/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * This file contains routines that merge one tdata_t tree, called the child, * into another, called the parent. Note that these names are used mainly for * convenience and to represent the direction of the merge. They are not meant * to imply any relationship between the tdata_t graphs prior to the merge. * * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we * clean up loose ends. * * The algorithm is as follows: * * 1. Mapping iidesc_t nodes * * For each child iidesc_t node, we first try to map its tdesc_t subgraph * against the tdesc_t graph in the parent. For each node in the child subgraph * that exists in the parent, a mapping between the two (between their type IDs) * is established. For the child nodes that cannot be mapped onto existing * parent nodes, a mapping is established between the child node ID and a * newly-allocated ID that the node will use when it is re-created in the * parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be * Added) hash, which tracks nodes that need to be created in the parent. * * If all of the nodes in the subgraph for an iidesc_t in the child can be * mapped to existing nodes in the parent, then we can try to map the child * iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s), * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This * list tracks iidesc_t nodes that are to be created in the parent. * * While visiting the tdesc_t nodes, we may discover a forward declaration (a * FORWARD tdesc_t) in the parent that is resolved in the child. That is, there * may be a structure or union definition in the child with the same name as the * forward declaration in the parent. If we find such a node, we record an * association in the md_fdida (Forward => Definition ID Association) list * between the parent ID of the forward declaration and the ID that the * definition will use when re-created in the parent. * * 2. Creating new tdesc_t nodes (the md_tdtba hash) * * We have now attempted to map all tdesc_t nodes from the child into the * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be * created (or, as we so wittily call it, conjured) in the parent. We iterate * through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t * node, conjuring requires two steps - the copying of the common tdesc_t data * (name, type, etc) from the child node, and the creation of links from the * newly-created node to the parent equivalents of other tdesc_t nodes pointed * to by node being conjured. Note that in some cases, the targets of these * links will be on the md_tdtba hash themselves, and may not have been created * yet. As such, we can't establish the links from these new nodes into the * parent graph. We therefore conjure them with links to nodes in the *child* * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t * To Be Remapped) hash. For example, a POINTER tdesc_t that could not be * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr. * * 3. Creating new iidesc_t nodes (the md_iitba list) * * When we have completed step 2, all tdesc_t nodes have been created (or * already existed) in the parent. Some of them may have incorrect links (the * members of the md_tdtbr list), but they've all been created. As such, we can * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph * pointers correctly. We create each node, and attach the pointers to the * appropriate parts of the parent tdesc_t graph. * * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list) * * As in step 3, we rely on the fact that all of the tdesc_t nodes have been * created. Each entry in the md_tdtbr list is a pointer to where a link into * the parent will be established. As saved in the md_tdtbr list, these * pointers point into the child tdesc_t subgraph. We can thus get the target * type ID from the child, look at the ID mapping to determine the desired link * target, and redirect the link accordingly. * * 5. Parent => child forward declaration resolution * * If entries were made in the md_fdida list in step 1, we have forward * declarations in the parent that need to be resolved