/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright 2012 Garrett D'Amore . All rights reserved. * Copyright (c) 2014 by Delphix. All rights reserved. */ #include int taskq_now; taskq_t *system_taskq; #define TASKQ_ACTIVE 0x00010000 #define TASKQ_NAMELEN 31 struct taskq { char tq_name[TASKQ_NAMELEN + 1]; kmutex_t tq_lock; krwlock_t tq_threadlock; kcondvar_t tq_dispatch_cv; kcondvar_t tq_wait_cv; thread_t *tq_threadlist; int tq_flags; int tq_active; int tq_nthreads; int tq_nalloc; int tq_minalloc; int tq_maxalloc; kcondvar_t tq_maxalloc_cv; int tq_maxalloc_wait; taskq_ent_t *tq_freelist; taskq_ent_t tq_task; }; static taskq_ent_t * task_alloc(taskq_t *tq, int tqflags) { taskq_ent_t *t; int rv; again: if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) { tq->tq_freelist = t->tqent_next; } else { if (tq->tq_nalloc >= tq->tq_maxalloc) { if (!(tqflags & KM_SLEEP)) return (NULL); /* * We don't want to exceed tq_maxalloc, but we can't * wait for other tasks to complete (and thus free up * task structures) without risking deadlock with * the caller. So, we just delay for one second * to throttle the allocation rate. If we have tasks * complete before one second timeout expires then * taskq_ent_free will signal us and we will * immediately retry the allocation. */ tq->tq_maxalloc_wait++; rv = cv_timedwait(&tq->tq_maxalloc_cv, &tq->tq_lock, ddi_get_lbolt() + hz); tq->tq_maxalloc_wait--; if (rv > 0) goto again; /* signaled */ } mutex_exit(&tq->tq_lock); t = kmem_alloc(sizeof (taskq_ent_t), tqflags); mutex_enter(&tq->tq_lock); if (t != NULL) tq->tq_nalloc++; } return (t); } static void task_free(taskq_t *tq, taskq_ent_t *t) { if (tq->tq_nalloc <= tq->tq_minalloc) { t->tqent_next = tq->tq_freelist; tq->tq_freelist = t; } else { tq->tq_nalloc--; mutex_exit(&tq->tq_lock); kmem_free(t, sizeof (taskq_ent_t)); mutex_enter(&tq->tq_lock); } if (tq->tq_maxalloc_wait) cv_signal(&tq->tq_maxalloc_cv); } taskqid_t taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags) { taskq_ent_t *t; if (taskq_now) { func(arg); return (1); } mutex_enter(&tq->tq_lock); ASSERT(tq->tq_flags & TASKQ_ACTIVE); if ((t = task_alloc(tq, tqflags)) == NULL) { mutex_exit(&tq->tq_lock); return (0); } if (tqflags & TQ_FRONT) { t->tqent_next = tq->tq_task.tqent_next; t->tqent_prev = &tq->tq_task; } else { t->tqent_next = &tq->tq_task; t->tqent_prev = tq->tq_task.tqent_prev; } t->tqent_next->tqent_prev = t; t->tqent_prev->tqent_next = t; t->tqent_func = func; t->tqent_arg = arg; t->tqent_flags = 0; cv_signal(&tq->tq_dispatch_cv); mutex_exit(&tq->tq_lock); return (1); } void taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags, taskq_ent_t *t) { ASSERT(func != NULL); ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC)); /* * Mark it as a prealloc'd task. This is important * to ensure that we don't free it later. */ t->tqent_flags |= TQENT_FLAG_PREALLOC; /* * Enqueue the task to the underlying queue. */ mutex_enter(&tq->tq_lock); if (flags & TQ_FRONT) { t->tqent_next = tq->tq_task.tqent_next; t->tqent_prev = &tq->tq_task; } else { t->tqent_next = &tq->tq_task; t->tqent_prev = tq->tq_task.tqent_prev; } t->tqent_next->tqent_prev = t; t->tqent_prev->tqent_next = t; t->tqent_func = func; t->tqent_arg = arg; cv_signal(&tq->tq_dispatch_cv); mutex_exit(&tq->tq_lock); } void taskq_wait(taskq_t *tq) { mutex_enter(&tq->tq_lock); while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0) cv_wait(&tq->tq_wait_cv, &tq->tq_lock); mutex_exit(&tq->tq_lock); } static