/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include /* * ========================================================================== * I/O priority table * ========================================================================== */ uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 0, /* ZIO_PRIORITY_NOW */ 0, /* ZIO_PRIORITY_SYNC_READ */ 0, /* ZIO_PRIORITY_SYNC_WRITE */ 6, /* ZIO_PRIORITY_ASYNC_READ */ 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 4, /* ZIO_PRIORITY_FREE */ 0, /* ZIO_PRIORITY_CACHE_FILL */ 0, /* ZIO_PRIORITY_LOG_WRITE */ 10, /* ZIO_PRIORITY_RESILVER */ 20, /* ZIO_PRIORITY_SCRUB */ }; /* * ========================================================================== * I/O type descriptions * ========================================================================== */ char *zio_type_name[ZIO_TYPES] = { "null", "read", "write", "free", "claim", "ioctl" }; #define SYNC_PASS_DEFERRED_FREE 1 /* defer frees after this pass */ #define SYNC_PASS_DONT_COMPRESS 4 /* don't compress after this pass */ #define SYNC_PASS_REWRITE 1 /* rewrite new bps after this pass */ /* * ========================================================================== * I/O kmem caches * ========================================================================== */ kmem_cache_t *zio_cache; kmem_cache_t *zio_link_cache; kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; #ifdef _KERNEL extern vmem_t *zio_alloc_arena; #endif /* * An allocating zio is one that either currently has the DVA allocate * stage set or will have it later in its lifetime. */ #define IO_IS_ALLOCATING(zio) \ ((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) void zio_init(void) { size_t c; vmem_t *data_alloc_arena = NULL; #ifdef _KERNEL data_alloc_arena = zio_alloc_arena; #endif zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); zio_link_cache = kmem_cache_create("zio_link_cache", sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); /* * For small buffers, we want a cache for each multiple of * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache * for each quarter-power of 2. For large buffers, we want * a cache for each multiple of PAGESIZE. */ for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { size_t size = (c + 1) << SPA_MINBLOCKSHIFT; size_t p2 = size; size_t align = 0; while (p2 & (p2 - 1)) p2 &= p2 - 1; if (size <= 4 * SPA_MINBLOCKSIZE) { align = SPA_MINBLOCKSIZE; } else if (P2PHASE(size, PAGESIZE) == 0) { align = PAGESIZE; } else if (P2PHASE(size, p2 >> 2) == 0) { align = p2 >> 2; } if (align != 0) { char name[36]; (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); zio_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); zio_data_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, data_alloc_arena, KMC_NODEBUG); } } while (--c != 0) { ASSERT(zio_buf_cache[c] != NULL); if (zio_buf_cache[c - 1] == NULL) zio_buf_cache[c - 1] = zio_buf_cache[c]; ASSERT(zio_data_buf_cache[c] != NULL); if (zio_data_buf_cache[c - 1] == NULL) zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; } zio_inject_init(); } void zio_fini(void) { size_t c; kmem_cache_t *last_cache = NULL; kmem_cache_t *last_data_cache = NULL; for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { if (zio_buf_cache[c] != last_cache) { last_cache = zio_buf_cache[c]; kmem_cache_destroy(zio_buf_cache[c]); } zio_buf_cache[c] = NULL; if (zio_data_buf_cache[c] != last_data_cache) { last_data_cache = zio_data_buf_cache[c]; kmem_cache_destroy(zio_data_buf_cache[c]); } zio_data_buf_cache[c] = NULL; } kmem_cache_destroy(zio_link_cache); kmem_cache_destroy(zio_cache); zio_inject_fini(); } /* * ========================================================================== * Allocate and free I/O buffers * ========================================================================== */ /* * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a * crashdump if the kernel panics, so use it judiciously. Obviously, it's * useful to inspect ZFS metadata, but if possible, we should avoid keeping * excess / transient data in-core during a crashdump. */ void * zio_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); } /* * Use zio_data_buf_alloc to allocate data. The data will not appear in a * crashdump if the kernel panics. This exists so that we will limit the amount * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount * of kernel heap dumped to disk when the kernel panics) */ void * zio_data_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); } void zio_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); kmem_cache_free(zio_buf_cache[c], buf); } void zio_data_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); kmem_cache_free(zio_data_buf_cache[c], buf); } /* * ========================================================================== * Push and pop I/O transform buffers * ========================================================================== */ static void zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, zio_transform_func_t *transform) { zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); zt->zt_orig_data = zio->io_data; zt->zt_orig_size = zio->io_size; zt->zt_bufsize = bufsize; zt->zt_transform = transform; zt->zt_next = zio->io_transform_stack; zio->io_transform_stack = zt; zio->io_data = data; zio->io_size = size; } static void zio_pop_transforms(zio_t *zio) { zio_transform_t *zt; while ((zt = zio->io_transform_stack) != NULL) { if (zt->zt_transform != NULL) zt->zt_transform(zio, zt->zt_orig_data, zt->zt_orig_size); zio_buf_free(zio->io_data, zt->zt_bufsize); zio->io_data = zt->zt_orig_data; zio->io_size = zt->zt_orig_size; zio->io_transform_stack = zt->zt_next; kmem_free(zt, sizeof (zio_transform_t)); } } /* * ========================================================================== * I/O transform callbacks for subblocks and decompression * ========================================================================== */ static void zio_subblock(zio_t *zio, void *data, uint64_t size) { ASSERT(zio->io_size > size); if (zio->io_type == ZIO_TYPE_READ) bcopy(zio->io_data, data, size); } static void zio_decompress(zio_t *zio, void *data, uint64_t size) { if (zio->io_error == 0 && zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), zio->io_data, zio->io_size, data, size) != 0) zio->io_error = EIO; } /* * ========================================================================== * I/O parent/child relationships and pipeline interlocks * ========================================================================== */ /* * NOTE - Callers to zio_walk_parents() and zio_walk_children must * continue calling these functions until they return NULL. * Otherwise, the next caller will pick up the list walk in * some indeterminate state. (Otherwise every caller would * have to pass in a cookie to keep the state represented by * io_walk_link, which gets annoying.) */ zio_t * zio_walk_parents(zio_t *cio) { zio_link_t *zl = cio->io_walk_link; list_t *pl = &cio->io_parent_list; zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); cio->io_walk_link = zl; if (zl == NULL) return (NULL); ASSERT(zl->zl_child == cio); return (zl->zl_parent); } zio_t * zio_walk_children(zio_t *pio) { zio_link_t *zl = pio->io_walk_link; list_t *cl = &pio->io_child_list; zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); pio->io_walk_link = zl; if (zl == NULL) return (NULL); ASSERT(zl->zl_parent == pio); return (zl->zl_child); } zio_t * zio_unique_parent(zio_t *cio) { zio_t *pio = zio_walk_parents(cio); VERIFY(zio_walk_parents(cio) == NULL); return (pio); } void zio_add_child(zio_t *pio, zio_t *cio) { zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); /* * Logical I/Os can have logical, gang, or vdev children. * Gang I/Os can have gang or vdev children. * Vdev I/Os can only have vdev children. * The following ASSERT captures all of these constraints. */ ASSERT(cio->io_child_type <= pio->io_child_type); zl->zl_parent = pio; zl->zl_child = cio; mutex_enter(&cio->io_lock); mutex_enter(&pio->io_lock); ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; list_insert_head(&pio->io_child_list, zl); list_insert_head(&cio->io_parent_list, zl); mutex_exit(&pio->io_lock); mutex_exit(&cio->io_lock); } static void zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) { ASSERT(zl->zl_parent == pio); ASSERT(zl->zl_child == cio); mutex_enter(&cio->io_lock); mutex_enter(&pio->io_lock); list_remove(&pio->io_child_list, zl); list_remove(&cio->io_parent_list, zl); mutex_exit(&pio->io_lock); mutex_exit(&cio->io_lock); kmem_cache_free(zio_link_cache, zl); } static boolean_t zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) { uint64_t *countp = &zio->io_children[child][wait]; boolean_t waiting = B_FALSE; mutex_enter(&zio->io_lock); ASSERT(zio->io_stall == NULL); if (*countp != 0) { zio->io_stage--; zio->io_stall = countp; waiting = B_TRUE; } mutex_exit(&zio->io_lock); return (waiting); } static void zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) { uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; int *errorp = &pio->io_child_error[zio->io_child_type]; mutex_enter(&pio->io_lock); if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) *errorp = zio_worst_error(*errorp, zio->io_error); pio->io_reexecute |= zio->io_reexecute; ASSERT3U(*countp, >, 0); if (--*countp == 0 && pio->io_stall == countp) { pio->io_stall = NULL; mutex_exit(&pio->io_lock); zio_execute(pio); } else { mutex_exit(&pio->io_lock); } } static void zio_inherit_child_errors(zio_t *zio, enum zio_child c) { if (zio->io_child_error[c] != 0 && zio->io_error == 0) zio->io_error = zio->io_child_error[c]; } /* * ========================================================================== * Create the various types of I/O (read, write, free, etc) * ========================================================================== */ static zio_t * zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, uint64_t size, zio_done_func_t *done, void *private, zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset, const zbookmark_t *zb, uint8_t stage, uint32_t pipeline) { zio_t *zio; ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); ASSERT(vd || stage == ZIO_STAGE_OPEN); zio = kmem_cache_alloc(zio_cache, KM_SLEEP); bzero(zio, sizeof (zio_t)); mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); list_create(&zio->io_parent_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_parent_node)); list_create(&zio->io_child_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_child_node)); if (vd != NULL) zio->io_child_type = ZIO_CHILD_VDEV; else if (flags & ZIO_FLAG_GANG_CHILD) zio->io_child_type = ZIO_CHILD_GANG; else zio->io_child_type = ZIO_CHILD_LOGICAL; if (bp != NULL) { zio->io_bp = bp; zio->io_bp_copy = *bp; zio->io_bp_orig = *bp; if (type != ZIO_TYPE_WRITE) zio->io_bp = &zio->io_bp_copy; /* so caller can free */ if (zio->io_child_type == ZIO_CHILD_LOGICAL) zio->io_logical = zio; if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) pipeline |= ZIO_GANG_STAGES; } zio->io_spa = spa; zio->io_txg = txg; zio->io_data = data; zio->io_size = size; zio->io_done = done; zio->io_private = private; zio->io_type = type; zio->io_priority = priority; zio->io_vd = vd; zio->io_offset = offset; zio->io_orig_flags = zio->io_flags = flags; zio->io_orig_stage = zio->io_stage = stage; zio->io_orig_pipeline = zio->io_pipeline = pipeline; zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); if (zb != NULL) zio->io_bookmark = *zb; if (pio != NULL) { if (zio->io_logical == NULL) zio->io_logical = pio->io_logical; if (zio->io_child_type == ZIO_CHILD_GANG) zio->io_gang_leader = pio->io_gang_leader; zio_add_child(pio, zio); } return (zio); } static void zio_destroy(zio_t *zio) { list_destroy(&zio->io_parent_list); list_destroy(&zio->io_child_list); mutex_destroy(&zio->io_lock); cv_destroy(&zio->io_cv); kmem_cache_free(zio_cache, zio); } zio_t * zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, void *private, int flags) { zio_t *zio; zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); return (zio); } zio_t * zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) { return (zio_null(NULL, spa, NULL, done, private, flags)); } zio_t * zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, void *data, uint64_t size, zio_done_func_t *done, void *private, int priority, int flags, const zbookmark_t *zb) { zio_t *zio; zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp, data, size, done, private, ZIO_TYPE_READ, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); return (zio); } void zio_skip_write(zio_t *zio) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_stage == ZIO_STAGE_READY); ASSERT(!BP_IS_GANG(zio->io_bp)); zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; } zio_t * zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, uint64_t size, zio_prop_t *zp, zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority, int flags, const zbookmark_t *zb) { zio_t *zio; ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && zp->zp_compress >= ZIO_COMPRESS_OFF && zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && zp->zp_type < DMU_OT_NUMTYPES && zp->zp_level < 32 && zp->zp_ndvas > 0 && zp->zp_ndvas <= spa_max_replication(spa)); ASSERT(ready != NULL); zio = zio_create(pio, spa, txg, bp, data, size, done, private, ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); zio->io_ready = ready; zio->io_prop = *zp; return (zio); } zio_t * zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, uint64_t size, zio_done_func_t *done, void *private, int priority, int flags, zbookmark_t *zb) { zio_t *zio; zio = zio_create(pio, spa, txg, bp, data, size, done, private, ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); return (zio); } zio_t * zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, zio_done_func_t *done, void *private, int flags) { zio_t *zio; ASSERT(!BP_IS_HOLE(bp)); if (bp->blk_fill == BLK_FILL_ALREADY_FREED) return (zio_null(pio, spa, NULL, NULL, NULL, flags)); if (txg == spa->spa_syncing_txg && spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) { bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); return (zio_null(pio, spa, NULL, NULL, NULL, flags)); } zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); return (zio); } zio_t * zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, zio_done_func_t *done, void *private, int flags) { zio_t *zio; /* * A claim is an allocation of a specific block. Claims are needed * to support immediate writes in the intent log. The issue is that * immediate writes contain committed data, but in a txg that was * *not* committed. Upon opening the pool after an unclean shutdown, * the intent log claims all blocks that contain immediate write data * so that the SPA knows they're in use. * * All claims *must* be resolved in the first txg -- before the SPA * starts allocating blocks -- so that nothing is allocated twice. */ ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); ASSERT3U(spa_first_txg(spa), <=, txg); zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); return (zio); } zio_t * zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, zio_done_func_t *done, void *private, int priority, int flags) { zio_t *zio; int c; if (vd->vdev_children == 0) { zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); zio->io_cmd = cmd; } else { zio = zio_null(pio, spa, NULL, NULL, NULL, flags); for (c = 0; c < vd->vdev_children; c++) zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, done, private, priority, flags)); } return (zio); } zio_t * zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, void *data, int checksum, zio_done_func_t *done, void *private, int priority, int flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, ZIO_TYPE_READ, priority, flags, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; return (zio); } zio_t * zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, void *data, int checksum, zio_done_func_t *done, void *private, int priority, int flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; if (zio_checksum_table[checksum].ci_zbt) { /* * zbt checksums are necessarily destructive -- they modify * the end of the write buffer to hold the verifier/checksum. * Therefore, we must make a local copy in case the data is * being written to multiple places in parallel. */ void *wbuf = zio_buf_alloc(size); bcopy(data, wbuf, size); zio_push_transform(zio, wbuf, size, size, NULL); } return (zio); } /* * Create a child I/O to do some work for us. */ zio_t * zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, void *data, uint64_t size, int type, int priority, int flags, zio_done_func_t *done, void *private) { uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; zio_t *zio; ASSERT(vd->vdev_parent == (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); if (type == ZIO_TYPE_READ && bp != NULL) { /* * If we have the bp, then the child should perform the * checksum and the parent need not. This pushes error * detection as close to the leaves as possible and * eliminates redundant checksums in the interior nodes. */ pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); } if (vd->vdev_children == 0) offset += VDEV_LABEL_START_SIZE; zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, done, private, type, priority, (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags, vd, offset, &pio->io_bookmark, ZIO_STAGE_VDEV_IO_START - 1, pipeline); return (zio); } zio_t * zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, int type, int priority, int flags, zio_done_func_t *done, void *private) { zio_t *zio; ASSERT(vd->vdev_ops->vdev_op_leaf); zio = zio_create(NULL, vd->vdev_spa, 0, NULL, data, size, done, private, type, priority, flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, vd, offset, NULL, ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE); return (zio); } void zio_flush(zio_t *zio, vdev_t *vd) { zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_PRIORITY_NOW, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); } /* * ========================================================================== * Prepare to read and write logical blocks * ========================================================================== */ static int zio_read_bp_init(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && zio->io_child_type == ZIO_CHILD_LOGICAL && !(zio->io_flags & ZIO_FLAG_RAW)) { uint64_t csize = BP_GET_PSIZE(bp); void *cbuf = zio_buf_alloc(csize); zio_push_transform(zio, cbuf, csize, csize, zio_decompress); } if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0) zio->io_flags |= ZIO_FLAG_DONT_CACHE; return (ZIO_PIPELINE_CONTINUE); } static int zio_write_bp_init(zio_t *zio) { zio_prop_t *zp = &zio->io_prop; int compress = zp->zp_compress; blkptr_t *bp = zio->io_bp; void *cbuf; uint64_t lsize = zio->io_size; uint64_t csize = lsize; uint64_t cbufsize = 0; int pass = 1; /* * If our children haven't all reached the ready stage, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) return (ZIO_PIPELINE_STOP); if (!IO_IS_ALLOCATING(zio)) return (ZIO_PIPELINE_CONTINUE); ASSERT(compress != ZIO_COMPRESS_INHERIT); if (bp->blk_birth == zio->io_txg) { /* * We're rewriting an existing block, which means we're * working on behalf of spa_sync(). For spa_sync() to * converge, it must eventually be the case that we don't * have to allocate new blocks. But compression changes * the blocksize, which forces a reallocate, and makes * convergence take longer. Therefore, after the first * few passes, stop compressing to ensure convergence. */ pass = spa_sync_pass(zio->io_spa); if (pass > SYNC_PASS_DONT_COMPRESS) compress = ZIO_COMPRESS_OFF; /* Make sure someone doesn't change their mind on overwrites */ ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp), spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp)); } if (compress != ZIO_COMPRESS_OFF) { if (!zio_compress_data(compress, zio->io_data, zio->io_size, &cbuf, &csize, &cbufsize)) { compress = ZIO_COMPRESS_OFF; } else if (csize != 0) { zio_push_transform(zio, cbuf, csize, cbufsize, NULL); } } /* * The final pass of spa_sync() must be all rewrites, but the first * few passes offer a trade-off: allocating blocks defers convergence, * but newly allocated blocks are sequential, so they can be written * to disk faster. Therefore, we allow the first few passes of * spa_sync() to allocate new blocks, but force rewrites after that. * There should only be a handful of blocks after pass 1 in any case. */ if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && pass > SYNC_PASS_REWRITE) { ASSERT(csize != 0); uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; zio->io_flags |= ZIO_FLAG_IO_REWRITE; } else { BP_ZERO(bp); zio->io_pipeline = ZIO_WRITE_PIPELINE; } if (csize == 0) { zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; } else { ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); BP_SET_LSIZE(bp, lsize); BP_SET_PSIZE(bp, csize); BP_SET_COMPRESS(bp, compress); BP_SET_CHECKSUM(bp, zp->zp_checksum); BP_SET_TYPE(bp, zp->zp_type); BP_SET_LEVEL(bp, zp->zp_level); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); } return (ZIO_PIPELINE_CONTINUE); } /* * ========================================================================== * Execute the I/O pipeline * ========================================================================== */ static void zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q) { zio_type_t t = zio->io_type; /* * If we're a config writer, the normal issue and interrupt threads * may all be blocked waiting for the config lock. In this case, * select the otherwise-unused taskq for ZIO_TYPE_NULL. */ if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER) t = ZIO_TYPE_NULL; /* * A similar issue exists for the L2ARC write thread until L2ARC 2.0. */ if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) t = ZIO_TYPE_NULL; (void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q], (task_func_t *)zio_execute, zio, TQ_SLEEP); } static boolean_t zio_taskq_member(zio_t *zio, enum zio_taskq_type q) { kthread_t *executor = zio->io_executor; spa_t *spa = zio->io_spa; for (zio_type_t t = 0; t < ZIO_TYPES; t++) if (taskq_member(spa->spa_zio_taskq[t][q], executor)) return (B_TRUE); return (B_FALSE); } static int zio_issue_async(zio_t *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); return (ZIO_PIPELINE_STOP); } void zio_interrupt(zio_t *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT); } /* * Execute the I/O pipeline until one of the following occurs: * (1) the I/O completes; (2) the pipeline stalls waiting for * dependent child I/Os; (3) the I/O issues, so we're waiting * for an I/O completion interrupt; (4) the I/O is delegated by * vdev-level caching or aggregation; (5) the I/O is deferred * due to vdev-level queueing; (6) the I/O is handed off to * another thread. In all cases, the pipeline stops whenever * there's no CPU work; it never burns a thread in cv_wait(). * * There's no locking on io_stage because there's no legitimate way * for multiple threads to be attempting to process the same I/O. */ static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES]; void zio_execute(zio_t *zio) { zio->io_executor = curthread; while (zio->io_stage < ZIO_STAGE_DONE) { uint32_t pipeline = zio->io_pipeline; zio_stage_t stage = zio->io_stage; int rv; ASSERT(!MUTEX_HELD(&zio->io_lock)); while (((1U << ++stage) & pipeline) == 0) continue; ASSERT(stage <= ZIO_STAGE_DONE); ASSERT(zio->io_stall == NULL); /* * If we are in interrupt context and this pipeline stage * will grab a config lock that is held across I/O, * issue async to avoid deadlock. */ if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) && zio->io_vd == NULL && zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); return; } zio->io_stage = stage; rv = zio_pipeline[stage](zio); if (rv == ZIO_PIPELINE_STOP) return; ASSERT(rv == ZIO_PIPELINE_CONTINUE); } } /* * ========================================================================== * Initiate I/O, either sync or async * ========================================================================== */ int zio_wait(zio_t *zio) { int error; ASSERT(zio->io_stage == ZIO_STAGE_OPEN); ASSERT(zio->io_executor == NULL); zio->io_waiter = curthread; zio_execute(zio); mutex_enter(&zio->io_lock); while (zio->io_executor != NULL) cv_wait(&zio->io_cv, &zio->io_lock); mutex_exit(&zio->io_lock); error = zio->io_error; zio_destroy(zio); return (error); } void zio_nowait(zio_t *zio) { ASSERT(zio->io_executor == NULL); if (zio->io_child_type == ZIO_CHILD_LOGICAL && zio_unique_parent(zio) == NULL) { /* * This is a logical async I/O with no parent to wait for it. * We add it to the spa_async_root_zio "Godfather" I/O which * will ensure they complete prior to unloading the pool. */ spa_t *spa = zio->io_spa; zio_add_child(spa->spa_async_zio_root, zio); } zio_execute(zio); } /* * ========================================================================== * Reexecute or suspend/resume failed I/O * ========================================================================== */ static void zio_reexecute(zio_t *pio) { zio_t *cio, *cio_next; ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); ASSERT(pio->io_gang_leader == NULL); ASSERT(pio->io_gang_tree == NULL); pio->io_flags = pio->io_orig_flags; pio->io_stage = pio->io_orig_stage; pio->io_pipeline = pio->io_orig_pipeline; pio->io_reexecute = 0; pio->io_error = 0; for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_state[w] = 0; for (int c = 0; c < ZIO_CHILD_TYPES; c++) pio->io_child_error[c] = 0; if (IO_IS_ALLOCATING(pio)) { /* * Remember the failed bp so that the io_ready() callback * can update its accounting upon reexecution. The block * was already freed in zio_done(); we indicate this with * a fill count of -1 so that zio_free() knows to skip it. */ blkptr_t *bp = pio->io_bp; ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg); bp->blk_fill = BLK_FILL_ALREADY_FREED; pio->io_bp_orig = *bp; BP_ZERO(bp); } /* * As we reexecute pio's children, new children could be created. * New children go to the head of pio's io_child_list, however, * so we will (correctly) not reexecute them. The key is that * the remainder of pio's io_child_list, from 'cio_next' onward, * cannot be affected by any side effects of reexecuting 'cio'. */ for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio); mutex_enter(&pio->io_lock); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w]++; mutex_exit(&pio->io_lock); zio_reexecute(cio); } /* * Now that all children have been reexecuted, execute the parent. * We don't reexecute "The Godfather" I/O here as it's the * responsibility of the caller to wait on him. */ if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) zio_execute(pio); } void zio_suspend(spa_t *spa, zio_t *zio) { if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) fm_panic("Pool '%s' has encountered an uncorrectable I/O " "failure and the failure mode property for this pool " "is set to panic.", spa_name(spa)); zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); mutex_enter(&spa->spa_suspend_lock); if (spa->spa_suspend_zio_root == NULL) spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); spa->spa_suspended = B_TRUE; if (zio != NULL) { ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); ASSERT(zio != spa->spa_suspend_zio_root); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(zio_unique_parent(zio) == NULL); ASSERT(zio->io_stage == ZIO_STAGE_DONE); zio_add_child(spa->spa_suspend_zio_root, zio); } mutex_exit(&spa->spa_suspend_lock); } int zio_resume(spa_t *spa) { zio_t *pio; /* * Reexecute all previously suspended i/o. */ mutex_enter(&spa->spa_suspend_lock); spa->spa_suspended = B_FALSE; cv_broadcast(&spa->spa_suspend_cv); pio = spa->spa_suspend_zio_root; spa->spa_suspend_zio_root = NULL; mutex_exit(&spa->spa_suspend_lock); if (pio == NULL) return (0); zio_reexecute(pio); return (zio_wait(pio)); } void