/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * The basic framework for this code came from the reference * implementation for MD5. That implementation is Copyright (C) * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD5 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD5 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. * * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2 * standard, available at http://www.itl.nist.gov/div897/pubs/fip180-2.htm * Not as fast as one would like -- further optimizations are encouraged * and appreciated. */ #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include /* * The sha2 module is created with two modlinkages: * - a modlmisc that allows consumers to directly call the entry points * SHA2Init, SHA2Update, and SHA2Final. * - a modlcrypto that allows the module to register with the Kernel * Cryptographic Framework (KCF) as a software provider for the SHA2 * mechanisms. */ #else #include #include #include #endif /* !_KERNEL */ static void Encode(uint8_t *, uint32_t *, size_t); static void Encode64(uint8_t *, uint64_t *, size_t); static void SHA256Transform(SHA2_CTX *, const uint8_t *); static void SHA512Transform(SHA2_CTX *, const uint8_t *); static uint8_t PADDING[128] = { 0x80, /* all zeros */ }; /* Ch and Maj are the basic SHA2 functions. */ #define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d))) #define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d))) /* Rotates x right n bits. */ #define ROTR(x, n) \ (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n)))) /* Shift x right n bits */ #define SHR(x, n) ((x) >> (n)) /* SHA256 Functions */ #define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22)) #define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25)) #define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3)) #define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10)) #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \ T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \ d += T1; \ T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \ h = T1 + T2 /* SHA384/512 Functions */ #define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) #define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) #define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7)) #define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6)) #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \ T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \ d += T1; \ T2 = BIGSIGMA0(a) + Maj(a, b, c); \ h = T1 + T2 #ifdef _KERNEL static struct modlmisc modlmisc = { &mod_miscops, "SHA2 Message-Digest Algorithm" }; static struct modlcrypto modlcrypto = { &mod_cryptoops, "SHA2 Kernel SW Provider %I%" }; static struct modlinkage modlinkage = { MODREV_1, &modlmisc, &modlcrypto, NULL }; /* * CSPI information (entry points, provider info, etc.) */ #endif /* _KERNEL */ /* * List of support mechanisms in this module. * * It is important to note that in the module, division or modulus calculations * are used on the enumerated type to determine which mechanism is being used; * therefore, changing the order or additional mechanisms should be done * carefully */ typedef enum sha2_mech_type { SHA256_MECH_INFO_TYPE, /* SUN_CKM_SHA256 */ SHA256_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA256_HMAC */ SHA256_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA256_HMAC_GENERAL */ SHA384_MECH_INFO_TYPE, /* SUN_CKM_SHA384 */ SHA384_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA384_HMAC */ SHA384_HMAC_GEN_MECH_INFO_TYPE, /* SUN_CKM_SHA384_HMAC_GENERAL */ SHA512_MECH_INFO_TYPE, /* SUN_CKM_SHA512 */ SHA512_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA512_HMAC */ SHA512_HMAC_GEN_MECH_INFO_TYPE /* SUN_CKM_SHA512_HMAC_GENERAL */ } sha2_mech_type_t; #ifdef _KERNEL #define SHA2_HMAC_MIN_KEY_LEN 8 /* SHA2-HMAC min key length in bits */ #define SHA2_HMAC_MAX_KEY_LEN INT_MAX /* SHA2-HMAC max key length in bits */ #define SHA256_DIGEST_LENGTH 32 /* SHA256 digest length in bytes */ #define SHA384_DIGEST_LENGTH 48 /* SHA384 digest length in bytes */ #define SHA512_DIGEST_LENGTH 64 /* SHA512 digest length in bytes */ #define SHA256_HMAC_BLOCK_SIZE 64 /* SHA256-HMAC block size */ #define SHA512_HMAC_BLOCK_SIZE 128 /* SHA512-HMAC block size */ /* * Context for SHA2 mechanism. */ typedef struct sha2_ctx { sha2_mech_type_t sc_mech_type; /* type of context */ SHA2_CTX sc_sha2_ctx; /* SHA2 context */ } sha2_ctx_t; /* * Context for SHA2 HMAC and HMAC GENERAL mechanisms. */ typedef struct sha2_hmac_ctx { sha2_mech_type_t hc_mech_type; /* type of context */ uint32_t hc_digest_len; /* digest len in bytes */ SHA2_CTX hc_icontext; /* inner SHA2 context */ SHA2_CTX hc_ocontext; /* outer SHA2 context */ } sha2_hmac_ctx_t; /* * Macros to access the SHA2 or SHA2-HMAC contexts from a context passed * by KCF to one of the entry points. */ #define PROV_SHA2_CTX(ctx) ((sha2_ctx_t *)(ctx)->cc_provider_private) #define PROV_SHA2_HMAC_CTX(ctx) ((sha2_hmac_ctx_t *)(ctx)->cc_provider_private) /* to extract the digest length passed as mechanism parameter */ #define PROV_SHA2_GET_DIGEST_LEN(m, len) { \ if (IS_P2ALIGNED((m)->cm_param, sizeof (ulong_t))) \ (len) = (uint32_t)*((ulong_t *)(m)->cm_param); \ else { \ ulong_t tmp_ulong; \ bcopy((m)->cm_param, &tmp_ulong, sizeof (ulong_t)); \ (len) = (uint32_t)tmp_ulong; \ } \ } #define PROV_SHA2_DIGEST_KEY(mech, ctx, key, len, digest) { \ SHA2Init(mech, ctx); \ SHA2Update(ctx, key, len); \ SHA2Final(digest, ctx); \ } /* * Mechanism info structure passed to KCF during registration. */ static crypto_mech_info_t sha2_mech_info_tab[] = { /* SHA256 */ {SUN_CKM_SHA256, SHA256_MECH_INFO_TYPE, CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC, 0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA256-HMAC */ {SUN_CKM_SHA256_HMAC, SHA256_HMAC_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA256-HMAC GENERAL */ {SUN_CKM_SHA256_HMAC_GENERAL, SHA256_HMAC_GEN_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA384 */ {SUN_CKM_SHA384, SHA384_MECH_INFO_TYPE, CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC, 0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA384-HMAC */ {SUN_CKM_SHA384_HMAC, SHA384_HMAC_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA384-HMAC GENERAL */ {SUN_CKM_SHA384_HMAC_GENERAL, SHA384_HMAC_GEN_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA512 */ {SUN_CKM_SHA512, SHA512_MECH_INFO_TYPE, CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC, 0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA512-HMAC */ {SUN_CKM_SHA512_HMAC, SHA512_HMAC_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA512-HMAC GENERAL */ {SUN_CKM_SHA512_HMAC_GENERAL, SHA512_HMAC_GEN_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, SHA2_HMAC_MIN_KEY_LEN, SHA2_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS} }; void SHA2Init(uint64_t, SHA2_CTX *); void SHA2Update(SHA2_CTX *, const uint8_t *, uint32_t); void SHA2Final(uint8_t *, SHA2_CTX *); static void sha2_provider_status(crypto_provider_handle_t, uint_t *); static crypto_control_ops_t sha2_control_ops = { sha2_provider_status }; static int sha2_digest_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_req_handle_t); static int sha2_digest(crypto_ctx_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static int sha2_digest_update(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int sha2_digest_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int sha2_digest_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static crypto_digest_ops_t sha2_digest_ops = { sha2_digest_init, sha2_digest, sha2_digest_update, NULL, sha2_digest_final, sha2_digest_atomic }; static int sha2_mac_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static int sha2_mac_update(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int sha2_mac_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int