/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1988 AT&T * All Rights Reserved * * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Copyright (c) 2014 by Delphix. All rights reserved. */ /* * Utility routines for run-time linker. some are duplicated here from libc * (with different names) to avoid name space collisions. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "_rtld.h" #include "_audit.h" #include "_elf.h" #include "msg.h" /* * Null function used as place where a debugger can set a breakpoint. */ void rtld_db_dlactivity(Lm_list *lml) { DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, r_debug.rtd_rdebug.r_state)); } /* * Null function used as place where debugger can set a pre .init * processing breakpoint. */ void rtld_db_preinit(Lm_list *lml) { DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, r_debug.rtd_rdebug.r_state)); } /* * Null function used as place where debugger can set a post .init * processing breakpoint. */ void rtld_db_postinit(Lm_list *lml) { DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, r_debug.rtd_rdebug.r_state)); } /* * Debugger Event Notification * * This function centralizes all debugger event notification (ala rtld_db). * * There's a simple intent, focused on insuring the primary link-map control * list (or each link-map list) is consistent, and the indication that objects * have been added or deleted from this list. Although an RD_ADD and RD_DELETE * event are posted for each of these, most debuggers don't care, as their * view is that these events simply convey an "inconsistent" state. * * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we * enter ld.so.1. * * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is * required later (RT_FL_DBNOTIF): * * i. the first time we add or delete an object to the primary link-map * control list. * ii. the first time we move a secondary link-map control list to the primary * link-map control list (effectively, this is like adding a group of * objects to the primary link-map control list). * * Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set): * * i. each time we leave the runtime linker. */ void rd_event(Lm_list *lml, rd_event_e event, r_state_e state) { void (*fptr)(Lm_list *); switch (event) { case RD_PREINIT: fptr = rtld_db_preinit; break; case RD_POSTINIT: fptr = rtld_db_postinit; break; case RD_DLACTIVITY: switch (state) { case RT_CONSISTENT: /* * Do we need to send a notification? */ if ((rtld_flags & RT_FL_DBNOTIF) == 0) return; rtld_flags &= ~RT_FL_DBNOTIF; break; case RT_ADD: case RT_DELETE: /* * If we are already in an inconsistent state, no * notification is required. */ if (rtld_flags & RT_FL_DBNOTIF) return; rtld_flags |= RT_FL_DBNOTIF; break; }; fptr = rtld_db_dlactivity; break; default: /* * RD_NONE - do nothing */ break; }; /* * Set event state and call 'notification' function. * * The debugging clients have previously been told about these * notification functions and have set breakpoints on them if they * are interested in the notification. */ r_debug.rtd_rdebug.r_state = state; r_debug.rtd_rdebug.r_rdevent = event; fptr(lml); r_debug.rtd_rdebug.r_rdevent = RD_NONE; } #if defined(__sparc) || defined(__x86) /* * Stack Cleanup. * * This function is invoked to 'remove' arguments that were passed in on the * stack. This is most likely if ld.so.1 was invoked directly. In that case * we want to remove ld.so.1 as well as it's arguments from the argv[] array. * Which means we then need to slide everything above it on the stack down * accordingly. * * While the stack layout is platform specific - it just so happens that __x86, * and __sparc platforms share the following initial stack layout. * * !_______________________! high addresses * ! ! * ! Information ! * ! Block ! * ! (size varies) ! * !_______________________! * ! 0 word ! * !_______________________! * ! Auxiliary ! * ! vector ! * ! 2 word entries ! * ! ! * !_______________________! * ! 0 word ! * !_______________________! * ! Environment ! * ! pointers ! * ! ... ! * ! (one word each) ! * !_______________________! * ! 0 word ! * !_______________________! * ! Argument ! low addresses * ! pointers ! * ! Argc words ! * !_______________________! * ! ! * ! Argc ! * !_______________________! * ! ... ! * */ static void stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) { int ndx; long *argc; char **oargv, **nargv; char **oenvp, **nenvp; auxv_t *oauxv, *nauxv; /* * Slide ARGV[] and update argc. The argv pointer remains the same, * however slide the applications arguments over the arguments to * ld.so.1. */ nargv = &argv[0]; oargv = &argv[rmcnt]; for (ndx = 0; oargv[ndx]; ndx++) nargv[ndx] = oargv[ndx]; nargv[ndx] = oargv[ndx]; argc = (long *)((uintptr_t)argv - sizeof (long *)); *argc -= rmcnt; /* * Slide ENVP[], and update the environment array pointer. */ ndx++; nenvp = &nargv[ndx]; oenvp = &oargv[ndx]; *envp = nenvp; for (ndx = 0; oenvp[ndx]; ndx++) nenvp[ndx] = oenvp[ndx]; nenvp[ndx] = oenvp[ndx]; /* * Slide AUXV[], and update the aux vector pointer. */ ndx++; nauxv = (auxv_t *)&nenvp[ndx]; oauxv = (auxv_t *)&oenvp[ndx]; *auxv = nauxv; for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) nauxv[ndx] = oauxv[ndx]; nauxv[ndx] = oauxv[ndx]; } #else /* * Verify that the above routine is appropriate for any new platforms. */ #error unsupported architecture! #endif /* * Compare function for PathNode AVL tree. */ static int pnavl_compare(const void *n1, const void *n2) { uint_t hash1, hash2; const char *st1, *st2; int rc; hash1 = ((PathNode *)n1)->pn_hash; hash2 = ((PathNode *)n2)->pn_hash; if (hash1 > hash2) return (1); if (hash1 < hash2) return (-1); st1 = ((PathNode *)n1)->pn_name; st2 = ((PathNode *)n2)->pn_name; rc = strcmp(st1, st2); if (rc > 0) return (1); if (rc < 0) return (-1); return (0); } /* * Create an AVL tree. */ static avl_tree_t * pnavl_create(size_t size) { avl_tree_t *avlt; if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) return (NULL); avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); return (avlt); } /* * Determine whether a PathNode is recorded. */ int pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash, avl_index_t *where) { PathNode pn; /* * Create the avl tree if required. */ if ((*pnavl == NULL) && ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL)) return (0); pn.pn_name = name; if ((pn.pn_hash = hash) == 0) pn.pn_hash = sgs_str_hash(name); if (avl_find(*pnavl, &pn, where) == NULL) return (0); return (1); } /* * Determine if a pathname has already been recorded on the full path name * AVL tree. This tree maintains a node for each path name that ld.so.1 has * successfully loaded. If the path name does not exist in this AVL tree, then * the next insertion point is deposited in "where". This value can be used by * fpavl_insert() to expedite the insertion. */ Rt_map * fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) { FullPathNode fpn, *fpnp; /* * Create the avl tree if required. */ if ((lml->lm_fpavl == NULL) && ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) return (NULL); fpn.fpn_node.pn_name = name; if ((fpn.fpn_node.pn_hash = hash) == 0) fpn.fpn_node.pn_hash = sgs_str_hash(name); if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) return (NULL); return (fpnp->fpn_lmp); } /* * Insert a name into the FullPathNode AVL tree for the link-map list. The * objects NAME() is the path that would have originally been searched for, and * is therefore the name to associate with any "where" value. If the object has * a different PATHNAME(), perhaps because it has resolved to a different file * (see fullpath()), then this name will be recorded as a separate FullPathNode * (see load_file()). */ int fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) { FullPathNode *fpnp; uint_t hash = sgs_str_hash(name); if (where == 0) { /* LINTED */ Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); /* * We better not get a hit now, we do not want duplicates in * the tree. */ ASSERT(_lmp == NULL); } /* * Insert new node in tree. */ if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) return (0); fpnp->fpn_node.pn_name = name; fpnp->fpn_node.pn_hash = hash; fpnp->fpn_lmp = lmp; if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { free(fpnp); return (0); } ASSERT(lml->lm_fpavl != NULL); avl_insert(lml->lm_fpavl, fpnp, where); return (1); } /* * Remove an object from the FullPathNode AVL tree. */ void fpavl_remove(Rt_map *lmp) { FullPathNode *fpnp; Aliste idx; for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { avl_remove(LIST(lmp)->lm_fpavl, fpnp); free(fpnp); } free(FPNODE(lmp)); FPNODE(lmp) = NULL; } /* * Insert a path name into the not-found AVL tree. * * This tree maintains a node for each path name that ld.so.1 has explicitly * inspected, but has failed to load during a single ld.so.1 operation. If the * path name does not exist in this AVL tree, then the next insertion point is * deposited in "where". This value can be used by nfavl_insert() to expedite * the insertion. */ void nfavl_insert(const char *name, avl_index_t where) { PathNode *pnp; uint_t hash = sgs_str_hash(name); if (where == 0) { /* LINTED */ int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where); /* * We better not get a hit now, we do not want duplicates in * the tree. */ ASSERT(in_nfavl == 0); } /* * Insert new node in tree. */ if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { pnp->pn_name = name; pnp->pn_hash = hash; avl_insert(nfavl, pnp, where); } } /* * Insert the directory name, of a full path name, into the secure path AVL * tree. * * This tree is used to maintain a list of directories in which the dependencies * of a secure process have been found. This list provides a fall-back in the * case that a $ORIGIN expansion is deemed insecure, when the expansion results * in a path name that has already provided dependencies. */ void spavl_insert(const char *name) { char buffer[PATH_MAX], *str; size_t size; avl_index_t where; PathNode *pnp; uint_t hash; /* * Separate the directory name from the path name. */ if ((str = strrchr(name, '/')) == name) size = 1; else size = str - name; (void) strncpy(buffer, name, size); buffer[size] = '\0'; hash = sgs_str_hash(buffer); /* * Determine whether this directory name is already recorded, or if * not, 'where" will provide the insertion point for the new string. */ if (pnavl_recorded(&spavl, buffer, hash, &where)) return; /* * Insert new node in tree. */ if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { pnp->pn_name = strdup(buffer); pnp->pn_hash = hash; avl_insert(spavl, pnp, where); } } /* * Inspect the generic string AVL tree for the given string. If the string is * not present, duplicate it, and insert the string in the AVL tree. Return the * duplicated string to the caller. * * These strings are maintained for the life of ld.so.1 and represent path * names, file names, and search paths. All other AVL trees that maintain * FullPathNode and not-found path names use the same string pointer * established for this string. */ static avl_tree_t *stravl = NULL; static char *strbuf = NULL; static PathNode *pnbuf = NULL; static size_t strsize = 0, pnsize = 0; const char * stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) { char str[PATH_MAX]; PathNode *pnp; avl_index_t where; /* * Create the avl tree if required. */ if ((stravl == NULL) && ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) return (NULL); /* * Determine the string size if