/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2014 Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define EQADDR(a1, a2) \ (bcmp((char *)(a1)->buf, (char *)(a2)->buf, (a1)->len) == 0 && \ (a1)->len == (a2)->len) static struct knetconfig auth_knconf; static servinfo_t svp; static clinfo_t ci; static struct kmem_cache *exi_cache_handle; static void exi_cache_reclaim(void *); static void exi_cache_trim(struct exportinfo *exi); extern pri_t minclsyspri; int nfsauth_cache_hit; int nfsauth_cache_miss; int nfsauth_cache_refresh; int nfsauth_cache_reclaim; /* * The lifetime of an auth cache entry: * ------------------------------------ * * An auth cache entry is created with both the auth_time * and auth_freshness times set to the current time. * * Upon every client access which results in a hit, the * auth_time will be updated. * * If a client access determines that the auth_freshness * indicates that the entry is STALE, then it will be * refreshed. Note that this will explicitly reset * auth_time. * * When the REFRESH successfully occurs, then the * auth_freshness is updated. * * There are two ways for an entry to leave the cache: * * 1) Purged by an action on the export (remove or changed) * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM) * * For 2) we check the timeout value against auth_time. */ /* * Number of seconds until we mark for refresh an auth cache entry. */ #define NFSAUTH_CACHE_REFRESH 600 /* * Number of idle seconds until we yield to backpressure * to trim a cache entry. */ #define NFSAUTH_CACHE_TRIM 3600 /* * While we could encapuslate the exi_list inside the * exi structure, we can't do that for the auth_list. * So, to keep things looking clean, we keep them both * in these external lists. */ typedef struct refreshq_exi_node { struct exportinfo *ren_exi; list_t ren_authlist; list_node_t ren_node; } refreshq_exi_node_t; typedef struct refreshq_auth_node { struct auth_cache *ran_auth; list_node_t ran_node; } refreshq_auth_node_t; /* * Used to manipulate things on the refreshq_queue. * Note that the refresh thread will effectively * pop a node off of the queue, at which point it * will no longer need to hold the mutex. */ static kmutex_t refreshq_lock; static list_t refreshq_queue; static kcondvar_t refreshq_cv; /* * A list_t would be overkill. These are auth_cache * entries which are no longer linked to an exi. * It should be the case that all of their states * are NFS_AUTH_INVALID. * * I.e., the only way to be put on this list is * iff their state indicated that they had been placed * on the refreshq_queue. * * Note that while there is no link from the exi or * back to the exi, the exi can not go away until * these entries are harvested. */ static struct auth_cache *refreshq_dead_entries; /* * If there is ever a problem with loading the * module, then nfsauth_fini() needs to be called * to remove state. In that event, since the * refreshq thread has been started, they need to * work together to get rid of state. */ typedef enum nfsauth_refreshq_thread_state { REFRESHQ_THREAD_RUNNING, REFRESHQ_THREAD_FINI_REQ, REFRESHQ_THREAD_HALTED } nfsauth_refreshq_thread_state_t; nfsauth_refreshq_thread_state_t refreshq_thread_state = REFRESHQ_THREAD_HALTED; static void nfsauth_free_node(struct auth_cache *); static void nfsauth_remove_dead_entry(struct auth_cache *); static void nfsauth_refresh_thread(void); /* * mountd is a server-side only daemon. This will need to be * revisited if the NFS server is ever made zones-aware. */ kmutex_t mountd_lock; door_handle_t mountd_dh; void mountd_args(uint_t did) { mutex_enter(&mountd_lock); if (mountd_dh) door_ki_rele(mountd_dh); mountd_dh = door_ki_lookup(did); mutex_exit(&mountd_lock); } void nfsauth_init(void) { /* * mountd can be restarted by smf(5). We need to make sure * the updated door