sha2_mac_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static int sha2_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static crypto_mac_ops_t sha2_mac_ops = { sha2_mac_init, NULL, sha2_mac_update, sha2_mac_final, sha2_mac_atomic, sha2_mac_verify_atomic }; static int sha2_create_ctx_template(crypto_provider_handle_t, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *, size_t *, crypto_req_handle_t); static int sha2_free_context(crypto_ctx_t *); static crypto_ctx_ops_t sha2_ctx_ops = { sha2_create_ctx_template, sha2_free_context }; static crypto_ops_t sha2_crypto_ops = { &sha2_control_ops, &sha2_digest_ops, NULL, &sha2_mac_ops, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &sha2_ctx_ops }; static crypto_provider_info_t sha2_prov_info = { CRYPTO_SPI_VERSION_1, "SHA2 Software Provider", CRYPTO_SW_PROVIDER, {&modlinkage}, NULL, &sha2_crypto_ops, sizeof (sha2_mech_info_tab)/sizeof (crypto_mech_info_t), sha2_mech_info_tab }; static crypto_kcf_provider_handle_t sha2_prov_handle = NULL; int _init() { int ret; if ((ret = mod_install(&modlinkage)) != 0) return (ret); /* * Register with KCF. If the registration fails, log an * error but do not uninstall the module, since the functionality * provided by misc/sha2 should still be available. */ if ((ret = crypto_register_provider(&sha2_prov_info, &sha2_prov_handle)) != CRYPTO_SUCCESS) cmn_err(CE_WARN, "sha2 _init: " "crypto_register_provider() failed (0x%x)", ret); return (0); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } #endif /* _KERNEL */ /* * sparc optimization: * * on the sparc, we can load big endian 32-bit data easily. note that * special care must be taken to ensure the address is 32-bit aligned. * in the interest of speed, we don't check to make sure, since * careful programming can guarantee this for us. */ #if defined(_BIG_ENDIAN) #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) #else /* little endian -- will work on big endian, but slowly */ #define LOAD_BIG_32(addr) \ (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) #endif #if defined(_BIG_ENDIAN) #define LOAD_BIG_64(addr) (*(uint64_t *)(addr)) #else /* little endian -- will work on big endian, but slowly */ #define LOAD_BIG_64(addr) \ (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \ ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \ ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \ ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7]) #endif /* SHA256 Transform */ static void SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk) { uint32_t a = ctx->state.s32[0]; uint32_t b = ctx->state.s32[1]; uint32_t c = ctx->state.s32[2]; uint32_t d = ctx->state.s32[3]; uint32_t e = ctx->state.s32[4]; uint32_t f = ctx->state.s32[5]; uint32_t g = ctx->state.s32[6]; uint32_t h = ctx->state.s32[7]; uint32_t w0, w1, w2, w3, w4, w5, w6, w7; uint32_t w8, w9, w10, w11, w12, w13, w14, w15; uint32_t T1, T2; #if defined(__sparc) static const uint32_t sha256_consts[] = { SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2, SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5, SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8, SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11, SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14, SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17, SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20, SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23, SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26, SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29, SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32, SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35, SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38, SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41, SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44, SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47, SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50, SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53, SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56, SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59, SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62, SHA256_CONST_63 }; #endif if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); blk = (uint8_t *)ctx->buf_un.buf32; } w0 = LOAD_BIG_32(blk + 4 * 0); SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0); w1 = LOAD_BIG_32(blk + 4 * 1); SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1); w2 = LOAD_BIG_32(blk + 4 * 2); SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2); w3 = LOAD_BIG_32(blk + 4 * 3); SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3); w4 = LOAD_BIG_32(blk + 4 * 4); SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4); w5 = LOAD_BIG_32(blk + 4 * 5); SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5); w6 = LOAD_BIG_32(blk + 4 * 6); SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6); w7 = LOAD_BIG_32(blk + 4 * 7); SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7); w8 = LOAD_BIG_32(blk + 4 * 8); SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8); w9 = LOAD_BIG_32(blk + 4 * 9); SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9); w10 = LOAD_BIG_32(blk + 4 * 10); SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10); w11 = LOAD_BIG_32(blk + 4 * 11); SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11); w12 = LOAD_BIG_32(blk + 4 * 12); SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12); w13 = LOAD_BIG_32(blk + 4 * 13); SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13); w14 = LOAD_BIG_32(blk + 4 * 14); SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14); w15 = LOAD_BIG_32(blk + 4 * 15); SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15); w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0); w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1); w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2); w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3); w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4); w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5); w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6); w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7); w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8); w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9); w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10); w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11); w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12); w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13); w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14); w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15); w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0); w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1); w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2); w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3); w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4); w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5); w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6); w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7); w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8); w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9); w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10); w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11); w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12); w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13); w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14); w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15); w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0); w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1); w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2); w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3); w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4); w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5); w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6); w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7); w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8); w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9); w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10); w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11); w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12); w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13); w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14); w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15); ctx->state.s32[0] += a; ctx->state.s32[1] += b; ctx->state.s32[2] += c; ctx->state.s32[3] += d; ctx->state.s32[4] += e; ctx->state.s32[5] += f; ctx->state.s32[6] += g; ctx->state.s32[7] += h; } /* SHA384 