/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "libzfs_impl.h" /* * Given a single type (not a mask of types), return the type in a human * readable form. */ const char * zfs_type_to_name(zfs_type_t type) { switch (type) { case ZFS_TYPE_FILESYSTEM: return (dgettext(TEXT_DOMAIN, "filesystem")); case ZFS_TYPE_SNAPSHOT: return (dgettext(TEXT_DOMAIN, "snapshot")); case ZFS_TYPE_VOLUME: return (dgettext(TEXT_DOMAIN, "volume")); } return (NULL); } /* * Given a path and mask of ZFS types, return a string describing this dataset. * This is used when we fail to open a dataset and we cannot get an exact type. * We guess what the type would have been based on the path and the mask of * acceptable types. */ static const char * path_to_str(const char *path, int types) { /* * When given a single type, always report the exact type. */ if (types == ZFS_TYPE_SNAPSHOT) return (dgettext(TEXT_DOMAIN, "snapshot")); if (types == ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); if (types == ZFS_TYPE_VOLUME) return (dgettext(TEXT_DOMAIN, "volume")); /* * The user is requesting more than one type of dataset. If this is the * case, consult the path itself. If we're looking for a snapshot, and * a '@' is found, then report it as "snapshot". Otherwise, remove the * snapshot attribute and try again. */ if (types & ZFS_TYPE_SNAPSHOT) { if (strchr(path, '@') != NULL) return (dgettext(TEXT_DOMAIN, "snapshot")); return (path_to_str(path, types & ~ZFS_TYPE_SNAPSHOT)); } /* * The user has requested either filesystems or volumes. * We have no way of knowing a priori what type this would be, so always * report it as "filesystem" or "volume", our two primitive types. */ if (types & ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); assert(types & ZFS_TYPE_VOLUME); return (dgettext(TEXT_DOMAIN, "volume")); } /* * Validate a ZFS path. This is used even before trying to open the dataset, to * provide a more meaningful error message. We place a more useful message in * 'buf' detailing exactly why the name was not valid. */ static int zfs_validate_name(libzfs_handle_t *hdl, const char *path, int type) { namecheck_err_t why; char what; if (dataset_namecheck(path, &why, &what) != 0) { if (hdl != NULL) { switch (why) { case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is too long")); break; case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "leading slash in name")); break; case NAME_ERR_EMPTY_COMPONENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty component in name")); break; case NAME_ERR_TRAILING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "trailing slash in name")); break; case NAME_ERR_INVALCHAR: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character " "'%c' in name"), what); break; case NAME_ERR_MULTIPLE_AT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "multiple '@' delimiters in name")); break; case NAME_ERR_NOLETTER: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool doesn't begin with a letter")); break; case NAME_ERR_RESERVED: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); break; case NAME_ERR_DISKLIKE: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "reserved disk name")); break; } } return (0); } if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@') != NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshot delimiter '@' in filesystem name")); return (0); } if (type == ZFS_TYPE_SNAPSHOT && strchr(path, '@') == NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing '@' delimeter in snapshot name")); return (0); } return (-1); } int zfs_name_valid(const char *name, zfs_type_t type) { return (zfs_validate_name(NULL, name, type)); } /* * This function takes the raw DSL properties, and filters out the user-defined * properties into a separate nvlist. */ static int process_user_props(zfs_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zfs_hdl; nvpair_t *elem; nvlist_t *propval; nvlist_free(zhp->zfs_user_props); if (nvlist_alloc(&zhp->zfs_user_props, NV_UNIQUE_NAME, 0) != 0) return (no_memory(hdl)); elem = NULL; while ((elem = nvlist_next_nvpair(zhp->zfs_props, elem)) != NULL) { if (!zfs_prop_user(nvpair_name(elem))) continue; verify(nvpair_value_nvlist(elem, &propval) == 0); if (nvlist_add_nvlist(zhp->zfs_user_props, nvpair_name(elem), propval) != 0) return (no_memory(hdl)); } return (0); } /* * Utility function to gather stats (objset and zpl) for the given object. */ static int get_stats(zfs_handle_t *zhp) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) return (-1); while (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (-1); } } else { zcmd_free_nvlists(&zc); return (-1); } } bcopy(&zc.zc_objset_stats, &zhp->zfs_dmustats, sizeof (zc.zc_objset_stats)); (void) strlcpy(zhp->zfs_root, zc.zc_value, sizeof (zhp->zfs_root)); if (zhp->zfs_props) { nvlist_free(zhp->zfs_props); zhp->zfs_props = NULL; } if (zcmd_read_dst_nvlist(hdl, &zc, &zhp->zfs_props) != 0) { zcmd_free_nvlists(&zc); return (-1); } zcmd_free_nvlists(&zc); zhp->zfs_volstats = zc.zc_vol_stats; if (process_user_props(zhp) != 0) return (-1); return (0); } /* * Refresh the properties currently stored in the handle. */ void zfs_refresh_properties(zfs_handle_t *zhp) { (void) get_stats(zhp); } /* * Makes a handle from the given dataset name. Used by zfs_open() and * zfs_iter_* to create child handles on the fly. */ zfs_handle_t * make_dataset_handle(libzfs_handle_t *hdl, const char *path) { zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = hdl; top: (void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name)); if (get_stats(zhp) != 0) { free(zhp); return (NULL); } if (zhp->zfs_dmustats.dds_inconsistent) { zfs_cmd_t zc = { 0 }; /* * If it is dds_inconsistent, then we've caught it in * the middle of a 'zfs receive' or 'zfs destroy', and * it is inconsistent from the ZPL's point of view, so * can't be mounted. However, it could also be that we * have crashed in the middle of one of those * operations, in which case we need to get rid of the * inconsistent state. We do that by either rolling * back to the previous snapshot (which will fail if * there is none), or destroying the filesystem. Note * that if we are still in the middle of an active * 'receive' or 'destroy', then the rollback and destroy * will fail with EBUSY and we will drive on as usual. */ (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zhp->zfs_type == ZFS_TYPE_VOLUME) { (void) zvol_remove_link(hdl, zhp->zfs_name); zc.zc_objset_type = DMU_OST_ZVOL; } else { zc.zc_objset_type = DMU_OST_ZFS; } /* If we can successfully roll it back, reget the stats */ if (ioctl(hdl->libzfs_fd, ZFS_IOC_ROLLBACK, &zc) == 0) goto top; /* * If we can sucessfully destroy it, pretend that it * never existed. */ if (ioctl(hdl->libzfs_fd, ZFS_IOC_DESTROY, &zc) == 0) { free(zhp); errno = ENOENT; return (NULL); } } /* * We've managed to open the dataset and gather statistics. Determine * the high-level type. */ if (zhp->zfs_dmustats.dds_is_snapshot) zhp->zfs_type = ZFS_TYPE_SNAPSHOT; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_type = ZFS_TYPE_FILESYSTEM; else abort(); /* we should never see any other types */ return (zhp); } /* * Opens the given snapshot, filesystem, or volume. The 'types' * argument is a mask of acceptable types. The function will print an * appropriate error message and return NULL if it can't be opened. */ zfs_handle_t * zfs_open(libzfs_handle_t *hdl, const char *path, int types) { zfs_handle_t *zhp; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); /* * Validate the name before we even try to open it. */ if (!zfs_validate_name(hdl, path, ZFS_TYPE_ANY)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid dataset name")); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); return (NULL); } /* * Try to get stats for the dataset, which will tell us if it exists. */ errno = 0; if ((zhp = make_dataset_handle(hdl, path)) == NULL) { (void) zfs_standard_error(hdl, errno, errbuf, path); return (NULL); } if (!(types & zhp->zfs_type)) { (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (NULL); } return (zhp); } /* * Release a ZFS handle. Nothing to do but free the associated memory. */ void zfs_close(zfs_handle_t *zhp) { if (zhp->zfs_mntopts) free(zhp->zfs_mntopts); nvlist_free(zhp->zfs_props); nvlist_free(zhp->zfs_user_props); free(zhp); } /* * Given a numeric suffix, convert the value into a number of bits that the * resulting value must be shifted. */ static int str2shift(libzfs_handle_t *hdl, const char *buf) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid numeric suffix '%s'"), buf); return (-1); } /* * We want to allow trailing 'b' characters for 'GB' or 'Mb'. But don't * allow 'BB' - that's just weird. */ if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0' && toupper(buf[0]) != 'B')) return (10*i); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid numeric suffix '%s'"), buf); return (-1); } /* * Convert a string of the form '100G' into a real number. Used when setting * properties or creating a volume. 