/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak catanf = __catanf #include "libm.h" #include "complex_wrapper.h" #if defined(__i386) && !defined(__amd64) extern int __swapRP(int); #endif static const float pi_2 = 1.570796326794896558e+00F, zero = 0.0F, half = 0.5F, two = 2.0F, one = 1.0F; fcomplex catanf(fcomplex z) { fcomplex ans; float x, y, ax, ay, t; double dx, dy, dt; int hx, hy, ix, iy; x = F_RE(z); y = F_IM(z); ax = fabsf(x); ay = fabsf(y); hx = THE_WORD(x); hy = THE_WORD(y); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; if (ix >= 0x7f800000) { /* x is inf or NaN */ if (ix == 0x7f800000) { F_RE(ans) = pi_2; F_IM(ans) = zero; } else { F_RE(ans) = x * x; if (iy == 0 || iy == 0x7f800000) F_IM(ans) = zero; else F_IM(ans) = (fabsf(y) - ay) / (fabsf(y) - ay); } } else if (iy >= 0x7f800000) { /* y is inf or NaN */ if (iy == 0x7f800000) { F_RE(ans) = pi_2; F_IM(ans) = zero; } else { F_RE(ans) = (fabsf(x) - ax) / (fabsf(x) - ax); F_IM(ans) = y * y; } } else if (ix == 0) { /* INDENT OFF */ /* * x = 0 * 1 1 * A = --- * atan2(2x, 1-x*x-y*y) = --- atan2(0,1-|y|) * 2 2 * * 1 [ (y+1)*(y+1) ] 1 2 1 2y * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----) * 4 [ (y-1)*(y-1) ] 2 y-1 2 1-y */ /* INDENT ON */ t = one - ay; if (iy == 0x3f800000) { /* y=1: catan(0,1)=(0,+inf) with 1/0 signal */ F_IM(ans) = ay / ax; F_RE(ans) = zero; } else if (iy > 0x3f800000) { /* y>1 */ F_IM(ans) = half * log1pf(two / (-t)); F_RE(ans) = pi_2; } else { /* y<1 */ F_IM(ans) = half * log1pf((ay + ay) / t); F_RE(ans) = zero; } } else { /* INDENT OFF */ /* * use double precision x,y * 1 * A = --- * atan2(2x, 1-x*x-y*y) * 2 * * 1 [ x*x+(y+1)*(y+1) ] 1 4y * B = - log [ --------------- ] = - log (1+ -----------------) * 4 [ x*x+(y-1)*(y-1) ] 4 x*x + (y-1)*(y-1) */ /* INDENT ON */ #if defined(__i386) && !defined(__amd64) int rp = __swapRP(fp_extended); #endif dx = (double)ax; dy = (double)ay; F_RE(ans) = (float)(0.5 * atan2(dx + dx, 1.0 - dx * dx - dy * dy)); dt = dy - 1.0; F_IM(ans) = (float)(0.25 * log1p(4.0 * dy / (dx * dx + dt * dt))); #if defined(__i386) && !defined(__amd64) if (rp != fp_extended) (void) __swapRP(rp); #endif } if (hx < 0) F_RE(ans) = -F_RE(ans); if (hy < 0) F_IM(ans) = -F_IM(ans); return (ans); }