/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" extern struct modlfs zfs_modlfs; extern void zfs_init(void); extern void zfs_fini(void); ldi_ident_t zfs_li = NULL; dev_info_t *zfs_dip; typedef int zfs_ioc_func_t(zfs_cmd_t *); typedef int zfs_secpolicy_func_t(const char *, cred_t *); typedef struct zfs_ioc_vec { zfs_ioc_func_t *zvec_func; zfs_secpolicy_func_t *zvec_secpolicy; enum { no_name, pool_name, dataset_name } zvec_namecheck; } zfs_ioc_vec_t; /* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */ void __dprintf(const char *file, const char *func, int line, const char *fmt, ...) { const char *newfile; char buf[256]; va_list adx; /* * Get rid of annoying "../common/" prefix to filename. */ newfile = strrchr(file, '/'); if (newfile != NULL) { newfile = newfile + 1; /* Get rid of leading / */ } else { newfile = file; } va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); /* * To get this data, use the zfs-dprintf probe as so: * dtrace -q -n 'zfs-dprintf \ * /stringof(arg0) == "dbuf.c"/ \ * {printf("%s: %s", stringof(arg1), stringof(arg3))}' * arg0 = file name * arg1 = function name * arg2 = line number * arg3 = message */ DTRACE_PROBE4(zfs__dprintf, char *, newfile, char *, func, int, line, char *, buf); } /* * Policy for top-level read operations (list pools). Requires no privileges, * and can be used in the local zone, as there is no associated dataset. */ /* ARGSUSED */ static int zfs_secpolicy_none(const char *unused1, cred_t *cr) { return (0); } /* * Policy for dataset read operations (list children, get statistics). Requires * no privileges, but must be visible in the local zone. */ /* ARGSUSED */ static int zfs_secpolicy_read(const char *dataset, cred_t *cr) { if (INGLOBALZONE(curproc) || zone_dataset_visible(dataset, NULL)) return (0); return (ENOENT); } static int zfs_dozonecheck(const char *dataset, cred_t *cr) { uint64_t zoned; int writable = 1; /* * The dataset must be visible by this zone -- check this first * so they don't see EPERM on something they shouldn't know about. */ if (!INGLOBALZONE(curproc) && !zone_dataset_visible(dataset, &writable)) return (ENOENT); if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL)) return (ENOENT); if (INGLOBALZONE(curproc)) { /* * If the fs is zoned, only root can access it from the * global zone. */ if (secpolicy_zfs(cr) && zoned) return (EPERM); } else { /* * If we are in a local zone, the 'zoned' property must be set. */ if (!zoned) return (EPERM); /* must be writable by this zone */ if (!writable) return (EPERM); } return (0); } /* * Policy for dataset write operations (create children, set properties, etc). * Requires SYS_MOUNT privilege, and must be writable in the local zone. */ int zfs_secpolicy_write(const char *dataset, cred_t *cr) { int error; if (error = zfs_dozonecheck(dataset, cr)) return (error); return (secpolicy_zfs(cr)); } /* * Policy for operations that want to write a dataset's parent: * create, destroy, snapshot, clone, restore. */ static int zfs_secpolicy_parent(const char *dataset, cred_t *cr) { char parentname[MAXNAMELEN]; char *cp; /* * Remove the @bla or /bla from the end of the name to get the parent. */ (void) strncpy(parentname, dataset, sizeof (parentname)); cp = strrchr(parentname, '@'); if (cp != NULL) { cp[0] = '\0'; } else { cp = strrchr(parentname, '/'); if (cp == NULL) return (ENOENT); cp[0] = '\0'; } return (zfs_secpolicy_write(parentname, cr)); } /* * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires * SYS_CONFIG privilege, which is not available in a local zone. */ /* ARGSUSED */ static int zfs_secpolicy_config(const char *unused, cred_t *cr) { if (secpolicy_sys_config(cr, B_FALSE) != 0) return (EPERM); return (0); } /* * Policy for fault injection. Requires all privileges. */ /* ARGSUSED */ static int zfs_secpolicy_inject(const char *unused, cred_t *cr) { return (secpolicy_zinject(cr)); } /* * Returns the nvlist as specified by the user in the zfs_cmd_t. */ static int get_nvlist(zfs_cmd_t *zc, nvlist_t **nvp) { char *packed; size_t size; int error; nvlist_t *config = NULL; /* * Read in and unpack the user-supplied nvlist. */ if ((size = zc->zc_nvlist_src_size) == 0) return (EINVAL); packed = kmem_alloc(size, KM_SLEEP); if ((error = xcopyin((void *)(uintptr_t)zc->zc_nvlist_src, packed, size)) != 