'buf' is used to place an extended error * message for the caller to use. */ static int nicestrtonum(libzfs_handle_t *hdl, const char *value, uint64_t *num) { char *end; int shift; *num = 0; /* Check to see if this looks like a number. */ if ((value[0] < '0' || value[0] > '9') && value[0] != '.') { if (hdl) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "bad numeric value '%s'"), value); return (-1); } /* Rely on stroll() to process the numeric portion. */ errno = 0; *num = strtoll(value, &end, 10); /* * Check for ERANGE, which indicates that the value is too large to fit * in a 64-bit value. */ if (errno == ERANGE) { if (hdl) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "numeric value is too large")); return (-1); } /* * If we have a decimal value, then do the computation with floating * point arithmetic. Otherwise, use standard arithmetic. */ if (*end == '.') { double fval = strtod(value, &end); if ((shift = str2shift(hdl, end)) == -1) return (-1); fval *= pow(2, shift); if (fval > UINT64_MAX) { if (hdl) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "numeric value is too large")); return (-1); } *num = (uint64_t)fval; } else { if ((shift = str2shift(hdl, end)) == -1) return (-1); /* Check for overflow */ if (shift >= 64 || (*num << shift) >> shift != *num) { if (hdl) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "numeric value is too large")); return (-1); } *num <<= shift; } return (0); } int zfs_nicestrtonum(libzfs_handle_t *hdl, const char *str, uint64_t *val) { return (nicestrtonum(hdl, str, val)); } /* * The prop_parse_*() functions are designed to allow flexibility in callers * when setting properties. At the DSL layer, all properties are either 64-bit * numbers or strings. We want the user to be able to ignore this fact and * specify properties as native values (boolean, for example) or as strings (to * simplify command line utilities). This also handles converting index types * (compression, checksum, etc) from strings to their on-disk index. */ static int prop_parse_boolean(libzfs_handle_t *hdl, nvpair_t *elem, uint64_t *val) { uint64_t ret; switch (nvpair_type(elem)) { case DATA_TYPE_STRING: { char *value; VERIFY(nvpair_value_string(elem, &value) == 0); if (strcmp(value, "on") == 0) { ret = 1; } else if (strcmp(value, "off") == 0) { ret = 0; } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' must be 'on' or 'off'"), nvpair_name(elem)); return (-1); } break; } case DATA_TYPE_UINT64: { VERIFY(nvpair_value_uint64(elem, &ret) == 0); if (ret > 1) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a boolean value"), nvpair_name(elem)); return (-1); } break; } case DATA_TYPE_BOOLEAN_VALUE: { boolean_t value; VERIFY(nvpair_value_boolean_value(elem, &value) == 0); ret = value; break; } default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a boolean value"), nvpair_name(elem)); return (-1); } *val = ret; return (0); } static int prop_parse_number(libzfs_handle_t *hdl, nvpair_t *elem, zfs_prop_t prop, uint64_t *val) { uint64_t ret; boolean_t isnone = B_FALSE; switch (nvpair_type(elem)) { case DATA_TYPE_STRING: { char *value; (void) nvpair_value_string(elem, &value); if (strcmp(value, "none") == 0) { isnone = B_TRUE; ret = 0; } else if (nicestrtonum(hdl, value, &ret) != 0) { return (-1); } break; } case DATA_TYPE_UINT64: (void) nvpair_value_uint64(elem, &ret); break; default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a number"), nvpair_name(elem)); return (-1); } /* * Quota special: force 'none' and don't allow 0. */ if (ret == 0 && !isnone && prop == ZFS_PROP_QUOTA) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "use 'none' to disable quota")); return (-1); } *val = ret; return (0); } static int prop_parse_index(libzfs_handle_t *hdl, nvpair_t *elem, zfs_prop_t prop, uint64_t *val) { char *propname = nvpair_name(elem); char *value; if (nvpair_type(elem) != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), propname); return (-1); } (void) nvpair_value_string(elem, &value); if (zfs_prop_string_to_index(prop, value, val) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be one of '%s'"), propname, zfs_prop_values(prop)); return (-1); } return (0); } /* * Given an nvlist of properties to set, validates that they are correct, and * parses any numeric properties (index, boolean, etc) if they are specified as * strings. */ static nvlist_t * zfs_validate_properties(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl, uint64_t zoned, zfs_handle_t *zhp, const char *errbuf) { nvpair_t *elem; const char *propname; zfs_prop_t prop; uint64_t intval; char *strval; nvlist_t *ret; if (nvlist_alloc(&ret, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } if (type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snaphot properties cannot be modified")); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { propname = nvpair_name(elem); /* * Make sure this property is valid and applies to this type. */ if ((prop = zfs_name_to_prop(propname)) == ZFS_PROP_INVAL) { if (!zfs_prop_user(propname)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } else { /* * If this is a user property, make sure it's a * string, and that it's less than * ZAP_MAXNAMELEN. */ if (nvpair_type(elem) != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (strlen(nvpair_name(elem)) >= ZAP_MAXNAMELEN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property name '%s' is too long"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } (void) nvpair_value_string(elem, &strval); if (nvlist_add_string(ret, propname, strval) != 0) { (void) no_memory(hdl); goto error; } continue; } /* * Normalize the name, to get rid of shorthand abbrevations. */ propname = zfs_prop_to_name(prop); if (!zfs_prop_valid_for_type(prop, type)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' does not " "apply to datasets of this type"), propname); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } if (zfs_prop_readonly(prop) && (prop != ZFS_PROP_VOLBLOCKSIZE || zhp != NULL)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } /* * Convert any properties to the internal DSL value types. */ strval = NULL; switch (zfs_prop_get_type(prop)) { case prop_type_boolean: if (prop_parse_boolean(hdl, elem, &intval) != 0) { (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case prop_type_string: if (nvpair_type(elem) != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } (void) nvpair_value_string(elem, &strval); if (strlen(strval) >= ZFS_MAXPROPLEN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is too long"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case prop_type_number: if (prop_parse_number(hdl, elem, prop, &intval) != 0) { (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case prop_type_index: if (prop_parse_index(hdl, elem, prop, &intval) != 0) { (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; default: abort(); } /* * Add the result to our return set of properties. */ if (strval) { if (nvlist_add_string(ret, propname, strval) != 0) { (void) no_memory(hdl); goto error; } } else if (nvlist_add_uint64(ret, propname, intval) != 0) { (void) no_memory(hdl); goto error; } /* * Perform some additional checks for specific properties. */ switch (prop) { case ZFS_PROP_RECORDSIZE: case ZFS_PROP_VOLBLOCKSIZE: /* must be power of two within SPA_{MIN,MAX}BLOCKSIZE */ if (intval < SPA_MINBLOCKSIZE || intval > SPA_MAXBLOCKSIZE || !ISP2(intval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be power of 2 from %u " "to %uk"), propname, (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_MOUNTPOINT: if (strcmp(strval, ZFS_MOUNTPOINT_NONE) == 0 || strcmp(strval, ZFS_MOUNTPOINT_LEGACY) == 0) break; if (strval[0] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be an absolute path, " "'none', or 'legacy'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; } /* * For the mountpoint and sharenfs properties, check if it can * be set in a global/non-global zone based on the zoned * property value: * * global zone non-global zone * ----------------------------------------------------- * zoned=on mountpoint (no) mountpoint (yes) * sharenfs (no) sharenfs (no) * * zoned=off mountpoint (yes) N/A * sharenfs (yes) */ if (prop == ZFS_PROP_MOUNTPOINT || prop == ZFS_PROP_SHARENFS) { if (zoned) { if (getzoneid() == GLOBAL_ZONEID) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set on " "dataset in a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } else if (prop == ZFS_PROP_SHARENFS) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set in " "a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } } else if (getzoneid() != GLOBAL_ZONEID) { /* * If zoned property is 'off', this must be in * a globle zone. If not, something is wrong. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set while dataset " "'zoned' property is set"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } } /* * For changes to existing volumes, we have some additional * checks to enforce. */ if (type == ZFS_TYPE_VOLUME && zhp != NULL) { uint64_t volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); uint64_t blocksize = zfs_prop_get_int(zhp, ZFS_PROP_VOLBLOCKSIZE); char buf[64]; switch (prop) { case ZFS_PROP_RESERVATION: if (intval > volsize) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is greater than current " "volume size"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_VOLSIZE: if (intval % blocksize != 0) { zfs_nicenum(blocksize, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a multiple of " "volume block size (%s)"), propname, buf); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (intval == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be zero"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } } } /* * If this is an existing volume, and someone is setting the volsize, * make sure that it matches the reservation, or add it if necessary. */ if (zhp != NULL && type == ZFS_TYPE_VOLUME && nvlist_lookup_uint64(ret, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &intval) == 0) { uint64_t old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); uint64_t old_reservation = zfs_prop_get_int(zhp, ZFS_PROP_RESERVATION); uint64_t new_reservation; if (old_volsize == old_reservation && nvlist_lookup_uint64(ret, zfs_prop_to_name(ZFS_PROP_RESERVATION), &new_reservation) != 0) { if (nvlist_add_uint64(ret, zfs_prop_to_name(ZFS_PROP_RESERVATION), intval) != 0) { (void) no_memory(hdl); goto error; } } } return (ret); error: nvlist_free(ret); return (NULL); } /* * Given a property name and value, set the property for the given dataset. */ int zfs_prop_set(zfs_handle_t *zhp, const char *propname, const char *propval) { zfs_cmd_t zc = { 0 }; int ret = -1; prop_changelist_t *cl = NULL; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *nvl = NULL, *realprops; zfs_prop_t prop; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set property for '%s'"), zhp->zfs_name); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0 || nvlist_add_string(nvl, propname, propval) != 0) { (void) no_memory(hdl); goto error; } if ((realprops = zfs_validate_properties(hdl, zhp->zfs_type, nvl, zfs_prop_get_int(zhp, ZFS_PROP_ZONED), zhp, errbuf)) == NULL) goto error; nvlist_free(nvl); nvl = realprops; prop = zfs_name_to_prop(propname); if ((cl = changelist_gather(zhp, prop, 0)) == NULL) goto error; if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; /* * Execute the corresponding ioctl() to set this property. */ (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zcmd_write_src_nvlist(hdl, &zc, nvl, NULL) != 0) goto error; ret = ioctl(hdl->libzfs_fd, ZFS_IOC_SET_PROP, &zc); if (ret != 0) { switch (errno) { case ENOSPC: /* * For quotas and reservations, ENOSPC indicates * something different; setting a quota or reservation * doesn't use any disk space. */ switch (prop) { case ZFS_PROP_QUOTA: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is less than current used or " "reserved space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; case ZFS_PROP_RESERVATION: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is greater than available space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; default: (void) zfs_standard_error(hdl, errno, errbuf); break; } break; case EBUSY: if (prop == ZFS_PROP_VOLBLOCKSIZE) (void) zfs_error(hdl, EZFS_VOLHASDATA, errbuf); else (void) zfs_standard_error(hdl, EBUSY, errbuf); break; case EROFS: (void) zfs_error(hdl, EZFS_DSREADONLY, errbuf); break; case EOVERFLOW: /* * This platform can't address a volume this big. */ #ifdef _ILP32 if (prop == ZFS_PROP_VOLSIZE) { (void) zfs_error(hdl, EZFS_VOLTOOBIG, errbuf); break; } #endif /* FALLTHROUGH */ default: (void) zfs_standard_error(hdl, errno, errbuf); } } else { /* * Refresh the statistics so the new property value * is reflected. */ if ((ret = changelist_postfix(cl)) == 0) (void) get_stats(zhp); } error: nvlist_free(nvl); zcmd_free_nvlists(&zc); if (cl) changelist_free(cl); return (ret); } /* * Given a property, inherit the value from the parent dataset. */ int zfs_prop_inherit(zfs_handle_t *zhp, const char *propname) { zfs_cmd_t zc = { 0 }; int ret; prop_changelist_t *cl; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; zfs_prop_t prop; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s'"), propname, zhp->zfs_name); if ((prop = zfs_name_to_prop(propname)) == ZFS_PROP_INVAL) { /* * For user properties, the amount of work we have to do is very * small, so just do it here. */ if (!zfs_prop_user(propname)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_SET_PROP, &zc) != 0) return (zfs_standard_error(hdl, errno, errbuf)); return (0); } /* * Verify that this property is inheritable. */ if (zfs_prop_readonly(prop)) return (zfs_error(hdl, EZFS_PROPREADONLY, errbuf)); if (!zfs_prop_inheritable(prop)) return (zfs_error(hdl, EZFS_PROPNONINHERIT, errbuf)); /* * Check to see if the value applies to this type */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (zfs_error(hdl, EZFS_PROPTYPE, errbuf)); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (prop == ZFS_PROP_MOUNTPOINT && getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } /* * Determine datasets which will be affected by this change, if any. */ if ((cl = changelist_gather(zhp, prop, 0)) == NULL) return (-1); if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; if ((ret = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_SET_PROP, &zc)) != 0) { return (zfs_standard_error(hdl, errno, errbuf)); } else { if ((ret = changelist_postfix(cl)) != 0) goto error; /* * Refresh the statistics so the new property is reflected. */ (void) get_stats(zhp); } error: changelist_free(cl); return (ret); } static void nicebool(int value, char *buf, size_t buflen) { if (value) (void) strlcpy(buf, "on", buflen); else (void) strlcpy(buf, "off", buflen); } /* * True DSL properties are stored in an nvlist. The following two functions * extract them appropriately. */ static uint64_t getprop_uint64(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; uint64_t value; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZFS_PROP_VALUE, &value) == 0); verify(nvlist_lookup_string(nv, ZFS_PROP_SOURCE, source) == 0); } else { value = zfs_prop_default_numeric(prop); *source = ""; } return (value); } static char * getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; char *value; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_string(nv, ZFS_PROP_VALUE, &value) == 0); verify(nvlist_lookup_string(nv, ZFS_PROP_SOURCE, source) == 0); } else { if ((value = (char *)zfs_prop_default_string(prop)) == NULL) value = ""; *source = ""; } return (value); } /* * Internal function for getting a numeric property. Both zfs_prop_get() and * zfs_prop_get_int() are built using this interface. * * Certain properties can be overridden using 'mount -o'. In this case, scan * the contents of the /etc/mnttab entry, searching for the appropriate options. * If they differ from the on-disk values, report the current values and mark * the source "temporary". */ static int get_numeric_property(zfs_handle_t *zhp, zfs_prop_t prop, zfs_source_t *src, char **source, uint64_t *val) { struct mnttab mnt; *source = NULL; /* * Because looking up the mount options is potentially expensive * (iterating over all of /etc/mnttab), we defer its calculation until * we're looking up a property which requires its presence. */ if (!zhp->zfs_mntcheck && (prop == ZFS_PROP_ATIME || prop == ZFS_PROP_DEVICES || prop == ZFS_PROP_EXEC || prop == ZFS_PROP_READONLY || prop == ZFS_PROP_SETUID || prop == ZFS_PROP_MOUNTED)) { struct mnttab search = { 0 }, entry; search.mnt_special = (char *)zhp->zfs_name; search.mnt_fstype = MNTTYPE_ZFS; rewind(zhp->zfs_hdl->libzfs_mnttab); if (getmntany(zhp->zfs_hdl->libzfs_mnttab, &entry, &search) == 0 && (zhp->zfs_mntopts = zfs_strdup(zhp->zfs_hdl, entry.mnt_mntopts)) == NULL) return (-1); zhp->zfs_mntcheck = B_TRUE; } if (zhp->zfs_mntopts == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = zhp->zfs_mntopts; switch (prop) { case ZFS_PROP_ATIME: *val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_ATIME) && !*val) { *val = B_TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_NOATIME) && *val) { *val = B_FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } break; case ZFS_PROP_AVAILABLE: *val = zhp->zfs_dmustats.dds_available; break; case ZFS_PROP_DEVICES: *val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_DEVICES) && !*val) { *val = B_TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_NODEVICES) && *val) { *val = B_FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } break; case ZFS_PROP_EXEC: *val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_EXEC) && !*val) { *val = B_TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_NOEXEC) && *val) { *val = B_FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } break; case ZFS_PROP_RECORDSIZE: case ZFS_PROP_COMPRESSION: case ZFS_PROP_ZONED: *val = getprop_uint64(zhp, prop, source); break; case ZFS_PROP_READONLY: *val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_RO) && !*val) { *val = B_TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_RW) && *val) { *val = B_FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } break; case ZFS_PROP_CREATION: *val = zhp->zfs_dmustats.dds_creation_time; break; case ZFS_PROP_QUOTA: if (zhp->zfs_dmustats.dds_quota == 0) *source = ""; /* default */ else *source = zhp->zfs_name; *val = zhp->zfs_dmustats.dds_quota; break; case ZFS_PROP_RESERVATION: if (zhp->zfs_dmustats.dds_reserved == 0) *source = ""; /* default */ else *source = zhp->zfs_name; *val = zhp->zfs_dmustats.dds_reserved; break; case ZFS_PROP_COMPRESSRATIO: /* * Using physical space and logical space, calculate the * compression ratio. We return the number as a multiple of * 100, so '2.5x' would be returned as 250. */ if (zhp->zfs_dmustats.dds_compressed_bytes == 0) *val = 100ULL; else *val = (zhp->zfs_dmustats.dds_uncompressed_bytes * 100 / zhp->zfs_dmustats.dds_compressed_bytes); break; case ZFS_PROP_REFERENCED: /* * 'referenced' refers to the amount of physical space * referenced (possibly shared) by this object. */ *val = zhp->zfs_dmustats.dds_space_refd; break; case ZFS_PROP_SETUID: *val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_SETUID) && !