/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Floating point Bessel's function of the first and second kinds * of order zero: j0(x),y0(x); * * Special cases: * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. */ #pragma weak j0 = __j0 #pragma weak y0 = __y0 #include "libm.h" #include "libm_synonyms.h" #include "libm_protos.h" #include #include #define GENERIC double static const GENERIC zero = 0.0, small = 1.0e-5, tiny = 1.0e-18, one = 1.0, eight = 8.0, invsqrtpi = 5.641895835477562869480794515607725858441e-0001, tpi = 0.636619772367581343075535053490057448; static GENERIC pzero(GENERIC), qzero(GENERIC); static const GENERIC r0[4] = { /* [1.e-5, 1.28] */ -2.500000000000003622131880894830476755537e-0001, 1.095597547334830263234433855932375353303e-0002, -1.819734750463320921799187258987098087697e-0004, 9.977001946806131657544212501069893930846e-0007, }; static const GENERIC s0[4] = { /* [1.e-5, 1.28] */ 1.0, 1.867609810662950169966782360588199673741e-0002, 1.590389206181565490878430827706972074208e-0004, 6.520867386742583632375520147714499522721e-0007, }; static const GENERIC r1[9] = { /* [1.28,8] */ 9.999999999999999942156495584397047660949e-0001, -2.389887722731319130476839836908143731281e-0001, 1.293359476138939027791270393439493640570e-0002, -2.770985642343140122168852400228563364082e-0004, 2.905241575772067678086738389169625218912e-0006, -1.636846356264052597969042009265043251279e-0008, 5.072306160724884775085431059052611737827e-0011, -8.187060730684066824228914775146536139112e-0014, 5.422219326959949863954297860723723423842e-0017, }; static const GENERIC s1[9] = { /* [1.28,8] */ 1.0, 1.101122772686807702762104741932076228349e-0002, 6.140169310641649223411427764669143978228e-0005, 2.292035877515152097976946119293215705250e-0007, 6.356910426504644334558832036362219583789e-0010, 1.366626326900219555045096999553948891401e-0012, 2.280399586866739522891837985560481180088e-0015, 2.801559820648939665270492520004836611187e-0018, 2.073101088320349159764410261466350732968e-0021, }; GENERIC j0(GENERIC x) { GENERIC z, s, c, ss, cc, r, u, v, ox; int i; if (isnan(x)) return (x*x); /* + -> * for Cheetah */ ox = x; x = fabs(x); if (x > 8.0) { if (!finite(x)) return (zero); s = sin(x); c = cos(x); /* * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) * where x0 = x-pi/4 * Better formula: * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) * = 1/sqrt(2) * (cos(x) + sin(x)) * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) * = 1/sqrt(2) * (sin(x) - cos(x)) * To avoid cancellation, use * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) * to compute the worse one. */ if (x > 8.9e307) { /* x+x may overflow */ ss = s-c; cc = s+c; } else if (signbit(s) != signbit(c)) { ss = s - c; cc = -cos(x+x)/ss; } else { cc = s + c; ss = -cos(x+x)/cc; } /* * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) */ if (x > 1.0e40) z = (invsqrtpi*cc)/sqrt(x); else { u = pzero(x); v = qzero(x); z = invsqrtpi*(u*cc-v*ss)/sqrt(x); } /* force to pass SVR4 even the result is wrong (sign) */ if (x > X_TLOSS) return (_SVID_libm_err(ox, z, 34)); else return (z); } if (x <= small) { if (x <= tiny) return (one-x); else return (one-x*x*0.25); } z = x*x; if (x <= 1.28) { r = r0[0]+z*(r0[1]+z*(r0[2]+z*r0[3])); s = s0[0]+z*(s0[1]+z*(s0[2]+z*s0[3])); return (one + z*(r/s)); } else { for (r = r1[8], s = s1[8], i = 7; i >= 0; i--) { r = r*z + r1[i]; s = s*z + s1[i]; } return (r/s); } } static const GENERIC u0[13] = { -7.380429510868722526754723020704317641941e-0002, 1.772607102684869924301459663049874294814e-0001, -1.524370666542713828604078090970799356306e-0002, 4.650819100693891757143771557629924591915e-0004, -7.125768872339528975036316108718239946022e-0006, 