/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. * All rights reserved. */ #include <sys/param.h> #include <sys/types.h> #include <sys/systm.h> #include <sys/cred.h> #include <sys/vfs.h> #include <sys/vfs_opreg.h> #include <sys/vnode.h> #include <sys/pathname.h> #include <sys/sysmacros.h> #include <sys/kmem.h> #include <sys/mkdev.h> #include <sys/mount.h> #include <sys/mntent.h> #include <sys/statvfs.h> #include <sys/errno.h> #include <sys/debug.h> #include <sys/cmn_err.h> #include <sys/utsname.h> #include <sys/bootconf.h> #include <sys/modctl.h> #include <sys/acl.h> #include <sys/flock.h> #include <sys/policy.h> #include <sys/zone.h> #include <sys/class.h> #include <sys/socket.h> #include <sys/netconfig.h> #include <sys/tsol/tnet.h> #include <rpc/types.h> #include <rpc/auth.h> #include <rpc/clnt.h> #include <nfs/nfs.h> #include <nfs/nfs_clnt.h> #include <nfs/rnode.h> #include <nfs/mount.h> #include <nfs/nfs_acl.h> #include <fs/fs_subr.h> /* * From rpcsec module (common/rpcsec). */ extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t); extern void sec_clnt_freeinfo(struct sec_data *); /* * The order and contents of this structure must be kept in sync with that of * rfsreqcnt_v3_tmpl in nfs_stats.c */ static char *rfsnames_v3[] = { "null", "getattr", "setattr", "lookup", "access", "readlink", "read", "write", "create", "mkdir", "symlink", "mknod", "remove", "rmdir", "rename", "link", "readdir", "readdirplus", "fsstat", "fsinfo", "pathconf", "commit" }; /* * This table maps from NFS protocol number into call type. * Zero means a "Lookup" type call * One means a "Read" type call * Two means a "Write" type call * This is used to select a default time-out. */ static uchar_t call_type_v3[] = { 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 0, 0, 0, 2 }; /* * Similar table, but to determine which timer to use * (only real reads and writes!) */ static uchar_t timer_type_v3[] = { 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 }; /* * This table maps from NFS protocol number into a call type * for the semisoft mount option. * Zero means do not repeat operation. * One means repeat. */ static uchar_t ss_call_type_v3[] = { 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1 }; /* * nfs3 vfs operations. */ static int nfs3_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *); static int nfs3_unmount(vfs_t *, int, cred_t *); static int nfs3_root(vfs_t *, vnode_t **); static int nfs3_statvfs(vfs_t *, struct statvfs64 *); static int nfs3_sync(vfs_t *, short, cred_t *); static int nfs3_vget(vfs_t *, vnode_t **, fid_t *); static int nfs3_mountroot(vfs_t *, whymountroot_t); static void nfs3_freevfs(vfs_t *); static int nfs3rootvp(vnode_t **, vfs_t *, struct servinfo *, int, cred_t *, zone_t *); /* * Initialize the vfs structure */ static int nfs3fstyp; vfsops_t *nfs3_vfsops; /* * Debug variable to check for rdma based * transport startup and cleanup. Controlled * through /etc/system. Off by default. */ extern int rdma_debug; int nfs3init(int fstyp, char *name) { static const fs_operation_def_t nfs3_vfsops_template[] = { VFSNAME_MOUNT, { .vfs_mount = nfs3_mount }, VFSNAME_UNMOUNT, { .vfs_unmount = nfs3_unmount }, VFSNAME_ROOT, { .vfs_root = nfs3_root }, VFSNAME_STATVFS, { .vfs_statvfs = nfs3_statvfs }, VFSNAME_SYNC, { .vfs_sync = nfs3_sync }, VFSNAME_VGET, { .vfs_vget = nfs3_vget }, VFSNAME_MOUNTROOT, { .vfs_mountroot = nfs3_mountroot }, VFSNAME_FREEVFS, { .vfs_freevfs = nfs3_freevfs }, NULL, NULL }; int error; error = vfs_setfsops(fstyp, nfs3_vfsops_template, &nfs3_vfsops); if (error != 0) { zcmn_err(GLOBAL_ZONEID, CE_WARN, "nfs3init: bad vfs ops template"); return (error); } error = vn_make_ops(name, nfs3_vnodeops_template, &nfs3_vnodeops); if (error != 0) { (void) vfs_freevfsops_by_type(fstyp); zcmn_err(GLOBAL_ZONEID, CE_WARN, "nfs3init: bad vnode ops template"); return (error); } nfs3fstyp = fstyp; return (0); } void nfs3fini(void) { } static void nfs3_free_args(struct nfs_args *nargs, nfs_fhandle *fh) { if (fh) kmem_free(fh, sizeof (*fh)); if (nargs->knconf) { if (nargs->knconf->knc_protofmly) kmem_free(nargs->knconf->knc_protofmly, KNC_STRSIZE); if (nargs->knconf->knc_proto) kmem_free(nargs->knconf->knc_proto, KNC_STRSIZE); kmem_free(nargs->knconf, sizeof (*nargs->knconf)); nargs->knconf = NULL; } if (nargs->fh) { kmem_free(nargs->fh, strlen(nargs->fh) + 1); nargs->fh = NULL; } if (nargs->hostname) { kmem_free(nargs->hostname, strlen(nargs->hostname) + 1); nargs->hostname = NULL; } if (nargs->addr) { if (nargs->addr->buf) { ASSERT(nargs->addr->len); kmem_free(nargs->addr->buf, nargs->addr->len); } kmem_free(nargs->addr, sizeof (struct netbuf)); nargs->addr = NULL; } if (nargs->syncaddr) { ASSERT(nargs->syncaddr->len); if (nargs->syncaddr->buf) { ASSERT(nargs->syncaddr->len); kmem_free(nargs->syncaddr->buf, nargs->syncaddr->len); } kmem_free(nargs->syncaddr, sizeof (struct netbuf)); nargs->syncaddr = NULL; } if (nargs->netname) { kmem_free(nargs->netname, strlen(nargs->netname) + 1); nargs->netname = NULL; } if (nargs->nfs_ext_u.nfs_extA.secdata) { sec_clnt_freeinfo(nargs->nfs_ext_u.nfs_extA.secdata); nargs->nfs_ext_u.nfs_extA.secdata = NULL; } } static int nfs3_copyin(char *data, int datalen, struct nfs_args *nargs, nfs_fhandle *fh) { int error; size_t nlen; /* length of netname */ size_t hlen; /* length of hostname */ char netname[MAXNETNAMELEN+1]; /* server's netname */ struct netbuf addr; /* server's address */ struct netbuf syncaddr; /* AUTH_DES time sync addr */ struct knetconfig *knconf; /* transport knetconfig structure */ struct sec_data *secdata = NULL; /* security data */ STRUCT_DECL(nfs_args, args); /* nfs mount arguments */ STRUCT_DECL(knetconfig, knconf_tmp); STRUCT_DECL(netbuf, addr_tmp); int flags; char *p, *pf; char *userbufptr; bzero(nargs, sizeof (*nargs)); STRUCT_INIT(args, get_udatamodel()); bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE)); if (copyin(data, STRUCT_BUF(args), MIN(datalen, STRUCT_SIZE(args)))) return (EFAULT); nargs->wsize = STRUCT_FGET(args, wsize); nargs->rsize = STRUCT_FGET(args, rsize); nargs->timeo = STRUCT_FGET(args, timeo); nargs->retrans = STRUCT_FGET(args, retrans); nargs->acregmin = STRUCT_FGET(args, acregmin); nargs->acregmax = STRUCT_FGET(args, acregmax); nargs->acdirmin = STRUCT_FGET(args, acdirmin); nargs->acdirmax = STRUCT_FGET(args, acdirmax); flags = STRUCT_FGET(args, flags); nargs->flags = flags; addr.buf = NULL; syncaddr.buf = NULL; /* * Allocate space for a knetconfig structure and * its strings and copy in from user-land. */ knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP); STRUCT_INIT(knconf_tmp, get_udatamodel()); if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp), STRUCT_SIZE(knconf_tmp))) { kmem_free(knconf, sizeof (*knconf)); return (EFAULT); } knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics); knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly); knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto); if (get_udatamodel() != DATAMODEL_LP64) { knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev)); } else { knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev); } pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL); if (error) { kmem_free(pf, KNC_STRSIZE); kmem_free(p, KNC_STRSIZE); kmem_free(knconf, sizeof (*knconf)); return (error); } error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL); if (error) { kmem_free(pf, KNC_STRSIZE); kmem_free(p, KNC_STRSIZE); kmem_free(knconf, sizeof (*knconf)); return (error); } knconf->knc_protofmly = pf; knconf->knc_proto = p; nargs->knconf = knconf; /* * Get server address */ STRUCT_INIT(addr_tmp, get_udatamodel()); if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp), STRUCT_SIZE(addr_tmp))) { error = EFAULT; goto errout; } nargs->addr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP); userbufptr = STRUCT_FGETP(addr_tmp, buf); addr.len = STRUCT_FGET(addr_tmp, len); addr.buf = kmem_alloc(addr.len, KM_SLEEP); addr.maxlen = addr.len; if (copyin(userbufptr, addr.buf, addr.len)) { kmem_free(addr.buf, addr.len); error = EFAULT; goto errout; } bcopy(&addr, nargs->addr, sizeof (struct netbuf)); /* * Get the root fhandle */ if (copyin(STRUCT_FGETP(args, fh), fh, sizeof (nfs_fhandle))) { error = EFAULT; goto errout; } /* * Get server's hostname */ if (flags & NFSMNT_HOSTNAME) { error = copyinstr(STRUCT_FGETP(args, hostname), netname, sizeof (netname), &hlen); if (error) goto errout; nargs->hostname = kmem_zalloc(hlen, KM_SLEEP); (void) strcpy(nargs->hostname, netname); } else { nargs->hostname = NULL; } /* * If there are syncaddr and netname data, load them in. This is * to support data needed for NFSV4 when AUTH_DH is the negotiated * flavor via SECINFO. (instead of using MOUNT protocol in V3). */ netname[0] = '\0'; if (flags & NFSMNT_SECURE) { if (STRUCT_FGETP(args, syncaddr) == NULL) { error = EINVAL; goto errout; } /* get syncaddr */ STRUCT_INIT(addr_tmp, get_udatamodel()); if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp), STRUCT_SIZE(addr_tmp))) { error = EINVAL; goto errout; } userbufptr = STRUCT_FGETP(addr_tmp, buf); syncaddr.len = STRUCT_FGET(addr_tmp, len); syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP); syncaddr.maxlen = syncaddr.len; if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) { kmem_free(syncaddr.buf, syncaddr.len); error = EFAULT; goto errout; } nargs->syncaddr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP); bcopy(&syncaddr, nargs->syncaddr, sizeof (struct netbuf)); ASSERT(STRUCT_FGETP(args, netname)); if (copyinstr(STRUCT_FGETP(args, netname), netname, sizeof (netname), &nlen)) { error = EFAULT; goto errout; } netname[nlen] = '\0'; nargs->netname = kmem_zalloc(nlen, KM_SLEEP); (void) strcpy(nargs->netname, netname); } /* * Get the extention data which has the security data structure. * This includes data for AUTH_SYS as well. */ if (flags & NFSMNT_NEWARGS) { nargs->nfs_args_ext = STRUCT_FGET(args, nfs_args_ext); if (nargs->nfs_args_ext == NFS_ARGS_EXTA || nargs->nfs_args_ext == NFS_ARGS_EXTB) { /* * Indicating the application is using the new * sec_data structure to pass in the security * data. */ if (STRUCT_FGETP(args, nfs_ext_u.nfs_extA.secdata) != NULL) { error = sec_clnt_loadinfo( (struct sec_data *)STRUCT_FGETP(args, nfs_ext_u.nfs_extA.secdata), &secdata, get_udatamodel()); } nargs->nfs_ext_u.nfs_extA.secdata = secdata; } } if (error) goto errout; /* * Failover support: * * We may have a linked list of nfs_args structures, * which means the user is looking for failover. If * the mount is either not "read-only" or "soft", * we want to bail out with EINVAL. */ if (nargs->nfs_args_ext == NFS_ARGS_EXTB) nargs->nfs_ext_u.nfs_extB.next = STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next); errout: if (error) nfs3_free_args(nargs, fh); return (error); } /* * nfs mount vfsop * Set up mount info record and attach it to vfs struct. */ static int nfs3_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) { struct nfs_args *args = NULL; nfs_fhandle *fhandle = NULL; char *data = uap->dataptr; int error; vnode_t *rtvp; /* the server's root */ mntinfo_t *mi; /* mount info, pointed at by vfs */ size_t nlen; /* length of netname */ struct knetconfig *knconf; /* transport knetconfig structure */ struct knetconfig *rdma_knconf; /* rdma transport structure */ rnode_t *rp; struct servinfo *svp; /* nfs server info */ struct servinfo *svp_tail = NULL; /* previous nfs server info */ struct servinfo *svp_head; /* first nfs server info */ struct servinfo *svp_2ndlast; /* 2nd last in server info list */ struct sec_data *secdata; /* security data */ int flags, addr_type; zone_t *zone = nfs_zone(); zone_t *mntzone = NULL; if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) return (EPERM); if (mvp->v_type != VDIR) return (ENOTDIR); /* * get arguments * * nfs_args is now versioned and is extensible, so * uap->datalen might be different from sizeof (args) * in a compatible situation. */ more: if (!(uap->flags & MS_SYSSPACE)) { if (args == NULL) args = kmem_alloc(sizeof (struct nfs_args), KM_SLEEP); else { nfs3_free_args(args, fhandle); fhandle = NULL; } if (fhandle == NULL) fhandle = kmem_alloc(sizeof (nfs_fhandle), KM_SLEEP); error = nfs3_copyin(data, uap->datalen, args, fhandle); if (error) { if (args) kmem_free(args, sizeof (*args)); return (error); } } else { args = (struct nfs_args *)data; fhandle = (nfs_fhandle *)args->fh; } flags = args->flags; if (uap->flags & MS_REMOUNT) { size_t n; char name[FSTYPSZ]; if (uap->flags & MS_SYSSPACE) { error = copystr(uap->fstype, name, FSTYPSZ, &n); } else { nfs3_free_args(args, fhandle); kmem_free(args, sizeof (*args)); error = copyinstr(uap->fstype, name, FSTYPSZ, &n); } if (error) { if (error == ENAMETOOLONG) return (EINVAL); return (error); } /* * This check is to ensure that the request is a * genuine nfs remount request. */ if (strncmp(name, "nfs", 3) != 0) return (EINVAL); /* * If the request changes the locking type, disallow the * remount, * because it's questionable whether we can transfer the * locking state correctly. */ if ((mi = VFTOMI(vfsp)) != NULL) { uint_t new_mi_llock; uint_t old_mi_llock; new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0; old_mi_llock = (mi->mi_flags & MI_LLOCK) ? 1 : 0; if (old_mi_llock != new_mi_llock) return (EBUSY); } return (0); } mutex_enter(&mvp->v_lock); if (!(uap->flags & MS_OVERLAY) && (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { mutex_exit(&mvp->v_lock); if (!(uap->flags & MS_SYSSPACE)) { nfs3_free_args(args, fhandle); kmem_free(args, sizeof (*args)); } return (EBUSY); } mutex_exit(&mvp->v_lock); /* make sure things are zeroed for errout: */ rtvp = NULL; mi = NULL; secdata = NULL; /* * A valid knetconfig structure is required. */ if (!(flags & NFSMNT_KNCONF)) { if (!(uap->flags & MS_SYSSPACE)) { nfs3_free_args(args, fhandle); kmem_free(args, sizeof (*args)); } return (EINVAL); } if ((strlen(args->knconf->knc_protofmly) >= KNC_STRSIZE) || (strlen(args->knconf->knc_proto) >= KNC_STRSIZE)) { if (!(uap->flags & MS_SYSSPACE)) { nfs3_free_args(args, fhandle); kmem_free(args, sizeof (*args)); } return (EINVAL); } /* * Allocate a servinfo struct. */ svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); mutex_init(&svp->sv_lock, NULL, MUTEX_DEFAULT, NULL); if (svp_tail) { svp_2ndlast = svp_tail; svp_tail->sv_next = svp; } else { svp_head = svp; svp_2ndlast = svp; } svp_tail = svp; svp->sv_knconf = args->knconf; args->knconf = NULL; if (args->addr == NULL || args->addr->buf == NULL) { error = EINVAL; goto errout; } svp->sv_addr.maxlen = args->addr->maxlen; svp->sv_addr.len = args->addr->len; svp->sv_addr.buf = args->addr->buf; args->addr->buf = NULL; /* * Check the root fhandle length */ ASSERT(fhandle); if (fhandle->fh_len > NFS3_FHSIZE || fhandle->fh_len == 0) { error = EINVAL; #ifdef DEBUG zcmn_err(getzoneid(), CE_WARN, "nfs3_mount: got an invalid fhandle. fh_len = %d", fhandle->fh_len); fhandle->fh_len = NFS_FHANDLE_LEN; nfs_printfhandle(fhandle); #endif goto errout; } bcopy(&fhandle->fh_buf, &svp->sv_fhandle.fh_buf, fhandle->fh_len); svp->sv_fhandle.fh_len = fhandle->fh_len; /* * Get server's hostname */ if (flags & NFSMNT_HOSTNAME) { if (args->hostname == NULL) { error = EINVAL; goto errout; } svp->sv_hostnamelen = strlen(args->hostname) + 1; svp->sv_hostname = args->hostname; args->hostname = NULL; } else { char *p = "unknown-host"; svp->sv_hostnamelen = strlen(p) + 1; svp->sv_hostname = kmem_zalloc(svp->sv_hostnamelen, KM_SLEEP); (void) strcpy(svp->sv_hostname, p); } /* * RDMA MOUNT SUPPORT FOR NFS v3: * Establish, is it possible to use RDMA, if so overload the * knconf with rdma specific knconf and free the orignal. */ if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) { /* * Determine the addr type for RDMA, IPv4 or v6. */ if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0) addr_type = AF_INET; else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0) addr_type = AF_INET6; if (rdma_reachable(addr_type, &svp->sv_addr, &rdma_knconf) == 0) { /* * If successful, hijack the orignal knconf and * replace with a new one, depending on the flags. */ svp->sv_origknconf = svp->sv_knconf; svp->sv_knconf = rdma_knconf; knconf = rdma_knconf; } else { if (flags & NFSMNT_TRYRDMA) { #ifdef DEBUG if (rdma_debug) zcmn_err(getzoneid(), CE_WARN, "no RDMA onboard, revert\n"); #endif } if (flags & NFSMNT_DORDMA) { /* * If proto=rdma is specified and no RDMA * path to this server is avialable then * ditch this server. * This is not included in the mountable * server list or the replica list. * Check if more servers are specified; * Failover case, otherwise bail out of mount. */ if (args->nfs_args_ext == NFS_ARGS_EXTB && args->nfs_ext_u.nfs_extB.next != NULL) { data = (char *) args->nfs_ext_u.nfs_extB.next; if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) { if (svp_head->sv_next == NULL) { svp_tail = NULL; svp_2ndlast = NULL; sv_free(svp_head); goto more; } else { svp_tail = svp_2ndlast; svp_2ndlast->sv_next = NULL; sv_free(svp); goto more; } } } else { /* * This is the last server specified * in the nfs_args list passed down * and its not rdma capable. */ if (svp_head->sv_next == NULL) { /* * Is this the only one */ error = EINVAL; #ifdef DEBUG if (rdma_debug) zcmn_err(getzoneid(), CE_WARN, "No RDMA srv"); #endif goto errout; } else { /* * There is list, since some * servers specified before * this passed all requirements */ svp_tail = svp_2ndlast; svp_2ndlast->sv_next = NULL; sv_free(svp); goto proceed; } } } } } /* * Get the extention data which has the new security data structure. */ if (flags & NFSMNT_NEWARGS) { switch (args->nfs_args_ext) { case NFS_ARGS_EXTA: case NFS_ARGS_EXTB: /* * Indicating the application is using the new * sec_data structure to pass in the security * data. */ secdata = args->nfs_ext_u.nfs_extA.secdata; if (args->nfs_ext_u.nfs_extA.secdata == NULL) { error = EINVAL; } else { /* * Need to validate the flavor here if * sysspace, userspace was already * validate from the nfs_copyin function. */ switch (secdata->rpcflavor) { case AUTH_NONE: case AUTH_UNIX: case AUTH_LOOPBACK: case AUTH_DES: case RPCSEC_GSS: args->nfs_ext_u.nfs_extA.secdata = NULL; break; default: error = EINVAL; goto errout; } } break; default: error = EINVAL; break; } } else if (flags & NFSMNT_SECURE) { /* * Keep this for backward compatibility to support * NFSMNT_SECURE/NFSMNT_RPCTIMESYNC flags. */ if (args->syncaddr == NULL || args->syncaddr->buf == NULL) { error = EINVAL; goto errout; } /* * Move security related data to the sec_data structure. */ { dh_k4_clntdata_t *data; char *pf, *p; secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); if (flags & NFSMNT_RPCTIMESYNC) secdata->flags |= AUTH_F_RPCTIMESYNC; data = kmem_alloc(sizeof (*data), KM_SLEEP); bcopy(args->syncaddr, &data->syncaddr, sizeof (*args->syncaddr)); /* * duplicate the knconf information for the * new opaque data. */ data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP); *data->knconf = *knconf; pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE); bcopy(knconf->knc_proto, pf, KNC_STRSIZE); data->knconf->knc_protofmly = pf; data->knconf->knc_proto = p; nlen = strlen(args->hostname) + 1; /* move server netname to the sec_data structure */ if (nlen != 0) { data->netname = kmem_alloc(nlen, KM_SLEEP); bcopy(args->hostname, data->netname, nlen); data->netnamelen = nlen; } secdata->secmod = secdata->rpcflavor = AUTH_DES; secdata->data = (caddr_t)data; } } else { secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); secdata->secmod = secdata->rpcflavor = AUTH_UNIX; secdata->data = NULL; } svp->sv_secdata = secdata; if (error) goto errout; /* * See bug 1180236. * If mount secure failed, we will fall back to AUTH_NONE * and try again. nfs3rootvp() will turn this back off. * * The NFS Version 3 mount uses the FSINFO and GETATTR * procedures. The server should not care if these procedures * have the proper security flavor, so if mount retries using * AUTH_NONE that does not require a credential setup for root * then the automounter would work without requiring root to be * keylogged into AUTH_DES. */ if (secdata->rpcflavor != AUTH_UNIX && secdata->rpcflavor != AUTH_LOOPBACK) secdata->flags |= AUTH_F_TRYNONE; /* * Failover support: * * We may have a linked list of