not provided by the caller. */ if (nsize == 0) nsize = strlen(name) + 1; else if (substr) { /* * The string passed to us may be a multiple path string for * which we only need the first component. Using the provided * size, strip out the required string. */ (void) strncpy(str, name, nsize); str[nsize - 1] = '\0'; name = str; } /* * Allocate a PathNode buffer if one doesn't exist, or any existing * buffer has been used up. */ if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { pnsize = syspagsz; if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), MAP_PRIVATE)) == MAP_FAILED) return (NULL); } /* * Determine whether this string already exists. */ pnbuf->pn_name = name; if ((pnbuf->pn_hash = hash) == 0) pnbuf->pn_hash = sgs_str_hash(name); if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) return (pnp->pn_name); /* * Allocate a string buffer if one does not exist, or if there is * insufficient space for the new string in any existing buffer. */ if ((strbuf == NULL) || (nsize > strsize)) { strsize = S_ROUND(nsize, syspagsz); if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), MAP_PRIVATE)) == MAP_FAILED) return (NULL); } (void) memcpy(strbuf, name, nsize); pnp = pnbuf; pnp->pn_name = strbuf; avl_insert(stravl, pnp, where); strbuf += nsize; strsize -= nsize; pnbuf++; pnsize -= sizeof (PathNode); return (pnp->pn_name); } /* * Prior to calling an object, either via a .plt or through dlsym(), make sure * its .init has fired. Through topological sorting, ld.so.1 attempts to fire * init's in the correct order, however, this order is typically based on needed * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can * still occur and result in bindings that were not captured during topological * sorting. This routine compensates for this lack of binding information, and * provides for dynamic .init firing. */ void is_dep_init(Rt_map *dlmp, Rt_map *clmp) { Rt_map **tobj; /* * If the caller is an auditor, and the destination isn't, then don't * run any .inits (see comments in load_completion()). */ if ((LIST(clmp)->lm_tflags & LML_TFLG_NOAUDIT) && ((LIST(dlmp)->lm_tflags & LML_TFLG_NOAUDIT) == 0)) return; if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) return; if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == (FLG_RT_RELOCED | FLG_RT_INITDONE)) return; if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == (FLG_RT_RELOCED | FLG_RT_INITCALL)) { DBG_CALL(Dbg_util_no_init(dlmp)); return; } if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { tobj[0] = dlmp; call_init(tobj, DBG_INIT_DYN); } } /* * Execute .{preinit|init|fini}array sections */ void call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) { int start, stop, incr, ndx; uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); if (array == NULL) return; /* * initarray & preinitarray are walked from beginning to end - while * finiarray is walked from end to beginning. */ if (shtype == SHT_FINI_ARRAY) { start = arraycnt - 1; stop = incr = -1; } else { start = 0; stop = arraycnt; incr = 1; } /* * Call the .*array[] entries */ for (ndx = start; ndx != stop; ndx += incr) { uint_t rtldflags; void (*fptr)(void) = (void(*)())array[ndx]; DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); APPLICATION_ENTER(rtldflags); leave(LIST(lmp), 0); (*fptr)(); (void) enter(0); APPLICATION_RETURN(rtldflags); } } /* * Execute any .init sections. These are passed to us in an lmp array which * (by default) will have been sorted. */ void call_init(Rt_map **tobj, int flag) { Rt_map **_tobj, **_nobj; static APlist *pending = NULL; /* * If we're in the middle of an INITFIRST, this must complete before * any new init's are fired. In this case add the object list to the * pending queue and return. We'll pick up the queue after any * INITFIRST objects have their init's fired. */ if (rtld_flags & RT_FL_INITFIRST) { (void) aplist_append(&pending, tobj, AL_CNT_PENDING); return; } /* * Traverse the tobj array firing each objects init. */ for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { Rt_map *lmp = *_tobj; void (*iptr)() = INIT(lmp); if (FLAGS(lmp) & FLG_RT_INITCALL) continue; FLAGS(lmp) |= FLG_RT_INITCALL; /* * Establish an initfirst state if necessary - no other inits * will be fired (because of additional relocation bindings) * when in this state. */ if (FLAGS(lmp) & FLG_RT_INITFRST) rtld_flags |= RT_FL_INITFIRST; if (INITARRAY(lmp) || iptr) DBG_CALL(Dbg_util_call_init(lmp, flag)); if (iptr) { uint_t rtldflags; APPLICATION_ENTER(rtldflags); leave(LIST(lmp), 0); (*iptr)(); (void) enter(0); APPLICATION_RETURN(rtldflags); } call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, SHT_INIT_ARRAY); if (INITARRAY(lmp) || iptr) DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); /* * Set the initdone flag regardless of whether this object * actually contains an .init section. This flag prevents us * from processing this section again for an .init and also * signifies that a .fini must be called should it exist. * Clear the sort field for use in later .fini processing. */ FLAGS(lmp) |= FLG_RT_INITDONE; SORTVAL(lmp) = -1; /* * If we're firing an INITFIRST object, and other objects must * be fired which are not INITFIRST, make sure we grab any * pending objects that might have been delayed as this * INITFIRST was processed. */ if ((rtld_flags & RT_FL_INITFIRST) && ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { Aliste idx; Rt_map **pobj; rtld_flags &= ~RT_FL_INITFIRST; for (APLIST_TRAVERSE(pending, idx, pobj)) { aplist_delete(pending, &idx); call_init(pobj, DBG_INIT_PEND); } } } free(tobj); } /* * Call .fini sections for the topologically sorted list of objects. This * routine is called from remove_hdl() for any objects being torn down