void * taskq_thread(void *arg) { taskq_t *tq = arg; taskq_ent_t *t; boolean_t prealloc; mutex_enter(&tq->tq_lock); while (tq->tq_flags & TASKQ_ACTIVE) { if ((t = tq->tq_task.tqent_next) == &tq->tq_task) { if (--tq->tq_active == 0) cv_broadcast(&tq->tq_wait_cv); cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock); tq->tq_active++; continue; } t->tqent_prev->tqent_next = t->tqent_next; t->tqent_next->tqent_prev = t->tqent_prev; t->tqent_next = NULL; t->tqent_prev = NULL; prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC; mutex_exit(&tq->tq_lock); rw_enter(&tq->tq_threadlock, RW_READER); t->tqent_func(t->tqent_arg); rw_exit(&tq->tq_threadlock); mutex_enter(&tq->tq_lock); if (!prealloc) task_free(tq, t); } tq->tq_nthreads--; cv_broadcast(&tq->tq_wait_cv); mutex_exit(&tq->tq_lock); return (NULL); } /*ARGSUSED*/ taskq_t * taskq_create(const char *name, int nthreads, pri_t pri, int minalloc, int maxalloc, uint_t flags) { taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP); int t; if (flags & TASKQ_THREADS_CPU_PCT) { int pct; ASSERT3S(nthreads, >=, 0); ASSERT3S(nthreads, <=, 100); pct = MIN(nthreads, 100); pct = MAX(pct, 0); nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100; nthreads = MAX(nthreads, 1); /* need at least 1 thread */ } else { ASSERT3S(nthreads, >=, 1); } rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL); mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL); cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL); cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL); (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1); tq->tq_flags = flags | TASKQ_ACTIVE; tq->tq_active = nthreads; tq->tq_nthreads = nthreads; tq->tq_minalloc = minalloc; tq->tq_maxalloc = maxalloc; tq->tq_task.tqent_next = &tq->tq_task; tq->tq_task.tqent_prev = &tq->tq_task; tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP); if (flags & TASKQ_PREPOPULATE) { mutex_enter(&tq->tq_lock); while (minalloc-- > 0) task_free(tq, task_alloc(tq, KM_SLEEP)); mutex_exit(&tq->tq_lock); } for (t = 0; t < nthreads; t++) (void) thr_create(0, 0, taskq_thread, tq, THR_BOUND, &tq->tq_threadlist[t]); return (tq); } void taskq_destroy(taskq_t *tq) { int t; int nthreads = tq->tq_nthreads; taskq_wait(tq); mutex_enter(&tq->tq_lock); tq->tq_flags &= ~TASKQ_ACTIVE; cv_broadcast(&tq->tq_dispatch_cv); while (tq->tq_nthreads != 0) cv_wait(&tq->tq_wait_cv, &tq->tq_lock); tq->tq_minalloc = 0; while (tq->tq_nalloc != 0) { ASSERT(tq->tq_freelist != NULL); task_free(tq, task_alloc(tq, KM_SLEEP)); } mutex_exit(&tq->tq_lock); for (t = 0; t < nthreads; t++) (void) thr_join(tq->tq_threadlist[t], NULL, NULL); kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t)); rw_destroy(&tq->tq_threadlock); mutex_destroy(&tq->tq_lock); cv_destroy(&tq->tq_dispatch_cv); cv_destroy(&tq->tq_wait_cv); cv_destroy(&tq->tq_maxalloc_cv); kmem_free(tq, sizeof (taskq_t)); } int taskq_member(taskq_t *tq, void *t) { int i; if (taskq_now) return (1); for (i = 0; i < tq->tq_nthreads; i++) if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t) return (1); return (0); } void system_taskq_init(void) { system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512, TASKQ_DYNAMIC | TASKQ_PREPOPULATE); } void system_taskq_fini(void) { taskq_destroy(system_taskq); system_taskq = NULL; /* defensive */ }