handle will safely make it to mountd_dh */ mutex_init(&mountd_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&refreshq_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&refreshq_queue, sizeof (refreshq_exi_node_t), offsetof(refreshq_exi_node_t, ren_node)); refreshq_dead_entries = NULL; cv_init(&refreshq_cv, NULL, CV_DEFAULT, NULL); /* * Allocate nfsauth cache handle */ exi_cache_handle = kmem_cache_create("exi_cache_handle", sizeof (struct auth_cache), 0, NULL, NULL, exi_cache_reclaim, NULL, NULL, 0); refreshq_thread_state = REFRESHQ_THREAD_RUNNING; (void) zthread_create(NULL, 0, nfsauth_refresh_thread, NULL, 0, minclsyspri); } /* * Finalization routine for nfsauth. It is important to call this routine * before destroying the exported_lock. */ void nfsauth_fini(void) { refreshq_exi_node_t *ren; refreshq_auth_node_t *ran; struct auth_cache *p; struct auth_cache *auth_next; /* * Prevent the refreshq_thread from getting new * work. */ mutex_enter(&refreshq_lock); if (refreshq_thread_state != REFRESHQ_THREAD_HALTED) { refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ; cv_broadcast(&refreshq_cv); /* * Also, wait for nfsauth_refresh_thread() to exit. */ while (refreshq_thread_state != REFRESHQ_THREAD_HALTED) { cv_wait(&refreshq_cv, &refreshq_lock); } } /* * Walk the exi_list and in turn, walk the * auth_lists. */ while ((ren = list_remove_head(&refreshq_queue))) { while ((ran = list_remove_head(&ren->ren_authlist))) { kmem_free(ran, sizeof (refreshq_auth_node_t)); } list_destroy(&ren->ren_authlist); exi_rele(ren->ren_exi); kmem_free(ren, sizeof (refreshq_exi_node_t)); } /* * Okay, now that the lists are deleted, we * need to see if there are any dead entries * to harvest. */ for (p = refreshq_dead_entries; p != NULL; p = auth_next) { auth_next = p->auth_next; nfsauth_free_node(p); } mutex_exit(&refreshq_lock); list_destroy(&refreshq_queue); cv_destroy(&refreshq_cv); mutex_destroy(&refreshq_lock); mutex_destroy(&mountd_lock); /* * Deallocate nfsauth cache handle */ kmem_cache_destroy(exi_cache_handle); } /* * Convert the address in a netbuf to * a hash index for the auth_cache table. */ static int hash(struct netbuf *a) { int i, h = 0; for (i = 0; i < a->len; i++) h ^= a->buf[i]; return (h & (AUTH_TABLESIZE - 1)); } /* * Mask out the components of an * address that do not identify * a host. For socket addresses the * masking gets rid of the port number. */ static void addrmask(struct netbuf *addr, struct netbuf *mask) { int i; for (i = 0; i < addr->len; i++) addr->buf[i] &= mask->buf[i]; } /* * nfsauth4_access is used for NFS V4 auth checking. Besides doing * the common nfsauth_access(), it will check if the client can * have a limited access to this vnode even if the security flavor * used does not meet the policy. */ int nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req, cred_t *cr, uid_t *uid, gid_t *gid) { int access; access = nfsauth_access(exi, req, cr, uid, gid); /* * There are cases that the server needs to allow the client * to have a limited view. * * e.g. * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw" * /export/home is shared as "sec=sys,rw" * * When the client mounts /export with sec=sys, the client * would get a limited view with RO access on /export to see * "home" only because the client is allowed to access * /export/home with auth_sys. */ if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) { /* * Allow ro permission with LIMITED view if there is a * sub-dir exported under vp. */ if (has_visible(exi, vp)) return (NFSAUTH_LIMITED); } return (access); } static void sys_log(const char *msg) { static time_t tstamp = 0; time_t now; /* * msg is shown (at most) once per minute */ now = gethrestime_sec(); if ((tstamp + 60) < now) { tstamp = now; cmn_err(CE_WARN, msg); } } /* * Callup to the mountd to get access