and SHA512 Transform */ static void SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk) { uint64_t a = ctx->state.s64[0]; uint64_t b = ctx->state.s64[1]; uint64_t c = ctx->state.s64[2]; uint64_t d = ctx->state.s64[3]; uint64_t e = ctx->state.s64[4]; uint64_t f = ctx->state.s64[5]; uint64_t g = ctx->state.s64[6]; uint64_t h = ctx->state.s64[7]; uint64_t w0, w1, w2, w3, w4, w5, w6, w7; uint64_t w8, w9, w10, w11, w12, w13, w14, w15; uint64_t T1, T2; #if defined(__sparc) static const uint64_t sha512_consts[] = { SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2, SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5, SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8, SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11, SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14, SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17, SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20, SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23, SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26, SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29, SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32, SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35, SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38, SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41, SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44, SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47, SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50, SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53, SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56, SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59, SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62, SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65, SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68, SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71, SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74, SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77, SHA512_CONST_78, SHA512_CONST_79 }; #endif if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */ bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64)); blk = (uint8_t *)ctx->buf_un.buf64; } w0 = LOAD_BIG_64(blk + 8 * 0); SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0); w1 = LOAD_BIG_64(blk + 8 * 1); SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1); w2 = LOAD_BIG_64(blk + 8 * 2); SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2); w3 = LOAD_BIG_64(blk + 8 * 3); SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3); w4 = LOAD_BIG_64(blk + 8 * 4); SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4); w5 = LOAD_BIG_64(blk + 8 * 5); SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5); w6 = LOAD_BIG_64(blk + 8 * 6); SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6); w7 = LOAD_BIG_64(blk + 8 * 7); SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7); w8 = LOAD_BIG_64(blk + 8 * 8); SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8); w9 = LOAD_BIG_64(blk + 8 * 9); SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9); w10 = LOAD_BIG_64(blk + 8 * 10); SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10); w11 = LOAD_BIG_64(blk + 8 * 11); SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11); w12 = LOAD_BIG_64(blk + 8 * 12); SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12); w13 = LOAD_BIG_64(blk + 8 * 13); SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13); w14 = LOAD_BIG_64(blk + 8 * 14); SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14); w15 = LOAD_BIG_64(blk + 8 * 15); SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15); w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0); w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1); w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2); w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3); w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4); w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5); w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6); w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7); w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8); w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9); w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10); w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11); w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12); w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13); w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14); w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15); w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0); w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1); w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2); w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3); w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4); w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5); w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6); w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7); w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8); w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9); w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10); w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11); w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12); w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13); w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14); w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15); w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0); w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1); w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2); w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3); w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4); w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5); w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6); w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7); w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8); w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9); w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10); w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11); w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12); w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13); w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14); w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15); w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0); w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1); w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2); w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3); w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4); w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5); w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6); w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7); w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8); w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9); w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10); w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11); w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12); w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13); w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14); w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15); ctx->state.s64[0] += a; ctx->state.s64[1] += b; ctx->state.s64[2] += c; ctx->state.s64[3] += d; ctx->state.s64[4] += e; ctx->state.s64[5] += f; ctx->state.s64[6] += g; ctx->state.s64[7] += h; } /* * devpro