nfs_args structures, * which means the user is looking for failover. If * the mount is either not "read-only" or "soft", * we want to bail out with EINVAL. */ if (args->nfs_args_ext == NFS_ARGS_EXTB && args->nfs_ext_u.nfs_extB.next != NULL) { if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) { data = (char *)args->nfs_ext_u.nfs_extB.next; goto more; } error = EINVAL; goto errout; } /* * Determine the zone we're being mounted into. */ zone_hold(mntzone = zone); /* start with this assumption */ if (getzoneid() == GLOBAL_ZONEID) { zone_rele(mntzone); mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); ASSERT(mntzone != NULL); if (mntzone != zone) { error = EBUSY; goto errout; } } if (is_system_labeled()) { error = nfs_mount_label_policy(vfsp, &svp->sv_addr, svp->sv_knconf, cr); if (error > 0) goto errout; if (error == -1) { /* change mount to read-only to prevent write-down */ vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); } } /* * Stop the mount from going any further if the zone is going away. */ if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) { error = EBUSY; goto errout; } /* * Get root vnode. */ proceed: error = nfs3rootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone); if (error) goto errout; /* * Set option fields in the mount info record */ mi = VTOMI(rtvp); if (svp_head->sv_next) mi->mi_flags |= MI_LLOCK; error = nfs_setopts(rtvp, DATAMODEL_NATIVE, args); errout: if (rtvp != NULL) { if (error) { rp = VTOR(rtvp); if (rp->r_flags & RHASHED) rp_rmhash(rp); } VN_RELE(rtvp); } if (error) { sv_free(svp_head); if (mi != NULL) { nfs_async_stop(vfsp); nfs_async_manager_stop(vfsp); if (mi->mi_io_kstats) { kstat_delete(mi->mi_io_kstats); mi->mi_io_kstats = NULL; } if (mi->mi_ro_kstats) { kstat_delete(mi->mi_ro_kstats); mi->mi_ro_kstats = NULL; } nfs_free_mi(mi); } } if (!(uap->flags & MS_SYSSPACE)) { nfs3_free_args(args, fhandle); kmem_free(args, sizeof (*args)); } if (mntzone != NULL) zone_rele(mntzone); return (error); } static int nfs3_dynamic = 0; /* global variable to enable dynamic retrans. */ static ushort_t nfs3_max_threads = 8; /* max number of active async threads */ uint_t nfs3_bsize = 32 * 1024; /* client `block' size */ static uint_t nfs3_async_clusters = 1; /* # of reqs from each async queue */ static uint_t nfs3_cots_timeo = NFS_COTS_TIMEO; static int nfs3rootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo *svp, int flags, cred_t *cr, zone_t *zone) { vnode_t *rtvp; mntinfo_t *mi; dev_t nfs_dev; struct vattr va; struct FSINFO3args args; struct FSINFO3res res; int error; int douprintf; rnode_t *rp; int i; uint_t max_transfer_size; struct nfs_stats *nfsstatsp; cred_t *lcr = NULL, *tcr = cr; nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone()); ASSERT(nfsstatsp != NULL); ASSERT(nfs_zone() == zone); /* * Create a mount record and link it to the vfs struct. */ mi = kmem_zalloc(sizeof (*mi), KM_SLEEP); mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&mi->mi_remap_lock, NULL, MUTEX_DEFAULT, NULL); mi->mi_flags = MI_ACL | MI_EXTATTR; if (!(flags & NFSMNT_SOFT)) mi->mi_flags |= MI_HARD; if ((flags & NFSMNT_SEMISOFT)) mi->mi_flags |= MI_SEMISOFT; if ((flags & NFSMNT_NOPRINT)) mi->mi_flags |= MI_NOPRINT; if (flags & NFSMNT_INT) mi->mi_flags |= MI_INT; mi->mi_retrans = NFS_RETRIES; if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD || svp->sv_knconf->knc_semantics == NC_TPI_COTS) mi->mi_timeo = nfs3_cots_timeo; else mi->mi_timeo = NFS_TIMEO; mi->mi_prog = NFS_PROGRAM; mi->mi_vers = NFS_V3; mi->mi_rfsnames = rfsnames_v3; mi->mi_reqs = nfsstatsp->nfs_stats_v3.rfsreqcnt_ptr; mi->mi_call_type = call_type_v3; mi->mi_ss_call_type = ss_call_type_v3; mi->mi_timer_type = timer_type_v3; mi->mi_aclnames = aclnames_v3; mi->mi_aclreqs = nfsstatsp->nfs_stats_v3.aclreqcnt_ptr; mi->mi_acl_call_type = acl_call_type_v3; mi->mi_acl_ss_call_type = acl_ss_call_type_v3; mi->mi_acl_timer_type = acl_timer_type_v3; cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL); mi->mi_servers = svp; mi->mi_curr_serv = svp; mi->mi_acregmin = SEC2HR(ACREGMIN); mi->mi_acregmax = SEC2HR(ACREGMAX); mi->mi_acdirmin = SEC2HR(ACDIRMIN); mi->mi_acdirmax = SEC2HR(ACDIRMAX); if (nfs3_dynamic) mi->mi_flags |= MI_DYNAMIC; if (flags & NFSMNT_DIRECTIO) mi->mi_flags |= MI_DIRECTIO; /* * Make a vfs struct for nfs. We do this here instead of below * because rtvp needs a vfs before we can do a getattr on it. * * Assign a unique device id to the mount */ mutex_enter(&nfs_minor_lock); do { nfs_minor = (nfs_minor + 1) & MAXMIN32; nfs_dev = makedevice(nfs_major, nfs_minor); } while (vfs_devismounted(nfs_dev)); mutex_exit(&nfs_minor_lock); vfsp->vfs_dev = nfs_dev; vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfs3fstyp); vfsp->vfs_data = (caddr_t)mi; vfsp->vfs_fstype = nfsfstyp; /* * Verify that nfs3_bsize tuneable is set to an * acceptable value. It be a multiple of PAGESIZE or * file corruption can occur. */ if (nfs3_bsize & PAGEOFFSET) nfs3_bsize &= PAGEMASK; if (nfs3_bsize < PAGESIZE) nfs3_bsize = PAGESIZE; vfsp->vfs_bsize = nfs3_bsize; /* * Initialize