/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #ifndef _KERNEL #include #include #include #include #endif #include #include #include #include /* * Algorithm independent CBC functions. */ int cbc_encrypt_contiguous_blocks(cbc_ctx_t *ctx, char *data, size_t length, crypto_data_t *out, size_t block_size, int (*encrypt)(const void *, const uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { size_t remainder = length; size_t need; uint8_t *datap = (uint8_t *)data; uint8_t *blockp; uint8_t *lastp; void *iov_or_mp; offset_t offset; uint8_t *out_data_1; uint8_t *out_data_2; size_t out_data_1_len; if (length + ctx->cc_remainder_len < block_size) { /* accumulate bytes here and return */ bcopy(datap, (uint8_t *)ctx->cc_remainder + ctx->cc_remainder_len, length); ctx->cc_remainder_len += length; ctx->cc_copy_to = datap; return (CRYPTO_SUCCESS); } lastp = (uint8_t *)ctx->cc_iv; if (out != NULL) crypto_init_ptrs(out, &iov_or_mp, &offset); do { /* Unprocessed data from last call. */ if (ctx->cc_remainder_len > 0) { need = block_size - ctx->cc_remainder_len; if (need > remainder) return (CRYPTO_DATA_LEN_RANGE); bcopy(datap, &((uint8_t *)ctx->cc_remainder) [ctx->cc_remainder_len], need); blockp = (uint8_t *)ctx->cc_remainder; } else { blockp = datap; } if (out == NULL) { /* * XOR the previous cipher block or IV with the * current clear block. */ xor_block(lastp, blockp); encrypt(ctx->cc_keysched, blockp, blockp); ctx->cc_lastp = blockp; lastp = blockp; if (ctx->cc_remainder_len > 0) { bcopy(blockp, ctx->cc_copy_to, ctx->cc_remainder_len); bcopy(blockp + ctx->cc_remainder_len, datap, need); } } else { /* * XOR the previous cipher block or IV with the * current clear block. */ xor_block(blockp, lastp); encrypt(ctx->cc_keysched, lastp, lastp); crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, &out_data_1_len, &out_data_2, block_size); /* copy block to where it belongs */ if (out_data_1_len == block_size) { copy_block(lastp, out_data_1); } else { bcopy(lastp, out_data_1, out_data_1_len); if (out_data_2 != NULL) { bcopy(lastp + out_data_1_len, out_data_2, block_size - out_data_1_len); } } /* update offset */ out->cd_offset += block_size; } /* Update pointer to next block of data to be processed. */ if (ctx->cc_remainder_len != 0) { datap += need; ctx->cc_remainder_len = 0; } else { datap += block_size; } remainder = (size_t)&data[length] - (size_t)datap; /* Incomplete last block. */ if (remainder > 0 && remainder < block_size) { bcopy(datap, ctx->cc_remainder, remainder); ctx->cc_remainder_len = remainder; ctx->cc_copy_to = datap; goto out; } ctx->cc_copy_to = NULL; } while (remainder > 0); out: /* * Save the last encrypted block in the context. */ if (ctx->cc_lastp != NULL) { copy_block((uint8_t *)ctx->cc_lastp, (uint8_t *)ctx->cc_iv); ctx->cc_lastp = (uint8_t *)ctx->cc_iv; } return (CRYPTO_SUCCESS); } #define OTHER(a, ctx) \ (((a) == (ctx)->cc_lastblock) ? (ctx)->cc_iv : (ctx)->cc_lastblock) /* ARGSUSED */ int cbc_decrypt_contiguous_blocks(cbc_ctx_t *ctx, char *data, size_t length, crypto_data_t *out, size_t block_size, int (*decrypt)(const void *, const uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { size_t remainder = length; size_t