zio_resume_wait(spa_t *spa) { mutex_enter(&spa->spa_suspend_lock); while (spa_suspended(spa)) cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); mutex_exit(&spa->spa_suspend_lock); } /* * ========================================================================== * Gang blocks. * * A gang block is a collection of small blocks that looks to the DMU * like one large block. When zio_dva_allocate() cannot find a block * of the requested size, due to either severe fragmentation or the pool * being nearly full, it calls zio_write_gang_block() to construct the * block from smaller fragments. * * A gang block consists of a gang header (zio_gbh_phys_t) and up to * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like * an indirect block: it's an array of block pointers. It consumes * only one sector and hence is allocatable regardless of fragmentation. * The gang header's bps point to its gang members, which hold the data. * * Gang blocks are self-checksumming, using the bp's * as the verifier to ensure uniqueness of the SHA256 checksum. * Critically, the gang block bp's blk_cksum is the checksum of the data, * not the gang header. This ensures that data block signatures (needed for * deduplication) are independent of how the block is physically stored. * * Gang blocks can be nested: a gang member may itself be a gang block. * Thus every gang block is a tree in which root and all interior nodes are * gang headers, and the leaves are normal blocks that contain user data. * The root of the gang tree is called the gang leader. * * To perform any operation (read, rewrite, free, claim) on a gang block, * zio_gang_assemble() first assembles the gang tree (minus data leaves) * in the io_gang_tree field of the original logical i/o by recursively * reading the gang leader and all gang headers below it. This yields * an in-core tree containing the contents of every gang header and the * bps for every constituent of the gang block. * * With the gang tree now assembled, zio_gang_issue() just walks the gang tree * and invokes a callback on each bp. To free a gang block, zio_gang_issue() * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). * zio_read_gang() is a wrapper around zio_read() that omits reading gang * headers, since we already have those in io_gang_tree. zio_rewrite_gang() * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() * of the gang header plus zio_checksum_compute() of the data to update the * gang header's blk_cksum as described above. * * The two-phase assemble/issue model solves the problem of partial failure -- * what if you'd freed part of a gang block but then couldn't read the * gang header for another part? Assembling the entire gang tree first * ensures that all the necessary gang header I/O has succeeded before * starting the actual work of free, claim, or write. Once the gang tree * is assembled, free and claim are in-memory operations that cannot fail. * * In the event that a gang write fails, zio_dva_unallocate() walks the * gang tree to immediately free (i.e. insert back into the space map) * everything we've allocated. This ensures that we don't get ENOSPC * errors during repeated suspend/resume cycles due to a flaky device. * * Gang rewrites only happen during sync-to-convergence. If we can't assemble * the gang tree, we won't modify the block, so we can safely defer the free * (knowing that the block is still intact). If we *can* assemble the gang * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free * each constituent bp and we can allocate a new block on the next sync pass. * * In all cases, the gang tree allows complete recovery from partial failure. * ========================================================================== */ static zio_t * zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) { if (gn != NULL) return (pio); return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark)); } zio_t * zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) { zio_t *zio; if (gn != NULL) { zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * As we rewrite each gang header, the pipeline will compute * a new gang block header checksum for it; but no one will * compute a new data checksum, so we do that here. The one * exception is the gang leader: the pipeline already computed * its data checksum because that stage precedes gang assembly. * (Presently, nothing actually uses interior data checksums; * this is just good hygiene.) */ if (gn != pio->io_gang_leader->io_gang_tree) { zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), data, BP_GET_PSIZE(bp)); } } else { zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); } return (zio); } /* ARGSUSED */ zio_t * zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) { return (zio_free(pio, pio->io_spa, pio->io_txg, bp, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); } /* ARGSUSED */ zio_t * zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) { return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); } static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { NULL, zio_read_gang, zio_rewrite_gang, zio_free_gang, zio_claim_gang, NULL }; static void zio_gang_tree_assemble_done(zio_t *zio); static zio_gang_node_t * zio_gang_node_alloc(zio_gang_node_t **gnpp) { zio_gang_node_t *gn; ASSERT(*gnpp == NULL); gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); *gnpp = gn; return (gn); } static void zio_gang_node_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) ASSERT(gn->gn_child[g] == NULL); zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); kmem_free(gn, sizeof (*gn)); *gnpp = NULL; } static void zio_gang_tree_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; if (gn == NULL) return; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) zio_gang_tree_free(&gn->gn_child[g]); zio_gang_node_free(gnpp); } static void zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) { zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); ASSERT(gio->io_gang_leader == gio); ASSERT(BP_IS_GANG(bp)); zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); } static void zio_gang_tree_assemble_done(zio_t *zio) { zio_t *gio = zio->io_gang_leader; zio_gang_node_t *gn = zio->io_private; blkptr_t *bp = zio->io_bp; ASSERT(gio == zio_unique_parent(zio)); ASSERT(zio_walk_children(zio) == NULL); if (zio->io_error) return; if (BP_SHOULD_BYTESWAP(bp)) byteswap_uint64_array(zio->io_data, zio->io_size); ASSERT(zio->io_data == gn->gn_gbh); ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (!BP_IS_GANG(gbp)) continue; zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); } } static void zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) { zio_t *gio = pio->io_gang_leader; zio_t *zio; ASSERT(BP_IS_GANG(bp) == !!gn); ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); /* * If you're a gang header, your data is in gn->gn_gbh. * If you're a gang member, your data is in 'data' and gn == NULL. */ zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); if (gn != NULL) { ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (BP_IS_HOLE(gbp)) continue; zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); data = (char *)data + BP_GET_PSIZE(gbp); } } if (gn == gio->io_gang_tree) ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); if (zio != pio) zio_nowait(zio); } static int zio_gang_assemble(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); return (ZIO_PIPELINE_CONTINUE); } static int zio_gang_issue(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) return (ZIO_PIPELINE_STOP); ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); if (zio->io_child_error[ZIO_CHILD_GANG] == 0) zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); else zio_gang_tree_free(&zio->io_gang_tree); zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; return (ZIO_PIPELINE_CONTINUE); } static void zio_write_gang_member_ready(zio_t *zio) { zio_t *pio = zio_unique_parent(zio); zio_t *gio = zio->io_gang_leader; dva_t *cdva = zio->io_bp->blk_dva; dva_t *pdva = pio->io_bp->blk_dva; uint64_t asize; if (BP_IS_HOLE(zio->io_bp)) return; ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); ASSERT(zio->io_child_type == ZIO_CHILD_GANG); ASSERT3U(zio->io_prop.zp_ndvas, ==, gio->io_prop.zp_ndvas); ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); mutex_enter(&pio->io_lock); for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { ASSERT(DVA_GET_GANG(&pdva[d])); asize = DVA_GET_ASIZE(&pdva[d]); asize += DVA_GET_ASIZE(&cdva[d]); DVA_SET_ASIZE(&pdva[d], asize); } mutex_exit(&pio->io_lock); } static int zio_write_gang_block(zio_t *pio) { spa_t *spa = pio->io_spa; blkptr_t *bp = pio->io_bp; zio_t *gio = pio->io_gang_leader; zio_t *zio; zio_gang_node_t *gn, **gnpp; zio_gbh_phys_t *gbh; uint64_t txg = pio->io_txg; uint64_t resid = pio->io_size; uint64_t lsize; int ndvas = gio->io_prop.zp_ndvas; int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); zio_prop_t zp; int error; error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE, bp, gbh_ndvas, txg, pio == gio ? NULL : gio->io_bp, METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); if (error) { pio->io_error = error; return (ZIO_PIPELINE_CONTINUE); } if (pio == gio) { gnpp = &gio->io_gang_tree; } else { gnpp = pio->io_private; ASSERT(pio->io_ready == zio_write_gang_member_ready); } gn = zio_gang_node_alloc(gnpp); gbh = gn->gn_gbh; bzero(gbh, SPA_GANGBLOCKSIZE); /* * Create the gang header. */ zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * Create and nowait the gang children. */ for (int g = 0; resid != 0; resid -= lsize, g++) { lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), SPA_MINBLOCKSIZE); ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); zp.zp_checksum = gio->io_prop.zp_checksum; zp.zp_compress = ZIO_COMPRESS_OFF; zp.zp_type = DMU_OT_NONE; zp.zp_level = 0; zp.zp_ndvas = gio->io_prop.zp_ndvas; zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, zio_write_gang_member_ready, NULL, &gn->gn_child[g], pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark)); } /* * Set pio's pipeline to just wait for zio to finish. */ pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; zio_nowait(zio); return (ZIO_PIPELINE_CONTINUE); } /* * ========================================================================== * Allocate and free blocks * ========================================================================== */ static int zio_dva_allocate(zio_t *zio) { spa_t *spa = zio->io_spa; metaslab_class_t *mc = spa->spa_normal_class; blkptr_t *bp = zio->io_bp; int error; if (zio->io_gang_leader == NULL) { ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; } ASSERT(BP_IS_HOLE(bp)); ASSERT3U(BP_GET_NDVAS(bp), ==, 0); ASSERT3U(zio->io_prop.zp_ndvas, >, 0); ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa)); ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0); if (error) { if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) return (zio_write_gang_block(zio)); zio->io_error = error; } return (ZIO_PIPELINE_CONTINUE); } static int zio_dva_free(zio_t *zio) { metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); return (ZIO_PIPELINE_CONTINUE); } static int zio_dva_claim(zio_t *zio) { int error; error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); if (error) zio->io_error = error; return (ZIO_PIPELINE_CONTINUE); } /* * Undo an allocation. This is used by zio_done() when an I/O fails * and we want to give back the block we just allocated. * This handles both normal blocks and gang blocks. */ static void zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) { spa_t *spa = zio->io_spa; boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE); ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); if (zio->io_bp == bp && !now) { /* * This is a rewrite for sync-to-convergence. * We can't do a metaslab_free(NOW) because bp wasn't allocated * during this sync pass, which means that metaslab_sync() * already committed the allocation. */ ASSERT(DVA_EQUAL(BP_IDENTITY(bp), BP_IDENTITY(&zio->io_bp_orig))); ASSERT(spa_sync_pass(spa) > 1); if (BP_IS_GANG(bp) && gn == NULL) { /* * This is a gang leader whose gang header(s) we * couldn't read now, so defer the free until later. * The block should still be intact because without * the headers, we'd never even start the rewrite. */ bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); return; } } if (!BP_IS_HOLE(bp)) metaslab_free(spa, bp, bp->blk_birth, now); if (gn != NULL) { for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { zio_dva_unallocate(zio, gn->gn_child[g], &gn->gn_gbh->zg_blkptr[g]); } } } /* * Try to allocate an intent log block. Return 0 on success, errno on failure. */ int zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, uint64_t txg) { int error; error = metaslab_alloc(spa, spa->spa_log_class, size, new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); if (error) error = metaslab_alloc(spa, spa->spa_normal_class, size, new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID); if (error == 0) { BP_SET_LSIZE(new_bp, size); BP_SET_PSIZE(new_bp, size); BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); BP_SET_LEVEL(new_bp, 0); BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); } return (error); } /* * Free an intent log block. We know it can't be a gang block, so there's * nothing to do except metaslab_free() it. */ void zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) { ASSERT(!BP_IS_GANG(bp)); metaslab_free(spa, bp, txg, B_FALSE); } /* * ========================================================================== * Read and write to physical devices * ========================================================================== */ static int zio_vdev_io_start(zio_t *zio) { vdev_t *vd = zio->io_vd; uint64_t align; spa_t *spa = zio->io_spa; ASSERT(zio->io_error == 0); ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); if (vd == NULL) { if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_enter(spa, SCL_ZIO, zio, RW_READER); /* * The