as part * of a dlclose() operation, and from atexit() processing for all the remaining * objects within the process. */ void call_fini(Lm_list *lml, Rt_map **tobj, Rt_map *clmp) { Rt_map **_tobj; for (_tobj = tobj; *_tobj != NULL; _tobj++) { Rt_map *lmp = *_tobj; /* * Only fire a .fini if the objects corresponding .init has * completed. We collect all .fini sections of objects that * had their .init collected, but that doesn't mean that at * the time of collection, that the .init had completed. */ if (FLAGS(lmp) & FLG_RT_INITDONE) { void (*fptr)(void) = FINI(lmp); if (FINIARRAY(lmp) || fptr) DBG_CALL(Dbg_util_call_fini(lmp)); call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, SHT_FINI_ARRAY); if (fptr) { uint_t rtldflags; APPLICATION_ENTER(rtldflags); leave(lml, 0); (*fptr)(); (void) enter(0); APPLICATION_RETURN(rtldflags); } } /* * Skip main, this is explicitly called last in atexit_fini(). */ if (FLAGS(lmp) & FLG_RT_ISMAIN) continue; /* * This object has exercised its last instructions (regardless * of whether it will be unmapped or not). Audit this closure. */ if ((lml->lm_tflags & LML_TFLG_NOAUDIT) == 0) audit_objclose(lmp, clmp); } DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, pltcntu32, pltcntu44, pltcntfull, pltcntfar)); free(tobj); } /* * Function called by atexit(3C). Calls all .fini sections within the objects * that make up the process. As .fini processing is the last opportunity for * any new bindings to be established, this is also a convenient location to * check for unused objects. */ void atexit_fini() { Rt_map **tobj, *lmp; Lm_list *lml; Aliste idx; (void) enter(0); rtld_flags |= RT_FL_ATEXIT; lml = &lml_main; lml->lm_flags |= LML_FLG_ATEXIT; lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; lmp = (Rt_map *)lml->lm_head; /* * Reverse topologically sort the main link-map for .fini execution. */ if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && (tobj != (Rt_map **)S_ERROR)) call_fini(lml, tobj, NULL); /* * Now that all .fini code has been run, see what unreferenced objects * remain. */ unused(lml); /* * Traverse any alternative link-map lists, looking for non-auditors. */ for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { /* * Ignore the base-link-map list, which has already been * processed, the runtime linkers link-map list, which is * processed last, and any auditors. */ if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || (lml->lm_tflags & LML_TFLG_AUD_MASK) || ((lmp = (Rt_map *)lml->lm_head) == NULL)) continue; lml->lm_flags |= LML_FLG_ATEXIT; lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; /* * Reverse topologically sort the link-map for .fini execution. */ if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && (tobj != (Rt_map **)S_ERROR)) call_fini(lml, tobj, NULL); unused(lml); } /* * Add an explicit close to main and ld.so.1. Although main's .fini is * collected in call_fini() to provide for FINITARRAY processing, its * audit_objclose is explicitly skipped. This provides for it to be * called last, here. This is the reverse of the explicit calls to * audit_objopen() made in setup(). */ lml = &lml_main; lmp = (Rt_map *)lml->lm_head; if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { audit_objclose((Rt_map *)lml_rtld.lm_head, lmp); audit_objclose(lmp, lmp); } /* * Traverse any alternative link-map lists, looking for non-auditors. */ for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { /* * Ignore the base-link-map list, which has already been * processed, the runtime linkers link-map list, which is * processed last, and any non-auditors. */ if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || ((lml->lm_tflags & LML_TFLG_AUD_MASK) == 0) || ((lmp = (Rt_map *)lml->lm_head) == NULL)) continue; lml->lm_flags |= LML_FLG_ATEXIT; lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; /* * Reverse topologically sort the link-map for .fini execution. */ if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && (tobj != (Rt_map **)S_ERROR)) call_fini(lml, tobj, NULL); unused(lml); } /* * Finally reverse topologically sort the runtime linkers link-map for * .fini execution. */ lml = &lml_rtld; lml->lm_flags |= LML_FLG_ATEXIT; lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; lmp = (Rt_map *)lml->lm_head; if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && (tobj != (Rt_map **)S_ERROR)) call_fini(lml, tobj, NULL); leave(&lml_main, 0); } /* * This routine is called to complete any runtime linker activity which may have * resulted in objects being loaded. This is called from all user entry points * and from any internal dl*() requests. */ void load_completion(Rt_map *nlmp) { Rt_map **tobj = NULL; Lm_list *nlml; /* * Establish any .init processing. Note, in a world of lazy loading, * objects may have been loaded regardless of whether the users request * was fulfilled (i.e., a dlsym() request may have failed to find a * symbol but objects might have been loaded during its search). Thus, * any tsorting starts from the nlmp (new link-maps) pointer and not * necessarily from the link-map that may have satisfied the request. * * Note, the primary link-map has an initialization phase where dynamic * .init firing is suppressed. This provides for a simple and clean * handshake with the primary link-maps libc, which is important for * establishing uberdata. In addition, auditors often obtain handles * to primary link-map objects as the objects are loaded, so as to * inspect the link-map for symbols. This inspection is allowed without * running any code on the primary link-map, as running this code may * reenter the auditor, who may not yet have finished its own * initialization. */ if (nlmp) nlml = LIST(nlmp); if (nlmp && nlml->lm_init && ((nlml != &lml_main) || (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { if ((tobj = tsort(nlmp, nlml->lm_init, RT_SORT_REV)) == (Rt_map **)S_ERROR) tobj = NULL; } /* * Make sure any alternative link-map retrieves any external interfaces * and initializes threads. */ if (nlmp && (nlml != &lml_main)) { (void) rt_get_extern(nlml, nlmp); rt_thr_init(nlml); } /* * Traverse the list of new link-maps and register any dynamic TLS. * This storage is established for any objects not on the primary * link-map, and for any objects added to the primary link-map after * static TLS has been registered. */ if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { Rt_map *lmp; for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) tls_modaddrem(lmp, TM_FLG_MODADD); } nlml->lm_tls = 0; } /* * Fire any .init's. */ if (tobj) call_init(tobj, DBG_INIT_SORT); } /* * Append an item to the specified link map control list. */ void lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) { Lm_cntl *lmc; int add = 1; /* * Indicate that this link-map list has a new object. */ (lml->lm_obj)++; /* * If we're about to add a new object to the main link-map control * list, alert the debuggers. Additions of individual objects to the * main link-map control list occur during initial setup as the * applications immediate dependencies are loaded. Additional objects * are loaded on the main link-map control list after they have been * fully initialized on an alternative link-map control list. See * lm_move(). */ if (lmco == ALIST_OFF_DATA) rd_event(lml, RD_DLACTIVITY, RT_ADD); /* LINTED */ lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); /* * A link-map list header points to one of more link-map control lists * (see include/rtld.h). The initial list, pointed to by lm_cntl, is * the list of relocated objects. Other lists maintain objects that * are still being analyzed or relocated. This list provides the core * link-map list information used by all ld.so.1 routines. */ if (lmc->lc_head == NULL) { /* * If this is the first link-map for the given control list, * initialize the list. */ lmc->lc_head = lmc->lc_tail = lmp; add = 0; } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { Rt_map *tlmp; /* * If this is an interposer then append the link-map following * any other interposers (these are objects that have been * previously preloaded, or were identified with -z interpose). * Interposers can only be inserted on the first link-map * control list, as once relocation has started, interposition * from new interposers can't be guaranteed. * * NOTE: We do not interpose on the head of a list. This model * evolved because dynamic executables have already been fully * relocated within themselves and thus can't be interposed on. * Nowadays it's possible to have shared objects at the head of * a list, which conceptually means they could be interposed on. * But, shared objects can be created via dldump() and may only * be partially relocated (just relatives), in which case they * are interposable, but are marked as fixed (ET_EXEC). * * Thus we really don't have a clear method of deciding when the * head of a link-map is interposable. So, to be consistent, * for now only add interposers after the link-map lists head * object. */ for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; tlmp = NEXT_RT_MAP(tlmp)) { if (FLAGS(tlmp) & FLG_RT_OBJINTPO) continue; /* * Insert the new link-map before this non-interposer, * and indicate an interposer is found. */ NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; PREV(lmp) = PREV(tlmp); NEXT(lmp) = (Link_map *)tlmp; PREV(tlmp) = (Link_map *)lmp; lmc->lc_flags |= LMC_FLG_REANALYZE; add = 0; break; } } /* * Fall through to appending the new link map to the tail of the list. * If we're processing the initial objects of this link-map list, add * them to the backward compatibility list. */ if (add) { NEXT(lmc->lc_tail) = (Link_map *)lmp; PREV(lmp) = (Link_map *)lmc->lc_tail; lmc->lc_tail = lmp; } /* * Having added this link-map to a control list, indicate which control * list the link-map belongs to. Note, control list information is * always maintained as an offset, as the Alist can be reallocated. */ CNTL(lmp) = lmco; /* * Indicate if an interposer is found. Note that the first object on a * link-map can be explicitly defined as an interposer so that it can * provide interposition over direct binding requests. */ if (FLAGS(lmp) & MSK_RT_INTPOSE) lml->lm_flags |= LML_FLG_INTRPOSE; /* * For backward compatibility with debuggers, the link-map list contains * pointers to the main control list. */ if (lmco == ALIST_OFF_DATA) { lml->lm_head = lmc->lc_head; lml->lm_tail = lmc->lc_tail; } } /* * Delete an item from the specified link map control list. */ void lm_delete(Lm_list *lml, Rt_map *lmp, Rt_map *clmp) { Lm_cntl *lmc; /* * If the control list pointer hasn't been initialized, this object * never got added to a link-map list. */ if (CNTL(lmp) == 0) return; /* * If we're about to delete an object from the main link-map control * list, alert the debuggers. */ if (CNTL(lmp) == ALIST_OFF_DATA) rd_event(lml, RD_DLACTIVITY, RT_DELETE); /* * If we're being audited tell the audit library that we're * about to go deleting dependencies. */ if (clmp && (aud_activity || ((LIST(clmp)->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_ACTIVITY))) audit_activity(clmp, LA_ACT_DELETE); /* LINTED */ lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); if (lmc->lc_head == lmp) lmc->lc_head = NEXT_RT_MAP(lmp); else NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); if (lmc->lc_tail == lmp) lmc->lc_tail = PREV_RT_MAP(lmp); else PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); /* * For backward