/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak cpow = __cpow /* INDENT OFF */ /* * dcomplex cpow(dcomplex z); * * z**w analytically equivalent to * * cpow(z,w) = cexp(w clog(z)) * * Let z = x+iy, w = u+iv. * Since * _________ * / 2 2 -1 y * log(x+iy) = log(\/ x + y ) + i tan (---) * x * * 1 2 2 -1 y * = --- log(x + y ) + i tan (---) * 2 x * u 2 2 -1 y * (u+iv)* log(x+iy) = --- log(x + y ) - v tan (---) + (1) * 2 x * * v 2 2 -1 y * i * [ --- log(x + y ) + u tan (---) ] (2) * 2 x * * = r + i q * * Therefore, * w r+iq r * z = e = e (cos(q)+i*sin(q)) * _______ * / 2 2 * r \/ x + y -v*atan2(y,x) * Here e can be expressed as: u * e * * Special cases (in the order of appearance): * 1. (anything) ** 0 is 1 * 2. (anything) ** 1 is itself * 3. When v = 0, y = 0: * If x is finite and negative, and u is finite, then * x ** u = exp(u*pi i) * pow(|x|, u); * otherwise, * x ** u = pow(x, u); * 4. When v = 0, x = 0 or |x| = |y| or x is inf or y is inf: * (x + y i) ** u = r * exp(q i) * where * r = hypot(x,y) ** u * q = u * atan2pi(y, x) * * 5. otherwise, z**w is NAN if any x, y, u, v is a Nan or inf * * Note: many results of special cases are obtained in terms of * polar coordinate. In the conversion from polar to rectangle: * r exp(q i) = r * cos(q) + r * sin(q) i, * we regard r * 0 is 0 except when r is a NaN. */ /* INDENT ON */ #include "libm.h" /* atan2/exp/fabs/hypot/log/pow/scalbn */ /* atan2pi/exp2/sincos/sincospi/__k_clog_r/__k_atan2 */ #include "complex_wrapper.h" extern void sincospi(double, double *, double *); static const double huge = 1e300, tiny = 1e-300, invln2 = 1.44269504088896338700e+00, ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ one = 1.0, zero = 0.0; static const int hiinf = 0x7ff00000; extern double atan2pi(double, double); /* * Assuming |t[0]| > |t[1]| and |t[2]| > |t[3]|, sum4fp subroutine * compute t[0] + t[1] + t[2] + t[3] into two double fp numbers. */ static double sum4fp(double ta[], double *w) { double t1, t2, t3, t4, w1, w2, t; t1 = ta[0]; t2 = ta[1]; t3 = ta[2]; t4 = ta[3]; /* * Rearrange ti so that |t1| >= |t2| >= |t3| >= |t4| */ if (fabs(t4) > fabs(t1)) { t = t1; t1 = t3; t3 = t; t = t2; t2 = t4; t4 = t; } else if (fabs(t3) > fabs(t1)) { t = t1; t1 = t3; if (fabs(t4) > fabs(t2)) { t3 = t4; t4 = t2; t2 = t; } else { t3 = t2; t2 = t; } } else if (fabs(t3) > fabs(t2)) { t = t2; t2 = t3; if (fabs(t4) > fabs(t2)) { t3 = t4; t4 = t; } else t3 = t; } /* summing r = t1 + t2 + t3 + t4 to w1 + w2 */ w1 = t3 + t4; w2 = t4 - (w1 - t3); t = t2 + w1; w2 += w1 - (t - t2); w1 = t + w2; w2 += t - w1; t = t1 + w1; w2 += w1 - (t - t1); w1 = t + w2; *w = w2 - (w1 - t); return (w1); } dcomplex cpow(dcomplex z, dcomplex w) { dcomplex ans; double x, y, u, v, t, c, s, r, x2, y2; double b[4], t1, t2, t3, t4, w1, w2, u1, v1, x1, y1; int ix, iy, hx, lx, hy, ly, hv, hu, iu, iv, lu, lv; int i, j, k; x = D_RE(z); y = D_IM(z); u = D_RE(w); v = D_IM(w); hx = ((int *) &x)[HIWORD]; lx = ((int *) &x)[LOWORD]; hy = ((int *) &y)[HIWORD]; ly = ((int *) &y)[LOWORD]; hu = ((int *) &u)[HIWORD]; lu = ((int *) &u)[LOWORD]; hv = ((int *) &v)[HIWORD]; lv = ((int *) &v)[LOWORD]; ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; iu = hu & 0x7fffffff; iv = hv & 0x7fffffff; j = 0; if ((iv | lv) == 0) { /* z**(real) */ if (((hu - 0x3ff00000) | lu) == 0) { /* z ** 1 = z */ D_RE(ans) = x; D_IM(ans) = y; } else if ((iu | lu) == 0) { /* z ** 0 = 1 */ D_RE(ans) = one; D_IM(ans) = zero; } else if ((iy | ly) == 0) { /* (real)**(real) */ D_IM(ans) = zero; if (hx < 0 && ix < hiinf && iu < hiinf) { /* -x ** u is exp(i*pi*u)*pow(x,u) */ r = pow(-x, u); sincospi(u, &s, &c); D_RE(ans) = (c == zero)? c: c * r; D_IM(ans) = (s == zero)? s: s * r; } else D_RE(ans) = pow(x, u); } else if (((ix | lx) == 0) || ix >= hiinf || iy >= hiinf) { if (isnan(x) || isnan(y) || isnan(u)) D_RE(ans) = D_IM(ans) = x + y + u; else { if ((ix | lx) == 0) r = fabs(y); else r = fabs(x) + fabs(y); t = atan2pi(y, x); sincospi(t * u, &s, &c); D_RE(ans) = (c == zero)? c: c * r; D_IM(ans) = (s == zero)? s: s * r; } } else if (((ix - iy) | (lx - ly)) == 0) { /* |x| = |y| */ if (hx >= 0) { t = (hy >= 0)? 0.25 : -0.25; sincospi(t * u, &s, &c); } else if ((lu & 3) == 0) { t = (hy >= 0)? 0.75 : -0.75; sincospi(t * u, &s, &c); } else { r = (hy >= 0)? u : -u; t = -0.25 * r; w1 = r + t; w2 = t - (w1 - r); sincospi(w1, &t1, &t2); sincospi(w2, &t3, &t4); s = t1 * t4 + t3 * t2; c = t2 * t4 - t1 * t3; } if (ix < 0x3fe00000) /* |x| < 1/2 */ r = pow(fabs(x + x), u) * exp2(-0.5 * u); else if (ix >= 0x3ff00000 || iu < 0x408ff800) /* |x| >= 1 or |u| < 1023 */ r = pow(fabs(x), u) * exp2(0.5 * u); else /* special treatment */ j = 2; if (j == 0) { D_RE(ans) = (c == zero)? c: c * r; D_IM(ans) = (s == zero)? s: s * r; } } else j = 1; if (j == 0) return (ans); } if (iu >= hiinf || iv >= hiinf || ix >= hiinf || iy >= hiinf) { /* * non-zero imag part(s) with inf component(s) yields NaN */ t = fabs(x) + fabs(y) + fabs(u) + fabs(v); D_RE(ans) = D_IM(ans) = t - t; } else { k = 0; /* no scaling */ if (iu > 0x7f000000 || iv > 0x7f000000) { u *= .0009765625; /* scale 2**-10 to avoid overflow */ v *= .0009765625; k = 1; /* scale by 2**-10 */ } /* * Use similated higher precision arithmetic to compute: * r = u * log(hypot(x, y)) - v * atan2(y, x) * q = u * atan2(y, x) + v * log(hypot(x, y)) */ t1 = __k_clog_r(x, y, &t2); t3 = __k_atan2(y, x, &t4); x1 = t1; y1 = t3; u1 = u; v1 = v; ((int *) &u1)[LOWORD] &= 0xf8000000; ((int *) &v1)[LOWORD] &= 0xf8000000; ((int *) &x1)[LOWORD] &= 0xf8000000; ((int *) &y1)[LOWORD] &= 0xf8000000; x2 = t2 - (x1 - t1); /* log(hypot(x,y)) = x1 + x2 */ y2 = t4 - (y1 - t3); /* atan2(y,x) = y1 + y2 */ /* compute q = u * atan2(y, x) + v * log(hypot(x, y)) */ if (j != 2) { b[0] = u1 * y1; b[1] = (u - u1) * y1 + u * y2; if (j == 1) { /* v = 0 */ w1 = b[0] + b[1]; w2 = b[1] - (w1 - b[0]); } else { b[2] = v1 * x1; b[3] = (v - v1) * x1 + v * x2; w1 = sum4fp(b, &w2); } sincos(w1, &t1, &t2); sincos(w2, &t3, &t4); s = t1 * t4 + t3 * t2; c = t2 * t4 - t1 * t3; if (k == 1) /* * square (cos(q) + i sin(q)) k times to get * (cos(2^k * q + i sin(2^k * q) */ for (i = 0; i < 10; i++) { t1 = s * c; c = (c + s) * (c - s); s = t1 + t1; } } /* compute r = u * (t1, t2) - v * (t3, t4) */ b[0] = u1 * x1; b[1] = (u - u1) * x1 + u * x2; if (j == 1) { /* v = 0 */ w1 = b[0] + b[1]; w2 = b[1] - (w1 - b[0]); } else { b[2] = -v1 * y1; b[3] = (v1 - v) * y1 - v * y2; w1 = sum4fp(b, &w2); } /* check over/underflow for exp(w1 + w2) */ if (k && fabs(w1) < 1000.0) { w1 *= 1024; w2 *= 1024; k = 0; } hx = ((int *) &w1)[HIWORD]; lx = ((int *) &w1)[LOWORD]; ix = hx & 0x7fffffff; /* compute exp(w1 + w2) */ if (ix < 0x3c900000) /* exp(tiny < 2**-54) = 1 */ r = one; else if (ix >= 0x40880000) /* overflow/underflow */ r = (hx < 0)? tiny * tiny : huge * huge; else { /* compute exp(w1 + w2) */ k = (int) (invln2 * w1 + ((hx >= 0)? 0.5 : -0.5)); t1 = (double) k; t2 = w1 - t1 * ln2hi; t3 = w2 - t1 * ln2lo; r = exp(t2 + t3); } if (c != zero) c *= r; if (s != zero) s *= r; if (k != 0) { c = scalbn(c, k); s = scalbn(s, k); } D_RE(ans) = c; D_IM(ans) = s; } return (ans); }