput_iocdata(q, mp); return; default: break; } ip_wput(q, mp); } /* * icmp_wput_iocdata is called by icmp_wput_slow to handle all M_IOCDATA * messages. */ static void icmp_wput_iocdata(queue_t *q, mblk_t *mp) { mblk_t *mp1; STRUCT_HANDLE(strbuf, sb); icmp_t *icmp; in6_addr_t v6addr; ipaddr_t v4addr; uint32_t flowinfo = 0; int addrlen; /* Make sure it is one of ours. */ switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { case TI_GETMYNAME: case TI_GETPEERNAME: break; default: icmp = Q_TO_ICMP(q); ip_output(icmp->icmp_connp, mp, q, IP_WPUT); return; } switch (mi_copy_state(q, mp, &mp1)) { case -1: return; case MI_COPY_CASE(MI_COPY_IN, 1): break; case MI_COPY_CASE(MI_COPY_OUT, 1): /* * The address has been copied out, so now * copyout the strbuf. */ mi_copyout(q, mp); return; case MI_COPY_CASE(MI_COPY_OUT, 2): /* * The address and strbuf have been copied out. * We're done, so just acknowledge the original * M_IOCTL. */ mi_copy_done(q, mp, 0); return; default: /* * Something strange has happened, so acknowledge * the original M_IOCTL with an EPROTO error. */ mi_copy_done(q, mp, EPROTO); return; } /* * Now we have the strbuf structure for TI_GETMYNAME * and TI_GETPEERNAME. Next we copyout the requested * address and then we'll copyout the strbuf. */ STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, (void *)mp1->b_rptr); icmp = Q_TO_ICMP(q); if (icmp->icmp_family == AF_INET) addrlen = sizeof (sin_t); else addrlen = sizeof (sin6_t); if (STRUCT_FGET(sb, maxlen) < addrlen) { mi_copy_done(q, mp, EINVAL); return; } switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { case TI_GETMYNAME: if (icmp->icmp_family == AF_INET) { ASSERT(icmp->icmp_ipversion == IPV4_VERSION); if (!IN6_IS_ADDR_V4MAPPED_ANY(&icmp->icmp_v6src) && !IN6_IS_ADDR_UNSPECIFIED(&icmp->icmp_v6src)) { v4addr = V4_PART_OF_V6(icmp->icmp_v6src); } else { /* * INADDR_ANY * icmp_v6src is not set, we might be bound to * broadcast/multicast. Use icmp_bound_v6src as * local address instead (that could * also still be INADDR_ANY) */ v4addr = V4_PART_OF_V6(icmp->icmp_bound_v6src); } } else { /* icmp->icmp_family == AF_INET6 */ if (!IN6_IS_ADDR_UNSPECIFIED(&icmp->icmp_v6src)) { v6addr = icmp->icmp_v6src; } else { /* * UNSPECIFIED * icmp_v6src is not set, we might be bound to * broadcast/multicast. Use icmp_bound_v6src as * local address instead (that could * also still be UNSPECIFIED) */ v6addr = icmp->icmp_bound_v6src; } } break; case TI_GETPEERNAME: if (icmp->icmp_family == AF_INET) { ASSERT(icmp->icmp_ipversion == IPV4_VERSION); v4addr = V4_PART_OF_V6(icmp->icmp_v6dst); } else { /* icmp->icmp_family == AF_INET6) */ v6addr = icmp->icmp_v6dst; flowinfo = icmp->icmp_flowinfo; } break; default: mi_copy_done(q, mp, EPROTO); return; } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); if (!mp1) return; if (icmp->icmp_family == AF_INET) { sin_t *sin; STRUCT_FSET(sb, len, (int)sizeof (sin_t)); sin = (sin_t *)mp1->b_rptr; mp1->b_wptr = (uchar_t *)&sin[1]; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = v4addr; } else { /* icmp->icmp_family == AF_INET6 */ sin6_t *sin6; ASSERT(icmp->icmp_family == AF_INET6); STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); sin6 = (sin6_t *)mp1->b_rptr; mp1->b_wptr = (uchar_t *)&sin6[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_flowinfo = flowinfo; sin6->sin6_addr = v6addr; } /* Copy out the address */ mi_copyout(q, mp); } static int icmp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, void *thisdg_attrs) { conn_t *connp = Q_TO_CONN(q); struct T_unitdata_req *udreqp; int is_absreq_failure; cred_t *cr; udreqp = (struct T_unitdata_req *)mp->b_rptr; *errorp = 0; cr = DB_CREDDEF(mp, connp->conn_cred); *errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length, udreqp->OPT_offset, cr, &icmp_opt_obj, thisdg_attrs, &is_absreq_failure); if (*errorp != 0) { /* * Note: No special action needed in this * module for "is_absreq_failure" */ return (-1); /* failure */ } ASSERT(is_absreq_failure == 0); return (0); /* success */ } void icmp_ddi_init(void) { icmp_max_optsize = optcom_max_optsize(icmp_opt_obj.odb_opt_des_arr, icmp_opt_obj.odb_opt_arr_cnt); /* * We want to be informed each time a stack is created or * destroyed in the kernel, so we can maintain the * set of icmp_stack_t's. */ netstack_register(NS_ICMP, rawip_stack_init, NULL, rawip_stack_fini); } void icmp_ddi_destroy(void) { netstack_unregister(NS_ICMP); } /* * Initialize the ICMP stack instance. */ static void * rawip_stack_init(netstackid_t stackid, netstack_t *ns) { icmp_stack_t *is; icmpparam_t *pa; is = (icmp_stack_t *)kmem_zalloc(sizeof (*is), KM_SLEEP); is->is_netstack = ns; pa = (icmpparam_t *)kmem_alloc(sizeof (icmp_param_arr), KM_SLEEP); is->is_param_arr = pa; bcopy(icmp_param_arr, is->is_param_arr, sizeof (icmp_param_arr)); (void) icmp_param_register(&is->is_nd, is->is_param_arr, A_CNT(icmp_param_arr)); is->is_ksp = rawip_kstat_init(stackid); return (is); } /* * Free the ICMP stack instance. */ static void rawip_stack_fini(netstackid_t stackid, void *arg) { icmp_stack_t *is = (icmp_stack_t *)arg; nd_free(&is->is_nd); kmem_free(is->is_param_arr, sizeof (icmp_param_arr)); is->is_param_arr = NULL; rawip_kstat_fini(stackid, is->is_ksp); is->is_ksp = NULL; kmem_free(is, sizeof (*is)); } static void * rawip_kstat_init(netstackid_t stackid) { kstat_t *ksp; rawip_named_kstat_t template = { { "inDatagrams", KSTAT_DATA_UINT32, 0 }, { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, { "inErrors", KSTAT_DATA_UINT32, 0 }, { "outDatagrams", KSTAT_DATA_UINT32, 0 }, { "outErrors", KSTAT_DATA_UINT32, 0 }, }; ksp = kstat_create_netstack("icmp", 0, "rawip", "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(rawip_named_kstat_t), 0, stackid); if (ksp == NULL || ksp->ks_data == NULL) return (NULL); bcopy(&template, ksp->ks_data, sizeof (template)); ksp->ks_update = rawip_kstat_update; ksp->ks_private = (void *)(uintptr_t)stackid; kstat_install(ksp); return (ksp); } static void rawip_kstat_fini(netstackid_t stackid, kstat_t *ksp) { if (ksp != NULL) { ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); kstat_delete_netstack(ksp, stackid); } } static int rawip_kstat_update(kstat_t *ksp, int rw) { rawip_named_kstat_t *rawipkp; netstackid_t stackid = (netstackid_t)(uintptr_t)ksp->ks_private; netstack_t *ns; icmp_stack_t *is; if ((ksp == NULL) || (ksp->ks_data == NULL)) return (EIO); if (rw == KSTAT_WRITE) return (EACCES); rawipkp = (rawip_named_kstat_t *)ksp->ks_data; ns = netstack_find_by_stackid(stackid); if (ns == NULL) return (-1); is = ns->netstack_icmp; if (is == NULL) { netstack_rele(ns); return (-1); } rawipkp->inDatagrams.value.ui32 = is->is_rawip_mib.rawipInDatagrams; rawipkp->inCksumErrs.value.ui32 = is->is_rawip_mib.rawipInCksumErrs; rawipkp->inErrors.value.ui32 = is->is_rawip_mib.rawipInErrors; rawipkp->outDatagrams.value.ui32 = is->is_rawip_mib.rawipOutDatagrams; rawipkp->outErrors.value.ui32 = is->is_rawip_mib.rawipOutErrors; netstack_rele(ns); return (0); }