information in the kernel. */ static bool_t nfsauth_retrieve(struct exportinfo *exi, char *req_netid, int flavor, struct netbuf *addr, int *access, uid_t clnt_uid, gid_t clnt_gid, uid_t *srv_uid, gid_t *srv_gid) { varg_t varg = {0}; nfsauth_res_t res = {0}; XDR xdrs_a; XDR xdrs_r; size_t absz; caddr_t abuf; size_t rbsz = (size_t)(BYTES_PER_XDR_UNIT * 4); char result[BYTES_PER_XDR_UNIT * 4] = {0}; caddr_t rbuf = (caddr_t)&result; int last = 0; door_arg_t da; door_info_t di; door_handle_t dh; uint_t ntries = 0; /* * No entry in the cache for this client/flavor * so we need to call the nfsauth service in the * mount daemon. */ retry: mutex_enter(&mountd_lock); dh = mountd_dh; if (dh) door_ki_hold(dh); mutex_exit(&mountd_lock); if (dh == NULL) { /* * The rendezvous point has not been established yet ! * This could mean that either mountd(1m) has not yet * been started or that _this_ routine nuked the door * handle after receiving an EINTR for a REVOKED door. * * Returning NFSAUTH_DROP will cause the NFS client * to retransmit the request, so let's try to be more * rescillient and attempt for ntries before we bail. */ if (++ntries % NFSAUTH_DR_TRYCNT) { delay(hz); goto retry; } sys_log("nfsauth: mountd has not established door"); *access = NFSAUTH_DROP; return (FALSE); } ntries = 0; varg.vers = V_PROTO; varg.arg_u.arg.cmd = NFSAUTH_ACCESS; varg.arg_u.arg.areq.req_client.n_len = addr->len; varg.arg_u.arg.areq.req_client.n_bytes = addr->buf; varg.arg_u.arg.areq.req_netid = req_netid; varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path; varg.arg_u.arg.areq.req_flavor = flavor; varg.arg_u.arg.areq.req_clnt_uid = clnt_uid; varg.arg_u.arg.areq.req_clnt_gid = clnt_gid; /* * Setup the XDR stream for encoding the arguments. Notice that * in addition to the args having variable fields (req_netid and * req_path), the argument data structure is itself versioned, * so we need to make sure we can size the arguments buffer * appropriately to encode all the args. If we can't get sizing * info _or_ properly encode the arguments, there's really no * point in continuting, so we fail the request. */ DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg); if ((absz = xdr_sizeof(xdr_varg, (void *)&varg)) == 0) { door_ki_rele(dh); *access = NFSAUTH_DENIED; return (FALSE); } abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP); xdrmem_create(&xdrs_a, abuf, absz, XDR_ENCODE); if (!xdr_varg(&xdrs_a, &varg)) { door_ki_rele(dh); goto fail; } XDR_DESTROY(&xdrs_a); /* * The result (nfsauth_res_t) is always four int's, so we don't * have to dynamically size (or allocate) the results buffer. * Now that we've got what we need, we prep the door arguments * and place the call. */ da.data_ptr = (char *)abuf; da.data_size = absz; da.desc_ptr = NULL; da.desc_num = 0; da.rbuf = (char *)rbuf; da.rsize = rbsz; switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) { case 0: /* Success */ if (da.data_ptr != da.rbuf && da.data_size == 0) { /* * The door_return that contained the data * failed ! We're here because of the 2nd * door_return (w/o data) such that we can * get control of the thread (and exit * gracefully). */ DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil, door_arg_t *, &da); door_ki_rele(dh); goto fail; } else if (rbuf != da.rbuf) { /* * The only time this should be true * is iff userland wanted to hand us * a bigger response than what we * expect; that should not happen * (nfsauth_res_t is only 4 int's), * but we check nevertheless. */ rbuf = da.rbuf; rbsz = da.rsize; } else if (rbsz > da.data_size) { /* * We were expecting four int's; but if * userland fails in encoding the XDR * stream, we detect that here, since * the mountd forces down only one byte * in such scenario. */ door_ki_rele(dh); goto fail; } door_ki_rele(dh); break; case EAGAIN: /* * Server