*val) { *val = B_TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_NOSETUID) && *val) { *val = B_FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } break; case ZFS_PROP_VOLSIZE: *val = zhp->zfs_volstats.zv_volsize; break; case ZFS_PROP_VOLBLOCKSIZE: *val = zhp->zfs_volstats.zv_volblocksize; break; case ZFS_PROP_USED: *val = zhp->zfs_dmustats.dds_space_used; break; case ZFS_PROP_CREATETXG: *val = zhp->zfs_dmustats.dds_creation_txg; break; case ZFS_PROP_MOUNTED: *val = (zhp->zfs_mntopts != NULL); break; case ZFS_PROP_CANMOUNT: *val = getprop_uint64(zhp, prop, source); break; default: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "cannot get non-numeric property")); return (zfs_error(zhp->zfs_hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "internal error"))); } return (0); } /* * Calculate the source type, given the raw source string. */ static void get_source(zfs_handle_t *zhp, zfs_source_t *srctype, char *source, char *statbuf, size_t statlen) { if (statbuf == NULL || *srctype == ZFS_SRC_TEMPORARY) return; if (source == NULL) { *srctype = ZFS_SRC_NONE; } else if (source[0] == '\0') { *srctype = ZFS_SRC_DEFAULT; } else { if (strcmp(source, zhp->zfs_name) == 0) { *srctype = ZFS_SRC_LOCAL; } else { (void) strlcpy(statbuf, source, statlen); *srctype = ZFS_SRC_INHERITED; } } } /* * Retrieve a property from the given object. If 'literal' is specified, then * numbers are left as exact values. Otherwise, numbers are converted to a * human-readable form. * * Returns 0 on success, or -1 on error. */ int zfs_prop_get(zfs_handle_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen, zfs_source_t *src, char *statbuf, size_t statlen, boolean_t literal) { char *source = NULL; uint64_t val; char *str; const char *root; const char *strval; /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (-1); if (src) *src = ZFS_SRC_NONE; switch (prop) { case ZFS_PROP_ATIME: case ZFS_PROP_READONLY: case ZFS_PROP_SETUID: case ZFS_PROP_ZONED: case ZFS_PROP_DEVICES: case ZFS_PROP_EXEC: case ZFS_PROP_CANMOUNT: /* * Basic boolean values are built on top of * get_numeric_property(). */ if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); nicebool(val, propbuf, proplen); break; case ZFS_PROP_AVAILABLE: case ZFS_PROP_RECORDSIZE: case ZFS_PROP_CREATETXG: case ZFS_PROP_REFERENCED: case ZFS_PROP_USED: case ZFS_PROP_VOLSIZE: case ZFS_PROP_VOLBLOCKSIZE: /* * Basic numeric values are built on top of * get_numeric_property(). */ if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); break; case ZFS_PROP_COMPRESSION: case ZFS_PROP_CHECKSUM: case ZFS_PROP_SNAPDIR: case ZFS_PROP_ACLMODE: case ZFS_PROP_ACLINHERIT: val = getprop_uint64(zhp, prop, &source); verify(zfs_prop_index_to_string(prop, val, &strval) == 0); (void) strlcpy(propbuf, strval, proplen); break; case ZFS_PROP_CREATION: /* * 'creation' is a time_t stored in the statistics. We convert * this into a string unless 'literal' is specified. */ { time_t time = (time_t) zhp->zfs_dmustats.dds_creation_time; struct tm t; if (literal || localtime_r(&time, &t) == NULL || strftime(propbuf, proplen, "%a %b %e %k:%M %Y", &t) == 0) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t) zhp->zfs_dmustats.dds_creation_time); } break; case ZFS_PROP_MOUNTPOINT: /* * Getting the precise mountpoint can be tricky. * * - for 'none' or 'legacy', return those values. * - for default mountpoints, construct it as /zfs/ * - for inherited mountpoints, we want to take everything * after our ancestor and append it to the inherited value. * * If the pool has an alternate root, we want to prepend that * root to any values we return. */ root = zhp->zfs_root; str = getprop_string(zhp, prop, &source); if (str[0] == '\0') { (void) snprintf(propbuf, proplen, "%s/zfs/%s", root, zhp->zfs_name); } else if (str[0] == '/') { const char *relpath = zhp->zfs_name + strlen(source); if (relpath[0] == '/') relpath++; if (str[1] == '\0') str++; if (relpath[0] == '\0') (void) snprintf(propbuf, proplen, "%s%s", root, str); else (void) snprintf(propbuf, proplen, "%s%s%s%s", root, str, relpath[0] == '@' ? "" : "/", relpath); } else { /* 'legacy' or 'none' */ (void) strlcpy(propbuf, str, proplen); } break; case ZFS_PROP_SHARENFS: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); break; case ZFS_PROP_ORIGIN: (void) strlcpy(propbuf, zhp->zfs_dmustats.dds_clone_of, proplen); /* * If there is no parent at all, return failure to indicate that * it doesn't apply to this dataset. */ if (propbuf[0] == '\0') return (-1); break; case ZFS_PROP_QUOTA: case ZFS_PROP_RESERVATION: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); /* * If quota or reservation is 0, we translate this into 'none' * (unless literal is set), and indicate that it's the default * value. Otherwise, we print the number nicely and indicate * that its set locally. */ if (val == 0) { if (literal) (void) strlcpy(propbuf, "0", proplen); else (void) strlcpy(propbuf, "none", proplen); } else { if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); } break; case ZFS_PROP_COMPRESSRATIO: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); (void) snprintf(propbuf, proplen, "%lld.%02lldx", (longlong_t) val / 100, (longlong_t)val % 100); break; case ZFS_PROP_TYPE: switch (zhp->zfs_type) { case ZFS_TYPE_FILESYSTEM: str = "filesystem"; break; case ZFS_TYPE_VOLUME: str = "volume"; break; case ZFS_TYPE_SNAPSHOT: str = "snapshot"; break; default: abort(); } (void) snprintf(propbuf, proplen, "%s", str); break; case ZFS_PROP_MOUNTED: /* * The 'mounted' property is a pseudo-property that described * whether the filesystem is currently mounted. Even though * it's a boolean value, the typical values of "on" and "off" * don't make sense, so we translate to "yes" and "no". */ if (get_numeric_property(zhp, ZFS_PROP_MOUNTED, src, &source, &val) != 0) return (-1); if (val) (void) strlcpy(propbuf, "yes", proplen); else (void) strlcpy(propbuf, "no", proplen); break; case ZFS_PROP_NAME: /* * The 'name' property is a pseudo-property derived from the * dataset name. It is presented as a real property to simplify * consumers. */ (void) strlcpy(propbuf, zhp->zfs_name, proplen); break; default: abort(); } get_source(zhp, src, source, statbuf, statlen); return (0); } /* * Utility function to get the given numeric property. Does no validation that * the given property is the appropriate type; should only be used with * hard-coded property types. */ uint64_t zfs_prop_get_int(zfs_handle_t *zhp, zfs_prop_t prop) { char *source; zfs_source_t sourcetype = ZFS_SRC_NONE; uint64_t val; (void) get_numeric_property(zhp, prop, &sourcetype, &source, &val); return (val); } /* * Similar to zfs_prop_get(), but returns the value as an integer. */ int zfs_prop_get_numeric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *value, zfs_source_t *src, char *statbuf, size_t statlen) { char *source; /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (zfs_error(zhp->zfs_hdl, EZFS_PROPTYPE, dgettext(TEXT_DOMAIN, "cannot get property '%s'"), zfs_prop_to_name(prop))); if (src) *src = ZFS_SRC_NONE; if (get_numeric_property(zhp, prop, src, &source, value) != 0) return (-1); get_source(zhp, src, source, statbuf, statlen); return (0); } /* * Returns the name of the given zfs handle. */ const char * zfs_get_name(const zfs_handle_t *zhp) { return (zhp->zfs_name); } /* * Returns the type of the given zfs handle. */ zfs_type_t zfs_get_type(const zfs_handle_t *zhp) { return (zhp->zfs_type); } /* * Iterate over all child filesystems */ int zfs_iter_filesystems(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { 0 }; zfs_handle_t *nzhp; int ret; for ((void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_DATASET_LIST_NEXT, &zc) == 0; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name))) { /* * Ignore private dataset names. */ if (dataset_name_hidden(zc.zc_name)) continue; /* * Silently ignore errors, as the only plausible explanation is * that the pool has since been removed. */ if ((nzhp = make_dataset_handle(zhp->zfs_hdl, zc.zc_name)) == NULL) continue; if ((ret = func(nzhp, data)) != 0) return (ret); } /* * An errno value of ESRCH indicates normal completion. If ENOENT is * returned, then the underlying dataset has been removed since we * obtained the handle. */ if (errno != ESRCH && errno != ENOENT) return (zfs_standard_error(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot iterate filesystems"))); return (0); } /* * Iterate over all snapshots */ int zfs_iter_snapshots(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { 0 }; zfs_handle_t *nzhp; int ret; for ((void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name))) { if ((nzhp = make_dataset_handle(zhp->zfs_hdl, zc.zc_name)) == NULL) continue; if ((ret = func(nzhp, data)) != 0) return (ret); } /* * An errno value of ESRCH indicates normal completion. If ENOENT is * returned, then the underlying dataset has been removed since we * obtained the handle. Silently ignore this case, and return success. */ if (errno != ESRCH && errno != ENOENT) return (zfs_standard_error(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot iterate filesystems"))); return (0); } /* * Iterate over all children, snapshots and filesystems */ int zfs_iter_children(zfs_handle_t *zhp, zfs_iter_f func, void *data) { int ret; if ((ret = zfs_iter_filesystems(zhp, func, data)) != 0) return (ret); return (zfs_iter_snapshots(zhp, func, data)); } /* * Given a complete name, return just the portion that refers to the parent. * Can return NULL if this is a pool. */ static int parent_name(const char *path, char *buf, size_t buflen) { char *loc; if ((loc = strrchr(path, '/')) == NULL) return (-1); (void) strncpy(buf, path, MIN(buflen, loc - path)); buf[loc - path] = '\0'; return (0); } /* * Checks to make sure that the given path has a parent, and that it exists. We * also fetch the 'zoned' property, which is used to validate property settings * when creating new datasets. */ static int check_parents(libzfs_handle_t *hdl, const char *path, uint64_t *zoned) { zfs_cmd_t zc = { 0 }; char parent[ZFS_MAXNAMELEN]; char *slash; zfs_handle_t *zhp; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), "cannot create '%s'", path); /* get parent, and check to see if this is just a pool */ if (parent_name(path, parent, sizeof (parent)) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } /* check to see if the pool exists */ if ((slash = strchr(parent, '/')) == NULL) slash = parent + strlen(parent); (void) strncpy(zc.zc_name, parent, slash - parent); zc.zc_name[slash - parent] = '\0'; if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0 && errno == ENOENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool '%s'"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* check to see if the parent dataset exists */ if ((zhp = make_dataset_handle(hdl, parent)) == NULL) { switch (errno) { case ENOENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent does not exist")); return (zfs_error(hdl, EZFS_NOENT, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } *zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); /* we are in a non-global zone, but parent is in the global zone */ if (getzoneid() != GLOBAL_ZONEID && !(*zoned)) { (void) zfs_standard_error(hdl, EPERM, errbuf); zfs_close(zhp); return (-1); } /* make sure parent is a filesystem */ if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent is not a filesystem")); (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (-1); } zfs_close(zhp); return (0); } /* * Create a new filesystem or volume. */ int zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type, nvlist_t *props) { zfs_cmd_t zc = { 0 }; int ret; uint64_t size = 0; uint64_t blocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); char errbuf[1024]; uint64_t zoned; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), path); /* validate the path, taking care to note the extended error message */ if (!zfs_validate_name(hdl, path, type)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, path, &zoned) != 0) return (-1); /* * The failure modes when creating a dataset of a different type over * one that already exists is a little strange. In particular, if you * try to create a dataset on top of an existing dataset, the ioctl() * will return ENOENT, not EEXIST. To prevent this from happening, we * first try to see if the dataset exists. */ (void) strlcpy(zc.zc_name, path, sizeof (zc.zc_name)); if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset already exists")); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (type == ZFS_TYPE_VOLUME) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; if (props && (props = zfs_validate_properties(hdl, type, props, zoned, NULL, errbuf)) == 0) return (-1); if (type == ZFS_TYPE_VOLUME) { /* * If we are creating a volume, the size and block size must * satisfy a few restraints. First, the blocksize must be a * valid block size between SPA_{MIN,MAX}BLOCKSIZE. Second, the * volsize must be a multiple of the block size, and cannot be * zero. */ if (props == NULL || nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &size) != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if ((ret = nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &blocksize)) != 0) { if (ret == ENOENT) { blocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); } else { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume block size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } if (size == 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size cannot be zero")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if (size % blocksize != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size must be a multiple of volume block " "size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } if (props && zcmd_write_src_nvlist(hdl, &zc, props, NULL) != 0) return (-1); nvlist_free(props); /* create the dataset */ ret = ioctl(hdl->libzfs_fd, ZFS_IOC_CREATE, &zc); if (ret == 0 && type == ZFS_TYPE_VOLUME) ret = zvol_create_link(hdl, path); zcmd_free_nvlists(&zc); /* check for failure */ if (ret != 0) { char parent[ZFS_MAXNAMELEN]; (void) parent_name(path, parent, sizeof (parent)); switch (errno) { case ENOENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EINVAL: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent '%s' is not a filesysem"), parent); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); case EDOM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume block size must be power of 2 from " "%u to %uk"), (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); #ifdef _ILP32 case EOVERFLOW: /* * This platform can't address a volume this big. */ if (type == ZFS_TYPE_VOLUME) return (zfs_error(hdl, EZFS_VOLTOOBIG, errbuf)); #endif /* FALLTHROUGH */ default: return (zfs_standard_error(hdl, errno, errbuf)); } } return (0); } /* * Destroys the given dataset. The caller must make sure that the filesystem * isn't mounted, and that there are no active dependents. */ int zfs_destroy(zfs_handle_t *zhp) { zfs_cmd_t zc = { 0 }; int ret; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (ZFS_IS_VOLUME(zhp)) { if (zvol_remove_link(zhp->zfs_hdl, zhp->zfs_name) != 0) return (-1); zc.zc_objset_type = DMU_OST_ZVOL; } else { zc.zc_objset_type = DMU_OST_ZFS; } ret = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_DESTROY, &zc); if (ret != 0) { return (zfs_standard_error(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot destroy '%s'"), zhp->zfs_name)); } remove_mountpoint(zhp); return (0); } struct destroydata { char *snapname; boolean_t gotone; }; static int zfs_remove_link_cb(zfs_handle_t *zhp, void *arg) { struct destroydata *dd = arg; zfs_handle_t *szhp; char name[ZFS_MAXNAMELEN]; (void) strlcpy(name, zhp->zfs_name, sizeof (name)); (void) strlcat(name, "@", sizeof (name)); (void) strlcat(name, dd->snapname, sizeof (name)); szhp = make_dataset_handle(zhp->zfs_hdl, name); if (szhp) { dd->gotone = B_TRUE; zfs_close(szhp); } if (zhp->zfs_type == ZFS_TYPE_VOLUME) { (void) zvol_remove_link(zhp->zfs_hdl, name); /* * NB: this is simply a best-effort. We don't want to * return an error, because then we wouldn't visit all * the volumes. */ } return (zfs_iter_filesystems(zhp, zfs_remove_link_cb, arg)); } /* * Destroys all snapshots with the given name in zhp & descendants. */ int zfs_destroy_snaps(zfs_handle_t *zhp, char *snapname) { zfs_cmd_t zc = { 0 }; int ret; struct destroydata dd = { 0 }; dd.snapname = snapname; (void) zfs_remove_link_cb(zhp, &dd); if (!dd.gotone) { return (zfs_standard_error(zhp->zfs_hdl, ENOENT, dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"), zhp->zfs_name, snapname)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); ret = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_DESTROY_SNAPS, &zc); if (ret != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"), zc.zc_name, snapname); switch (errno) { case EEXIST: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "snapshot is cloned")); return (zfs_error(zhp->zfs_hdl, EZFS_EXISTS, errbuf)); default: return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (0); } /* * Clones the given dataset. The target must be of the same type as the source. */ int zfs_clone(zfs_handle_t *zhp, const char *target, nvlist_t *props) { zfs_cmd_t zc = { 0 }; char parent[ZFS_MAXNAMELEN]; int ret; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_type_t type; uint64_t zoned; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), target); /* validate the target name */ if (!zfs_validate_name(hdl, target, ZFS_TYPE_FILESYSTEM)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, target, &zoned) != 0) return (-1); (void) parent_name(target, parent, sizeof (parent)); /* do the clone */ if (ZFS_IS_VOLUME(zhp)) { zc.zc_objset_type = DMU_OST_ZVOL; type = ZFS_TYPE_VOLUME; } else { zc.zc_objset_type = DMU_OST_ZFS; type = ZFS_TYPE_FILESYSTEM; } if (props) { if ((props = zfs_validate_properties(hdl, type, props, zoned, zhp, errbuf)) == NULL) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, props, NULL) != 0) { nvlist_free(props); return (-1); } nvlist_free(props); } (void) strlcpy(zc.zc_name, target, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, zhp->zfs_name, sizeof (zc.zc_value)); ret = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_CREATE, &zc); zcmd_free_nvlists(&zc); if (ret != 0) { switch (errno) { case ENOENT: /* * The parent doesn't exist. We should have caught this * above, but there may a race condition that has since * destroyed the parent. * * At this point, we don't know whether it's the source * that doesn't exist anymore, or whether the target * dataset doesn't exist. */ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf)); case