to their definitions * re-created in step 2 from the child. Using the md_fdida list, we can locate * the definition for the forward declaration, and we can redirect all inbound * edges to the forward declaration node to the actual definition. * * A pox on the house of anyone who changes the algorithm without updating * this comment. */ #include #include #include #include #include "ctf_headers.h" #include "ctftools.h" #include "list.h" #include "alist.h" #include "memory.h" #include "traverse.h" typedef struct equiv_data equiv_data_t; typedef struct merge_cb_data merge_cb_data_t; /* * There are two traversals in this file, for equivalency and for tdesc_t * re-creation, that do not fit into the tdtraverse() framework. We have our * own traversal mechanism and ops vector here for those two cases. */ typedef struct tdesc_ops { char *name; int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *); tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *); } tdesc_ops_t; extern tdesc_ops_t tdesc_ops[]; /* * The workhorse structure of tdata_t merging. Holds all lists of nodes to be * processed during various phases of the merge algorithm. */ struct merge_cb_data { tdata_t *md_parent; tdata_t *md_tgt; alist_t *md_ta; /* Type Association */ alist_t *md_fdida; /* Forward -> Definition ID Association */ list_t **md_iitba; /* iidesc_t nodes To Be Added to the parent */ hash_t *md_tdtba; /* tdesc_t nodes To Be Added to the parent */ list_t **md_tdtbr; /* tdesc_t nodes To Be Remapped */ int md_flags; }; /* merge_cb_data_t */ /* * When we first create a tdata_t from stabs data, we will have duplicate nodes. * Normal merges, however, assume that the child tdata_t is already self-unique, * and for speed reasons do not attempt to self-uniquify. If this flag is set, * the merge algorithm will self-uniquify by avoiding the insertion of * duplicates in the md_tdtdba list. */ #define MCD_F_SELFUNIQUIFY 0x1 /* * When we merge the CTF data for the modules, we don't want it to contain any * data that can be found in the reference module (usually genunix). If this * flag is set, we're doing a merge between the fully merged tdata_t for this * module and the tdata_t for the reference module, with the data unique to this * module ending up in a third tdata_t. It is this third tdata_t that will end * up in the .SUNW_ctf section for the module. */ #define MCD_F_REFMERGE 0x2 /* * Mapping of child type IDs to parent type IDs */ static void add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid) { debug(3, "Adding mapping %u => %u\n", srcid, tgtid); assert(!alist_find(ta, (void *)srcid, NULL)); assert(srcid != 0 && tgtid != 0); alist_add(ta, (void *)srcid, (void *)tgtid); } static tid_t get_mapping(alist_t *ta, int srcid) { long ltgtid; if (alist_find(ta, (void *)srcid, (void **)<gtid)) return ((int)ltgtid); else return (0); } /* * Determining equivalence of tdesc_t subgraphs */ struct equiv_data { alist_t *ed_ta; tdesc_t *ed_node; tdesc_t *ed_tgt; int ed_clear_mark; int ed_cur_mark; int ed_selfuniquify; }; /* equiv_data_t */ static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *); /*ARGSUSED2*/ static int equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) { intr_t *si = stdp->t_intr; intr_t *ti = ttdp->t_intr; if (si->intr_type != ti->intr_type || si->intr_signed != ti->intr_signed || si->intr_offset != ti->intr_offset || si->intr_nbits != ti->intr_nbits) return (0); if (si->intr_type == INTR_INT && si->intr_iformat != ti->intr_iformat) return (0); else if (si->intr_type == INTR_REAL && si->intr_fformat != ti->intr_fformat) return (0); return (1); } static int equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) { return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed)); } static int equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) { fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef; int i; if (fn1->fn_nargs != fn2->fn_nargs || fn1->fn_vargs != fn2->fn_vargs) return (0); if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed)) return (0); for (i = 0; i < fn1->fn_nargs; i++) { if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed)) return (0); } return (1); } static int equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) { ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef; if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) || !