mirror_ops handle multiple DVAs in a single BP. */ return (vdev_mirror_ops.vdev_op_io_start(zio)); } align = 1ULL << vd->vdev_top->vdev_ashift; if (P2PHASE(zio->io_size, align) != 0) { uint64_t asize = P2ROUNDUP(zio->io_size, align); char *abuf = zio_buf_alloc(asize); ASSERT(vd == vd->vdev_top); if (zio->io_type == ZIO_TYPE_WRITE) { bcopy(zio->io_data, abuf, zio->io_size); bzero(abuf + zio->io_size, asize - zio->io_size); } zio_push_transform(zio, abuf, asize, asize, zio_subblock); } ASSERT(P2PHASE(zio->io_offset, align) == 0); ASSERT(P2PHASE(zio->io_size, align) == 0); ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); /* * If this is a repair I/O, and there's no self-healing involved -- * that is, we're just resilvering what we expect to resilver -- * then don't do the I/O unless zio's txg is actually in vd's DTL. * This prevents spurious resilvering with nested replication. * For example, given a mirror of mirrors, (A+B)+(C+D), if only * A is out of date, we'll read from C+D, then use the data to * resilver A+B -- but we don't actually want to resilver B, just A. * The top-level mirror has no way to know this, so instead we just * discard unnecessary repairs as we work our way down the vdev tree. * The same logic applies to any form of nested replication: * ditto + mirror, RAID-Z + replacing, etc. This covers them all. */ if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && zio->io_txg != 0 && /* not a delegated i/o */ !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); zio_vdev_io_bypass(zio); return (ZIO_PIPELINE_CONTINUE); } if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) return (ZIO_PIPELINE_CONTINUE); if ((zio = vdev_queue_io(zio)) == NULL) return (ZIO_PIPELINE_STOP); if (!vdev_accessible(vd, zio)) { zio->io_error = ENXIO; zio_interrupt(zio); return (ZIO_PIPELINE_STOP); } } return (vd->vdev_ops->vdev_op_io_start(zio)); } static int zio_vdev_io_done(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; boolean_t unexpected_error = B_FALSE; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) return (ZIO_PIPELINE_STOP); ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { vdev_queue_io_done(zio); if (zio->io_type == ZIO_TYPE_WRITE) vdev_cache_write(zio); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_device_injection(vd, EIO); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_label_injection(zio, EIO); if (zio->io_error) { if (!vdev_accessible(vd, zio)) { zio->io_error = ENXIO; } else { unexpected_error = B_TRUE; } } } ops->vdev_op_io_done(zio); if (unexpected_error) VERIFY(vdev_probe(vd, zio) == NULL); return (ZIO_PIPELINE_CONTINUE); } static int zio_vdev_io_assess(zio_t *zio) { vdev_t *vd = zio->io_vd; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) return (ZIO_PIPELINE_STOP); if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_exit(zio->io_spa, SCL_ZIO, zio); if (zio->io_vsd != NULL) { zio->io_vsd_free(zio); zio->io_vsd = NULL; } if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_fault_injection(zio, EIO); /* * If the I/O failed, determine whether we should attempt to retry it. */ if (zio->io_error && vd == NULL && !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ zio->io_error = 0; zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE); return (ZIO_PIPELINE_STOP); } /* * If we got an error on a leaf device, convert it to ENXIO * if the device is not accessible at all. */ if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && !vdev_accessible(vd, zio)) zio->io_error = ENXIO; /* * If we can't write to an interior vdev (mirror or RAID-Z), * set vdev_cant_write so that we stop trying to allocate from it. */ if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && vd != NULL && !vd->vdev_ops->vdev_op_leaf) vd->vdev_cant_write = B_TRUE; if (zio->io_error) zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; return (ZIO_PIPELINE_CONTINUE); } void zio_vdev_io_reissue(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_stage--; } void zio_vdev_io_redone(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); zio->io_stage--; } void zio_vdev_io_bypass(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_flags |= ZIO_FLAG_IO_BYPASS; zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; } /* * ========================================================================== * Generate and verify checksums * ========================================================================== */ static int zio_checksum_generate(zio_t *zio) { blkptr_t *bp = zio->io_bp; enum zio_checksum checksum; if (bp == NULL) { /* * This is zio_write_phys(). * We're either generating a label checksum, or none at all. */ checksum = zio->io_prop.zp_checksum; if (checksum == ZIO_CHECKSUM_OFF) return (ZIO_PIPELINE_CONTINUE); ASSERT(checksum == ZIO_CHECKSUM_LABEL); } else { if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { ASSERT(!IO_IS_ALLOCATING(zio)); checksum = ZIO_CHECKSUM_GANG_HEADER; } else { checksum = BP_GET_CHECKSUM(bp); } } zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); return (ZIO_PIPELINE_CONTINUE); } static int zio_checksum_verify(zio_t *zio) { blkptr_t *bp = zio->io_bp; int error; if (bp == NULL) { /* * This is zio_read_phys(). * We're either verifying a label checksum, or nothing at all. */ if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) return (ZIO_PIPELINE_CONTINUE); ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); } if ((error = zio_checksum_error(zio)) != 0) { zio->io_error = error; if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, zio->io_spa, zio->io_vd, zio, 0, 0); } } return (ZIO_PIPELINE_CONTINUE); } /* * Called by RAID-Z to ensure we don't compute the checksum twice. */ void zio_checksum_verified(zio_t *zio) { zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); } /* * ========================================================================== * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. * An error of 0 indictes success. ENXIO indicates whole-device failure, * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO * indicate errors that are specific to one I/O, and most likely permanent. * Any other error is presumed to be worse because we weren't expecting it. * ========================================================================== */ int zio_worst_error(int e1, int e2) { static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; int r1, r2; for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) if (e1 == zio_error_rank[r1]) break; for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) if (e2 == zio_error_rank[r2]) break; return (r1 > r2 ? e1 : e2); } /* * ========================================================================== * I/O completion * ========================================================================== */ static int zio_ready(zio_t *zio) { blkptr_t *bp = zio->io_bp; zio_t *pio, *pio_next; if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY)) return (ZIO_PIPELINE_STOP); if (zio->io_ready) { ASSERT(IO_IS_ALLOCATING(zio)); ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); zio->io_ready(zio); } if (bp != NULL && bp != &zio->io_bp_copy) zio->io_bp_copy = *bp; if (zio->io_error) zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_READY] = 1; pio = zio_walk_parents(zio); mutex_exit(&zio->io_lock); /* * As we notify zio's parents, new parents could be added. * New parents go to the head of zio's io_parent_list, however, * so we will (correctly) not notify them. The remainder of zio's * io_parent_list, from 'pio_next' onward, cannot change because * all parents must wait for us to be done before they can be done. */ for (; pio != NULL; pio = pio_next) { pio_next = zio_walk_parents(zio); zio_notify_parent(pio, zio, ZIO_WAIT_READY); } return (ZIO_PIPELINE_CONTINUE); } static int zio_done(zio_t *zio) { spa_t *spa = zio->io_spa; zio_t *lio = zio->io_logical; blkptr_t *bp = zio->io_bp; vdev_t *vd = zio->io_vd; uint64_t psize = zio->io_size; zio_t *pio, *pio_next; /* * If our children haven't all completed, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) return (ZIO_PIPELINE_STOP); for (int c = 0; c < ZIO_CHILD_TYPES; c++) for (int w = 0; w < ZIO_WAIT_TYPES; w++) ASSERT(zio->io_children[c][w] == 0); if (bp != NULL) { ASSERT(bp->blk_pad[0] == 0); ASSERT(bp->blk_pad[1] == 0); ASSERT(bp->blk_pad[2] == 0); ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || (bp == zio_unique_parent(zio)->io_bp)); if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { ASSERT(!BP_SHOULD_BYTESWAP(bp)); ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp)); ASSERT(BP_COUNT_GANG(bp) == 0 || (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); } } /* * If there were child vdev or gang errors, they apply to us now. */ zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); zio_inherit_child_errors(zio, ZIO_CHILD_GANG); zio_pop_transforms(zio); /* note: may set zio->io_error */ vdev_stat_update(zio, psize); if (zio->io_error) { /* * If this I/O is attached to a particular vdev, * generate an error message describing the I/O failure * at the block level. We ignore these errors if the * device is currently unavailable. */ if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); if ((zio->io_error == EIO || !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) { /* * For logical I/O requests, tell the SPA to log the * error and generate a logical data ereport. */ spa_log_error(spa, zio); zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 0, 0); } } if (zio->io_error && zio == lio) { /* * Determine whether zio should be reexecuted. This will * propagate all the way to the root via zio_notify_parent(). */ ASSERT(vd == NULL && bp != NULL); if (IO_IS_ALLOCATING(zio)) if (zio->io_error != ENOSPC) zio->io_reexecute |= ZIO_REEXECUTE_NOW; else zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; if ((zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_FREE) && zio->io_error == ENXIO && spa->spa_load_state == SPA_LOAD_NONE && spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; } /* * If there were logical child errors, they apply to us now. * We defer this until now to avoid conflating logical child * errors with errors that happened to the zio itself when * updating vdev stats and reporting FMA events above. */ zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); if ((zio->io_error || zio->io_reexecute) && IO_IS_ALLOCATING(zio) && zio->io_child_type == ZIO_CHILD_LOGICAL) { ASSERT(zio->io_child_type != ZIO_CHILD_GANG); zio_dva_unallocate(zio, zio->io_gang_tree, bp); } zio_gang_tree_free(&zio->io_gang_tree); if (zio->io_reexecute && !(zio->io_flags & ZIO_FLAG_GODFATHER)) { /* * This is a logical I/O that wants to reexecute. * * Reexecute is top-down. When an i/o fails, if it's not * the root, it simply notifies its parent and sticks around. * The parent, seeing that it still has children in zio_done(), * does the same. This percolates all the way up to the root. * The root i/o will reexecute or suspend the entire tree. * * This approach ensures that zio_reexecute() honors * all the original i/o dependency relationships, e.g. * parents not executing until children are ready. */ ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); zio->io_gang_leader = NULL; mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); /* * "The Godfather" I/O monitors its children but is * not a true parent to them. It will track them through * the pipeline but severs its ties whenever they get into * trouble (e.g. suspended). This allows "The Godfather" * I/O to return status without blocking. */ for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { zio_link_t *zl = zio->io_walk_link; pio_next = zio_walk_parents(zio); if ((pio->io_flags & ZIO_FLAG_GODFATHER) && (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { zio_remove_child(pio, zio, zl); zio_notify_parent(pio, zio, ZIO_WAIT_DONE); } } if ((pio = zio_unique_parent(zio)) != NULL) { /* * We're not a root i/o, so there's nothing to do * but notify our parent. Don't propagate errors * upward since we haven't permanently failed yet. */ zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; zio_notify_parent(pio, zio, ZIO_WAIT_DONE); } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { /* * We'd fail again if we reexecuted now, so suspend * until conditions improve (e.g. device comes online). */ zio_suspend(spa, zio); } else { /* * Reexecution is potentially a huge amount of work. * Hand it off to the otherwise-unused claim taskq. */ (void) taskq_dispatch( spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE], (task_func_t *)zio_reexecute, zio, TQ_SLEEP); } return (ZIO_PIPELINE_STOP); } ASSERT(zio_walk_children(zio) == NULL); ASSERT(zio->io_reexecute == 0 || (zio->io_flags & ZIO_FLAG_GODFATHER)); ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); /* * It is the responsibility of the done callback to ensure that this * particular zio is no longer discoverable for adoption, and as * such, cannot acquire any new parents. */ if (zio->io_done) zio->io_done(zio); mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { zio_link_t *zl = zio->io_walk_link; pio_next = zio_walk_parents(zio); zio_remove_child(pio, zio, zl); zio_notify_parent(pio, zio, ZIO_WAIT_DONE); } if (zio->io_waiter != NULL) { mutex_enter(&zio->io_lock); zio->io_executor = NULL; cv_broadcast(&zio->io_cv); mutex_exit(&zio->io_lock); } else { zio_destroy(zio); } return (ZIO_PIPELINE_STOP); } /* * ========================================================================== * I/O pipeline definition * ========================================================================== */ static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = { NULL, zio_issue_async, zio_read_bp_init, zio_write_bp_init, zio_checksum_generate, zio_gang_assemble, zio_gang_issue, zio_dva_allocate, zio_dva_free, zio_dva_claim, zio_ready, zio_vdev_io_start, zio_vdev_io_done, zio_vdev_io_assess, zio_checksum_verify, zio_done };