6.411017001656104598327565004771515257146e-0008, -3.694275157433032553021246812379258781665e-0010, 1.434364544206266624252820889648445263842e-0012, -3.852064731859936455895036286874139896861e-0015, 7.182052899726138381739945881914874579696e-0018, -9.060556574619677567323741194079797987200e-0021, 7.124435467408860515265552217131230511455e-0024, -2.709726774636397615328813121715432044771e-0027, }; static const GENERIC v0[5] = { 1.0, 4.678678931512549002587702477349214886475e-0003, 9.486828955529948534822800829497565178985e-0006, 1.001495929158861646659010844136682454906e-0008, 4.725338116256021660204443235685358593611e-0012, }; GENERIC y0(GENERIC x) { GENERIC z, /* d, */ s, c, ss, cc, u, v; int i; if (isnan(x)) return (x*x); /* + -> * for Cheetah */ if (x <= zero) { if (x == zero) /* d= -one/(x-x); */ return (_SVID_libm_err(x, x, 8)); else /* d = zero/(x-x); */ return (_SVID_libm_err(x, x, 9)); } if (x > 8.0) { if (!finite(x)) return (zero); s = sin(x); c = cos(x); /* * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) * where x0 = x-pi/4 * Better formula: * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) * = 1/sqrt(2) * (cos(x) + sin(x)) * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) * = 1/sqrt(2) * (sin(x) - cos(x)) * To avoid cancellation, use * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) * to compute the worse one. */ if (x > 8.9e307) { /* x+x may overflow */ ss = s-c; cc = s+c; } else if (signbit(s) != signbit(c)) { ss = s - c; cc = -cos(x+x)/ss; } else { cc = s + c; ss = -cos(x+x)/cc; } /* * j0(x) = 1/sqrt(pi*x) * (P(0,x)*cc - Q(0,x)*ss) * y0(x) = 1/sqrt(pi*x) * (P(0,x)*ss + Q(0,x)*cc) */ if (x > 1.0e40) z = (invsqrtpi*ss)/sqrt(x); else z = invsqrtpi*(pzero(x)*ss+qzero(x)*cc)/sqrt(x); if (x > X_TLOSS) return (_SVID_libm_err(x, z, 35)); else return (z); } if (x <= tiny) { return (u0[0] + tpi*log(x)); } z = x*x; for (u = u0[12], i = 11; i >= 0; i--) u = u*z + u0[i]; v = v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))); return (u/v + tpi*(j0(x)*log(x))); } static const GENERIC pr[7] = { /* [8 -- inf] pzero 6550 */ .4861344183386052721391238447e5, .1377662549407112278133438945e6, .1222466364088289731869114004e6, .4107070084315176135583353374e5, .5026073801860637125889039915e4, .1783193659125479654541542419e3, .88010344055383421691677564e0, }; static const GENERIC ps[7] = { /* [8 -- inf] pzero 6550 */ .4861344183386052721414037058e5, .1378196632630384670477582699e6, .1223967185341006542748936787e6, .4120150243795353639995862617e5, .5068271181053546392490184353e4, .1829817905472769960535671664e3, 1.0, }; static const GENERIC huge = 1.0e10; static GENERIC pzero(GENERIC x) { GENERIC s, r, t, z; int i; if (x > huge) return (one); t = eight/x; z = t*t; r = pr[5]+z*pr[6]; s = ps[5]+z; for (i = 4; i >= 0; i--) { r = r*z + pr[i]; s = s*z + ps[i]; } return (r/s); } static const GENERIC qr[7] = { /* [8 -- inf] qzero 6950 */ -.1731210995701068539185611951e3, -.5522559165936166961235240613e3, -.5604935606637346590614529613e3, -.2200430300226009379477365011e3, -.323869355375648849771296746e2, -.14294979207907956223499258e1, -.834690374102384988158918e-2, }; static const GENERIC qs[7] = { /* [8 -- inf] qzero 6950 */ .1107975037248683865326709645e5, .3544581680627082674651471873e5, .3619118937918394132179019059e5, .1439895563565398007471485822e5, .2190277023344363955930226234e4, .106695157020407986137501682e3, 1.0, }; static GENERIC qzero(GENERIC x) { GENERIC s, r, t, z; int i; if (x > huge) return (-0.125/x); t = eight/x; z = t*t; r = qr[5]+z*qr[6]; s = qs[5]+z; for (i = 4; i >= 0; i--) { r = r*z + qr[i]; s = s*z + qs[i]; } return (t*(r/s)); }