/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include /* * Virtual device vector for disks. */ extern ldi_ident_t zfs_li; typedef struct vdev_disk_buf { buf_t vdb_buf; zio_t *vdb_io; } vdev_disk_buf_t; static int vdev_disk_open_common(vdev_t *vd) { vdev_disk_t *dvd; dev_t dev; int error; /* * We must have a pathname, and it must be absolute. */ if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') { vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; return (EINVAL); } dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); /* * When opening a disk device, we want to preserve the user's original * intent. We always want to open the device by the path the user gave * us, even if it is one of multiple paths to the save device. But we * also want to be able to survive disks being removed/recabled. * Therefore the sequence of opening devices is: * * 1. Try opening the device by path. For legacy pools without the * 'whole_disk' property, attempt to fix the path by appending 's0'. * * 2. If the devid of the device matches the stored value, return * success. * * 3. Otherwise, the device may have moved. Try opening the device * by the devid instead. * * If the vdev is part of the root pool, we avoid opening it by path. * We do this because there is no /dev path available early in boot, * and if we try to open the device by path at a later point, we can * deadlock when devfsadm attempts to open the underlying backing store * file. */ if (vd->vdev_devid != NULL) { if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid, &dvd->vd_minor) != 0) { vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; return (EINVAL); } } error = EINVAL; /* presume failure */ if (vd->vdev_path != NULL && !spa_is_root(vd->vdev_spa)) { ddi_devid_t devid; if (vd->vdev_wholedisk == -1ULL) { size_t len = strlen(vd->vdev_path) + 3; char *buf = kmem_alloc(len, KM_SLEEP); ldi_handle_t lh; (void) snprintf(buf, len, "%ss0", vd->vdev_path); if (ldi_open_by_name(buf, spa_mode, kcred, &lh, zfs_li) == 0) { spa_strfree(vd->vdev_path); vd->vdev_path = buf; vd->vdev_wholedisk = 1ULL; (void) ldi_close(lh, spa_mode, kcred); } else { kmem_free(buf, len); } } error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred, &dvd->vd_lh, zfs_li); /* * Compare the devid to the stored value. */ if (error == 0 && vd->vdev_devid != NULL && ldi_get_devid(dvd->vd_lh, &devid) == 0) { if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { error = EINVAL; (void) ldi_close(dvd->vd_lh, spa_mode, kcred); dvd->vd_lh = NULL; } ddi_devid_free(devid); } /* * If we succeeded in opening the device, but 'vdev_wholedisk' * is not yet set, then this must be a slice. */ if (error == 0 && vd->vdev_wholedisk == -1ULL) vd->vdev_wholedisk = 0; } /* * If we were unable to open by path, or the devid check fails, open by * devid instead. */ if (error != 0 && vd->vdev_devid != NULL) error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor, spa_mode, kcred, &dvd->vd_lh, zfs_li); /* * If all else fails, then try opening by physical path (if available) * or the logical path (if we failed due to the devid check). While not * as reliable as the devid, this will give us something, and the higher * level vdev validation will prevent us from opening the wrong device. */ if (error) { if (vd->vdev_physpath != NULL && (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != ENODEV) error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode, kcred, &dvd->vd_lh, zfs_li); /* * Note that we don't support the legacy auto-wholedisk support * as above. This hasn't been used in a very long time and we * don't need to propagate its oddities to this edge condition. */ if (error && vd->vdev_path != NULL && !spa_is_root(vd->vdev_spa)) error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred, &dvd->vd_lh, zfs_li); } if (error) vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; return (error); } static int vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift) { vdev_disk_t *dvd; struct dk_minfo dkm; int error; dev_t dev; int otyp; error = vdev_disk_open_common(vd); if (error) return (error); dvd = vd->vdev_tsd; /* * Once a device is opened, verify that the physical device path (if * available) is up to date. */ if (ldi_get_dev(dvd->vd_lh, &dev) == 0 && ldi_get_otyp(dvd->vd_lh, &otyp) == 0) { char *physpath, *minorname; physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); minorname = NULL; if (ddi_dev_pathname(dev, otyp, physpath) == 0 && ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 && (vd->vdev_physpath == NULL || strcmp(vd->vdev_physpath, physpath) != 0)) { if (vd->vdev_physpath) spa_strfree(vd->vdev_physpath); (void) strlcat(physpath, ":", MAXPATHLEN); (void) strlcat(physpath, minorname, MAXPATHLEN); vd->vdev_physpath = spa_strdup(physpath); } if (minorname) kmem_free(minorname, strlen(minorname) + 1); kmem_free(physpath, MAXPATHLEN); } /* * Determine the actual size of the device. */ if (ldi_get_size(dvd->vd_lh, psize) != 0) { vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; return (EINVAL); } /* * If we own the whole disk, try to enable disk write caching. * We ignore errors because it's OK if we can't do it. */ if (vd->vdev_wholedisk == 1) { int wce = 1; (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce, FKIOCTL, kcred, NULL); } /* * Determine the device's minimum transfer size. * If the ioctl isn't supported, assume DEV_BSIZE. */ if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm, FKIOCTL, kcred, NULL) != 0) dkm.dki_lbsize = DEV_BSIZE; *ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1; /* * Clear the nowritecache bit, so that on a vdev_reopen() we will * try again. */ vd->vdev_nowritecache = B_FALSE; return (0); } static void vdev_disk_close(vdev_t *vd) { vdev_disk_t *dvd = vd->vdev_tsd; if (dvd == NULL) return; if (dvd->vd_minor != NULL) ddi_devid_str_free(dvd->vd_minor); if (dvd->vd_devid != NULL) ddi_devid_free(dvd->vd_devid); if (dvd->vd_lh != NULL) (void) ldi_close(dvd->vd_lh, spa_mode, kcred); kmem_free(dvd, sizeof (vdev_disk_t)); vd->vdev_tsd = NULL; } int vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size, uint64_t offset, int flags) { buf_t *bp; int error = 0; if (vd_lh == NULL) return (EINVAL); ASSERT(flags & B_READ || flags & B_WRITE); bp = getrbuf(KM_SLEEP); bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST; bp->b_bcount = size; bp->b_un.b_addr = (void *)data; bp->b_lblkno = lbtodb(offset); bp->b_bufsize = size; error = ldi_strategy(vd_lh, bp); ASSERT(error == 0); if ((error = biowait(bp)) == 0 && bp->b_resid != 0) error = EIO; freerbuf(bp); return (error); } static int vdev_disk_probe_io(vdev_t *vd, caddr_t data, size_t size, uint64_t offset, int flags) { int error = 0; vdev_disk_t *dvd = vd ? vd->vdev_tsd : NULL; if (vd == NULL || dvd == NULL || dvd->vd_lh == NULL) return (EINVAL); error = vdev_disk_physio(dvd->vd_lh, data, size, offset, flags); if (zio_injection_enabled && error == 0) error = zio_handle_device_injection(vd, EIO); return (error); } /* * Determine if the underlying device is accessible by reading and writing * to a known location. We must be able to do this during syncing context * and thus we cannot set the vdev state directly. */ static int vdev_disk_probe(vdev_t *vd) { uint64_t offset; vdev_t *nvd; int l, error = 0, retries = 0; char *vl_pad; if (vd == NULL) return (EINVAL); /* Hijack the current vdev */ nvd = vd; /* * Pick a random label to rewrite. */ l = spa_get_random(VDEV_LABELS); ASSERT(l < VDEV_LABELS); offset = vdev_label_offset(vd->vdev_psize, l, offsetof(vdev_label_t, vl_pad)); vl_pad = kmem_alloc(VDEV_SKIP_SIZE, KM_SLEEP); /* * Try to read and write to a special location on the * label. We use the existing vdev initially and only * try to create and reopen it if we encounter a failure. */ while ((error = vdev_disk_probe_io(nvd, vl_pad, VDEV_SKIP_SIZE, offset, B_READ)) != 0 && retries == 0) { nvd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); if (vd->vdev_path) nvd->vdev_path = spa_strdup(vd->vdev_path); if (vd->vdev_physpath) nvd->vdev_physpath = spa_strdup(vd->vdev_physpath); if (vd->vdev_devid) nvd->vdev_devid = spa_strdup(vd->vdev_devid); nvd->vdev_wholedisk = vd->vdev_wholedisk; nvd->vdev_guid = vd->vdev_guid; nvd->vdev_spa = vd->vdev_spa; retries++; error = vdev_disk_open_common(nvd); if (error) break; } if (!error) { error = vdev_disk_probe_io(nvd, vl_pad, VDEV_SKIP_SIZE, offset, B_WRITE); } /* Clean up if we allocated a new vdev */ if (retries) { vdev_disk_close(nvd); if (nvd->vdev_path) spa_strfree(nvd->vdev_path); if (nvd->vdev_physpath) spa_strfree(nvd->vdev_physpath); if (nvd->vdev_devid) spa_strfree(nvd->vdev_devid); kmem_free(nvd, sizeof (vdev_t)); } kmem_free(vl_pad, VDEV_SKIP_SIZE); /* Reset the failing flag */ if (!error) vd->vdev_is_failing = B_FALSE; return (error); } static void vdev_disk_io_intr(buf_t *bp) { vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp; zio_t *zio = vdb->vdb_io; /* * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO. * Rather than teach the rest of the stack about other error * possibilities (EFAULT, etc), we normalize the error value here. */ zio->io_error = (geterror(bp) != 0 ? EIO : 0); if (zio->io_error == 0 && bp->b_resid != 0) zio->io_error = EIO; kmem_free(vdb, sizeof (vdev_disk_buf_t)); zio_interrupt(zio); } static void vdev_disk_ioctl_done(void *zio_arg, int error) { zio_t *zio = zio_arg; zio->io_error = error; zio_interrupt(zio); } static int vdev_disk_io_start(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_disk_t *dvd = vd->vdev_tsd; vdev_disk_buf_t *vdb; buf_t *bp; int flags, error; if (zio->io_type == ZIO_TYPE_IOCTL) { zio_vdev_io_bypass(zio); /* XXPOLICY */ if (!vdev_readable(vd)) { zio->io_error = ENXIO; return (ZIO_PIPELINE_CONTINUE); } switch (zio->io_cmd) { case DKIOCFLUSHWRITECACHE: if (zfs_nocacheflush) break; if (vd->vdev_nowritecache) { zio->io_error = ENOTSUP; break; } zio->io_dk_callback.dkc_callback = vdev_disk_ioctl_done; zio->io_dk_callback.dkc_flag = FLUSH_VOLATILE; zio->io_dk_callback.dkc_cookie = zio; error = ldi_ioctl(dvd->vd_lh, zio->io_cmd, (uintptr_t)&zio->io_dk_callback, FKIOCTL, kcred, NULL); if (error == 0) { /* * The ioctl will be done asychronously, * and will call vdev_disk_ioctl_done() * upon completion. */ return (ZIO_PIPELINE_STOP); } if (error == ENOTSUP || error == ENOTTY) { /* * If we get ENOTSUP or ENOTTY, we know that * no future attempts will ever succeed. * In this case we set a persistent bit so * that we don't bother with the ioctl in the * future. */ vd->vdev_nowritecache = B_TRUE; } zio->io_error = error; break; default: zio->io_error = ENOTSUP; } return (ZIO_PIPELINE_CONTINUE); } if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) return (ZIO_PIPELINE_STOP); if ((zio = vdev_queue_io(zio)) == NULL) return (ZIO_PIPELINE_STOP); if (zio->io_type == ZIO_TYPE_WRITE) error = vdev_writeable(vd) ? vdev_error_inject(vd, zio) : ENXIO; else error = vdev_readable(vd) ? vdev_error_inject(vd, zio) : ENXIO; error = (vd->vdev_remove_wanted || vd->vdev_is_failing) ? ENXIO : error; if (error) { zio->io_error = error; zio_interrupt(zio); return (ZIO_PIPELINE_STOP); } flags = (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE); flags |= B_BUSY | B_NOCACHE; if (zio->io_flags & ZIO_FLAG_FAILFAST) flags |= B_FAILFAST; vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP); vdb->vdb_io = zio; bp = &vdb->vdb_buf; bioinit(bp); bp->b_flags = flags; bp->b_bcount = zio->io_size; bp->b_un.b_addr = zio->io_data; bp->b_lblkno = lbtodb(zio->io_offset); bp->b_bufsize = zio->io_size; bp->b_iodone = (int (*)())vdev_disk_io_intr; error = ldi_strategy(dvd->vd_lh, bp); /* ldi_strategy() will return non-zero only on programming errors */ ASSERT(error == 0); return (ZIO_PIPELINE_STOP); } static int vdev_disk_io_done(zio_t *zio) { vdev_queue_io_done(zio); if (zio->io_type == ZIO_TYPE_WRITE) vdev_cache_write(zio); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_device_injection(zio->io_vd, EIO); /* * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if * the device has been removed. If this is the case, then we trigger an * asynchronous removal of the device. Otherwise, probe the device and * make sure it's still accessible. */ if (zio->io_error == EIO) { vdev_t *vd = zio->io_vd; vdev_disk_t *dvd = vd->vdev_tsd; int state; state = DKIO_NONE; if (dvd && ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state, FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) { vd->vdev_remove_wanted = B_TRUE; spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); } else if (vdev_probe(vd) != 0) { ASSERT(vd->vdev_ops->vdev_op_leaf); if (!vd->vdev_is_failing) { vd->vdev_is_failing = B_TRUE; zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, vd->vdev_spa, vd, zio, 0, 0); } } } if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_label_injection(zio, EIO); return (ZIO_PIPELINE_CONTINUE); } vdev_ops_t vdev_disk_ops = { vdev_disk_open, vdev_disk_close, vdev_disk_probe, vdev_default_asize, vdev_disk_io_start, vdev_disk_io_done, NULL, VDEV_TYPE_DISK, /* name of this vdev type */ B_TRUE /* leaf vdev */ }; /* * Given the root disk device devid or pathname, read the label from * the device, and construct a configuration nvlist. */ int vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config) { ldi_handle_t vd_lh; vdev_label_t *label; uint64_t s, size; int l; ddi_devid_t tmpdevid; int error = -1; char *minor_name; /* * Read the device label and build the nvlist. */ if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid, &minor_name) == 0) { error = ldi_open_by_devid(tmpdevid, minor_name, spa_mode, kcred, &vd_lh, zfs_li); ddi_devid_free(tmpdevid); ddi_devid_str_free(minor_name); } if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, zfs_li))) return (error); if (ldi_get_size(vd_lh, &s)) { (void) ldi_close(vd_lh, FREAD, kcred); return (EIO); } size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t); label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP); for (l = 0; l < VDEV_LABELS; l++) { uint64_t offset, state, txg = 0; /* read vdev label */ offset = vdev_label_offset(size, l, 0); if (vdev_disk_physio(vd_lh, (caddr_t)label, VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0) continue; if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) { *config = NULL; continue; } if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, &state) != 0 || state >= POOL_STATE_DESTROYED) { nvlist_free(*config); *config = NULL; continue; } if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0) { nvlist_free(*config); *config = NULL; continue; } break; } kmem_free(label, sizeof (vdev_label_t)); (void) ldi_close(vd_lh, FREAD, kcred); return (error); }