compiler optimization: * * the compiler can generate better code if it knows that `input' and * `output' do not point to the same source. there is no portable * way to tell the compiler this, but the sun compiler recognizes the * `_Restrict' keyword to indicate this condition. use it if possible. */ #ifdef __RESTRICT #define restrict _Restrict #else #define restrict /* nothing */ #endif /* * Encode() * * purpose: to convert a list of numbers from little endian to big endian * input: uint8_t * : place to store the converted big endian numbers * uint32_t * : place to get numbers to convert from * size_t : the length of the input in bytes * output: void */ static void Encode(uint8_t *restrict output, uint32_t *restrict input, size_t len) { size_t i, j; #if defined(__sparc) if (IS_P2ALIGNED(output, sizeof (uint32_t))) { for (i = 0, j = 0; j < len; i++, j += 4) { /* LINTED: pointer alignment */ *((uint32_t *)(output + j)) = input[i]; } } else { #endif /* little endian -- will work on big endian, but slowly */ for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (input[i] >> 24) & 0xff; output[j + 1] = (input[i] >> 16) & 0xff; output[j + 2] = (input[i] >> 8) & 0xff; output[j + 3] = input[i] & 0xff; } #if defined(__sparc) } #endif } static void Encode64(uint8_t *restrict output, uint64_t *restrict input, size_t len) { size_t i, j; #if defined(__sparc) if (IS_P2ALIGNED(output, sizeof (uint64_t))) { for (i = 0, j = 0; j < len; i++, j += 8) { /* LINTED: pointer alignment */ *((uint64_t *)(output + j)) = input[i]; } } else { #endif /* little endian -- will work on big endian, but slowly */ for (i = 0, j = 0; j < len; i++, j += 8) { output[j] = (input[i] >> 56) & 0xff; output[j + 1] = (input[i] >> 48) & 0xff; output[j + 2] = (input[i] >> 40) & 0xff; output[j + 3] = (input[i] >> 32) & 0xff; output[j + 4] = (input[i] >> 24) & 0xff; output[j + 5] = (input[i] >> 16) & 0xff; output[j + 6] = (input[i] >> 8) & 0xff; output[j + 7] = input[i] & 0xff; } #if defined(__sparc) } #endif } #ifdef _KERNEL /* * KCF software provider control entry points. */ /* ARGSUSED */ static void sha2_provider_status(crypto_provider_handle_t provider, uint_t *status) { *status = CRYPTO_PROVIDER_READY; } /* * KCF software provider digest entry points. */ static int sha2_digest_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_req_handle_t req) { /* * Allocate and initialize SHA2 context. */ ctx->cc_provider_private = kmem_alloc(sizeof (sha2_ctx_t), crypto_kmflag(req)); if (ctx->cc_provider_private == NULL) return (CRYPTO_HOST_MEMORY); PROV_SHA2_CTX(ctx)->sc_mech_type = mechanism->cm_type; SHA2Init(mechanism->cm_type, &PROV_SHA2_CTX(ctx)->sc_sha2_ctx); return (CRYPTO_SUCCESS); } /* * Helper SHA2 digest update function for uio data. */ static int sha2_digest_update_uio(SHA2_CTX *sha2_ctx, crypto_data_t *data) { off_t offset = data->cd_offset; size_t length = data->cd_length; uint_t vec_idx; size_t cur_len; /* we support only kernel buffer */ if (data->cd_uio->uio_segflg != UIO_SYSSPACE) return (CRYPTO_ARGUMENTS_BAD); /* * Jump to the first iovec containing data to be * digested. */ for (vec_idx = 0; vec_idx < data->cd_uio->uio_iovcnt && offset >= data->cd_uio->uio_iov[vec_idx].iov_len; offset -= data->cd_uio->uio_iov[vec_idx++].iov_len); if (vec_idx == data->cd_uio->uio_iovcnt) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* * Now do the digesting on the iovecs. */ while (vec_idx < data->cd_uio->uio_iovcnt && length > 0) { cur_len = MIN(data->cd_uio->uio_iov[vec_idx].iov_len - offset, length); SHA2Update(sha2_ctx, (uint8_t *)data->cd_uio-> uio_iov[vec_idx].iov_base + offset, cur_len); length -= cur_len; vec_idx++; offset = 0; } if (vec_idx == data->cd_uio->uio_iovcnt && length > 0) { /* * The end of the specified iovec's was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it provided. */ return (CRYPTO_DATA_LEN_RANGE); } return (CRYPTO_SUCCESS); } /* * Helper SHA2 digest final function for uio data. * digest_len is the length of the desired digest. If digest_len * is smaller than the default SHA2 digest length, the caller * must pass a scratch buffer, digest_scratch, which must * be at least the algorithm's digest length bytes. */ static int sha2_digest_final_uio(SHA2_CTX *sha2_ctx, crypto_data_t *digest, ulong_t digest_len, uchar_t *digest_scratch) { off_t offset = digest->cd_offset; uint_t vec_idx; /* we support only kernel buffer */ if (digest->cd_uio->uio_segflg != UIO_SYSSPACE) return (CRYPTO_ARGUMENTS_BAD); /* * Jump to the first iovec containing ptr to the digest to * be returned. */ for (vec_idx = 0; offset >= digest->cd_uio->uio_iov[vec_idx].iov_len && vec_idx < digest->cd_uio->uio_iovcnt; offset -= digest->cd_uio->uio_iov[vec_idx++].iov_len); if (vec_idx == digest->cd_uio->uio_iovcnt) { /* * The caller specified an offset that is * larger than the total size of the buffers * it provided. */ return (CRYPTO_DATA_LEN_RANGE); } if (offset + digest_len <= digest->cd_uio->uio_iov[vec_idx].iov_len) { /* * The computed SHA2 digest will fit in the current * iovec. */ if (((sha2_ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) && (digest_len != SHA256_DIGEST_LENGTH)) || ((sha2_ctx->algotype > SHA256_HMAC_GEN_MECH_INFO_TYPE) && (digest_len != SHA512_DIGEST_LENGTH))) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ SHA2Final(digest_scratch, sha2_ctx); bcopy(digest_scratch, (uchar_t *)digest-> cd_uio->uio_iov[vec_idx].iov_base + offset, digest_len); } else { SHA2Final((uchar_t *)digest-> cd_uio->uio_iov[vec_idx].iov_base + offset, sha2_ctx); } } else { /* * The computed digest will be crossing one or more iovec's. * This is bad performance-wise but we need to support it. * Allocate a small scratch buffer on the stack and * copy it piece meal to the specified digest iovec's. */ uchar_t digest_tmp[SHA512_DIGEST_LENGTH]; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; SHA2Final(digest_tmp, sha2_ctx); while (vec_idx < digest->cd_uio->uio_iovcnt && length > 0) { cur_len = MIN(digest->cd_uio->uio_iov[vec_idx].iov_len - offset, length); bcopy(digest_tmp + scratch_offset, digest->cd_uio->uio_iov[vec_idx].iov_base + offset, cur_len); length -= cur_len; vec_idx++; scratch_offset += cur_len; offset = 0; } if (vec_idx == digest->cd_uio->uio_iovcnt && length > 0) { /* * The end of the specified iovec's was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it * provided. */ return (CRYPTO_DATA_LEN_RANGE); } } return (CRYPTO_SUCCESS); } /* * Helper SHA2 digest update for mblk's. */ static int sha2_digest_update_mblk(SHA2_CTX *sha2_ctx, crypto_data_t *data) { off_t offset = data->cd_offset; size_t length = data->cd_length; mblk_t *mp; size_t cur_len; /* * Jump to the first mblk_t containing data to be digested. */ for (mp = data->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* * Now do the digesting on the mblk chain. */ while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); SHA2Update(sha2_ctx, mp->b_rptr + offset, cur_len); length -= cur_len; offset = 0; mp = mp->b_cont; } if (mp == NULL && length > 0) { /* * The end of the mblk was reached but the length requested * could not be processed, i.e. The caller requested * to digest more data than it provided. */ return (CRYPTO_DATA_LEN_RANGE); } return (CRYPTO_SUCCESS); } /* * Helper SHA2 digest final for mblk's. * digest_len is the length of the desired digest. If digest_len * is smaller than the