out of resources; back off for a bit */ door_ki_rele(dh); kmem_free(abuf, absz); delay(hz); goto retry; /* NOTREACHED */ case EINTR: if (!door_ki_info(dh, &di)) { if (di.di_attributes & DOOR_REVOKED) { /* * The server barfed and revoked * the (existing) door on us; we * want to wait to give smf(5) a * chance to restart mountd(1m) * and establish a new door handle. */ mutex_enter(&mountd_lock); if (dh == mountd_dh) mountd_dh = NULL; mutex_exit(&mountd_lock); door_ki_rele(dh); kmem_free(abuf, absz); delay(hz); goto retry; } /* * If the door was _not_ revoked on us, * then more than likely we took an INTR, * so we need to fail the operation. */ door_ki_rele(dh); goto fail; } /* * The only failure that can occur from getting * the door info is EINVAL, so we let the code * below handle it. */ /* FALLTHROUGH */ case EBADF: case EINVAL: default: /* * If we have a stale door handle, give smf a last * chance to start it by sleeping for a little bit. * If we're still hosed, we'll fail the call. * * Since we're going to reacquire the door handle * upon the retry, we opt to sleep for a bit and * _not_ to clear mountd_dh. If mountd restarted * and was able to set mountd_dh, we should see * the new instance; if not, we won't get caught * up in the retry/DELAY loop. */ door_ki_rele(dh); if (!last) { delay(hz); last++; goto retry; } sys_log("nfsauth: stale mountd door handle"); goto fail; } /* * No door errors encountered; setup the XDR stream for decoding * the results. If we fail to decode the results, we've got no * other recourse than to fail the request. */ xdrmem_create(&xdrs_r, rbuf, rbsz, XDR_DECODE); if (!xdr_nfsauth_res(&xdrs_r, &res)) goto fail; XDR_DESTROY(&xdrs_r); DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res); switch (res.stat) { case NFSAUTH_DR_OKAY: *access = res.ares.auth_perm; *srv_uid = res.ares.auth_srv_uid; *srv_gid = res.ares.auth_srv_gid; kmem_free(abuf, absz); break; case NFSAUTH_DR_EFAIL: case NFSAUTH_DR_DECERR: case NFSAUTH_DR_BADCMD: default: fail: *access = NFSAUTH_DENIED; kmem_free(abuf, absz); return (FALSE); /* NOTREACHED */ } return (TRUE); } static void nfsauth_refresh_thread(void) { refreshq_exi_node_t *ren; refreshq_auth_node_t *ran; struct exportinfo *exi; int access; bool_t retrieval; callb_cpr_t cprinfo; CALLB_CPR_INIT(&cprinfo, &refreshq_lock, callb_generic_cpr, "nfsauth_refresh"); for (;;) { mutex_enter(&refreshq_lock); if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) { /* Keep the hold on the lock! */ break; } ren = list_remove_head(&refreshq_queue); if (ren == NULL) { CALLB_CPR_SAFE_BEGIN(&cprinfo); cv_wait(&refreshq_cv, &refreshq_lock); CALLB_CPR_SAFE_END(&cprinfo, &refreshq_lock); mutex_exit(&refreshq_lock); continue; } mutex_exit(&refreshq_lock); exi = ren->ren_exi; ASSERT(exi != NULL); /* * Since the ren was removed from the refreshq_queue above, * this is the only thread aware about the ren existence, so we * have the exclusive ownership of it and we do not need to * protect it by any lock. */ while ((ran = list_remove_head(&ren->ren_authlist))) { struct auth_cache *p = ran->ran_auth; ASSERT(p != NULL); kmem_free(ran, sizeof (refreshq_auth_node_t)); /* * We are shutting down. No need to refresh * entries which are about to be nuked. * * So just throw them away until we are done * with this exi node... */ if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) continue; mutex_enter(&p->auth_lock); /* * Make sure the state is valid now that * we have the lock. Note that once we * change the state to NFS_AUTH_REFRESHING, * no other thread will be able to work on * this entry. */ if (p->auth_state != NFS_AUTH_STALE) { /* * Once it goes INVALID, it can not * change state. */ if (p->auth_state == NFS_AUTH_INVALID) { mutex_exit(&p->auth_lock); nfsauth_remove_dead_entry(p); } else