compatibility with debuggers, the link-map list contains * pointers to the main control list. */ if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { lml->lm_head = lmc->lc_head; lml->lm_tail = lmc->lc_tail; } /* * Indicate we have one less object on this control list. */ (lml->lm_obj)--; } /* * Move a link-map control list to another. Objects that are being relocated * are maintained on secondary control lists. Once their relocation is * complete, the entire list is appended to the previous control list, as this * list must have been the trigger for generating the new control list. */ void lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) { Rt_map *lmp; /* * If we're about to add a new family of objects to the main link-map * control list, alert the debuggers. Additions of object families to * the main link-map control list occur during lazy loading, filtering * and dlopen(). */ if (plmco == ALIST_OFF_DATA) rd_event(lml, RD_DLACTIVITY, RT_ADD); DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); /* * Indicate each new link-map has been moved to the previous link-map * control list. */ for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { CNTL(lmp) = plmco; /* * If these objects are being added to the main link-map * control list, indicate that there are init's available * for harvesting. */ if (plmco == ALIST_OFF_DATA) { lml->lm_init++; lml->lm_flags |= LML_FLG_OBJADDED; } } /* * Move the new link-map control list, to the callers link-map control * list. */ if (plmc->lc_head == NULL) { plmc->lc_head = nlmc->lc_head; PREV(nlmc->lc_head) = NULL; } else { NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; } plmc->lc_tail = nlmc->lc_tail; nlmc->lc_head = nlmc->lc_tail = NULL; /* * For backward compatibility with debuggers, the link-map list contains * pointers to the main control list. */ if (plmco == ALIST_OFF_DATA) { lml->lm_head = plmc->lc_head; lml->lm_tail = plmc->lc_tail; } } /* * Create, or assign a link-map control list. Each link-map list contains a * main control list, which has an Alist offset of ALIST_OFF_DATA (see the * description in include/rtld.h). During the initial construction of a * process, objects are added to this main control list. This control list is * never deleted, unless an alternate link-map list has been requested (say for * auditors), and the associated objects could not be loaded or relocated. * * Once relocation has started, any lazy loadable objects, or filtees, are * processed on a new, temporary control list. Only when these objects have * been fully relocated, are they moved to the main link-map control list. * Once the objects are moved, this temporary control list is deleted (see * remove_cntl()). * * A dlopen() always requires a new temporary link-map control list. * Typically, a dlopen() occurs on a link-map list that had already started * relocation, however, auditors can dlopen() objects on the main link-map * list while under initial construction, before any relocation has begun. * Hence, dlopen() requests are explicitly flagged. */ Aliste create_cntl(Lm_list *lml, int dlopen) { /* * If the head link-map object has already been relocated, create a * new, temporary, control list. */ if (dlopen || (lml->lm_head == NULL) || (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { Lm_cntl *lmc; if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), AL_CNT_LMLISTS)) == NULL) return (NULL); return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); } return (ALIST_OFF_DATA); } /* * Environment variables can have a variety of defined permutations, and thus * the following infrastructure exists to allow this variety and to select the * required definition. * * Environment variables can be defined as 32- or 64-bit specific, and if so * they will take precedence over any instruction set neutral form. Typically * this is only useful when the environment value is an informational string. * * Environment variables may be obtained from the standard user environment or * from a configuration file. The latter provides a fallback if no user * environment setting is found, and can take two forms: * * - a replaceable definition - this will be used if no user environment * setting has been seen, or * * - an permanent definition - this will be used no matter what user * environment setting is seen. In the case of list variables it will be * appended to any process environment setting seen. * * Environment variables can be defined without a value (ie. LD_XXXX=) so as to * override any replaceable environment variables from a configuration file. */ static u_longlong_t rplgen = 0; /* replaceable generic */ /* variables */ static u_longlong_t rplisa = 0; /* replaceable ISA specific */ /* variables */ static u_longlong_t prmgen = 0; /* permanent generic */ /* variables */ static u_longlong_t prmisa = 0; /* permanent ISA specific */ /* variables */ static u_longlong_t cmdgen = 0; /* command line (-e) generic */ /* variables */ static u_longlong_t cmdisa = 0; /* command line (-e) ISA */ /* specific variables */ /* * Classify an environment variables type. */ #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */ /* the wrong ISA */ #define ENV_TYP_ISA 0x02 /* variable is ISA specific */ #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */ /* config file */ #define ENV_TYP_PERMANT 0x08 /* variable is permanent */ #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */ #define ENV_TYP_NULL 0x20 /* variable is null */ /* * Identify all environment variables. */ #define ENV_FLG_AUDIT 0x0000000000001ULL #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL #define ENV_FLG_BIND_NOW 0x0000000000004ULL #define ENV_FLG_BIND_NOT 0x0000000000008ULL #define ENV_FLG_BINDINGS 