EXDEV: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "source and target pools differ")); return (zfs_error(zhp->zfs_hdl, EZFS_CROSSTARGET, errbuf)); default: return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } else if (ZFS_IS_VOLUME(zhp)) { ret = zvol_create_link(zhp->zfs_hdl, target); } return (ret); } typedef struct promote_data { char cb_mountpoint[MAXPATHLEN]; const char *cb_target; const char *cb_errbuf; uint64_t cb_pivot_txg; } promote_data_t; static int promote_snap_cb(zfs_handle_t *zhp, void *data) { promote_data_t *pd = data; zfs_handle_t *szhp; char snapname[MAXPATHLEN]; /* We don't care about snapshots after the pivot point */ if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > pd->cb_pivot_txg) return (0); /* Remove the device link if it's a zvol. */ if (ZFS_IS_VOLUME(zhp)) (void) zvol_remove_link(zhp->zfs_hdl, zhp->zfs_name); /* Check for conflicting names */ (void) strlcpy(snapname, pd->cb_target, sizeof (snapname)); (void) strlcat(snapname, strchr(zhp->zfs_name, '@'), sizeof (snapname)); szhp = make_dataset_handle(zhp->zfs_hdl, snapname); if (szhp != NULL) { zfs_close(szhp); zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "snapshot name '%s' from origin \n" "conflicts with '%s' from target"), zhp->zfs_name, snapname); return (zfs_error(zhp->zfs_hdl, EZFS_EXISTS, pd->cb_errbuf)); } return (0); } static int promote_snap_done_cb(zfs_handle_t *zhp, void *data) { promote_data_t *pd = data; /* We don't care about snapshots after the pivot point */ if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > pd->cb_pivot_txg) return (0); /* Create the device link if it's a zvol. */ if (ZFS_IS_VOLUME(zhp)) (void) zvol_create_link(zhp->zfs_hdl, zhp->zfs_name); return (0); } /* * Promotes the given clone fs to be the clone parent. */ int zfs_promote(zfs_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_cmd_t zc = { 0 }; char parent[MAXPATHLEN]; char *cp; int ret; zfs_handle_t *pzhp; promote_data_t pd; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot promote '%s'"), zhp->zfs_name); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots can not be promoted")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } (void) strlcpy(parent, zhp->zfs_dmustats.dds_clone_of, sizeof (parent)); if (parent[0] == '\0') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not a cloned filesystem")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } cp = strchr(parent, '@'); *cp = '\0'; /* Walk the snapshots we will be moving */ pzhp = zfs_open(hdl, zhp->zfs_dmustats.dds_clone_of, ZFS_TYPE_SNAPSHOT); if (pzhp == NULL) return (-1); pd.cb_pivot_txg = zfs_prop_get_int(pzhp, ZFS_PROP_CREATETXG); zfs_close(pzhp); pd.cb_target = zhp->zfs_name; pd.cb_errbuf = errbuf; pzhp = zfs_open(hdl, parent, ZFS_TYPE_ANY); if (pzhp == NULL) return (-1); (void) zfs_prop_get(pzhp, ZFS_PROP_MOUNTPOINT, pd.cb_mountpoint, sizeof (pd.cb_mountpoint), NULL, NULL, 0, FALSE); ret = zfs_iter_snapshots(pzhp, promote_snap_cb, &pd); if (ret != 0) { zfs_close(pzhp); return (-1); } /* issue the ioctl */ (void) strlcpy(zc.zc_value, zhp->zfs_dmustats.dds_clone_of, sizeof (zc.zc_value)); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); ret = ioctl(hdl->libzfs_fd, ZFS_IOC_PROMOTE, &zc); if (ret != 0) { int save_errno = errno; (void) zfs_iter_snapshots(pzhp, promote_snap_done_cb, &pd); zfs_close(pzhp); switch (save_errno) { case EEXIST: /* * There is a conflicting snapshot name. We * should have caught this above, but they could * have renamed something in the mean time. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "conflicting snapshot name from parent '%s'"), parent); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); default: return (zfs_standard_error(hdl, save_errno, errbuf)); } } else { (void) zfs_iter_snapshots(zhp, promote_snap_done_cb, &pd); } zfs_close(pzhp); return (ret); } static int zfs_create_link_cb(zfs_handle_t *zhp, void *arg) { char *snapname = arg; int ret; if (zhp->zfs_type == ZFS_TYPE_VOLUME) { char name[MAXPATHLEN]; (void) strlcpy(name, zhp->zfs_name, sizeof (name)); (void) strlcat(name, "@", sizeof (name)); (void) strlcat(name, snapname, sizeof (name)); (void) zvol_create_link(zhp->zfs_hdl, name); /* * NB: this is simply a best-effort. We don't want to * return an error, because then we wouldn't visit all * the volumes. */ } ret = zfs_iter_filesystems(zhp, zfs_create_link_cb, snapname); zfs_close(zhp); return (ret); } /* * Takes a snapshot of the given dataset */ int zfs_snapshot(libzfs_handle_t *hdl, const char *path, boolean_t recursive) { const char *delim; char *parent; zfs_handle_t *zhp; zfs_cmd_t zc = { 0 }; int ret; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot snapshot '%s'"), path); /* validate the target name */ if (!zfs_validate_name(hdl, path, ZFS_TYPE_SNAPSHOT)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* make sure the parent exists and is of the appropriate type */ delim = strchr(path, '@'); if ((parent = zfs_alloc(hdl, delim - path + 1)) == NULL) return (-1); (void) strncpy(parent, path, delim - path); parent[delim - path] = '\0'; if ((zhp = zfs_open(hdl, parent, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { free(parent); return (-1); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, delim+1, sizeof (zc.zc_value)); zc.zc_cookie = recursive; ret = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_SNAPSHOT, &zc); /* * if it was recursive, the one that actually failed will be in * zc.zc_name. */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create snapshot '%s@%s'"), zc.zc_name, zc.zc_value); if (ret == 0 && recursive) { (void) zfs_iter_filesystems(zhp, zfs_create_link_cb, (char *)delim+1); } if (ret == 0 && zhp->zfs_type == ZFS_TYPE_VOLUME) { ret = zvol_create_link(zhp->zfs_hdl, path); if (ret != 0) { (void) ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_DESTROY, &zc); } } if (ret != 0) (void) zfs_standard_error(hdl, errno, errbuf); free(parent); zfs_close(zhp); return (ret); } /* * Dumps a backup of tosnap, incremental from fromsnap if it isn't NULL. */ int zfs_send(zfs_handle_t *zhp_to, zfs_handle_t *zhp_from) { zfs_cmd_t zc = { 0 }; int ret; char errbuf[1024]; libzfs_handle_t *hdl = zhp_to->zfs_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot send '%s'"), zhp_to->zfs_name); /* do the ioctl() */ (void) strlcpy(zc.zc_name, zhp_to->zfs_name, sizeof (zc.zc_name)); if (zhp_from) { (void) strlcpy(zc.zc_value, zhp_from->zfs_name, sizeof (zc.zc_name)); } else { zc.zc_value[0] = '\0'; } zc.zc_cookie = STDOUT_FILENO; ret = ioctl(zhp_to->zfs_hdl->libzfs_fd, ZFS_IOC_SENDBACKUP, &zc); if (ret != 0) { switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an ealier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } return (ret); } /* * Restores a backup of tosnap from stdin. */ int zfs_receive(libzfs_handle_t *hdl, const char *tosnap, int isprefix, int verbose, int dryrun, boolean_t force) { zfs_cmd_t zc = { 0 }; time_t begin_time; int ioctl_err, err, bytes, size; char *cp; dmu_replay_record_t drr; struct drr_begin *drrb = &zc.zc_begin_record; char errbuf[1024]; prop_changelist_t *clp; begin_time = time(NULL); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); /* trim off snapname, if any */ (void) strlcpy(zc.zc_name, tosnap, sizeof (zc.zc_name)); cp = strchr(zc.zc_name, '@'); if (cp) *cp = '\0'; /* read in the BEGIN record */ cp = (char *)&drr; bytes = 0; do { size = read(STDIN_FILENO, cp, sizeof (drr) - bytes); cp += size; bytes += size; } while (size > 0); if (size < 0 || bytes != sizeof (drr)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (failed to read first record)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } zc.zc_begin_record = drr.drr_u.drr_begin; if (drrb->drr_magic != DMU_BACKUP_MAGIC && drrb->drr_magic != BSWAP_64(DMU_BACKUP_MAGIC)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (bad magic number)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } if (drrb->drr_version != DMU_BACKUP_VERSION && drrb->drr_version != BSWAP_64(DMU_BACKUP_VERSION)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "only version " "0x%llx is supported (stream is version 0x%llx)"), DMU_BACKUP_VERSION, drrb->drr_version); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } /* * Determine name of destination snapshot. */ (void) strlcpy(zc.zc_value, tosnap, sizeof (zc.zc_value)); if (isprefix) { if (strchr(tosnap, '@') != NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination must be a filesystem")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } cp = strchr(drr.drr_u.drr_begin.drr_toname, '/'); if (cp == NULL) cp = drr.drr_u.drr_begin.drr_toname; else cp++; (void) strcat(zc.zc_value, "/"); (void) strcat(zc.zc_value, cp); } else if (strchr(tosnap, '@') == NULL) { /* * they specified just a filesystem; tack on the * snapname from the backup. */ cp = strchr(drr.drr_u.drr_begin.drr_toname, '@'); if (cp == NULL || strlen(tosnap) + strlen(cp) >= MAXNAMELEN) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); (void) strcat(zc.zc_value, cp); } if (drrb->drr_fromguid) { zfs_handle_t *h; /* incremental backup stream */ /* do the ioctl to the containing fs */ (void) strlcpy(zc.zc_name, zc.zc_value, sizeof (zc.zc_name)); cp = strchr(zc.zc_name, '@'); *cp = '\0'; /* make sure destination fs exists */ h = zfs_open(hdl, zc.zc_name, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (h == NULL) return (-1); if (!dryrun) { /* * We need