mutex_exit(&p->auth_lock); continue; } p->auth_state = NFS_AUTH_REFRESHING; mutex_exit(&p->auth_lock); DTRACE_PROBE2(nfsauth__debug__cache__refresh, struct exportinfo *, exi, struct auth_cache *, p); /* * The first caching of the access rights * is done with the netid pulled out of the * request from the client. All subsequent * users of the cache may or may not have * the same netid. It doesn't matter. So * when we refresh, we simply use the netid * of the request which triggered the * refresh attempt. */ ASSERT(p->auth_netid != NULL); retrieval = nfsauth_retrieve(exi, p->auth_netid, p->auth_flavor, &p->auth_addr, &access, p->auth_clnt_uid, p->auth_clnt_gid, &p->auth_srv_uid, &p->auth_srv_gid); /* * This can only be set in one other place * and the state has to be NFS_AUTH_FRESH. */ kmem_free(p->auth_netid, strlen(p->auth_netid) + 1); p->auth_netid = NULL; mutex_enter(&p->auth_lock); if (p->auth_state == NFS_AUTH_INVALID) { mutex_exit(&p->auth_lock); nfsauth_remove_dead_entry(p); } else { /* * If we got an error, do not reset the * time. This will cause the next access * check for the client to reschedule this * node. */ if (retrieval == TRUE) { p->auth_access = access; p->auth_freshness = gethrestime_sec(); } p->auth_state = NFS_AUTH_FRESH; mutex_exit(&p->auth_lock); } } list_destroy(&ren->ren_authlist); exi_rele(ren->ren_exi); kmem_free(ren, sizeof (refreshq_exi_node_t)); } refreshq_thread_state = REFRESHQ_THREAD_HALTED; cv_broadcast(&refreshq_cv); CALLB_CPR_EXIT(&cprinfo); zthread_exit(); } /* * Get the access information from the cache or callup to the mountd * to get and cache the access information in the kernel. */ static int nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor, cred_t *cr, uid_t *uid, gid_t *gid) { struct netbuf *taddrmask; struct netbuf addr; struct netbuf *claddr; struct auth_cache **head; struct auth_cache *p; int access; time_t refresh; refreshq_exi_node_t *ren; refreshq_auth_node_t *ran; uid_t tmpuid; gid_t tmpgid; ASSERT(cr != NULL); /* * Now check whether this client already * has an entry for this flavor in the cache * for this export. * Get the caller's address, mask off the * parts of the address that do not identify * the host (port number, etc), and then hash * it to find the chain of cache entries. */ claddr = svc_getrpccaller(req->rq_xprt); addr = *claddr; addr.buf = kmem_alloc(addr.len, KM_SLEEP); bcopy(claddr->buf, addr.buf, claddr->len); SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask); ASSERT(taddrmask != NULL); if (taddrmask) addrmask(&addr, taddrmask); rw_enter(&exi->exi_cache_lock, RW_READER); head = &exi->exi_cache[hash(&addr)]; for (p = *head; p; p = p->auth_next) { if (EQADDR(&addr, &p->auth_addr) && flavor == p->auth_flavor && crgetuid(cr) == p->auth_clnt_uid && crgetgid(cr) == p->auth_clnt_gid) break; } if (p != NULL) { nfsauth_cache_hit++; refresh = gethrestime_sec() - p->auth_freshness; DTRACE_PROBE2(nfsauth__debug__cache__hit, int, nfsauth_cache_hit, time_t, refresh); mutex_enter(&p->auth_lock); if ((refresh > NFSAUTH_CACHE_REFRESH) && p->auth_state == NFS_AUTH_FRESH) { p->auth_state = NFS_AUTH_STALE; mutex_exit(&p->auth_lock); ASSERT(p->auth_netid == NULL); p->auth_netid = strdup(svc_getnetid(req->rq_xprt)); nfsauth_cache_refresh++; DTRACE_PROBE3(nfsauth__debug__cache__stale, struct exportinfo *, exi, struct auth_cache *, p, int, nfsauth_cache_refresh); ran = kmem_alloc(sizeof (refreshq_auth_node_t), KM_SLEEP); ran->ran_auth = p; mutex_enter(&refreshq_lock); /* * We should not add a work queue * item if the thread is not * accepting them. */ if (refreshq_thread_state == REFRESHQ_THREAD_RUNNING) { /* * Is there an existing exi_list? */ for (ren = list_head(&refreshq_queue); ren != NULL; ren = list_next(&refreshq_queue, ren)) { if (ren->ren_exi == exi) { list_insert_tail( &ren->ren_authlist, ran); break; } } if (ren == NULL) { ren = kmem_alloc( sizeof (refreshq_exi_node_t), KM_SLEEP); exi_hold(exi); ren->ren_exi = exi; list_create(&ren->ren_authlist, sizeof (refreshq_auth_node_t), offsetof(refreshq_auth_node_t, ran_node)); list_insert_tail(&ren->ren_authlist, ran); list_insert_tail(&refreshq_queue, ren); } cv_broadcast(&refreshq_cv); } else { kmem_free(ran, sizeof (refreshq_auth_node_t)); } mutex_exit(&refreshq_lock); } else { mutex_exit(&p->auth_lock); } access = p->auth_access; if (uid != NULL) *uid = p->auth_srv_uid; if (gid != NULL) *gid = p->auth_srv_gid; p->auth_time = gethrestime_sec(); rw_exit(&exi->exi_cache_lock); kmem_free(addr.buf, addr.len); return (access); } rw_exit(&exi->exi_cache_lock); nfsauth_cache_miss++; if (!nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, &addr, &access, crgetuid(cr), crgetgid(cr), &tmpuid, &tmpgid)) { kmem_free(addr.buf, addr.len); return (access); } if (uid != NULL) *uid = tmpuid; if (gid != NULL) *gid = tmpgid; /* * Now cache the result on the cache chain * for this export (if there's enough memory) */ p = kmem_cache_alloc(exi_cache_handle, KM_NOSLEEP); if (p != NULL) { p->auth_addr = addr; p->auth_flavor = flavor; p->auth_clnt_uid = crgetuid(cr); p->auth_clnt_gid = crgetgid(cr); p->auth_srv_uid = tmpuid; p->auth_srv_gid = tmpgid; p->auth_access = access; p->auth_time = p->auth_freshness = gethrestime_sec(); p->auth_state = NFS_AUTH_FRESH; p->auth_netid = NULL; mutex_init(&p->auth_lock, NULL, MUTEX_DEFAULT, NULL); rw_enter(&exi->exi_cache_lock, RW_WRITER); p->auth_next = *head; *head = p; rw_exit(&exi->exi_cache_lock); } else { kmem_free(addr.buf, addr.len); } return (access); } /* * Check if the requesting client has access to the filesystem with * a given nfs flavor number which is an explicitly shared flavor. */ int nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req, int flavor, int perm, cred_t *cr) { int access; if (! (perm & M_4SEC_EXPORTED)) { return (NFSAUTH_DENIED); } /* * Optimize if there are no lists */ if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) { perm &= ~M_4SEC_EXPORTED; if (perm == M_RO) return (NFSAUTH_RO); if (perm == M_RW) return (NFSAUTH_RW); } access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL); return (access); } int nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr, uid_t *uid, gid_t *gid) { int access, mapaccess; struct secinfo *sp; int i, flavor, perm; int authnone_entry = -1; /* * Get the nfs flavor number from xprt. */ flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie; /* * First check the access restrictions on the filesystem. If * there are no lists associated with this flavor then there's no * need to make an expensive call to the nfsauth service or to * cache anything. */ sp = exi->exi_export.ex_secinfo; for (i = 0; i < exi->exi_export.ex_seccnt; i++) { if (flavor != sp[i].s_secinfo.sc_nfsnum) { if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) authnone_entry = i; continue; } break; } mapaccess = 0; if (i >= exi->exi_export.ex_seccnt) { /* * Flavor not found, but use AUTH_NONE if it exists */ if (authnone_entry == -1) return (NFSAUTH_DENIED); flavor = AUTH_NONE; mapaccess = NFSAUTH_MAPNONE; i = authnone_entry; } /* * By default root is mapped to anonymous user. * This might get overriden later in nfsauth_cache_get(). */ if (crgetuid(cr) == 0) { if (uid) *uid = exi->exi_export.ex_anon; if (gid) *gid = exi->exi_export.ex_anon; } else { if (uid) *uid = crgetuid(cr); if (gid) *gid = crgetgid(cr); } /* * If the flavor is in the ex_secinfo list, but not an explicitly * shared flavor by the user, it is a result of the nfsv4 server * namespace setup. We will grant an RO permission similar for * a pseudo node except that this node is a shared one. * * e.g. flavor in (flavor) indicates that it is not explictly * shared by the user: * * / (sys, krb5) * | * export #share -o sec=sys (krb5) * | * secure #share -o sec=krb5 * * In this case, when a krb5 request coming in to access * /export, RO permission is granted. */ if (!