default SHA2 digest length, the caller * must pass a scratch buffer, digest_scratch, which must * be at least the algorithm's digest length bytes. */ static int sha2_digest_final_mblk(SHA2_CTX *sha2_ctx, crypto_data_t *digest, ulong_t digest_len, uchar_t *digest_scratch) { off_t offset = digest->cd_offset; mblk_t *mp; /* * Jump to the first mblk_t that will be used to store the digest. */ for (mp = digest->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } if (offset + digest_len <= MBLKL(mp)) { /* * The computed SHA2 digest will fit in the current mblk. * Do the SHA2Final() in-place. */ if (((sha2_ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) && (digest_len != SHA256_DIGEST_LENGTH)) || ((sha2_ctx->algotype > SHA256_HMAC_GEN_MECH_INFO_TYPE) && (digest_len != SHA512_DIGEST_LENGTH))) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ SHA2Final(digest_scratch, sha2_ctx); bcopy(digest_scratch, mp->b_rptr + offset, digest_len); } else { SHA2Final(mp->b_rptr + offset, sha2_ctx); } } else { /* * The computed digest will be crossing one or more mblk's. * This is bad performance-wise but we need to support it. * Allocate a small scratch buffer on the stack and * copy it piece meal to the specified digest iovec's. */ uchar_t digest_tmp[SHA512_DIGEST_LENGTH]; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; SHA2Final(digest_tmp, sha2_ctx); while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); bcopy(digest_tmp + scratch_offset, mp->b_rptr + offset, cur_len); length -= cur_len; mp = mp->b_cont; scratch_offset += cur_len; offset = 0; } if (mp == NULL && length > 0) { /* * The end of the specified mblk was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it * provided. */ return (CRYPTO_DATA_LEN_RANGE); } } return (CRYPTO_SUCCESS); } /* ARGSUSED */ static int sha2_digest(crypto_ctx_t *ctx, crypto_data_t *data, crypto_data_t *digest, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uint_t sha_digest_len; ASSERT(ctx->cc_provider_private != NULL); switch (PROV_SHA2_CTX(ctx)->sc_mech_type) { case SHA256_MECH_INFO_TYPE: sha_digest_len = SHA256_DIGEST_LENGTH; break; case SHA384_MECH_INFO_TYPE: sha_digest_len = SHA384_DIGEST_LENGTH; break; case SHA512_MECH_INFO_TYPE: sha_digest_len = SHA512_DIGEST_LENGTH; break; default: return (CRYPTO_MECHANISM_INVALID); } /* * We need to just return the length needed to store the output. * We should not destroy the context for the following cases. */ if ((digest->cd_length == 0) || (digest->cd_length < sha_digest_len)) { digest->cd_length = sha_digest_len; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do the SHA2 update on the specified input data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: SHA2Update(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, (uint8_t *)data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = sha2_digest_update_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, data); break; case CRYPTO_DATA_MBLK: ret = sha2_digest_update_mblk(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret != CRYPTO_SUCCESS) { /* the update failed, free context and bail */ bzero(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, sizeof (SHA2_CTX)); kmem_free(ctx->cc_provider_private, sizeof (sha2_ctx_t)); ctx->cc_provider_private = NULL; digest->cd_length = 0; return (ret); } /* * Do a SHA2 final, must be done separately since the digest * type can be different than the input data type. */ switch (digest->cd_format) { case CRYPTO_DATA_RAW: SHA2Final((unsigned char *)digest->cd_raw.iov_base + digest->cd_offset, &PROV_SHA2_CTX(ctx)->sc_sha2_ctx); break; case CRYPTO_DATA_UIO: ret = sha2_digest_final_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, digest, sha_digest_len, NULL); break; case CRYPTO_DATA_MBLK: ret = sha2_digest_final_mblk(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, digest, sha_digest_len, NULL); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* all done, free context and return */ if (ret == CRYPTO_SUCCESS) { digest->cd_length = sha_digest_len; } else { /* * Only bzero context on failure, since SHA2Final() * does it for us. */ bzero(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, sizeof (SHA2_CTX)); digest->cd_length = 0; } kmem_free(ctx->cc_provider_private, sizeof (sha2_ctx_t)); ctx->cc_provider_private = NULL; return (ret); } /* ARGSUSED */ static int sha2_digest_update(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * Do the SHA2 update on the specified input data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: SHA2Update(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, (uint8_t *)data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = sha2_digest_update_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, data); break; case CRYPTO_DATA_MBLK: ret = sha2_digest_update_mblk(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } return (ret); } /* ARGSUSED */ static int sha2_digest_final(crypto_ctx_t *ctx, crypto_data_t *digest, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uint_t sha_digest_len; ASSERT(ctx->cc_provider_private != NULL); switch (PROV_SHA2_CTX(ctx)->sc_mech_type) { case SHA256_MECH_INFO_TYPE: sha_digest_len = SHA256_DIGEST_LENGTH; break; case SHA384_MECH_INFO_TYPE: sha_digest_len = SHA384_DIGEST_LENGTH; break; case SHA512_MECH_INFO_TYPE: sha_digest_len = SHA512_DIGEST_LENGTH; break; default: return (CRYPTO_MECHANISM_INVALID); } /* * We need to just return the length needed to store the output. * We should not destroy the context for the following cases. */ if ((digest->cd_length == 0) || (digest->cd_length < sha_digest_len)) { digest->cd_length = sha_digest_len; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do a SHA2 final. */ switch (digest->cd_format) { case CRYPTO_DATA_RAW: SHA2Final((unsigned char *)digest->cd_raw.iov_base + digest->cd_offset, &PROV_SHA2_CTX(ctx)->sc_sha2_ctx); break; case CRYPTO_DATA_UIO: ret = sha2_digest_final_uio(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, digest, sha_digest_len, NULL); break; case CRYPTO_DATA_MBLK: ret = sha2_digest_final_mblk(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, digest, sha_digest_len, NULL); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* all done, free context and return */ if (ret == CRYPTO_SUCCESS) { digest->cd_length = sha_digest_len; } else { /* * Only bzero context this on failure, since SHA2Final() * does it for us. */ bzero(&PROV_SHA2_CTX(ctx)->sc_sha2_ctx, sizeof (SHA2_CTX)); digest->cd_length = 0; } kmem_free(ctx->cc_provider_private, sizeof (sha2_ctx_t)); ctx->cc_provider_private = NULL; return (ret); } /* ARGSUSED */ static int sha2_digest_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_data_t *data, crypto_data_t *digest, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; SHA2_CTX sha2_ctx; uint32_t sha_digest_len; /* * Do the SHA inits. */ SHA2Init(mechanism->cm_type, &sha2_ctx); switch (data->cd_format) { case CRYPTO_DATA_RAW: SHA2Update(&sha2_ctx, (uint8_t *)data-> cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = sha2_digest_update_uio(&sha2_ctx, data); break; case CRYPTO_DATA_MBLK: ret = sha2_digest_update_mblk(&sha2_ctx, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* * Do the SHA updates on the specified input data. */ if (ret != CRYPTO_SUCCESS) { /* the update failed, bail */ bzero(&sha2_ctx, sizeof (SHA2_CTX)); digest->cd_length = 0; return (ret); } if (mechanism->cm_type <= SHA256_HMAC_GEN_MECH_INFO_TYPE) sha_digest_len = SHA256_DIGEST_LENGTH; else sha_digest_len = SHA512_DIGEST_LENGTH; /* * Do a SHA2 final, must be done separately since the digest * type can be different than the input data type. */ switch (digest->cd_format) { case CRYPTO_DATA_RAW: SHA2Final((unsigned char *)digest->cd_raw.iov_base + digest->cd_offset, &sha2_ctx); break; case CRYPTO_DATA_UIO: ret = sha2_digest_final_uio(&sha2_ctx, digest, sha_digest_len, NULL); break; case CRYPTO_DATA_MBLK: ret = sha2_digest_final_mblk(&sha2_ctx, digest, sha_digest_len, NULL); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { digest->cd_length = sha_digest_len; } else { /* * Only bzero context on failure, since SHA2Final() * does it for us. */ bzero(&sha2_ctx, sizeof (SHA2_CTX)); digest->cd_length = 0; } return (ret); } /* * KCF software provider mac entry points. * * SHA2 HMAC is: SHA2(key XOR opad, SHA2(key XOR ipad, text)) * * Init: * The initialization routine initializes what we denote * as the inner and outer contexts by doing * - for inner context: SHA2(key XOR ipad) * - for outer context: SHA2(key XOR opad) * * Update: * Each subsequent SHA2 HMAC update will result in an * update of the inner context with the specified data. * * Final: * The SHA2 HMAC final will do a SHA2 final operation on the * inner context, and the resulting digest will be used * as the data for an update on the outer context. Last * but not least, a SHA2 final on the outer context will * be performed to obtain the SHA2 HMAC digest to return * to the user. */ /* * Initialize a SHA2-HMAC context. */ static void sha2_mac_init_ctx(sha2_hmac_ctx_t *ctx, void *keyval, uint_t length_in_bytes) { uint64_t ipad[SHA512_HMAC_BLOCK_SIZE / sizeof (uint64_t)]; uint64_t opad[SHA512_HMAC_BLOCK_SIZE / sizeof (uint64_t)]; int i, block_size, blocks_per_int64; /* Determine the block size */ if (ctx->hc_mech_type <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { block_size = SHA256_HMAC_BLOCK_SIZE; blocks_per_int64 = SHA256_HMAC_BLOCK_SIZE / sizeof (uint64_t); } else { block_size = SHA512_HMAC_BLOCK_SIZE; blocks_per_int64 = SHA512_HMAC_BLOCK_SIZE / sizeof (uint64_t); } (void) bzero(ipad, block_size); (void) bzero(opad, block_size); (void) bcopy(keyval, ipad, length_in_bytes); (void) bcopy(keyval, opad, length_in_bytes); /* XOR key with ipad (0x36) and opad (0x5c) */ for (i = 0; i < blocks_per_int64; i ++) { ipad[i] ^= 0x3636363636363636; opad[i] ^= 0x5c5c5c5c5c5c5c5c; } /* perform SHA2 on ipad */ SHA2Init(ctx->hc_mech_type, &ctx->hc_icontext); SHA2Update(&ctx->hc_icontext, (uint8_t *)ipad, block_size); /* perform SHA2 on opad */ SHA2Init(ctx->hc_mech_type, &ctx->hc_ocontext); SHA2Update(&ctx->hc_ocontext, (uint8_t *)opad, block_size); } /* */ static int sha2_mac_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); uint_t sha_digest_len, sha_hmac_block_size; /* * Set the digest length and block size to values approriate to the * mechanism */ switch (mechanism->cm_type) { case SHA256_HMAC_MECH_INFO_TYPE: case SHA256_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = SHA256_DIGEST_LENGTH; sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE; break; case SHA384_HMAC_MECH_INFO_TYPE: case SHA384_HMAC_GEN_MECH_INFO_TYPE: case SHA512_HMAC_MECH_INFO_TYPE: case SHA512_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = SHA512_DIGEST_LENGTH; sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE; break; default: return (CRYPTO_MECHANISM_INVALID); } if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); ctx->cc_provider_private = kmem_alloc(sizeof (sha2_hmac_ctx_t), crypto_kmflag(req)); if (ctx->cc_provider_private == NULL) return (CRYPTO_HOST_MEMORY); if (ctx_template != NULL) { /* reuse context template */ bcopy(ctx_template, PROV_SHA2_HMAC_CTX(ctx), sizeof (sha2_hmac_ctx_t)); } else { /* no context template, compute context */ if (keylen_in_bytes > sha_hmac_block_size) { uchar_t digested_key[SHA512_DIGEST_LENGTH]; sha2_hmac_ctx_t *hmac_ctx = ctx->cc_provider_private; /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3, &hmac_ctx->hc_icontext, key->ck_data, keylen_in_bytes, digested_key); sha2_mac_init_ctx(PROV_SHA2_HMAC_CTX(ctx), digested_key, sha_digest_len); } else { sha2_mac_init_ctx(PROV_SHA2_HMAC_CTX(ctx), key->ck_data, keylen_in_bytes); } } /* * Get the mechanism parameters, if applicable. */ PROV_SHA2_HMAC_CTX(ctx)->hc_mech_type = mechanism->cm_type; if (mechanism->cm_type % 3 == 2) { if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (ulong_t)) ret = CRYPTO_MECHANISM_PARAM_INVALID; PROV_SHA2_GET_DIGEST_LEN(mechanism, PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len); if (PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len > sha_digest_len) ret = CRYPTO_MECHANISM_PARAM_INVALID; } if (ret != CRYPTO_SUCCESS) { bzero(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t)); kmem_free(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t)); ctx->cc_provider_private = NULL; } return (ret); } /* ARGSUSED */ static int sha2_mac_update(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * Do a SHA2 update of the inner context using the specified * data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: SHA2Update(&PROV_SHA2_HMAC_CTX(ctx)->hc_icontext, (uint8_t *)data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = sha2_digest_update_uio( &PROV_SHA2_HMAC_CTX(ctx)->hc_icontext, data); break; case CRYPTO_DATA_MBLK: ret = sha2_digest_update_mblk( &PROV_SHA2_HMAC_CTX(ctx)->hc_icontext, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } return (ret); } /* ARGSUSED */ static int sha2_mac_final(crypto_ctx_t *ctx, crypto_data_t *mac, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uchar_t digest[SHA512_DIGEST_LENGTH]; uint32_t digest_len, sha_digest_len; ASSERT(ctx->cc_provider_private != NULL); /* Set the digest lengths to values approriate to the mechanism */ switch (PROV_SHA2_HMAC_CTX(ctx)->hc_mech_type) { case SHA256_HMAC_MECH_INFO_TYPE: sha_digest_len = digest_len = SHA256_DIGEST_LENGTH; break; case SHA384_HMAC_MECH_INFO_TYPE: case SHA512_HMAC_MECH_INFO_TYPE: sha_digest_len = digest_len = SHA512_DIGEST_LENGTH; break; case SHA256_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = SHA256_DIGEST_LENGTH; digest_len = PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len; break; case SHA384_HMAC_GEN_MECH_INFO_TYPE: case SHA512_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = SHA512_DIGEST_LENGTH; digest_len = PROV_SHA2_HMAC_CTX(ctx)->hc_digest_len; break; } /* * We need to just return the length needed to store the output. * We should not destroy the context for the following cases. */ if ((mac->cd_length == 0) || (mac->cd_length < digest_len)) { mac->cd_length = digest_len; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do a SHA2 final on the inner context. */ SHA2Final(digest, &PROV_SHA2_HMAC_CTX(ctx)->hc_icontext); /* * Do a SHA2 update on the outer context, feeding the inner * digest as data. */ SHA2Update(&PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext, digest, sha_digest_len); /* * Do a SHA2 final on the outer context, storing the computing * digest in the users buffer. */ switch (mac->cd_format) { case CRYPTO_DATA_RAW: if (digest_len != sha_digest_len) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ SHA2Final(digest, &PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext); bcopy(digest, (unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, digest_len); } else { SHA2Final((unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, &PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext); } break; case CRYPTO_DATA_UIO: ret = sha2_digest_final_uio( &PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext, mac, digest_len, digest); break; case CRYPTO_DATA_MBLK: ret = sha2_digest_final_mblk( &PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext, mac, digest_len, digest); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { mac->cd_length = digest_len; } else { /* * Only bzero outer context on failure, since SHA2Final() * does it for us. * We don't have to bzero the inner context since we * always invoke a SHA2Final() on it. */ bzero(&PROV_SHA2_HMAC_CTX(ctx)->hc_ocontext, sizeof (SHA2_CTX)); mac->cd_length = 0; } kmem_free(ctx->cc_provider_private, sizeof (sha2_hmac_ctx_t)); ctx->cc_provider_private = NULL; return (ret); } #define SHA2_MAC_UPDATE(data, ctx, ret) { \ switch (data->cd_format) { \ case CRYPTO_DATA_RAW: \ SHA2Update(&(ctx).hc_icontext, \ (uint8_t *)data->cd_raw.iov_base + \ data->cd_offset, data->cd_length); \ break; \ case CRYPTO_DATA_UIO: \ ret = sha2_digest_update_uio(&(ctx).hc_icontext, data); \ break; \ case CRYPTO_DATA_MBLK: \ ret = sha2_digest_update_mblk(&(ctx).hc_icontext, \ data); \ break; \ default: \ ret = CRYPTO_ARGUMENTS_BAD; \ } \ } /* ARGSUSED */ static int sha2_mac_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uchar_t digest[SHA512_DIGEST_LENGTH]; sha2_hmac_ctx_t sha2_hmac_ctx; uint32_t sha_digest_len, digest_len, sha_hmac_block_size; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); /* * Set the digest length and block size to values approriate to the * mechanism */ switch (mechanism->cm_type) { case SHA256_HMAC_MECH_INFO_TYPE: case SHA256_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = digest_len = SHA256_DIGEST_LENGTH; sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE; break; case SHA384_HMAC_MECH_INFO_TYPE: case SHA384_HMAC_GEN_MECH_INFO_TYPE: case SHA512_HMAC_MECH_INFO_TYPE: case SHA512_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = digest_len = SHA512_DIGEST_LENGTH; sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE; break; default: return (CRYPTO_MECHANISM_INVALID); } /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); if (ctx_template != NULL) { /* reuse context template */ bcopy(ctx_template, &sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t)); } else { sha2_hmac_ctx.hc_mech_type = mechanism->cm_type; /* no context template, initialize context */ if (keylen_in_bytes > sha_hmac_block_size) { /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3, &sha2_hmac_ctx.hc_icontext, key->ck_data, keylen_in_bytes, digest); sha2_mac_init_ctx(&sha2_hmac_ctx, digest, sha_digest_len); } else { sha2_mac_init_ctx(&sha2_hmac_ctx, key->ck_data, keylen_in_bytes); } } /* get the mechanism parameters, if applicable */ if ((mechanism->cm_type % 3) == 2) { if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (ulong_t)) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } PROV_SHA2_GET_DIGEST_LEN(mechanism, digest_len); if (digest_len > sha_digest_len) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } } /* do a SHA2 update of the inner context using the specified data */ SHA2_MAC_UPDATE(data, sha2_hmac_ctx, ret); if (ret != CRYPTO_SUCCESS) /* the update failed, free context and bail */ goto bail; /* * Do a SHA2 final on the inner context. */ SHA2Final(digest, &sha2_hmac_ctx.hc_icontext); /* * Do an SHA2 update on the outer context, feeding the inner * digest as data. * * Make sure that SHA384 is handled special because * it cannot feed a 60-byte inner hash to the outer */ if (mechanism->cm_type == SHA384_HMAC_MECH_INFO_TYPE || mechanism->cm_type == SHA384_HMAC_GEN_MECH_INFO_TYPE) SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest, SHA384_DIGEST_LENGTH); else SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest, sha_digest_len); /* * Do a SHA2 final on the outer context, storing the computed * digest in the users buffer. */ switch (mac->cd_format) { case CRYPTO_DATA_RAW: if (digest_len != sha_digest_len) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ SHA2Final(digest, &sha2_hmac_ctx.hc_ocontext); bcopy(digest, (unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, digest_len); } else { SHA2Final((unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, &sha2_hmac_ctx.hc_ocontext); } break; case CRYPTO_DATA_UIO: ret = sha2_digest_final_uio(&sha2_hmac_ctx.hc_ocontext, mac, digest_len, digest); break; case CRYPTO_DATA_MBLK: ret = sha2_digest_final_mblk(&sha2_hmac_ctx.hc_ocontext, mac, digest_len, digest); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { mac->cd_length = digest_len; } else { /* * Only bzero outer context on failure, since SHA2Final() * does it for us. * We don't have to bzero the inner context since we * always invoke a SHA2Final() on it. */ bzero(&sha2_hmac_ctx.hc_ocontext, sizeof (SHA2_CTX)); mac->cd_length = 0; } return (ret); bail: bzero(&sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t)); mac->cd_length = 0; return (ret); } /* ARGSUSED */ static int sha2_mac_verify_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uchar_t digest[SHA512_DIGEST_LENGTH]; sha2_hmac_ctx_t sha2_hmac_ctx; uint32_t sha_digest_len, digest_len, sha_hmac_block_size; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); /* * Set the digest length and block size to values approriate to the * mechanism */ switch (mechanism->cm_type) { case SHA256_HMAC_MECH_INFO_TYPE: case SHA256_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = digest_len = SHA256_DIGEST_LENGTH; sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE; break; case SHA384_HMAC_MECH_INFO_TYPE: case SHA384_HMAC_GEN_MECH_INFO_TYPE: case SHA512_HMAC_MECH_INFO_TYPE: case SHA512_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = digest_len = SHA512_DIGEST_LENGTH; sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE; break; default: return (CRYPTO_MECHANISM_INVALID); } /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); if (ctx_template != NULL) { /* reuse context template */ bcopy(ctx_template, &sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t)); } else { /* no context template, initialize context */ if (keylen_in_bytes > sha_hmac_block_size) { /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3, &sha2_hmac_ctx.hc_icontext, key->ck_data, keylen_in_bytes, digest); sha2_mac_init_ctx(&sha2_hmac_ctx, digest, sha_digest_len); } else { sha2_mac_init_ctx(&sha2_hmac_ctx, key->ck_data, keylen_in_bytes); } } /* get the mechanism parameters, if applicable */ if (mechanism->cm_type % 3 == 2) { if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (ulong_t)) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } PROV_SHA2_GET_DIGEST_LEN(mechanism, digest_len); if (digest_len > sha_digest_len) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } } if (mac->cd_length != digest_len) { ret = CRYPTO_INVALID_MAC; goto bail; } /* do a SHA2 update of the inner context using the specified data */ SHA2_MAC_UPDATE(data, sha2_hmac_ctx, ret); if (ret != CRYPTO_SUCCESS) /* the update failed, free context and bail */ goto bail; /* do a SHA2 final on the inner context */ SHA2Final(digest, &sha2_hmac_ctx.hc_icontext); /* * Do an SHA2 update on the outer context, feeding the inner * digest as data. */ SHA2Update(&sha2_hmac_ctx.hc_ocontext, digest, sha_digest_len); /* * Do a SHA2 final on the outer context, storing the computed * digest in the users buffer. */ SHA2Final(digest, &sha2_hmac_ctx.hc_ocontext); /* * Compare the computed digest against the expected digest passed * as argument. */ switch (mac->cd_format) { case CRYPTO_DATA_RAW: if (bcmp(digest, (unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, digest_len) != 0) ret = CRYPTO_INVALID_MAC; break; case CRYPTO_DATA_UIO: { off_t offset = mac->cd_offset; uint_t vec_idx; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; /* we support only kernel buffer */ if (mac->cd_uio->uio_segflg != UIO_SYSSPACE) return (CRYPTO_ARGUMENTS_BAD); /* jump to the first iovec containing the expected digest */ for (vec_idx = 0; offset >= mac->cd_uio->uio_iov[vec_idx].iov_len && vec_idx < mac->cd_uio->uio_iovcnt; offset -= mac->cd_uio->uio_iov[vec_idx++].iov_len); if (vec_idx == mac->cd_uio->uio_iovcnt) { /* * The caller specified an offset that is * larger than the total size of the buffers * it provided. */ ret = CRYPTO_DATA_LEN_RANGE; break; } /* do the comparison of computed digest vs specified one */ while (vec_idx < mac->cd_uio->uio_iovcnt && length > 0) { cur_len = MIN(mac->cd_uio->uio_iov[vec_idx].iov_len - offset, length); if (bcmp(digest + scratch_offset, mac->cd_uio->uio_iov[vec_idx].iov_base + offset, cur_len) != 0) { ret = CRYPTO_INVALID_MAC; break; } length -= cur_len; vec_idx++; scratch_offset += cur_len; offset = 0; } break; } case CRYPTO_DATA_MBLK: { off_t offset = mac->cd_offset; mblk_t *mp; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; /* jump to the first mblk_t containing the expected digest */ for (mp = mac->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than * the total size of the buffers it provided. */ ret = CRYPTO_DATA_LEN_RANGE; break; } while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); if (bcmp(digest + scratch_offset, mp->b_rptr + offset, cur_len) != 0) { ret = CRYPTO_INVALID_MAC; break; } length -= cur_len; mp = mp->b_cont; scratch_offset += cur_len; offset = 0; } break; } default: ret = CRYPTO_ARGUMENTS_BAD; } return (ret); bail: bzero(&sha2_hmac_ctx, sizeof (sha2_hmac_ctx_t)); mac->cd_length = 0; return (ret); } /* * KCF software provider context management entry points. */ /* ARGSUSED */ static int sha2_create_ctx_template(crypto_provider_handle_t provider, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t *ctx_template, size_t *ctx_template_size, crypto_req_handle_t req) { sha2_hmac_ctx_t *sha2_hmac_ctx_tmpl; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); uint32_t sha_digest_len, sha_hmac_block_size; /* * Set the digest length and block size to values approriate to the * mechanism */ switch (mechanism->cm_type) { case SHA256_HMAC_MECH_INFO_TYPE: case SHA256_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = SHA256_DIGEST_LENGTH; sha_hmac_block_size = SHA256_HMAC_BLOCK_SIZE; break; case SHA384_HMAC_MECH_INFO_TYPE: case SHA384_HMAC_GEN_MECH_INFO_TYPE: case SHA512_HMAC_MECH_INFO_TYPE: case SHA512_HMAC_GEN_MECH_INFO_TYPE: sha_digest_len = SHA512_DIGEST_LENGTH; sha_hmac_block_size = SHA512_HMAC_BLOCK_SIZE; break; default: return (CRYPTO_MECHANISM_INVALID); } /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); /* * Allocate and initialize SHA2 context. */ sha2_hmac_ctx_tmpl = kmem_alloc(sizeof (sha2_hmac_ctx_t), crypto_kmflag(req)); if (sha2_hmac_ctx_tmpl == NULL) return (CRYPTO_HOST_MEMORY); sha2_hmac_ctx_tmpl->hc_mech_type = mechanism->cm_type; if (keylen_in_bytes > sha_hmac_block_size) { uchar_t digested_key[SHA512_DIGEST_LENGTH]; /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_SHA2_DIGEST_KEY(mechanism->cm_type / 3, &sha2_hmac_ctx_tmpl->hc_icontext, key->ck_data, keylen_in_bytes, digested_key); sha2_mac_init_ctx(sha2_hmac_ctx_tmpl, digested_key, sha_digest_len); } else { sha2_mac_init_ctx(sha2_hmac_ctx_tmpl, key->ck_data, keylen_in_bytes); } *ctx_template = (crypto_spi_ctx_template_t)sha2_hmac_ctx_tmpl; *ctx_template_size = sizeof (sha2_hmac_ctx_t); return (CRYPTO_SUCCESS); } static int sha2_free_context(crypto_ctx_t *ctx) { uint_t ctx_len; if (ctx->cc_provider_private == NULL) return (CRYPTO_SUCCESS); /* * We have to free either SHA2 or SHA2-HMAC contexts, which * have different lengths. * * Note: Below is dependent on the mechanism ordering. */ if (PROV_SHA2_CTX(ctx)->sc_mech_type % 3 == 0) ctx_len = sizeof (sha2_ctx_t); else ctx_len = sizeof (sha2_hmac_ctx_t); bzero(ctx->cc_provider_private, ctx_len); kmem_free(ctx->cc_provider_private, ctx_len); ctx->cc_provider_private = NULL; return (CRYPTO_SUCCESS); } #endif /* _KERNEL */ void SHA2Init(uint64_t mech, SHA2_CTX *ctx) { switch (mech) { case SHA256_MECH_INFO_TYPE: case SHA256_HMAC_MECH_INFO_TYPE: case SHA256_HMAC_GEN_MECH_INFO_TYPE: ctx->state.s32[0] = 0x6a09e667U; ctx->state.s32[1] = 0xbb67ae85U; ctx->state.s32[2] = 0x3c6ef372U; ctx->state.s32[3] = 0xa54ff53aU; ctx->state.s32[4] = 0x510e527fU; ctx->state.s32[5] = 0x9b05688cU; ctx->state.s32[6] = 0x1f83d9abU; ctx->state.s32[7] = 0x5be0cd19U; break; case SHA384_MECH_INFO_TYPE: case SHA384_HMAC_MECH_INFO_TYPE: case SHA384_HMAC_GEN_MECH_INFO_TYPE: ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL; ctx->state.s64[1] = 0x629a292a367cd507ULL; ctx->state.s64[2] = 0x9159015a3070dd17ULL; ctx->state.s64[3] = 0x152fecd8f70e5939ULL; ctx->state.s64[4] = 0x67332667ffc00b31ULL; ctx->state.s64[5] = 0x8eb44a8768581511ULL; ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL; ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL; break; case SHA512_MECH_INFO_TYPE: case SHA512_HMAC_MECH_INFO_TYPE: case SHA512_HMAC_GEN_MECH_INFO_TYPE: ctx->state.s64[0] = 0x6a09e667f3bcc908ULL; ctx->state.s64[1] = 0xbb67ae8584caa73bULL; ctx->state.s64[2] = 0x3c6ef372fe94f82bULL; ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL; ctx->state.s64[4] = 0x510e527fade682d1ULL; ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL; ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL; ctx->state.s64[7] = 0x5be0cd19137e2179ULL; break; #ifdef _KERNEL default: cmn_err(CE_WARN, "sha2_init: " "failed to find a supported algorithm: 0x%x", (uint32_t)mech); #endif /* _KERNEL */ } ctx->algotype = mech; ctx->count.c64[0] = ctx->count.c64[1] = 0; } /* * SHA2Update() * * purpose: continues an sha2 digest operation, using the message block * to update the context. * input: SHA2_CTX * : the context to update * uint8_t * : the message block * uint32_t : the length of the message block in bytes * output: void */ void SHA2Update(SHA2_CTX *ctx, const uint8_t *input, uint32_t input_len) { uint32_t i, buf_index, buf_len, buf_limit; /* check for noop */ if (input_len == 0) return; if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { buf_limit = 64; /* compute number of bytes mod 64 */ buf_index = (ctx->count.c32[1] >> 3) & 0x3F; /* update number of bits */ if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3)) ctx->count.c32[0]++; ctx->count.c32[0] += (input_len >> 29); } else { buf_limit = 128; /* compute number of bytes mod 128 */ buf_index = (ctx->count.c64[1] >> 3) & 0x7F; /* update number of bits */ if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3)) ctx->count.c64[0]++; ctx->count.c64[0] += (input_len >> 29); } buf_len = buf_limit - buf_index; /* transform as many times as possible */ i = 0; if (input_len >= buf_len) { /* * general optimization: * * only do initial bcopy() and SHA2Transform() if * buf_index != 0. if buf_index == 0, we're just * wasting our time doing the bcopy() since there * wasn't any data left over from a previous call to * SHA2Update(). */ if (buf_index) { bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) SHA256Transform(ctx, ctx->buf_un.buf8); else SHA512Transform(ctx, ctx->buf_un.buf8); i = buf_len; } for (; i + buf_limit - 1 < input_len; i += buf_limit) { if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) SHA256Transform(ctx, &input[i]); else SHA512Transform(ctx, &input[i]); } /* * general optimization: * * if i and input_len are the same, return now instead * of calling bcopy(), since the bcopy() in this case * will be an expensive nop. */ if (input_len == i) return; buf_index = 0; } /* buffer remaining input */ bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); } /* * SHA2Final() * * purpose: ends an sha2 digest operation, finalizing the message digest and * zeroing the context. * input: uint8_t * : a buffer to store the digest in * SHA2_CTX * : the context to finalize, save, and zero * output: void */ void SHA2Final(uint8_t *digest, SHA2_CTX *ctx) { uint8_t bitcount_be[sizeof (ctx->count.c32)]; uint8_t bitcount_be64[sizeof (ctx->count.c64)]; uint32_t index; if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { index = (ctx->count.c32[1] >> 3) & 0x3f; Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be)); SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); SHA2Update(ctx, bitcount_be, sizeof (bitcount_be)); Encode(digest, ctx->state.s32, sizeof (ctx->state.s32)); } else { index = (ctx->count.c64[1] >> 3) & 0x7f; Encode64(bitcount_be64, ctx->count.c64, sizeof (bitcount_be64)); SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index); SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64)); if (ctx->algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) { ctx->state.s64[6] = ctx->state.s64[7] = 0; Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 6); } else Encode64(digest, ctx->state.s64, sizeof (ctx->state.s64)); } }