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed)) return (0); if (ar1->ad_nelems != ar2->ad_nelems) return (0); return (1); } static int equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) { mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members; mlist_t *olm1 = NULL; while (ml1 && ml2) { if (ml1->ml_offset != ml2->ml_offset || strcmp(ml1->ml_name, ml2->ml_name) != 0) return (0); /* * Don't do the recursive equivalency checking more than * we have to. */ if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) { if (ml1->ml_size != ml2->ml_size || !equiv_node(ml1->ml_type, ml2->ml_type, ed)) return (0); } olm1 = ml1; ml1 = ml1->ml_next; ml2 = ml2->ml_next; } if (ml1 || ml2) return (0); return (1); } /*ARGSUSED2*/ static int equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) { elist_t *el1 = stdp->t_emem; elist_t *el2 = ttdp->t_emem; while (el1 && el2) { if (el1->el_number != el2->el_number || strcmp(el1->el_name, el2->el_name) != 0) return (0); el1 = el1->el_next; el2 = el2->el_next; } if (el1 || el2) return (0); return (1); } /*ARGSUSED*/ static int equiv_assert(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed) { /* foul, evil, and very bad - this is a "shouldn't happen" */ assert(1 == 0); return (0); } static int fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp) { tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp); return (defn->t_type == STRUCT || defn->t_type == UNION); } static int equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed) { int (*equiv)(); int mapping; if (ctdp->t_emark > ed->ed_clear_mark || mtdp->t_emark > ed->ed_clear_mark) return (ctdp->t_emark == mtdp->t_emark); /* * In normal (non-self-uniquify) mode, we don't want to do equivalency * checking on a subgraph that has already been checked. If a mapping * has already been established for a given child node, we can simply * compare the mapping for the child node with the ID of the parent * node. If we are in self-uniquify mode, then we're comparing two * subgraphs within the child graph, and thus need to ignore any * type mappings that have been created, as they are only valid into the * parent. */ if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 && mapping == mtdp->t_id && !ed->ed_selfuniquify) return (1); if (!streq(ctdp->t_name, mtdp->t_name)) return (0); if (ctdp->t_type != mtdp->t_type) { if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD) return (fwd_equiv(ctdp, mtdp)); else return (0); } ctdp->t_emark = ed->ed_cur_mark; mtdp->t_emark = ed->ed_cur_mark; ed->ed_cur_mark++; if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL) return (equiv(ctdp, mtdp, ed)); return (1); } /* * We perform an equivalency check on two subgraphs by traversing through them * in lockstep. If a given node is equivalent in both the parent and the child, * we mark it in both subgraphs, using the t_emark field, with a monotonically * increasing number. If, in the course of the traversal, we reach a node that * we have visited and numbered during this equivalency check, we have a cycle. * If the previously-visited nodes don't have the same emark, then the edges * that brought us to these nodes are not equivalent, and so the check ends. * If the emarks are the same, the edges are equivalent. We then backtrack and * continue the traversal. If we have exhausted all edges in the subgraph, and * have not found any inequivalent nodes, then the subgraphs are equivalent. */ static int equiv_cb(void *bucket, void *arg) { equiv_data_t *ed = arg; tdesc_t *mtdp = bucket; tdesc_t *ctdp = ed->ed_node; ed->ed_clear_mark = ed->ed_cur_mark + 1; ed->ed_cur_mark = ed->ed_clear_mark + 1; if (equiv_node(ctdp, mtdp, ed)) { debug(3, "equiv_node matched %d %d\n", ctdp->t_id, mtdp->t_id); ed->ed_tgt = mtdp; /* matched. stop looking */ return (-1); } return (0); } /*ARGSUSED1*/ static int map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp, void *private) { merge_cb_data_t *mcd = private; if (get_mapping(mcd->md_ta, ctdp->t_id) > 0) return (0); return (1); } /*ARGSUSED1*/ static int map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private) { merge_cb_data_t *mcd = private; equiv_data_t ed; ed.ed_ta = mcd->md_ta; ed.ed_clear_mark = mcd->md_parent->td_curemark; ed.ed_cur_mark = mcd->md_parent->td_curemark + 1; ed.ed_node = ctdp; ed.ed_selfuniquify = 0; debug(3, "map_td_tree_post on %d %s\n", ctdp->t_id, ctdp->t_name == NULL ? "(anon)" : ctdp->t_name); if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp, equiv_cb, &ed) < 0) { /* We found an equivalent node */ if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) { int id = mcd->md_tgt->td_nextid++; debug(3, "Creating new defn type %d\n", id); add_mapping(mcd->md_ta, ctdp->t_id, id); alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt, (void *)(ulong_t)id); hash_add(mcd->md_tdtba, ctdp); } else add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id); } else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash, equiv_cb, &ed) < 0) { /* * We didn't find an equivalent node by looking through the * layout hash, but we somehow found it by performing an * exhaustive search through the entire graph. This usually * means that the "name" hash function is broken. */ terminate("Second pass for %d (%s) == %d\n", ctdp->t_id, (ctdp->t_name ? ctdp->t_name : "(anon)"), ed.ed_tgt->t_id); } else { int id = mcd->md_tgt->td_nextid++; debug(3, "Creating new type %d\n", id); add_mapping(mcd->md_ta, ctdp->t_id, id); hash_add(mcd->md_tdtba, ctdp); } mcd->md_parent->td_curemark = ed.ed_cur_mark + 1; return (1); } /*ARGSUSED1*/ static int map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private) { merge_cb_data_t *mcd = private; equiv_data_t ed; ed.ed_ta = mcd->md_ta; ed.ed_clear_mark = mcd->md_parent->td_curemark; ed.ed_cur_mark = mcd->md_parent->td_curemark + 1; ed.ed_node = ctdp; ed.ed_selfuniquify = 1; ed.ed_tgt = NULL; if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) { debug(3, "Self check found %d in %d\n", ctdp->t_id, ed.ed_tgt->t_id); add_mapping(mcd->md_ta, ctdp->t_id, get_mapping(mcd->md_ta, ed.ed_tgt->t_id)); } else if (debug_level > 1 && hash_iter(mcd->md_tdtba, equiv_cb, &ed) < 0) { /* * We didn't find an equivalent node using the quick way (going * through the hash normally), but we did find it by iterating * through the entire hash. This usually means that the hash * function is broken. */ terminate("Self-unique second pass for %d (%s) == %d\n", ctdp->t_id, (ctdp->t_name ? ctdp->t_name : "(anon)"), ed.ed_tgt->t_id); } else { int id = mcd->md_tgt->td_nextid++; debug(3, "Creating new type %d\n", id); add_mapping(mcd->md_ta, ctdp->t_id, id); hash_add(mcd->md_tdtba, ctdp); } mcd->md_parent->td_curemark = ed.ed_cur_mark + 1; return (1); } static tdtrav_cb_f map_pre[] = { NULL, map_td_tree_pre, /* intrinsic */ map_td_tree_pre, /* pointer */ map_td_tree_pre, /* array */ map_td_tree_pre, /* function */ map_td_tree_pre, /* struct */ map_td_tree_pre, /* union */ map_td_tree_pre, /* enum */ map_td_tree_pre, /* forward */ map_td_tree_pre, /* typedef */ tdtrav_assert, /* typedef_unres */ map_td_tree_pre, /* volatile */ map_td_tree_pre, /* const */ map_td_tree_pre /* restrict */ }; static tdtrav_cb_f map_post[] = { NULL, map_td_tree_post, /* intrinsic */ map_td_tree_post, /* pointer */ map_td_tree_post, /* array */ map_td_tree_post, /* function */ map_td_tree_post, /* struct */ map_td_tree_post, /* union */ map_td_tree_post, /* enum */ map_td_tree_post, /* forward */ map_td_tree_post, /* typedef */ tdtrav_assert, /* typedef_unres */ map_td_tree_post, /* volatile */ map_td_tree_post, /* const */ map_td_tree_post /* restrict */ }; static tdtrav_cb_f map_self_post[] = { NULL, map_td_tree_self_post, /* intrinsic */ map_td_tree_self_post, /* pointer */ map_td_tree_self_post, /* array */ map_td_tree_self_post, /* function */ map_td_tree_self_post, /* struct */ map_td_tree_self_post, /* union */ map_td_tree_self_post, /* enum */ map_td_tree_self_post, /* forward */ map_td_tree_self_post, /* typedef */ tdtrav_assert, /* typedef_unres */ map_td_tree_self_post, /* volatile */ map_td_tree_self_post, /* const */ map_td_tree_self_post /* restrict */ }; /* * Determining equivalence of iidesc_t nodes */ typedef struct iifind_data { iidesc_t *iif_template; alist_t *iif_ta; int iif_newidx; int iif_refmerge; } iifind_data_t; /* * Check to see if this iidesc_t (node) - the current one on the list we're * iterating through - matches the target one (iif->iif_template). Return -1 * if it matches, to stop the iteration. */ static int iidesc_match(void *data, void *arg) { iidesc_t *node = data; iifind_data_t *iif = arg; int i; if (node->ii_type != iif->iif_template->ii_type || !streq(node->ii_name, iif->iif_template->ii_name) || node->ii_dtype->t_id != iif->iif_newidx) return (0); if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) && !streq(node->ii_owner, iif->iif_template->ii_owner)) return (0); if (node->ii_nargs != iif->iif_template->ii_nargs) return (0); for (i = 0; i < node->ii_nargs; i++) { if (get_mapping(iif->iif_ta, iif->iif_template->ii_args[i]->t_id) != node->ii_args[i]->t_id) return (0); } if (iif->iif_refmerge) { switch (iif->iif_template->ii_type) { case II_GFUN: case II_SFUN: case II_GVAR: case II_SVAR: debug(3, "suppressing duping of %d %s from %s\n", iif->iif_template->ii_type, iif->iif_template->ii_name, (iif->iif_template->ii_owner ? iif->iif_template->ii_owner : "NULL")); return (0); case II_NOT: case II_PSYM: case II_SOU: case II_TYPE: break; } } return (-1); } static int merge_type_cb(void *data, void *arg) { iidesc_t *sii = data; merge_cb_data_t *mcd = arg; iifind_data_t iif; tdtrav_cb_f *post; post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post); /* Map the tdesc nodes */ (void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post, mcd); /* Map the iidesc nodes */ iif.iif_template = sii; iif.iif_ta = mcd->md_ta; iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id); iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE); if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match, &iif) == 1) /* successfully mapped */ return (1); debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"), sii->ii_type); list_add(mcd->md_iitba, sii); return (0); } static int remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself, merge_cb_data_t *mcd) { tdesc_t *tgt = NULL; tdesc_t template; int oldid = oldtgt->t_id; if (oldid == selftid) { *tgtp = newself; return (1); } if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0) terminate("failed to get mapping for tid %d\n", oldid); if (!hash_find(mcd->md_parent->td_idhash, (void *)&template, (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) || !hash_find(mcd->md_tgt->td_idhash, (void *)&template, (void *)&tgt))) { debug(3, "Remap couldn't find %d (from %d)\n", template.t_id, oldid); *tgtp = oldtgt; list_add(mcd->md_tdtbr, tgtp); return (0); } *tgtp = tgt; return (1); } static tdesc_t * conjure_template(tdesc_t *old, int newselfid) { tdesc_t *new = xcalloc(sizeof (tdesc_t)); new->t_name = old->t_name ? xstrdup(old->t_name) : NULL; new->t_type = old->t_type; new->t_size = old->t_size; new->t_id = newselfid; new->t_flags = old->t_flags; return (new); } /*ARGSUSED2*/ static tdesc_t * conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) { tdesc_t *new = conjure_template(old, newselfid); new->t_intr = xmalloc(sizeof (intr_t)); bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); return (new); } static tdesc_t * conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) { tdesc_t *new = conjure_template(old, newselfid); (void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd); return (new); } static tdesc_t * conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) { tdesc_t *new = conjure_template(old, newselfid); fndef_t *nfn = xmalloc(sizeof (fndef_t)); fndef_t *ofn = old->t_fndef; int i; (void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd); nfn->fn_nargs = ofn->fn_nargs; nfn->fn_vargs = ofn->fn_vargs; if (nfn->fn_nargs > 0) nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs); for (i = 0; i < ofn->fn_nargs; i++) { (void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id, new, mcd); } new->t_fndef = nfn; return (new); } static tdesc_t * conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) { tdesc_t *new = conjure_template(old, newselfid); ardef_t *nar = xmalloc(sizeof (ardef_t)); ardef_t *oar = old->t_ardef; (void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new, mcd); (void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new, mcd); nar->ad_nelems = oar->ad_nelems; new->t_ardef = nar; return (new); } static tdesc_t * conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) { tdesc_t *new = conjure_template(old, newselfid); mlist_t *omem, **nmemp; for (omem = old->t_members, nmemp = &new->t_members; omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) { *nmemp = xmalloc(sizeof (mlist_t)); (*nmemp)->ml_offset = omem->ml_offset; (*nmemp)->ml_size = omem->ml_size; (*nmemp)->ml_name = xstrdup(omem->ml_name); (void) remap_node(&((*nmemp)->ml_type), omem->ml_type, old->t_id, new, mcd); } *nmemp = NULL; return (new); } /*ARGSUSED2*/ static tdesc_t * conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) { tdesc_t *new = conjure_template(old, newselfid); elist_t *oel, **nelp; for (oel = old->t_emem, nelp = &new->t_emem; oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) { *nelp = xmalloc(sizeof (elist_t)); (*nelp)->el_name = xstrdup(oel->el_name); (*nelp)->el_number = oel->el_number; } *nelp = NULL; return (new); } /*ARGSUSED2*/ static tdesc_t * conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) { tdesc_t *new = conjure_template(old, newselfid); list_add(&mcd->md_tgt->td_fwdlist, new); return (new); } /*ARGSUSED*/ static tdesc_t * conjure_assert(tdesc_t *old, int newselfid, merge_cb_data_t *mcd) { assert(1 == 0); return (NULL); } static iidesc_t * conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd) { iidesc_t *new = iidesc_dup(old); int i; (void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd); for (i = 0; i < new->ii_nargs; i++) { (void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL, mcd); } return (new); } static int fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private) { alist_t *map = private; tdesc_t *defn; if (!alist_find(map, (void *)fwd, (void **)&defn)) return (0); debug(3, "Redirecting an edge to %s\n", (defn->t_name ? defn->t_name : "(anon)")); *fwdp = defn; return (1); } static tdtrav_cb_f fwd_redir_cbs[] = { NULL, NULL, /* intrinsic */ NULL, /* pointer */ NULL, /* array */ NULL, /* function */ NULL, /* struct */ NULL, /* union */ NULL, /* enum */ fwd_redir, /* forward */ NULL, /* typedef */ tdtrav_assert, /* typedef_unres */ NULL, /* volatile */ NULL, /* const */ NULL /* restrict */ }; typedef struct redir_mstr_data { tdata_t *rmd_tgt; alist_t *rmd_map; } redir_mstr_data_t; static int redir_mstr_fwd_cb(void *name, void *value, void *arg) { tdesc_t *fwd = name; int defnid = (int)value; redir_mstr_data_t *rmd = arg; tdesc_t template; tdesc_t *defn; template.t_id = defnid; if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template, (void *)&defn)) { terminate("Couldn't unforward %d (%s)\n", defnid, (defn->t_name ? defn->t_name : "(anon)")); } debug(3, "Forward map: resolved %d to %s\n", defnid, (defn->t_name ? defn->t_name : "(anon)")); alist_add(rmd->rmd_map, (void *)fwd, (void *)defn); return (1); } static void redir_mstr_fwds(merge_cb_data_t *mcd) { redir_mstr_data_t rmd; alist_t *map = alist_new(NULL, NULL); rmd.rmd_tgt = mcd->md_tgt; rmd.rmd_map = map; if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) { (void) iitraverse_hash(mcd->md_tgt->td_iihash, &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map); } alist_free(map); } static int add_iitba_cb(void *data, void *private) { merge_cb_data_t *mcd = private; iidesc_t *tba = data; iidesc_t *new; iifind_data_t iif; int newidx; newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id); assert(newidx != -1); (void) list_remove(mcd->md_iitba, data, NULL, NULL); iif.iif_template = tba; iif.iif_ta = mcd->md_ta; iif.iif_newidx = newidx; iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE); if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match, &iif) == 1) { debug(3, "iidesc_t %s already exists\n", (tba->ii_name ? tba->ii_name : "(anon)")); return (1); } new = conjure_iidesc(tba, mcd); hash_add(mcd->md_tgt->td_iihash, new); return (1); } static int add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd) { tdesc_t *newtdp; tdesc_t template; template.t_id = newid; assert(hash_find(mcd->md_parent->td_idhash, (void *)&template, NULL) == 0); debug(3, "trying to conjure %d %s (%d) as %d\n", oldtdp->t_type, (oldtdp->t_name ? oldtdp->t_name : "(anon)"), oldtdp->t_id, newid); if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid, mcd)) == NULL) /* couldn't map everything */ return (0); debug(3, "succeeded\n"); hash_add(mcd->md_tgt->td_idhash, newtdp); hash_add(mcd->md_tgt->td_layouthash, newtdp); return (1); } static int add_tdtba_cb(void *data, void *arg) { tdesc_t *tdp = data; merge_cb_data_t *mcd = arg; int newid; int rc; newid = get_mapping(mcd->md_ta, tdp->t_id); assert(newid != -1); if ((rc = add_tdesc(tdp, newid, mcd))) hash_remove(mcd->md_tdtba, (void *)tdp); return (rc); } static int add_tdtbr_cb(void *data, void *arg) { tdesc_t **tdpp = data; merge_cb_data_t *mcd = arg; debug(3, "Remapping %s (%d)\n", ((*tdpp)->t_name ? (*tdpp)->t_name : "(anon)"), (*tdpp)->t_id); if (!remap_node(tdpp, *tdpp, -1, NULL, mcd)) return (0); (void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL); return (1); } static void merge_types(hash_t *src, merge_cb_data_t *mcd) { list_t *iitba = NULL; list_t *tdtbr = NULL; int iirc, tdrc; mcd->md_iitba = &iitba; mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash, tdesc_layoutcmp); mcd->md_tdtbr = &tdtbr; (void) hash_iter(src, merge_type_cb, mcd); tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, (void *)mcd); debug(3, "add_tdtba_cb added %d items\n", tdrc); iirc = list_iter(*mcd->md_iitba, add_iitba_cb, (void *)mcd); debug(3, "add_iitba_cb added %d items\n", iirc); assert(list_count(*mcd->md_iitba) == 0 && hash_count(mcd->md_tdtba) == 0); tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, (void *)mcd); debug(3, "add_tdtbr_cb added %d items\n", tdrc); if (list_count(*mcd->md_tdtbr) != 0) terminate("Couldn't remap all nodes\n"); /* * We now have an alist of master forwards and the ids of the new master * definitions for those forwards in mcd->md_fdida. By this point, * we're guaranteed that all of the master definitions referenced in * fdida have been added to the master tree. We now traverse through * the master tree, redirecting all edges inbound to forwards that have * definitions to those definitions. */ if (mcd->md_parent == mcd->md_tgt) { redir_mstr_fwds(mcd); } } void merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify) { merge_cb_data_t mcd; cur->td_ref++; mstr->td_ref++; if (tgt) tgt->td_ref++; assert(cur->td_ref == 1 && mstr->td_ref == 1 && (tgt == NULL || tgt->td_ref == 1)); mcd.md_parent = mstr; mcd.md_tgt = (tgt ? tgt : mstr); mcd.md_ta = alist_new(NULL, NULL); mcd.md_fdida = alist_new(NULL, NULL); mcd.md_flags = 0; if (selfuniquify) mcd.md_flags |= MCD_F_SELFUNIQUIFY; if (tgt) mcd.md_flags |= MCD_F_REFMERGE; mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen); mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark); merge_types(cur->td_iihash, &mcd); if (debug_level >= 3) { debug(3, "Type association stats\n"); alist_stats(mcd.md_ta, 0); debug(3, "Layout hash stats\n"); hash_stats(mcd.md_tgt->td_layouthash, 1); } alist_free(mcd.md_fdida); alist_free(mcd.md_ta); cur->td_ref--; mstr->td_ref--; if (tgt) tgt->td_ref--; } tdesc_ops_t tdesc_ops[] = { { "ERROR! BAD tdesc TYPE", NULL, NULL }, { "intrinsic", equiv_intrinsic, conjure_intrinsic }, { "pointer", equiv_plain, conjure_plain }, { "array", equiv_array, conjure_array }, { "function", equiv_function, conjure_function }, { "struct", equiv_su, conjure_su }, { "union", equiv_su, conjure_su }, { "enum", equiv_enum, conjure_enum }, { "forward", NULL, conjure_forward }, { "typedef", equiv_plain, conjure_plain }, { "typedef_unres", equiv_assert, conjure_assert }, { "volatile", equiv_plain, conjure_plain }, { "const", equiv_plain, conjure_plain }, { "restrict", equiv_plain, conjure_plain } };