(sp[i].s_flags & M_4SEC_EXPORTED)) return (mapaccess | NFSAUTH_RO); /* * Optimize if there are no lists */ perm = sp[i].s_flags; if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) { perm &= ~M_4SEC_EXPORTED; if (perm == M_RO) return (mapaccess | NFSAUTH_RO); if (perm == M_RW) return (mapaccess | NFSAUTH_RW); } access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid); /* * Client's security flavor doesn't match with "ro" or * "rw" list. Try again using AUTH_NONE if present. */ if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) { /* * Have we already encountered AUTH_NONE ? */ if (authnone_entry != -1) { mapaccess = NFSAUTH_MAPNONE; access = nfsauth_cache_get(exi, req, AUTH_NONE, cr, NULL, NULL); } else { /* * Check for AUTH_NONE presence. */ for (; i < exi->exi_export.ex_seccnt; i++) { if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) { mapaccess = NFSAUTH_MAPNONE; access = nfsauth_cache_get(exi, req, AUTH_NONE, cr, NULL, NULL); break; } } } } if (access & NFSAUTH_DENIED) access = NFSAUTH_DENIED; return (access | mapaccess); } static void nfsauth_free_node(struct auth_cache *p) { if (p->auth_netid != NULL) kmem_free(p->auth_netid, strlen(p->auth_netid) + 1); kmem_free(p->auth_addr.buf, p->auth_addr.len); mutex_destroy(&p->auth_lock); kmem_cache_free(exi_cache_handle, (void *)p); } /* * Remove the dead entry from the refreshq_dead_entries * list. */ static void nfsauth_remove_dead_entry(struct auth_cache *dead) { struct auth_cache *p; struct auth_cache *prev; struct auth_cache *next; mutex_enter(&refreshq_lock); prev = NULL; for (p = refreshq_dead_entries; p != NULL; p = next) { next = p->auth_next; if (p == dead) { if (prev == NULL) refreshq_dead_entries = next; else prev->auth_next = next; nfsauth_free_node(dead); break; } prev = p; } mutex_exit(&refreshq_lock); } /* * Free the nfsauth cache for a given export */ void nfsauth_cache_free(struct exportinfo *exi) { int i; struct auth_cache *p, *next; for (i = 0; i < AUTH_TABLESIZE; i++) { for (p = exi->exi_cache[i]; p; p = next) { next = p->auth_next; /* * The only way we got here * was with an exi_rele, which * means that no auth cache entry * is being refreshed. */ nfsauth_free_node(p); } } } /* * Called by the kernel memory allocator when * memory is low. Free unused cache entries. * If that's not enough, the VM system will * call again for some more. */ /*ARGSUSED*/ void exi_cache_reclaim(void *cdrarg) { int i; struct exportinfo *exi; rw_enter(&exported_lock, RW_READER); for (i = 0; i < EXPTABLESIZE; i++) { for (exi = exptable[i]; exi; exi = exi->fid_hash.next) { exi_cache_trim(exi); } } nfsauth_cache_reclaim++; rw_exit(&exported_lock); } void exi_cache_trim(struct exportinfo *exi) { struct auth_cache *p; struct auth_cache *prev, *next; int i; time_t stale_time; stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM; rw_enter(&exi->exi_cache_lock, RW_WRITER); for (i = 0; i < AUTH_TABLESIZE; i++) { /* * Free entries that have not been * used for NFSAUTH_CACHE_TRIM seconds. */ prev = NULL; for (p = exi->exi_cache[i]; p; p = next) { next = p->auth_next; if (p->auth_time > stale_time) { prev = p; continue; } mutex_enter(&p->auth_lock); DTRACE_PROBE1(nfsauth__debug__trim__state, auth_state_t, p->auth_state); if (p->auth_state != NFS_AUTH_FRESH) { p->auth_state = NFS_AUTH_INVALID; mutex_exit(&p->auth_lock); mutex_enter(&refreshq_lock); p->auth_next = refreshq_dead_entries; refreshq_dead_entries = p; mutex_exit(&refreshq_lock); } else { mutex_exit(&p->auth_lock); nfsauth_free_node(p); } if (prev == NULL) exi->exi_cache[i] = next; else prev->auth_next = next; } } rw_exit(&exi->exi_cache_lock); }