fields used to support async putpage operations. */ for (i = 0; i < NFS_ASYNC_TYPES; i++) mi->mi_async_clusters[i] = nfs3_async_clusters; mi->mi_async_init_clusters = nfs3_async_clusters; mi->mi_async_curr[NFS_ASYNC_QUEUE] = mi->mi_async_curr[NFS_ASYNC_PGOPS_QUEUE] = &mi->mi_async_reqs[0]; mi->mi_max_threads = nfs3_max_threads; mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL); cv_init(&mi->mi_async_work_cv[NFS_ASYNC_QUEUE], NULL, CV_DEFAULT, NULL); cv_init(&mi->mi_async_work_cv[NFS_ASYNC_PGOPS_QUEUE], NULL, CV_DEFAULT, NULL); cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL); mi->mi_vfsp = vfsp; zone_hold(mi->mi_zone = zone); nfs_mi_zonelist_add(mi); /* * Make the root vnode, use it to get attributes, * then remake it with the attributes. */ rtvp = makenfs3node((nfs_fh3 *)&svp->sv_fhandle, NULL, vfsp, gethrtime(), cr, NULL, NULL); /* * Make the FSINFO calls, primarily at this point to * determine the transfer size. For client failover, * we'll want this to be the minimum bid from any * server, so that we don't overrun stated limits. * * While we're looping, we'll turn off AUTH_F_TRYNONE, * which is only for the mount operation. */ mi->mi_tsize = nfs3_tsize(svp->sv_knconf); mi->mi_stsize = mi->mi_tsize; mi->mi_curread = nfs3_bsize; mi->mi_curwrite = mi->mi_curread; /* * If the uid is set then set the creds for secure mounts * by proxy processes such as automountd. */ if (svp->sv_secdata->uid != 0 && svp->sv_secdata->rpcflavor == RPCSEC_GSS) { lcr = crdup(cr); (void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr)); tcr = lcr; } for (svp = mi->mi_servers; svp != NULL; svp = svp->sv_next) { douprintf = 1; mi->mi_curr_serv = svp; max_transfer_size = nfs3_tsize(svp->sv_knconf); mi->mi_tsize = MIN(max_transfer_size, mi->mi_tsize); mi->mi_stsize = MIN(max_transfer_size, mi->mi_stsize); mi->mi_curread = MIN(max_transfer_size, mi->mi_curread); mi->mi_curwrite = MIN(max_transfer_size, mi->mi_curwrite); args.fsroot = *(nfs_fh3 *)&svp->sv_fhandle; error = rfs3call(mi, NFSPROC3_FSINFO, xdr_nfs_fh3, (caddr_t)&args, xdr_FSINFO3res, (caddr_t)&res, tcr, &douprintf, &res.status, 0, NULL); if (error) goto bad; error = geterrno3(res.status); if (error) goto bad; /* get type of root node */ if (res.resok.obj_attributes.attributes) { if (res.resok.obj_attributes.attr.type < NF3REG || res.resok.obj_attributes.attr.type > NF3FIFO) { #ifdef DEBUG zcmn_err(getzoneid(), CE_WARN, "NFS3 server %s returned a bad file type for root", svp->sv_hostname); #else zcmn_err(getzoneid(), CE_WARN, "NFS server %s returned a bad file type for root", svp->sv_hostname); #endif error = EINVAL; goto bad; } else { if (rtvp->v_type != VNON && rtvp->v_type != nf3_to_vt[res.resok.obj_attributes.attr. type]) { #ifdef DEBUG zcmn_err(getzoneid(), CE_WARN, "NFS3 server %s returned a different file type for root", svp->sv_hostname); #else zcmn_err(getzoneid(), CE_WARN, "NFS server %s returned a different file type for root", svp->sv_hostname); #endif error = EINVAL; goto bad; } rtvp->v_type = nf3_to_vt[res.resok.obj_attributes.attr. type]; } } if (res.resok.rtmax != 0) { mi->mi_tsize = MIN(res.resok.rtmax, mi->mi_tsize); if (res.resok.rtpref != 0) { mi->mi_curread = MIN(res.resok.rtpref, mi->mi_curread); } else { mi->mi_curread = MIN(res.resok.rtmax, mi->mi_curread); } } else if (res.resok.rtpref != 0) { mi->mi_tsize = MIN(res.resok.rtpref, mi->mi_tsize); mi->mi_curread = MIN(res.resok.rtpref, mi->mi_curread); } else { #ifdef DEBUG zcmn_err(getzoneid(), CE_WARN, "NFS3 server %s returned 0 for read transfer sizes", svp->sv_hostname); #else zcmn_err(getzoneid(), CE_WARN, "NFS server %s returned 0 for read transfer sizes", svp->sv_hostname); #endif error = EIO; goto bad; } if (res.resok.wtmax != 0) { mi->mi_stsize = MIN(res.resok.wtmax, mi->mi_stsize); if (res.resok.wtpref != 0) { mi->mi_curwrite = MIN(res.resok.wtpref, mi->mi_curwrite); } else { mi->mi_curwrite = MIN(res.resok.wtmax, mi->mi_curwrite); } } else if (res.resok.wtpref != 0) { mi->mi_stsize = MIN(res.resok.wtpref, mi->mi_stsize); mi->mi_curwrite = MIN(res.resok.wtpref, mi->mi_curwrite); } else { #ifdef DEBUG zcmn_err(getzoneid(), CE_WARN, "NFS3 server %s returned 0 for write transfer sizes", svp->sv_hostname); #else zcmn_err(getzoneid(), CE_WARN, "NFS server %s returned 0 for write transfer sizes", svp->sv_hostname); #endif error = EIO; goto bad; } /* * These signal the ability of the server to create * hard links and symbolic links, so they really * aren't relevant if there is more than one server. * We'll set them here, though it probably looks odd. */ if (res.resok.properties & FSF3_LINK) mi->mi_flags |= MI_LINK; if (res.resok.properties & FSF3_SYMLINK) mi->mi_flags |= MI_SYMLINK; /* Pick up smallest non-zero maxfilesize value */ if (res.resok.maxfilesize) { if (mi->mi_maxfilesize) { mi->mi_maxfilesize = MIN(mi->mi_maxfilesize, res.resok.maxfilesize); } else mi->mi_maxfilesize = res.resok.maxfilesize; } /* * AUTH_F_TRYNONE is only for the mount operation, * so turn it back off. */ svp->sv_secdata->flags &= ~AUTH_F_TRYNONE; } mi->mi_curr_serv = mi->mi_servers; /* * Start the thread responsible for handling async worker threads. */ VFS_HOLD(vfsp); /* add reference for thread */ mi->mi_manager_thread = zthread_create(NULL, 0, nfs_async_manager, vfsp, 0, minclsyspri); ASSERT(mi->mi_manager_thread != NULL); /* * Initialize kstats */ nfs_mnt_kstat_init(vfsp); /* If we didn't get a type, get one now */ if (rtvp->v_type == VNON) { va.va_mask = AT_ALL; error = nfs3getattr(rtvp, &va, tcr); if (error) goto bad; rtvp->v_type = va.va_type; } mi->mi_type = rtvp->v_type; *rtvpp = rtvp; if (lcr != NULL) crfree(lcr); return (0); bad: /* * An error occurred somewhere, need to clean up... * We need to release our reference to the root vnode and * destroy the mntinfo struct that we just created. */ if (lcr != NULL) crfree(lcr); rp = VTOR(rtvp); if (rp->r_flags & RHASHED) rp_rmhash(rp); VN_RELE(rtvp); nfs_async_stop(vfsp); nfs_async_manager_stop(vfsp); if (mi->mi_io_kstats) { kstat_delete(mi->mi_io_kstats); mi->mi_io_kstats = NULL; } if (mi->mi_ro_kstats) { kstat_delete(mi->mi_ro_kstats); mi->mi_ro_kstats = NULL; } nfs_free_mi(mi); *rtvpp = NULL; return (error); } /* * vfs operations */ static int nfs3_unmount(vfs_t *vfsp, int flag, cred_t *cr) { mntinfo_t *mi; ushort_t omax; if (secpolicy_fs_unmount(cr, vfsp) != 0) return (EPERM); mi = VFTOMI(vfsp); if (flag & MS_FORCE) { vfsp->vfs_flag |= VFS_UNMOUNTED; /* * We are about to stop the async manager. * Let every one know not to schedule any * more async requests */ mutex_enter(&mi->mi_async_lock); mi->mi_max_threads = 0; NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv); mutex_exit(&mi->mi_async_lock); /* * We need to stop the manager thread explicitly; the worker * threads can time out and exit on their own. */ nfs_async_manager_stop(vfsp); destroy_rtable(vfsp, cr); if (mi->mi_io_kstats) { kstat_delete(mi->mi_io_kstats); mi->mi_io_kstats = NULL; } if (mi->mi_ro_kstats) { kstat_delete(mi->mi_ro_kstats); mi->mi_ro_kstats = NULL; } return (0); } /* * Wait until all asynchronous putpage operations on * this file system are complete before flushing rnodes * from the cache. */ omax = mi->mi_max_threads; if (nfs_async_stop_sig(vfsp)) { return (EINTR); } rflush(vfsp, cr); /* * If there are any active vnodes on this file system, * then the file system is busy and can't be umounted. */ if (check_rtable(vfsp)) { mutex_enter(&mi->mi_async_lock); mi->mi_max_threads = omax; mutex_exit(&mi->mi_async_lock); return (EBUSY); } /* * The unmount can't fail from now on; stop the worker thread manager. */ nfs_async_manager_stop(vfsp); /* * Destroy all rnodes belonging to this file system from the * rnode hash queues and purge any resources allocated to * them. */ destroy_rtable(vfsp, cr); if (mi->mi_io_kstats) { kstat_delete(mi->mi_io_kstats); mi->mi_io_kstats = NULL; } if (mi->mi_ro_kstats) { kstat_delete(mi->mi_ro_kstats); mi->mi_ro_kstats = NULL; } return (0); } /* * find root of nfs */ static int nfs3_root(vfs_t *vfsp, vnode_t **vpp) { mntinfo_t *mi; vnode_t *vp; servinfo_t *svp; rnode_t *rp; int error = 0; mi = VFTOMI(vfsp); if (nfs_zone() != mi->mi_zone) return (EPERM); svp = mi->mi_curr_serv; if (svp && (svp->sv_flags & SV_ROOT_STALE)) { mutex_enter(&svp->sv_lock); svp->sv_flags &= ~SV_ROOT_STALE; mutex_exit(&svp->sv_lock); error = ENOENT; } vp = makenfs3node((nfs_fh3 *)&mi->mi_curr_serv->sv_fhandle, NULL, vfsp, gethrtime(), CRED(), NULL, NULL); /* * if the SV_ROOT_STALE flag was reset above, reset the * RSTALE flag if needed and return an error */ if (error == ENOENT) { rp = VTOR(vp); if (svp && rp->r_flags & RSTALE) { mutex_enter(&rp->r_statelock); rp->r_flags &= ~RSTALE; mutex_exit(&rp->r_statelock); } VN_RELE(vp); return (error); } ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type); vp->v_type = mi->mi_type; *vpp = vp; return (0); } /* * Get file system statistics. */ static int nfs3_statvfs(vfs_t *vfsp, struct statvfs64 *sbp) { int error; struct mntinfo *mi; struct FSSTAT3args args; struct FSSTAT3res res; int douprintf; failinfo_t fi; vnode_t *vp; cred_t *cr; hrtime_t t; mi = VFTOMI(vfsp); if (nfs_zone() != mi->mi_zone) return (EPERM); error = nfs3_root(vfsp, &vp); if (error) return (error); cr = CRED(); args.fsroot = *VTOFH3(vp); fi.vp = vp; fi.fhp = (caddr_t)&args.fsroot; fi.copyproc = nfs3copyfh; fi.lookupproc = nfs3lookup; fi.xattrdirproc = acl_getxattrdir3; douprintf = 1; t = gethrtime(); error = rfs3call(mi, NFSPROC3_FSSTAT, xdr_nfs_fh3, (caddr_t)&args, xdr_FSSTAT3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, &fi); if (error) { VN_RELE(vp); return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); sbp->f_bsize = MAXBSIZE; sbp->f_frsize = DEV_BSIZE; /* * Allow -1 fields to pass through unconverted. These * indicate "don't know" fields. */ if (res.resok.tbytes == (size3)-1) sbp->f_blocks = (fsblkcnt64_t)res.resok.tbytes; else { sbp->f_blocks = (fsblkcnt64_t) (res.resok.tbytes / DEV_BSIZE); } if (res.resok.fbytes == (size3)-1) sbp->f_bfree = (fsblkcnt64_t)res.resok.fbytes; else { sbp->f_bfree = (fsblkcnt64_t) (res.resok.fbytes / DEV_BSIZE); } if (res.resok.abytes == (size3)-1) sbp->f_bavail = (fsblkcnt64_t)res.resok.abytes; else { sbp->f_bavail = (fsblkcnt64_t) (res.resok.abytes / DEV_BSIZE); } sbp->f_files = (fsfilcnt64_t)res.resok.tfiles; sbp->f_ffree = (fsfilcnt64_t)res.resok.ffiles; sbp->f_favail = (fsfilcnt64_t)res.resok.afiles; sbp->f_fsid = (unsigned long)vfsp->vfs_fsid.val[0]; (void) strncpy(sbp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ); sbp->f_flag = vf_to_stf(vfsp->vfs_flag); sbp->f_namemax = (ulong_t)-1; } else { nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); PURGE_STALE_FH(error, vp, cr); } VN_RELE(vp); return (error); } static kmutex_t nfs3_syncbusy; /* * Flush dirty nfs files for file system vfsp. * If vfsp == NULL, all nfs files are flushed. */ /* ARGSUSED */ static int nfs3_sync(vfs_t *vfsp, short flag, cred_t *cr) { /* * Cross-zone calls are OK here, since this translates to a * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone. */ if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs3_syncbusy) != 0) { rflush(vfsp, cr); mutex_exit(&nfs3_syncbusy); } return (0); } /* ARGSUSED */ static int nfs3_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) { int error; nfs_fh3 fh; vnode_t *vp; struct vattr va; if (fidp->fid_len > NFS3_FHSIZE) { *vpp = NULL; return (ESTALE); } if (nfs_zone() != VFTOMI(vfsp)->mi_zone) return (EPERM); fh.fh3_length = fidp->fid_len; bcopy(fidp->fid_data, fh.fh3_u.data, fh.fh3_length); vp = makenfs3node(&fh, NULL, vfsp, gethrtime(), CRED(), NULL, NULL); if (VTOR(vp)->r_flags & RSTALE) { VN_RELE(vp); *vpp = NULL; return (ENOENT); } if (vp->v_type == VNON) { va.va_mask = AT_ALL; error = nfs3getattr(vp, &va, CRED()); if (error) { VN_RELE(vp); *vpp = NULL; return (error); } vp->v_type = va.va_type; } *vpp = vp; return (0); } /* ARGSUSED */ static int nfs3_mountroot(vfs_t *vfsp, whymountroot_t why) { vnode_t *rtvp; char root_hostname[SYS_NMLN+1]; struct servinfo *svp; int error; int vfsflags; size_t size; char *root_path; struct pathname pn; char *name; cred_t *cr; struct nfs_args args; /* nfs mount arguments */ static char token[10]; bzero(&args, sizeof (args)); /* do this BEFORE getfile which causes xid stamps to be initialized */ clkset(-1L); /* hack for now - until we get time svc? */ if (why == ROOT_REMOUNT) { /* * Shouldn't happen. */ panic("nfs3_mountroot: why == ROOT_REMOUNT"); } if (why == ROOT_UNMOUNT) { /* * Nothing to do for NFS. */ return (0); } /* * why == ROOT_INIT */ name = token; *name = 0; getfsname("root", name, sizeof (token)); pn_alloc(&pn); root_path = pn.pn_path; svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP); svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP); svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP); /* * Get server address * Get the root fhandle * Get server's transport * Get server's hostname * Get options */ args.addr = &svp->sv_addr; args.fh = (char *)&svp->sv_fhandle; args.knconf = svp->sv_knconf; args.hostname = root_hostname; vfsflags = 0; if (error = mount_root(*name ? name : "root", root_path, NFS_V3, &args, &vfsflags)) { if (error == EPROTONOSUPPORT) nfs_cmn_err(error, CE_WARN, "nfs3_mountroot: " "mount_root failed: server doesn't support NFS V3"); else nfs_cmn_err(error, CE_WARN, "nfs3_mountroot: mount_root failed: %m"); sv_free(svp); pn_free(&pn); return (error); } svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1); svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP); (void) strcpy(svp->sv_hostname, root_hostname); /* * Force root partition to always be mounted with AUTH_UNIX for now */ svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP); svp->sv_secdata->secmod = AUTH_UNIX; svp->sv_secdata->rpcflavor = AUTH_UNIX; svp->sv_secdata->data = NULL; cr = crgetcred(); rtvp = NULL; error = nfs3rootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone); crfree(cr); if (error) { pn_free(&pn); sv_free(svp); return (error); } error = nfs_setopts(rtvp, DATAMODEL_NATIVE, &args); if (error) { nfs_cmn_err(error, CE_WARN, "nfs3_mountroot: invalid root mount options"); pn_free(&pn); goto errout; } (void) vfs_lock_wait(vfsp); vfs_add(NULL, vfsp, vfsflags); vfs_unlock(vfsp); size = strlen(svp->sv_hostname); (void) strcpy(rootfs.bo_name, svp->sv_hostname); rootfs.bo_name[size] = ':'; (void) strcpy(&rootfs.bo_name[size + 1], root_path); pn_free(&pn); errout: if (error) { sv_free(svp); nfs_async_stop(vfsp); nfs_async_manager_stop(vfsp); } if (rtvp != NULL) VN_RELE(rtvp); return (error); } /* * Initialization routine for VFS routines. Should only be called once */ int nfs3_vfsinit(void) { mutex_init(&nfs3_syncbusy, NULL, MUTEX_DEFAULT, NULL); return (0); } void nfs3_vfsfini(void) { mutex_destroy(&nfs3_syncbusy); } void nfs3_freevfs(vfs_t *vfsp) { mntinfo_t *mi; servinfo_t *svp; /* free up the resources */ mi = VFTOMI(vfsp); svp = mi->mi_servers; mi->mi_servers = mi->mi_curr_serv = NULL; sv_free(svp); /* * By this time we should have already deleted the * mi kstats in the unmount code. If they are still around * somethings wrong */ ASSERT(mi->mi_io_kstats == NULL); nfs_free_mi(mi); }