need; uint8_t *datap = (uint8_t *)data; uint8_t *blockp; uint8_t *lastp; void *iov_or_mp; offset_t offset; uint8_t *out_data_1; uint8_t *out_data_2; size_t out_data_1_len; if (length + ctx->cc_remainder_len < block_size) { /* accumulate bytes here and return */ bcopy(datap, (uint8_t *)ctx->cc_remainder + ctx->cc_remainder_len, length); ctx->cc_remainder_len += length; ctx->cc_copy_to = datap; return (CRYPTO_SUCCESS); } lastp = ctx->cc_lastp; if (out != NULL) crypto_init_ptrs(out, &iov_or_mp, &offset); do { /* Unprocessed data from last call. */ if (ctx->cc_remainder_len > 0) { need = block_size - ctx->cc_remainder_len; if (need > remainder) return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE); bcopy(datap, &((uint8_t *)ctx->cc_remainder) [ctx->cc_remainder_len], need); blockp = (uint8_t *)ctx->cc_remainder; } else { blockp = datap; } /* LINTED: pointer alignment */ copy_block(blockp, (uint8_t *)OTHER((uint64_t *)lastp, ctx)); if (out != NULL) { decrypt(ctx->cc_keysched, blockp, (uint8_t *)ctx->cc_remainder); blockp = (uint8_t *)ctx->cc_remainder; } else { decrypt(ctx->cc_keysched, blockp, blockp); } /* * XOR the previous cipher block or IV with the * currently decrypted block. */ xor_block(lastp, blockp); /* LINTED: pointer alignment */ lastp = (uint8_t *)OTHER((uint64_t *)lastp, ctx); if (out != NULL) { crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, &out_data_1_len, &out_data_2, block_size); bcopy(blockp, out_data_1, out_data_1_len); if (out_data_2 != NULL) { bcopy(blockp + out_data_1_len, out_data_2, block_size - out_data_1_len); } /* update offset */ out->cd_offset += block_size; } else if (ctx->cc_remainder_len > 0) { /* copy temporary block to where it belongs */ bcopy(blockp, ctx->cc_copy_to, ctx->cc_remainder_len); bcopy(blockp + ctx->cc_remainder_len, datap, need); } /* Update pointer to next block of data to be processed. */ if (ctx->cc_remainder_len != 0) { datap += need; ctx->cc_remainder_len = 0; } else { datap += block_size; } remainder = (size_t)&data[length] - (size_t)datap; /* Incomplete last block. */ if (remainder > 0 && remainder < block_size) { bcopy(datap, ctx->cc_remainder, remainder); ctx->cc_remainder_len = remainder; ctx->cc_lastp = lastp; ctx->cc_copy_to = datap; return (CRYPTO_SUCCESS); } ctx->cc_copy_to = NULL; } while (remainder > 0); ctx->cc_lastp = lastp; return (CRYPTO_SUCCESS); } int cbc_init_ctx(cbc_ctx_t *cbc_ctx, char *param, size_t param_len, size_t block_size, void (*copy_block)(uint8_t *, uint64_t *)) { /* * Copy IV into context. * * If cm_param == NULL then the IV comes from the * cd_miscdata field in the crypto_data structure. */ if (param != NULL) { #ifdef _KERNEL ASSERT(param_len == block_size); #else assert(param_len == block_size); #endif copy_block((uchar_t *)param, cbc_ctx->cc_iv); } cbc_ctx->cc_lastp = (uint8_t *)&cbc_ctx->cc_iv[0]; cbc_ctx->cc_flags |= CBC_MODE; return (CRYPTO_SUCCESS); } /* ARGSUSED */ void * cbc_alloc_ctx(int kmflag) { cbc_ctx_t *cbc_ctx; #ifdef _KERNEL if ((cbc_ctx = kmem_zalloc(sizeof (cbc_ctx_t), kmflag)) == NULL) #else if ((cbc_ctx = calloc(1, sizeof (cbc_ctx_t))) == NULL) #endif return (NULL); cbc_ctx->cc_flags = CBC_MODE; return (cbc_ctx); }