to unmount all the dependents of the dataset * and the dataset itself. If it's a volume * then remove device link. */ if (h->zfs_type == ZFS_TYPE_FILESYSTEM) { clp = changelist_gather(h, ZFS_PROP_NAME, 0); if (clp == NULL) return (-1); if (changelist_prefix(clp) != 0) { changelist_free(clp); return (-1); } } else { (void) zvol_remove_link(hdl, h->zfs_name); } } zfs_close(h); } else { /* full backup stream */ (void) strlcpy(zc.zc_name, zc.zc_value, sizeof (zc.zc_name)); /* make sure they aren't trying to receive into the root */ if (strchr(zc.zc_name, '/') == NULL) { cp = strchr(zc.zc_name, '@'); if (cp) *cp = '\0'; zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' already exists"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (isprefix) { zfs_handle_t *h; /* make sure prefix exists */ h = zfs_open(hdl, tosnap, ZFS_TYPE_FILESYSTEM); if (h == NULL) return (-1); zfs_close(h); /* create any necessary ancestors up to prefix */ zc.zc_objset_type = DMU_OST_ZFS; /* * zc.zc_name is now the full name of the snap * we're restoring into. Attempt to create, * mount, and share any ancestor filesystems, up * to the one that was named. */ for (cp = zc.zc_name + strlen(tosnap) + 1; cp = strchr(cp, '/'); *cp = '/', cp++) { const char *opname; *cp = '\0'; opname = dgettext(TEXT_DOMAIN, "create"); if (zfs_create(hdl, zc.zc_name, ZFS_TYPE_FILESYSTEM, NULL) != 0) { if (errno == EEXIST) continue; goto ancestorerr; } opname = dgettext(TEXT_DOMAIN, "open"); h = zfs_open(hdl, zc.zc_name, ZFS_TYPE_FILESYSTEM); if (h == NULL) goto ancestorerr; opname = dgettext(TEXT_DOMAIN, "mount"); if (zfs_mount(h, NULL, 0) != 0) goto ancestorerr; opname = dgettext(TEXT_DOMAIN, "share"); if (zfs_share(h) != 0) goto ancestorerr; zfs_close(h); continue; ancestorerr: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to %s ancestor '%s'"), opname, zc.zc_name); return (zfs_error(hdl, EZFS_BADRESTORE, errbuf)); } } /* Make sure destination fs does not exist */ cp = strchr(zc.zc_name, '@'); *cp = '\0'; if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' exists"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } /* Do the recvbackup ioctl to the fs's parent. */ cp = strrchr(zc.zc_name, '/'); *cp = '\0'; } zc.zc_cookie = STDIN_FILENO; zc.zc_guid = force; if (verbose) { (void) printf("%s %s stream of %s into %s\n", dryrun ? "would receive" : "receiving", drrb->drr_fromguid ? "incremental" : "full", drr.drr_u.drr_begin.drr_toname, zc.zc_value); (void) fflush(stdout); } if (dryrun) return (0); err = ioctl_err = ioctl(hdl->libzfs_fd, ZFS_IOC_RECVBACKUP, &zc); if (ioctl_err != 0) { switch (errno) { case ENODEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "most recent snapshot does not match incremental " "source")); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); break; case ETXTBSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination has been modified since most recent " "snapshot")); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); break; case EEXIST: if (drrb->drr_fromguid == 0) { /* it's the containing fs that exists */ cp = strchr(zc.zc_value, '@'); *cp = '\0'; } zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination already exists")); (void) zfs_error(hdl, EZFS_EXISTS, dgettext(TEXT_DOMAIN, "cannot restore to %s"), zc.zc_value); break; case EINVAL: (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ECKSUM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid stream (checksum mismatch)")); (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; default: (void) zfs_standard_error(hdl, errno, errbuf); } } /* * Mount or recreate the /dev links for the target filesystem * (if created, or if we tore them down to do an incremental * restore), and the /dev links for the new snapshot (if * created). Also mount any children of the target filesystem * if we did an incremental receive. */ cp = strchr(zc.zc_value, '@'); if (cp && (ioctl_err == 0 || drrb->drr_fromguid)) { zfs_handle_t *h; *cp = '\0'; h = zfs_open(hdl, zc.zc_value, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); *cp = '@'; if (h) { if (h->zfs_type == ZFS_TYPE_VOLUME) { err = zvol_create_link(hdl, h->zfs_name); if (err == 0 && ioctl_err == 0) err = zvol_create_link(hdl, zc.zc_value); } else { if (drrb->drr_fromguid) { err = changelist_postfix(clp); changelist_free(clp); } else { err = zfs_mount(h, NULL, 0); } } zfs_close(h); } } if (err || ioctl_err) return (-1); if (verbose) { char buf1[64]; char buf2[64]; uint64_t bytes = zc.zc_cookie; time_t delta = time(NULL) - begin_time; if (delta == 0) delta = 1; zfs_nicenum(bytes, buf1, sizeof (buf1)); zfs_nicenum(bytes/delta, buf2, sizeof (buf1)); (void) printf("received %sb stream in %lu seconds (%sb/sec)\n", buf1, delta, buf2); } return (0); } /* * Destroy any more recent snapshots. We invoke this callback on any dependents * of the snapshot first. If the 'cb_dependent' member is non-zero, then this * is a dependent and we should just destroy it without checking the transaction * group. */ typedef struct rollback_data { const char *cb_target; /* the snapshot */ uint64_t cb_create; /* creation time reference */ prop_changelist_t *cb_clp; /* changelist pointer */ int cb_error; boolean_t cb_dependent; } rollback_data_t; static int rollback_destroy(zfs_handle_t *zhp, void *data) { rollback_data_t *cbp = data; if (!cbp->cb_dependent) { if (strcmp(zhp->zfs_name, cbp->cb_target) != 0 && zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { cbp->cb_dependent = B_TRUE; if (zfs_iter_dependents(zhp, B_FALSE, rollback_destroy, cbp) != 0) cbp->cb_error = 1; cbp->cb_dependent = B_FALSE; if (zfs_destroy(zhp) != 0) cbp->cb_error = 1; else changelist_remove(zhp, cbp->cb_clp); } } else { if (zfs_destroy(zhp) != 0) cbp->cb_error = 1; else changelist_remove(zhp, cbp->cb_clp); } zfs_close(zhp); return (0); } /* * Rollback the dataset to its latest snapshot. */ static int do_rollback(zfs_handle_t *zhp) { int ret; zfs_cmd_t zc = { 0 }; assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM || zhp->zfs_type == ZFS_TYPE_VOLUME); if (zhp->zfs_type == ZFS_TYPE_VOLUME && zvol_remove_link(zhp->zfs_hdl, zhp->zfs_name) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; /* * We rely on the consumer to verify that there are no newer snapshots * for the given dataset. Given these constraints, we can simply pass * the name on to the ioctl() call. There is still an unlikely race * condition where the user has taken a snapshot since we verified that * this was the most recent. */ if ((ret = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_ROLLBACK, &zc)) != 0) { (void) zfs_standard_error(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot rollback '%s'"), zhp->zfs_name); } else if (zhp->zfs_type == ZFS_TYPE_VOLUME) { ret = zvol_create_link(zhp->zfs_hdl, zhp->zfs_name); } return (ret); } /* * Given a dataset, rollback to a specific snapshot, discarding any * data changes since then and making it the active dataset. * * Any snapshots more recent than the target are destroyed, along with * their dependents. */ int zfs_rollback(zfs_handle_t *zhp, zfs_handle_t *snap, int flag) { int ret; rollback_data_t cb = { 0 }; prop_changelist_t *clp; /* * Unmount all dependendents of the dataset and the dataset itself. * The list we need to gather is the same as for doing rename */ clp = changelist_gather(zhp, ZFS_PROP_NAME, flag ? MS_FORCE: 0); if (clp == NULL) return (-1); if ((ret = changelist_prefix(clp)) != 0) goto out; /* * Destroy all recent snapshots and its dependends. */ cb.cb_target = snap->zfs_name; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); cb.cb_clp = clp; (void) zfs_iter_children(zhp, rollback_destroy, &cb); if ((ret = cb.cb_error) != 0) { (void) changelist_postfix(clp); goto out; } /* * Now that we have verified that the snapshot is the latest, * rollback to the given snapshot. */ ret = do_rollback(zhp); if (ret != 0) { (void) changelist_postfix(clp); goto out; } /* * We only want to re-mount the filesystem if it was mounted in the * first place. */ ret = changelist_postfix(clp); out: changelist_free(clp); return (ret); } /* * Iterate over all dependents for a given dataset. This includes both * hierarchical dependents (children) and data dependents (snapshots and * clones). The bulk of the processing occurs in get_dependents() in * libzfs_graph.c. */ int zfs_iter_dependents(zfs_handle_t *zhp, boolean_t allowrecursion, zfs_iter_f func, void *data) { char **dependents; size_t count; int i; zfs_handle_t *child; int ret = 0; if (get_dependents(zhp->zfs_hdl, allowrecursion, zhp->zfs_name, &dependents, &count) != 0) return (-1); for (i = 0; i < count; i++) { if ((child = make_dataset_handle(zhp->zfs_hdl, dependents[i])) == NULL) continue; if ((ret = func(child, data)) != 0) break; } for (i = 0; i < count; i++) free(dependents[i]); free(dependents); return (ret); } /* * Renames the given dataset. */ int zfs_rename(zfs_handle_t *zhp, const char *target) { int ret; zfs_cmd_t zc = { 0 }; char *delim; prop_changelist_t *cl; char parent[ZFS_MAXNAMELEN]; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; /* if we have the same exact name, just return success */ if (strcmp(zhp->zfs_name, target) == 0) return (0); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename to '%s'"), target); /* * Make sure the target name is valid */ if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { if ((strchr(target, '@') == NULL) || *target == '@') { /* * Snapshot target name is abbreviated, * reconstruct full dataset name */ (void) strlcpy(parent, zhp->zfs_name, sizeof (parent)); delim = strchr(parent, '@'); if (strchr(target, '@') == NULL) *(++delim) = '\0'; else *delim = '\0'; (void) strlcat(parent, target, sizeof (parent)); target = parent; } else { /* * Make sure we're renaming within the same dataset. */ delim = strchr(target, '@'); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '@') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots must be part of same " "dataset")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } } if (!zfs_validate_name(hdl, target, zhp->zfs_type)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } else { if (!zfs_validate_name(hdl, target, zhp->zfs_type)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); uint64_t unused; /* validate parents */ if (check_parents(hdl, target, &unused) != 0) return (-1); (void) parent_name(target, parent, sizeof (parent)); /* make sure we're in the same pool */ verify((delim = strchr(target, '/')) != NULL); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "datasets must be within same pool")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } /* new name cannot be a child of the current dataset name */ if (strncmp(parent, zhp->zfs_name, strlen(zhp->zfs_name)) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "New dataset name cannot be a descendent of " "current dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } } (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zhp->zfs_name); if (getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } if ((cl = changelist_gather(zhp, ZFS_PROP_NAME, 0)) == NULL) return (-1); if (changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value)); if ((ret = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_RENAME, &zc)) != 0) { (void) zfs_standard_error(zhp->zfs_hdl, errno, errbuf); /* * On failure, we still want to remount any filesystems that * were previously mounted, so we don't alter the system state. */ (void) changelist_postfix(cl); } else { changelist_rename(cl, zfs_get_name(zhp), target); ret = changelist_postfix(cl); } error: changelist_free(cl); return (ret); } /* * Given a zvol dataset, issue the ioctl to create the appropriate minor node, * poke devfsadm to create the /dev link, and then wait for the link to appear. */ int zvol_create_link(libzfs_handle_t *hdl, const char *dataset) { zfs_cmd_t zc = { 0 }; di_devlink_handle_t dhdl; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); /* * Issue the appropriate ioctl. */ if (ioctl(hdl->libzfs_fd, ZFS_IOC_CREATE_MINOR, &zc) != 0) { switch (errno) { case EEXIST: /* * Silently ignore the case where the link already * exists. This allows 'zfs volinit' to be run multiple * times without errors. */ return (0); default: return (zfs_standard_error(hdl, errno, dgettext(TEXT_DOMAIN, "cannot create device links " "for '%s'"), dataset)); } } /* * Call devfsadm and wait for the links to magically appear. */ if ((dhdl = di_devlink_init(ZFS_DRIVER, DI_MAKE_LINK)) == NULL) { zfs_error_aux(hdl, strerror(errno)); (void) zfs_error(hdl, EZFS_DEVLINKS, dgettext(TEXT_DOMAIN, "cannot create device links " "for '%s'"), dataset); (void) ioctl(hdl->libzfs_fd, ZFS_IOC_REMOVE_MINOR, &zc); return (-1); } else { (void) di_devlink_fini(&dhdl); } return (0); } /* * Remove a minor node for the given zvol and the associated /dev links. */ int zvol_remove_link(libzfs_handle_t *hdl, const char *dataset) { zfs_cmd_t zc = { 0 }; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); if (ioctl(hdl->libzfs_fd, ZFS_IOC_REMOVE_MINOR, &zc) != 0) { switch (errno) { case ENXIO: /* * Silently ignore the case where the link no longer * exists, so that 'zfs volfini' can be run multiple * times without errors. */ return (0); default: return (zfs_standard_error(hdl, errno, dgettext(TEXT_DOMAIN, "cannot remove device " "links for '%s'"), dataset)); } } return (0); } nvlist_t * zfs_get_user_props(zfs_handle_t *zhp) { return (zhp->zfs_user_props); } /* * Given a comma-separated list of properties, contruct a property list * containing both user-defined and native properties. This function will * return a NULL list if 'all' is specified, which can later be expanded on a * per-dataset basis by zfs_expand_proplist(). */ int zfs_get_proplist(libzfs_handle_t *hdl, char *fields, zfs_proplist_t **listp) { int i; size_t len; char *s, *p; char c; zfs_prop_t prop; zfs_proplist_t *entry; zfs_proplist_t **last; *listp = NULL; last = listp; /* * If 'all' is specified, return a NULL list. */ if (strcmp(fields, "all") == 0) return (0); /* * If no fields were specified, return an error. */ if (fields[0] == '\0') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no properties specified")); return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "bad property list"))); } /* * It would be nice to use getsubopt() here, but the inclusion of column * aliases makes this more effort than it's worth. */ s = fields; while (*s != '\0') { if ((p = strchr(s, ',')) == NULL) { len = strlen(s); p = s + len; } else { len = p - s; } /* * Check for empty options. */ if (len == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty property name")); return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "bad property list"))); } /* * Check all regular property names. */ c = s[len]; s[len] = '\0'; for (i = 0; i < ZFS_NPROP_ALL; i++) { if ((prop = zfs_name_to_prop(s)) != ZFS_PROP_INVAL) break; } /* * If no column is specified, and this isn't a user property, * return failure. */ if (i == ZFS_NPROP_ALL && !zfs_prop_user(s)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), s); return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "bad property list"))); } if ((entry = zfs_alloc(hdl, sizeof (zfs_proplist_t))) == NULL) return (-1); entry->pl_prop = prop; if (prop == ZFS_PROP_INVAL) { if ((entry->pl_user_prop = zfs_strdup(hdl, s)) == NULL) { free(entry); return (-1); } entry->pl_width = strlen(s); } else { entry->pl_width = zfs_prop_width(prop, &entry->pl_fixed); } *last = entry; last = &entry->pl_next; s = p; if (c == ',') s++; } return (0); } void zfs_free_proplist(zfs_proplist_t *pl) { zfs_proplist_t *next; while (pl != NULL) { next = pl->pl_next; free(pl->pl_user_prop); free(pl); pl = next; } } /* * This function is used by 'zfs list' to determine the exact set of columns to * display, and their maximum widths. This does two main things: * * - If this is a list of all properties, then expand the list to include * all native properties, and set a flag so that for each dataset we look * for new unique user properties and add them to the list. * * - For non fixed-width properties, keep track of the maximum width seen * so that we can size the column appropriately. */ int zfs_expand_proplist(zfs_handle_t *zhp, zfs_proplist_t **plp) { libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_prop_t prop; zfs_proplist_t *entry; zfs_proplist_t **last, **start; nvlist_t *userprops, *propval; nvpair_t *elem; char *strval; char buf[ZFS_MAXPROPLEN]; if (*plp == NULL) { /* * If this is the very first time we've been called for an 'all' * specification, expand the list to include all native * properties. */ last = plp; for (prop = 0; prop < ZFS_NPROP_VISIBLE; prop++) { if ((entry = zfs_alloc(hdl, sizeof (zfs_proplist_t))) == NULL) return (-1); entry->pl_prop = prop; entry->pl_width = zfs_prop_width(prop, &entry->pl_fixed); entry->pl_all = B_TRUE; *last = entry; last = &entry->pl_next; } /* * Add 'name' to the beginning of the list, which is handled * specially. */ if ((entry = zfs_alloc(hdl, sizeof (zfs_proplist_t))) == NULL) return (-1); entry->pl_prop = ZFS_PROP_NAME; entry->pl_width = zfs_prop_width(ZFS_PROP_NAME, &entry->pl_fixed); entry->pl_all = B_TRUE; entry->pl_next = *plp; *plp = entry; } userprops = zfs_get_user_props(zhp); entry = *plp; if (entry->pl_all && nvlist_next_nvpair(userprops, NULL) != NULL) { /* * Go through and add any user properties as necessary. We * start by incrementing our list pointer to the first * non-native property. */ start = plp; while (*start != NULL) { if ((*start)->pl_prop == ZFS_PROP_INVAL) break; start = &(*start)->pl_next; } elem = NULL; while ((elem = nvlist_next_nvpair(userprops, elem)) != NULL) { /* * See if we've already found this property in our list. */ for (last = start; *last != NULL; last = &(*last)->pl_next) { if (strcmp((*last)->pl_user_prop, nvpair_name(elem)) == 0) break; } if (*last == NULL) { if ((entry = zfs_alloc(hdl, sizeof (zfs_proplist_t))) == NULL || ((entry->pl_user_prop = zfs_strdup(hdl, nvpair_name(elem)))) == NULL) { free(entry); return (-1); } entry->pl_prop = ZFS_PROP_INVAL; entry->pl_width = strlen(nvpair_name(elem)); entry->pl_all = B_TRUE; *last = entry; } } } /* * Now go through and check the width of any non-fixed columns */ for (entry = *plp; entry != NULL; entry = entry->pl_next) { if (entry->pl_fixed) continue; if (entry->pl_prop != ZFS_PROP_INVAL) { if (zfs_prop_get(zhp, entry->pl_prop, buf, sizeof (buf), NULL, NULL, 0, B_FALSE) == 0) { if (strlen(buf) > entry->pl_width) entry->pl_width = strlen(buf); } } else if (nvlist_lookup_nvlist(userprops, entry->pl_user_prop, &propval) == 0) { verify(nvlist_lookup_string(propval, ZFS_PROP_VALUE, &strval) == 0); if (strlen(strval) > entry->pl_width) entry->pl_width = strlen(strval); } } return (0); }