0) { kmem_free(packed, size); return (error); } if ((error = nvlist_unpack(packed, size, &config, 0)) != 0) { kmem_free(packed, size); return (error); } kmem_free(packed, size); *nvp = config; return (0); } static int put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) { char *packed = NULL; size_t size; int error; VERIFY(nvlist_size(nvl, &size, NV_ENCODE_NATIVE) == 0); if (size > zc->zc_nvlist_dst_size) { error = ENOMEM; } else { VERIFY(nvlist_pack(nvl, &packed, &size, NV_ENCODE_NATIVE, KM_SLEEP) == 0); error = xcopyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, size); kmem_free(packed, size); } zc->zc_nvlist_dst_size = size; return (error); } static int zfs_ioc_pool_create(zfs_cmd_t *zc) { int error; nvlist_t *config; if ((error = get_nvlist(zc, &config)) != 0) return (error); error = spa_create(zc->zc_name, config, zc->zc_value[0] == '\0' ? NULL : zc->zc_value); nvlist_free(config); return (error); } static int zfs_ioc_pool_destroy(zfs_cmd_t *zc) { return (spa_destroy(zc->zc_name)); } static int zfs_ioc_pool_import(zfs_cmd_t *zc) { int error; nvlist_t *config; uint64_t guid; if ((error = get_nvlist(zc, &config)) != 0) return (error); if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != zc->zc_guid) error = EINVAL; else error = spa_import(zc->zc_name, config, zc->zc_value[0] == '\0' ? NULL : zc->zc_value); nvlist_free(config); return (error); } static int zfs_ioc_pool_export(zfs_cmd_t *zc) { return (spa_export(zc->zc_name, NULL)); } static int zfs_ioc_pool_configs(zfs_cmd_t *zc) { nvlist_t *configs; int error; if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL) return (EEXIST); error = put_nvlist(zc, configs); nvlist_free(configs); return (error); } static int zfs_ioc_pool_stats(zfs_cmd_t *zc) { nvlist_t *config; int error; int ret = 0; error = spa_get_stats(zc->zc_name, &config, zc->zc_value, sizeof (zc->zc_value)); if (config != NULL) { ret = put_nvlist(zc, config); nvlist_free(config); /* * The config may be present even if 'error' is non-zero. * In this case we return success, and preserve the real errno * in 'zc_cookie'. */ zc->zc_cookie = error; } else { ret = error; } return (ret); } /* * Try to import the given pool, returning pool stats as appropriate so that * user land knows which devices are available and overall pool health. */ static int zfs_ioc_pool_tryimport(zfs_cmd_t *zc) { nvlist_t *tryconfig, *config; int error; if ((error = get_nvlist(zc, &tryconfig)) != 0) return (error); config = spa_tryimport(tryconfig); nvlist_free(tryconfig); if (config == NULL) return (EINVAL); error = put_nvlist(zc, config); nvlist_free(config); return (error); } static int zfs_ioc_pool_scrub(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_scrub(spa, zc->zc_cookie, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_freeze(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { spa_freeze(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_pool_upgrade(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); spa_upgrade(spa); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_history(zfs_cmd_t *zc) { spa_t *spa; char *hist_buf; uint64_t size; int error; if ((size = zc->zc_history_len) == 0) return (EINVAL); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < ZFS_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (ENOTSUP); } hist_buf = kmem_alloc(size, KM_SLEEP); if ((error = spa_history_get(spa, &zc->zc_history_offset, &zc->zc_history_len, hist_buf)) == 0) { error = xcopyout(hist_buf, (char *)(uintptr_t)zc->zc_history, zc->zc_history_len); } spa_close(spa, FTAG); kmem_free(hist_buf, size); return (error); } static int zfs_ioc_pool_log_history(zfs_cmd_t *zc) { spa_t *spa; char *history_str = NULL; size_t size; int error; size = zc->zc_history_len; if (size == 0 || size > HIS_MAX_RECORD_LEN) return (EINVAL); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < ZFS_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (ENOTSUP); } /* add one for the NULL delimiter */ size++; history_str = kmem_alloc(size, KM_SLEEP); if ((error = xcopyin((void *)(uintptr_t)zc->zc_history, history_str, size)) != 0) { spa_close(spa, FTAG); kmem_free(history_str, size); return (error); } history_str[size - 1] = '\0'; error = spa_history_log(spa, history_str, zc->zc_history_offset); spa_close(spa, FTAG); kmem_free(history_str, size); return (error); } static int zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) { int error; if (error = dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)) return (error); return (0); } static int zfs_ioc_obj_to_path(zfs_cmd_t *zc) { objset_t *osp; int error; if ((error = dmu_objset_open(zc->zc_name, DMU_OST_ZFS, DS_MODE_NONE | DS_MODE_READONLY, &osp)) != 0) return (error); error = zfs_obj_to_path(osp, zc->zc_obj, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_close(osp); return (error); } static int zfs_ioc_vdev_add(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *config; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); /* * A root pool with concatenated devices is not supported. * Thus, can not add a device to a root pool with one device. */ if (spa->spa_root_vdev->vdev_children == 1 && spa->spa_bootfs != 0) { spa_close(spa, FTAG); return (EDOM); } if ((error = get_nvlist(zc, &config)) == 0) { error = spa_vdev_add(spa, config); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_remove(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_online(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = vdev_online(spa, zc->zc_guid); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_offline(zfs_cmd_t *zc) { spa_t *spa; int istmp = zc->zc_cookie; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = vdev_offline(spa, zc->zc_guid, istmp); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_attach(zfs_cmd_t *zc) { spa_t *spa; int replacing = zc->zc_cookie; nvlist_t *config; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc, &config)) == 0) { error = spa_vdev_attach(spa, zc->zc_guid, config, replacing); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_detach(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_vdev_detach(spa, zc->zc_guid, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_setpath(zfs_cmd_t *zc) { spa_t *spa; char *path = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setpath(spa, guid, path); spa_close(spa, FTAG); return (error); } static int zfs_ioc_objset_stats(zfs_cmd_t *zc) { objset_t *os = NULL; int error; nvlist_t *nv; retry: error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &os); if (error != 0) { /* * This is ugly: dmu_objset_open() can return EBUSY if * the objset is held exclusively. Fortunately this hold is * only for a short while, so we retry here. * This avoids user code having to handle EBUSY, * for example for a "zfs list". */ if (error == EBUSY) { delay(1); goto retry; } return (error); } dmu_objset_fast_stat(os, &zc->zc_objset_stats); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_all(os, &nv)) == 0) { dmu_objset_stats(os, nv); /* * NB: zvol_get_stats() will read the objset contents, * which we aren't supposed to do with a * DS_MODE_STANDARD open, because it could be * inconsistent. So this is a bit of a workaround... */ if (!zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZVOL) VERIFY(zvol_get_stats(os, nv) == 0); error = put_nvlist(zc, nv); nvlist_free(nv); } spa_altroot(dmu_objset_spa(os), zc->zc_value, sizeof (zc->zc_value)); dmu_objset_close(os); return (error); } static int zfs_ioc_dataset_list_next(zfs_cmd_t *zc) { objset_t *os; int error; char *p; retry: error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &os); if (error != 0) { /* * This is ugly: dmu_objset_open() can return EBUSY if * the objset is held exclusively. Fortunately this hold is * only for a short while, so we retry here. * This avoids user code having to handle EBUSY, * for example for a "zfs list". */ if (error == EBUSY) { delay(1); goto retry; } if (error == ENOENT) error = ESRCH; return (error); } p = strrchr(zc->zc_name, '/'); if (p == NULL || p[1] != '\0') (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); p = zc->zc_name + strlen(zc->zc_name); do { error = dmu_dir_list_next(os, sizeof (zc->zc_name) - (p - zc->zc_name), p, NULL, &zc->zc_cookie); if (error == ENOENT) error = ESRCH; } while (error == 0 && !INGLOBALZONE(curproc) && !zone_dataset_visible(zc->zc_name, NULL)); /* * If it's a hidden dataset (ie. with a '$' in its name), don't * try to get stats for it. Userland will skip over it. */ if (error == 0 && strchr(zc->zc_name, '$') == NULL) error = zfs_ioc_objset_stats(zc); /* fill in the stats */ dmu_objset_close(os); return (error); } static int zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) { objset_t *os; int error; retry: error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &os); if (error != 0) { /* * This is ugly: dmu_objset_open() can return EBUSY if * the objset is held exclusively. Fortunately this hold is * only for a short while, so we retry here. * This avoids user code having to handle EBUSY, * for example for a "zfs list". */ if (error == EBUSY) { delay(1); goto retry; } if (error == ENOENT) error = ESRCH; return (error); } /* * A dataset name of maximum length cannot have any snapshots, * so exit immediately. */ if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) { dmu_objset_close(os); return (ESRCH); } error = dmu_snapshot_list_next(os, sizeof (zc->zc_name) - strlen(zc->zc_name), zc->zc_name + strlen(zc->zc_name), NULL, &zc->zc_cookie); if (error == ENOENT) error = ESRCH; if (error == 0) error = zfs_ioc_objset_stats(zc); /* fill in the stats */ dmu_objset_close(os); return (error); } static int zfs_set_prop_nvlist(const char *name, dev_t dev, cred_t *cr, nvlist_t *nvl) { nvpair_t *elem; int error; const char *propname; zfs_prop_t prop; uint64_t intval; char *strval; char buf[MAXNAMELEN]; const char *p; spa_t *spa; elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { propname = nvpair_name(elem); if ((prop = zfs_name_to_prop(propname)) == ZFS_PROP_INVAL) { /* * If this is a user-defined property, it must be a * string, and there is no further validation to do. */ if (!zfs_prop_user(propname) || nvpair_type(elem) != DATA_TYPE_STRING) return (EINVAL); VERIFY(nvpair_value_string(elem, &strval) == 0); error = dsl_prop_set(name, propname, 1, strlen(strval) + 1, strval); if (error == 0) continue; else return (error); } /* * Check permissions for special properties. */ switch (prop) { case ZFS_PROP_ZONED: /* * Disallow setting of 'zoned' from within a local zone. */ if (!INGLOBALZONE(curproc)) return (EPERM); break; case ZFS_PROP_QUOTA: if (error = zfs_dozonecheck(name, cr)) return (error); if (!INGLOBALZONE(curproc)) { uint64_t zoned; char setpoint[MAXNAMELEN]; int dslen; /* * Unprivileged users are allowed to modify the * quota on things *under* (ie. contained by) * the thing they own. */ if (dsl_prop_get_integer(name, "zoned", &zoned, setpoint)) return (EPERM); if (!zoned) /* this shouldn't happen */ return (EPERM); dslen = strlen(name); if (dslen <= strlen(setpoint)) return (EPERM); } break; case ZFS_PROP_COMPRESSION: /* * If the user specified gzip compression, make sure * the SPA supports it. We ignore any errors here since * we'll catch them later. */ if (nvpair_type(elem) == DATA_TYPE_UINT64 && nvpair_value_uint64(elem, &intval) == 0 && intval >= ZIO_COMPRESS_GZIP_1 && intval <= ZIO_COMPRESS_GZIP_9) { if ((p = strchr(name, '/')) == NULL) { p = name; } else { bcopy(name, buf, p - name); buf[p - name] = '\0'; p = buf; } if (spa_open(p, &spa, FTAG) == 0) { if (spa_version(spa) < ZFS_VERSION_GZIP_COMPRESSION) { spa_close(spa, FTAG); return (ENOTSUP); } spa_close(spa, FTAG); } } break; } switch (prop) { case ZFS_PROP_QUOTA: if ((error = nvpair_value_uint64(elem, &intval)) != 0 || (error = dsl_dir_set_quota(name, intval)) != 0) return (error); break; case ZFS_PROP_RESERVATION: if ((error = nvpair_value_uint64(elem, &intval)) != 0 || (error = dsl_dir_set_reservation(name, intval)) != 0) return (error); break; case ZFS_PROP_VOLSIZE: if ((error = nvpair_value_uint64(elem, &intval)) != 0 || (error = zvol_set_volsize(name, dev, intval)) != 0) return (error); break; case ZFS_PROP_VOLBLOCKSIZE: if ((error = nvpair_value_uint64(elem, &intval)) != 0 || (error = zvol_set_volblocksize(name, intval)) != 0) return (error); break; default: if (nvpair_type(elem) == DATA_TYPE_STRING) { if (zfs_prop_get_type(prop) != prop_type_string) return (EINVAL); VERIFY(nvpair_value_string(elem, &strval) == 0); if ((error = dsl_prop_set(name, nvpair_name(elem), 1, strlen(strval) + 1, strval)) != 0) return (error); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { const char *unused; VERIFY(nvpair_value_uint64(elem, &intval) == 0); switch (zfs_prop_get_type(prop)) { case prop_type_number: break; case prop_type_boolean: if (intval > 1) return (EINVAL); break; case prop_type_string: return (EINVAL); case prop_type_index: if (zfs_prop_index_to_string(prop, intval, &unused) != 0) return (EINVAL); break; default: cmn_err(CE_PANIC, "unknown property " "type"); break; } if ((error = dsl_prop_set(name, propname, 8, 1, &intval)) != 0) return (error); } else { return (EINVAL); } break; } } return (0); } static int zfs_ioc_set_prop(zfs_cmd_t *zc) { nvlist_t *nvl; int error; zfs_prop_t prop; /* * If zc_value is set, then this is an attempt to inherit a value. * Otherwise, zc_nvlist refers to a list of properties to set. */ if (zc->zc_value[0] != '\0') { if (!zfs_prop_user(zc->zc_value) && ((prop = zfs_name_to_prop(zc->zc_value)) == ZFS_PROP_INVAL || !zfs_prop_inheritable(prop))) return (EINVAL); return (dsl_prop_set(zc->zc_name, zc->zc_value, 0, 0, NULL)); } if ((error = get_nvlist(zc, &nvl)) != 0) return (error); error = zfs_set_prop_nvlist(zc->zc_name, zc->zc_dev, (cred_t *)(uintptr_t)zc->zc_cred, nvl); nvlist_free(nvl); return (error); } static int zfs_ioc_pool_set_props(zfs_cmd_t *zc) { nvlist_t *nvl; int error, reset_bootfs = 0; uint64_t objnum; zpool_prop_t prop; nvpair_t *elem; char *propname, *strval; spa_t *spa; vdev_t *rvdev; char *vdev_type; objset_t *os; if ((error = get_nvlist(zc, &nvl)) != 0) return (error); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { nvlist_free(nvl); return (error); } if (spa_version(spa) < ZFS_VERSION_BOOTFS) { nvlist_free(nvl); spa_close(spa, FTAG); return (ENOTSUP); } elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { propname = nvpair_name(elem); if ((prop = zpool_name_to_prop(propname)) == ZFS_PROP_INVAL) { nvlist_free(nvl); spa_close(spa, FTAG); return (EINVAL); } switch (prop) { case ZFS_PROP_BOOTFS: /* * A bootable filesystem can not be on a RAIDZ pool * nor a striped pool with more than 1 device. */ rvdev = spa->spa_root_vdev; vdev_type = rvdev->vdev_child[0]->vdev_ops->vdev_op_type; if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || (strcmp(vdev_type, VDEV_TYPE_MIRROR) != 0 && rvdev->vdev_children > 1)) { error = ENOTSUP; break; } reset_bootfs = 1; VERIFY(nvpair_value_string(elem, &strval) == 0); if (strval == NULL || strval[0] == '\0') { objnum = zfs_prop_default_numeric(ZFS_PROP_BOOTFS); break; } if (error = dmu_objset_open(strval, DMU_OST_ZFS, DS_MODE_STANDARD | DS_MODE_READONLY, &os)) break; objnum = dmu_objset_id(os); dmu_objset_close(os); break; default: error = EINVAL; } if (error) break; } if (error == 0) { if (reset_bootfs) { VERIFY(nvlist_remove(nvl, zpool_prop_to_name(ZFS_PROP_BOOTFS), DATA_TYPE_STRING) == 0); VERIFY(nvlist_add_uint64(nvl, zpool_prop_to_name(ZFS_PROP_BOOTFS), objnum) == 0); } error = spa_set_props(spa, nvl); } nvlist_free(nvl); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_props(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *nvp = NULL; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_props(spa, &nvp); if (error == 0 && zc->zc_nvlist_dst != NULL) error = put_nvlist(zc, nvp); else error = EFAULT; spa_close(spa, FTAG); if (nvp) nvlist_free(nvp); return (error); } static int zfs_ioc_create_minor(zfs_cmd_t *zc) { return (zvol_create_minor(zc->zc_name, zc->zc_dev)); } static int zfs_ioc_remove_minor(zfs_cmd_t *zc) { return (zvol_remove_minor(zc->zc_name)); } /* * Search the vfs list for a specified resource. Returns a pointer to it * or NULL if no suitable entry is found. The caller of this routine * is responsible for releasing the returned vfs pointer. */ static vfs_t * zfs_get_vfs(const char *resource) { struct vfs *vfsp; struct vfs *vfs_found = NULL; vfs_list_read_lock(); vfsp = rootvfs; do { if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) { VFS_HOLD(vfsp); vfs_found = vfsp; break; } vfsp = vfsp->vfs_next; } while (vfsp != rootvfs); vfs_list_unlock(); return (vfs_found); } static void zfs_create_cb(objset_t *os, void *arg, dmu_tx_t *tx) { zfs_create_data_t *zc = arg; zfs_create_fs(os, (cred_t *)(uintptr_t)zc->zc_cred, tx); } static int zfs_ioc_create(zfs_cmd_t *zc) { objset_t *clone; int error = 0; zfs_create_data_t cbdata = { 0 }; void (*cbfunc)(objset_t *os, void *arg, dmu_tx_t *tx); dmu_objset_type_t type = zc->zc_objset_type; switch (type) { case DMU_OST_ZFS: cbfunc = zfs_create_cb; break; case DMU_OST_ZVOL: cbfunc = zvol_create_cb; break; default: cbfunc = NULL; } if (strchr(zc->zc_name, '@')) return (EINVAL); if (zc->zc_nvlist_src != NULL && (error = get_nvlist(zc, &cbdata.zc_props)) != 0) return (error); cbdata.zc_cred = (cred_t *)(uintptr_t)zc->zc_cred; cbdata.zc_dev = (dev_t)zc->zc_dev; if (zc->zc_value[0] != '\0') { /* * We're creating a clone of an existing snapshot. */ zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0) { nvlist_free(cbdata.zc_props); return (EINVAL); } error = dmu_objset_open(zc->zc_value, type, DS_MODE_STANDARD | DS_MODE_READONLY, &clone); if (error) { nvlist_free(cbdata.zc_props); return (error); } error = dmu_objset_create(zc->zc_name, type, clone, NULL, NULL); dmu_objset_close(clone); } else { if (cbfunc == NULL) { nvlist_free(cbdata.zc_props); return (EINVAL); } if (type == DMU_OST_ZVOL) { uint64_t volsize, volblocksize; if (cbdata.zc_props == NULL || nvlist_lookup_uint64(cbdata.zc_props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) { nvlist_free(cbdata.zc_props); return (EINVAL); } if ((error = nvlist_lookup_uint64(cbdata.zc_props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize)) != 0 && error != ENOENT) { nvlist_free(cbdata.zc_props); return (EINVAL); } if (error != 0) volblocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); if ((error = zvol_check_volblocksize( volblocksize)) != 0 || (error = zvol_check_volsize(volsize, volblocksize)) != 0) { nvlist_free(cbdata.zc_props); return (error); } } error = dmu_objset_create(zc->zc_name, type, NULL, cbfunc, &cbdata); } /* * It would be nice to do this atomically. */ if (error == 0) { if ((error = zfs_set_prop_nvlist(zc->zc_name, zc->zc_dev, (cred_t *)(uintptr_t)zc->zc_cred, cbdata.zc_props)) != 0) (void) dmu_objset_destroy(zc->zc_name); } nvlist_free(cbdata.zc_props); return (error); } static int zfs_ioc_snapshot(zfs_cmd_t *zc) { if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); return (dmu_objset_snapshot(zc->zc_name, zc->zc_value, zc->zc_cookie)); } int zfs_unmount_snap(char *name, void *arg) { char *snapname = arg; char *cp; vfs_t *vfsp = NULL; /* * Snapshots (which are under .zfs control) must be unmounted * before they can be destroyed. */ if (snapname) { (void) strcat(name, "@"); (void) strcat(name, snapname); vfsp = zfs_get_vfs(name); cp = strchr(name, '@'); *cp = '\0'; } else if (strchr(name, '@')) { vfsp = zfs_get_vfs(name); } if (vfsp) { /* * Always force the unmount for snapshots. */ int flag = MS_FORCE; int err; if ((err = vn_vfswlock(vfsp->vfs_vnodecovered)) != 0) { VFS_RELE(vfsp); return (err); } VFS_RELE(vfsp); if ((err = dounmount(vfsp, flag, kcred)) != 0) return (err); } return (0); } static int zfs_ioc_destroy_snaps(zfs_cmd_t *zc) { int err; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); err = dmu_objset_find(zc->zc_name, zfs_unmount_snap, zc->zc_value, DS_FIND_CHILDREN); if (err) return (err); return (dmu_snapshots_destroy(zc->zc_name, zc->zc_value)); } static int zfs_ioc_destroy(zfs_cmd_t *zc) { if (strchr(zc->zc_name, '@') && zc->zc_objset_type == DMU_OST_ZFS) { int err = zfs_unmount_snap(zc->zc_name, NULL); if (err) return (err); } return (dmu_objset_destroy(zc->zc_name)); } static int zfs_ioc_rollback(zfs_cmd_t *zc) { return (dmu_objset_rollback(zc->zc_name)); } static int zfs_ioc_rename(zfs_cmd_t *zc) { int recursive = zc->zc_cookie & 1; zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); /* * Unmount snapshot unless we're doing a recursive rename, * in which case the dataset code figures out which snapshots * to unmount. */ if (!recursive && strchr(zc->zc_name, '@') != NULL && zc->zc_objset_type == DMU_OST_ZFS) { int err = zfs_unmount_snap(zc->zc_name, NULL); if (err) return (err); } return (dmu_objset_rename(zc->zc_name, zc->zc_value, recursive)); } static int zfs_ioc_recvbackup(zfs_cmd_t *zc) { file_t *fp; int error, fd; offset_t new_off; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '@') == NULL) return (EINVAL); fd = zc->zc_cookie; fp = getf(fd); if (fp == NULL) return (EBADF); error = dmu_recvbackup(zc->zc_value, &zc->zc_begin_record, &zc->zc_cookie, (boolean_t)zc->zc_guid, fp->f_vnode, fp->f_offset); new_off = fp->f_offset + zc->zc_cookie; if (VOP_SEEK(fp->f_vnode, fp->f_offset, &new_off) == 0) fp->f_offset = new_off; releasef(fd); return (error); } static int zfs_ioc_sendbackup(zfs_cmd_t *zc) { objset_t *fromsnap = NULL; objset_t *tosnap; file_t *fp; int error; error = dmu_objset_open(zc->zc_name, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &tosnap); if (error) return (error); if (zc->zc_value[0] != '\0') { char buf[MAXPATHLEN]; char *cp; (void) strncpy(buf, zc->zc_name, sizeof (buf)); cp = strchr(buf, '@'); if (cp) *(cp+1) = 0; (void) strncat(buf, zc->zc_value, sizeof (buf)); error = dmu_objset_open(buf, DMU_OST_ANY, DS_MODE_STANDARD | DS_MODE_READONLY, &fromsnap); if (error) { dmu_objset_close(tosnap); return (error); } } fp = getf(zc->zc_cookie); if (fp == NULL) { dmu_objset_close(tosnap); if (fromsnap) dmu_objset_close(fromsnap); return (EBADF); } error = dmu_sendbackup(tosnap, fromsnap, fp->f_vnode); releasef(zc->zc_cookie); if (fromsnap) dmu_objset_close(fromsnap); dmu_objset_close(tosnap); return (error); } static int zfs_ioc_inject_fault(zfs_cmd_t *zc) { int id, error; error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, &zc->zc_inject_record); if (error == 0) zc->zc_guid = (uint64_t)id; return (error); } static int zfs_ioc_clear_fault(zfs_cmd_t *zc) { return (zio_clear_fault((int)zc->zc_guid)); } static int zfs_ioc_inject_list_next(zfs_cmd_t *zc) { int id = (int)zc->zc_guid; int error; error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), &zc->zc_inject_record); zc->zc_guid = id; return (error); } static int zfs_ioc_error_log(zfs_cmd_t *zc) { spa_t *spa; int error; size_t count = (size_t)zc->zc_nvlist_dst_size; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, &count); if (error == 0) zc->zc_nvlist_dst_size = count; else zc->zc_nvlist_dst_size = spa_get_errlog_size(spa); spa_close(spa, FTAG); return (error); } static int zfs_ioc_clear(zfs_cmd_t *zc) { spa_t *spa; vdev_t *vd; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); spa_config_enter(spa, RW_WRITER, FTAG); if (zc->zc_guid == 0) { vd = NULL; } else if ((vd = spa_lookup_by_guid(spa, zc->zc_guid)) == NULL) { spa_config_exit(spa, FTAG); spa_close(spa, FTAG); return (ENODEV); } vdev_clear(spa, vd); spa_config_exit(spa, FTAG); spa_close(spa, FTAG); return (0); } static int zfs_ioc_promote(zfs_cmd_t *zc) { char *cp; /* * We don't need to unmount *all* the origin fs's snapshots, but * it's easier. */ cp = strchr(zc->zc_value, '@'); if (cp) *cp = '\0'; (void) dmu_objset_find(zc->zc_value, zfs_unmount_snap, NULL, DS_FIND_SNAPSHOTS); return (dsl_dataset_promote(zc->zc_name)); } static zfs_ioc_vec_t zfs_ioc_vec[] = { { zfs_ioc_pool_create, zfs_secpolicy_config, pool_name }, { zfs_ioc_pool_destroy, zfs_secpolicy_config, pool_name }, { zfs_ioc_pool_import, zfs_secpolicy_config, pool_name }, { zfs_ioc_pool_export, zfs_secpolicy_config, pool_name }, { zfs_ioc_pool_configs, zfs_secpolicy_none, no_name }, { zfs_ioc_pool_stats, zfs_secpolicy_read, pool_name }, { zfs_ioc_pool_tryimport, zfs_secpolicy_config, no_name }, { zfs_ioc_pool_scrub, zfs_secpolicy_config, pool_name }, { zfs_ioc_pool_freeze, zfs_secpolicy_config, no_name }, { zfs_ioc_pool_upgrade, zfs_secpolicy_config, pool_name }, { zfs_ioc_pool_get_history, zfs_secpolicy_config, pool_name }, { zfs_ioc_pool_log_history, zfs_secpolicy_config, pool_name }, { zfs_ioc_vdev_add, zfs_secpolicy_config, pool_name }, { zfs_ioc_vdev_remove, zfs_secpolicy_config, pool_name }, { zfs_ioc_vdev_online, zfs_secpolicy_config, pool_name }, { zfs_ioc_vdev_offline, zfs_secpolicy_config, pool_name }, { zfs_ioc_vdev_attach, zfs_secpolicy_config, pool_name }, { zfs_ioc_vdev_detach, zfs_secpolicy_config, pool_name }, { zfs_ioc_vdev_setpath, zfs_secpolicy_config, pool_name }, { zfs_ioc_objset_stats, zfs_secpolicy_read, dataset_name }, { zfs_ioc_dataset_list_next, zfs_secpolicy_read, dataset_name }, { zfs_ioc_snapshot_list_next, zfs_secpolicy_read, dataset_name }, { zfs_ioc_set_prop, zfs_secpolicy_write, dataset_name }, { zfs_ioc_create_minor, zfs_secpolicy_config, dataset_name }, { zfs_ioc_remove_minor, zfs_secpolicy_config, dataset_name }, { zfs_ioc_create, zfs_secpolicy_parent, dataset_name }, { zfs_ioc_destroy, zfs_secpolicy_parent, dataset_name }, { zfs_ioc_rollback, zfs_secpolicy_write, dataset_name }, { zfs_ioc_rename, zfs_secpolicy_write, dataset_name }, { zfs_ioc_recvbackup, zfs_secpolicy_write, dataset_name }, { zfs_ioc_sendbackup, zfs_secpolicy_write, dataset_name }, { zfs_ioc_inject_fault, zfs_secpolicy_inject, no_name }, { zfs_ioc_clear_fault, zfs_secpolicy_inject, no_name }, { zfs_ioc_inject_list_next, zfs_secpolicy_inject, no_name }, { zfs_ioc_error_log, zfs_secpolicy_inject, pool_name }, { zfs_ioc_clear, zfs_secpolicy_config, pool_name }, { zfs_ioc_promote, zfs_secpolicy_write, dataset_name }, { zfs_ioc_destroy_snaps, zfs_secpolicy_write, dataset_name }, { zfs_ioc_snapshot, zfs_secpolicy_write, dataset_name }, { zfs_ioc_dsobj_to_dsname, zfs_secpolicy_config, pool_name }, { zfs_ioc_obj_to_path, zfs_secpolicy_config, no_name }, { zfs_ioc_pool_set_props, zfs_secpolicy_config, pool_name }, { zfs_ioc_pool_get_props, zfs_secpolicy_read, pool_name }, }; static int zfsdev_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zfs_cmd_t *zc; uint_t vec; int error, rc; if (getminor(dev) != 0) return (zvol_ioctl(dev, cmd, arg, flag, cr, rvalp)); vec = cmd - ZFS_IOC; if (vec >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) return (EINVAL); zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); error = xcopyin((void *)arg, zc, sizeof (zfs_cmd_t)); if (error == 0) { zc->zc_cred = (uintptr_t)cr; zc->zc_dev = dev; error = zfs_ioc_vec[vec].zvec_secpolicy(zc->zc_name, cr); } /* * Ensure that all pool/dataset names are valid before we pass down to * the lower layers. */ if (error == 0) { zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; switch (zfs_ioc_vec[vec].zvec_namecheck) { case pool_name: if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) error = EINVAL; break; case dataset_name: if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) error = EINVAL; break; case no_name: break; } } if (error == 0) error = zfs_ioc_vec[vec].zvec_func(zc); rc = xcopyout(zc, (void *)arg, sizeof (zfs_cmd_t)); if (error == 0) error = rc; kmem_free(zc, sizeof (zfs_cmd_t)); return (error); } static int zfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { if (cmd != DDI_ATTACH) return (DDI_FAILURE); if (ddi_create_minor_node(dip, "zfs", S_IFCHR, 0, DDI_PSEUDO, 0) == DDI_FAILURE) return (DDI_FAILURE); zfs_dip = dip; ddi_report_dev(dip); return (DDI_SUCCESS); } static int zfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { if (spa_busy() || zfs_busy() || zvol_busy()) return (DDI_FAILURE); if (cmd != DDI_DETACH) return (DDI_FAILURE); zfs_dip = NULL; ddi_prop_remove_all(dip); ddi_remove_minor_node(dip, NULL); return (DDI_SUCCESS); } /*ARGSUSED*/ static int zfs_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = zfs_dip; return (DDI_SUCCESS); case DDI_INFO_DEVT2INSTANCE: *result = (void *)0; return (DDI_SUCCESS); } return (DDI_FAILURE); } /* * OK, so this is a little weird. * * /dev/zfs is the control node, i.e. minor 0. * /dev/zvol/[r]dsk/pool/dataset are the zvols, minor > 0. * * /dev/zfs has basically nothing to do except serve up ioctls, * so most of the standard driver entry points are in zvol.c. */ static struct cb_ops zfs_cb_ops = { zvol_open, /* open */ zvol_close, /* close */ zvol_strategy, /* strategy */ nodev, /* print */ nodev, /* dump */ zvol_read, /* read */ zvol_write, /* write */ zfsdev_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* prop_op */ NULL, /* streamtab */ D_NEW | D_MP | D_64BIT, /* Driver compatibility flag */ CB_REV, /* version */ nodev, /* async read */ nodev, /* async write */ }; static struct dev_ops zfs_dev_ops = { DEVO_REV, /* version */ 0, /* refcnt */ zfs_info, /* info */ nulldev, /* identify */ nulldev, /* probe */ zfs_attach, /* attach */ zfs_detach, /* detach */ nodev, /* reset */ &zfs_cb_ops, /* driver operations */ NULL /* no bus operations */ }; static struct modldrv zfs_modldrv = { &mod_driverops, "ZFS storage pool version " ZFS_VERSION_STRING, &zfs_dev_ops }; static struct modlinkage modlinkage = { MODREV_1, (void *)&zfs_modlfs, (void *)&zfs_modldrv, NULL }; int _init(void) { int error; spa_init(FREAD | FWRITE); zfs_init(); zvol_init(); if ((error = mod_install(&modlinkage)) != 0) { zvol_fini(); zfs_fini(); spa_fini(); return (error); } error = ldi_ident_from_mod(&modlinkage, &zfs_li); ASSERT(error == 0); return (0); } int _fini(void) { int error; if (spa_busy() || zfs_busy() || zvol_busy() || zio_injection_enabled) return (EBUSY); if ((error = mod_remove(&modlinkage)) != 0) return (error); zvol_fini(); zfs_fini(); spa_fini(); ldi_ident_release(zfs_li); zfs_li = NULL; return (error); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); }