0x0000000000010ULL #define ENV_FLG_CONFGEN 0x0000000000020ULL #define ENV_FLG_CONFIG 0x0000000000040ULL #define ENV_FLG_DEBUG 0x0000000000080ULL #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL #define ENV_FLG_DEMANGLE 0x0000000000200ULL #define ENV_FLG_FLAGS 0x0000000000400ULL #define ENV_FLG_INIT 0x0000000000800ULL #define ENV_FLG_LIBPATH 0x0000000001000ULL #define ENV_FLG_LOADAVAIL 0x0000000002000ULL #define ENV_FLG_LOADFLTR 0x0000000004000ULL #define ENV_FLG_NOAUDIT 0x0000000008000ULL #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL #define ENV_FLG_NOBAPLT 0x0000000020000ULL #define ENV_FLG_NOCONFIG 0x0000000040000ULL #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL #define ENV_FLG_NODIRECT 0x0000000100000ULL #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL #define ENV_FLG_NOLAZY 0x0000000400000ULL #define ENV_FLG_NOOBJALTER 0x0000000800000ULL #define ENV_FLG_NOVERSION 0x0000001000000ULL #define ENV_FLG_PRELOAD 0x0000002000000ULL #define ENV_FLG_PROFILE 0x0000004000000ULL #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL #define ENV_FLG_SIGNAL 0x0000010000000ULL #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL #define ENV_FLG_UNREF 0x0000080000000ULL #define ENV_FLG_UNUSED 0x0000100000000ULL #define ENV_FLG_VERBOSE 0x0000200000000ULL #define ENV_FLG_WARN 0x0000400000000ULL #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL #define ENV_FLG_BIND_LAZY 0x0001000000000ULL #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL #define ENV_FLG_NOPAREXT 0x0004000000000ULL #define ENV_FLG_HWCAP 0x0008000000000ULL #define ENV_FLG_SFCAP 0x0010000000000ULL #define ENV_FLG_MACHCAP 0x0020000000000ULL #define ENV_FLG_PLATCAP 0x0040000000000ULL #define ENV_FLG_CAP_FILES 0x0080000000000ULL #define ENV_FLG_DEFERRED 0x0100000000000ULL #define ENV_FLG_NOENVIRON 0x0200000000000ULL #define SEL_REPLACE 0x0001 #define SEL_PERMANT 0x0002 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ #define SEL_ACT_STR 0x0400 /* setting string value */ #define SEL_ACT_LML 0x0800 /* setting lml_flags */ #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */ #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ /* * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part * and len specifies its length (comparing a strings length before the string * itself speed things up). s2 points to the token itself which has already * had any leading white-space removed. */ static void ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, Word *lmtflags, uint_t env_flags, int aout) { u_longlong_t variable = 0; ushort_t select = 0; const char **str; Word val = 0; /* * Determine whether we're dealing with a replaceable or permanent * string. */ if (env_flags & ENV_TYP_PERMANT) { /* * If the string is from a configuration file and defined as * permanent, assign it as permanent. */ select |= SEL_PERMANT; } else select |= SEL_REPLACE; /* * Parse the variable given. * * The LD_AUDIT family. */ if (*s1 == 'A') { if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { /* * Replaceable and permanent audit objects can exist. */ select |= SEL_ACT_STR; str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; variable = ENV_FLG_AUDIT; } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), MSG_LD_AUDIT_ARGS_SIZE) == 0)) { /* * A specialized variable for plt_exit() use, not * documented for general use. */ select |= SEL_ACT_SPEC_2; variable = ENV_FLG_AUDIT_ARGS; } } /* * The LD_BIND family. */ else if (*s1 == 'B') { if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_BIND_LAZY), MSG_LD_BIND_LAZY_SIZE) == 0)) { select |= SEL_ACT_RT2; val = RT_FL2_BINDLAZY; variable = ENV_FLG_BIND_LAZY; } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { select |= SEL_ACT_RT2; val = RT_FL2_BINDNOW; variable = ENV_FLG_BIND_NOW; } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { /* * Another trick, enabled to help debug AOUT * applications under BCP, but not documented for * general use. */ select |= SEL_ACT_RT; val = RT_FL_NOBIND; variable = ENV_FLG_BIND_NOT; } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { /* * This variable is simply for backward compatibility. * If this and LD_DEBUG are both specified, only one of * the strings is going to get processed. */ select |= SEL_ACT_SPEC_2; variable = ENV_FLG_BINDINGS; } } /* * LD_CAP_FILES and LD_CONFIG family. */ else if (*s1 == 'C') { if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) { select |= SEL_ACT_STR; str = (select & SEL_REPLACE) ? &rpl_cap_files : &prm_cap_files; variable = ENV_FLG_CAP_FILES; } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { /* * This variable is not documented for general use. * Although originaly designed for internal use with * crle(1), this variable is in use by the Studio * auditing tools. Hence, it can't be removed. */ select |= SEL_ACT_SPEC_2; variable = ENV_FLG_CONFGEN; } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { /* * Secure applications must use a default configuration * file. A setting from a configuration file doesn't * make sense (given we must be reading a configuration * file to have gotten this). */ if ((rtld_flags & RT_FL_SECURE) || (env_flags & ENV_TYP_CONFIG)) return; select |= SEL_ACT_STR; str = &config->c_name; variable = ENV_FLG_CONFIG; } } /* * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and * LD_DEMANGLE. */ else if (*s1 == 'D') { if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { select |= SEL_ACT_STR; str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; variable = ENV_FLG_DEBUG; } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_DEBUG_OUTPUT), MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { select |= SEL_ACT_STR; str = &dbg_file; variable = ENV_FLG_DEBUG_OUTPUT; } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_DEFERRED; variable = ENV_FLG_DEFERRED; } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_DEMANGLE; variable = ENV_FLG_DEMANGLE; } } /* * LD_FLAGS - collect the best variable definition. On completion of * environment variable processing pass the result to ld_flags_env() * where they'll be decomposed and passed back to this routine. */ else if (*s1 == 'F') { if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { select |= SEL_ACT_SPEC_1; str = (select & SEL_REPLACE) ? &rpl_ldflags : &prm_ldflags; variable = ENV_FLG_FLAGS; } } /* * LD_HWCAP. */ else if (*s1 == 'H') { if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) { select |= SEL_ACT_STR; str = (select & SEL_REPLACE) ? &rpl_hwcap : &prm_hwcap; variable = ENV_FLG_HWCAP; } } /* * LD_INIT (internal, used by ldd(1)). */ else if (*s1 == 'I') { if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { select |= SEL_ACT_LML; val = LML_FLG_TRC_INIT; variable = ENV_FLG_INIT; } } /* * The LD_LIBRARY_PATH and LD_LOAD families. */ else if (*s1 == 'L') { if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { select |= SEL_ACT_SPEC_1; str = (select & SEL_REPLACE) ? &rpl_libpath : &prm_libpath; variable = ENV_FLG_LIBPATH; } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { /* * This variable is not documented for general use. * Although originaly designed for internal use with * crle(1), this variable is in use by the Studio * auditing tools. Hence, it can't be removed. */ select |= SEL_ACT_LML; val = LML_FLG_LOADAVAIL; variable = ENV_FLG_LOADAVAIL; } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { select |= SEL_ACT_SPEC_2; variable = ENV_FLG_LOADFLTR; } } /* * LD_MACHCAP. */ else if (*s1 == 'M') { if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) { select |= SEL_ACT_STR; str = (select & SEL_REPLACE) ? &rpl_machcap : &prm_machcap; variable = ENV_FLG_MACHCAP; } } /* * The LD_NO family. */ else if (*s1 == 'N') { if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_NOAUDIT; variable = ENV_FLG_NOAUDIT; } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_NOAUXFLTR; variable = ENV_FLG_NOAUXFLTR; } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_NOBAPLT; variable = ENV_FLG_NOBAPLT; } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_NOCFG; variable = ENV_FLG_NOCONFIG; } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NODIRCONFIG), MSG_LD_NODIRCONFIG_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_NODIRCFG; variable = ENV_FLG_NODIRCONFIG; } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { select |= SEL_ACT_LMLT; val = LML_TFLG_NODIRECT; variable = ENV_FLG_NODIRECT; } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOENVCONFIG), MSG_LD_NOENVCONFIG_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_NOENVCFG; variable = ENV_FLG_NOENVCONFIG; } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOFLTCONFIG), MSG_LD_NOFLTCONFIG_SIZE) == 0)) { select |= SEL_ACT_RT2; val = RT_FL2_NOFLTCFG; variable = ENV_FLG_NOFLTCONFIG; } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { select |= SEL_ACT_LMLT; val = LML_TFLG_NOLAZYLD; variable = ENV_FLG_NOLAZY; } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOOBJALTER), MSG_LD_NOOBJALTER_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_NOOBJALT; variable = ENV_FLG_NOOBJALTER; } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { select |= SEL_ACT_RT; val = RT_FL_NOVERSION; variable = ENV_FLG_NOVERSION; } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOUNRESWEAK), MSG_LD_NOUNRESWEAK_SIZE) == 0)) { /* * LD_NOUNRESWEAK (internal, used by ldd(1)). */ select |= SEL_ACT_LML; val = LML_FLG_TRC_NOUNRESWEAK; variable = ENV_FLG_NOUNRESWEAK; } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { select |= SEL_ACT_LML; val = LML_FLG_TRC_NOPAREXT; variable = ENV_FLG_NOPAREXT; } else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) { /* * LD_NOENVIRON can only be set with ld.so.1 -e. */ select |= SEL_ACT_RT; val = RT_FL_NOENVIRON; variable = ENV_FLG_NOENVIRON; } } /* * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family. */ else if (*s1 == 'P') { if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) { select |= SEL_ACT_STR; str = (select & SEL_REPLACE) ? &rpl_platcap : &prm_platcap; variable = ENV_FLG_PLATCAP; } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { select |= SEL_ACT_STR; str = (select & SEL_REPLACE) ? &rpl_preload : &prm_preload; variable = ENV_FLG_PRELOAD; } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { /* * Only one user library can be profiled at a time. */ select |= SEL_ACT_SPEC_2; variable = ENV_FLG_PROFILE; } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_PROFILE_OUTPUT), MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { /* * Only one user library can be profiled at a time. */ select |= SEL_ACT_STR; str = &profile_out; variable = ENV_FLG_PROFILE_OUTPUT; } } /* * LD_SFCAP and LD_SIGNAL. */ else if (*s1 == 'S') { if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) { select |= SEL_ACT_STR; str = (select & SEL_REPLACE) ? &rpl_sfcap : &prm_sfcap; variable = ENV_FLG_SFCAP; } else if ((len == MSG_LD_SIGNAL_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), MSG_LD_SIGNAL_SIZE) == 0) && ((rtld_flags & RT_FL_SECURE) == 0)) { select |= SEL_ACT_SPEC_2; variable = ENV_FLG_SIGNAL; } } /* * The LD_TRACE family (internal, used by ldd(1)). This definition is * the key to enabling all other ldd(1) specific environment variables. * In case an auditor is called, which in turn might exec(2) a * subprocess, this variable is disabled, so that any subprocess * escapes ldd(1) processing. */ else if (*s1 == 'T') { if (((len == MSG_LD_TRACE_OBJS_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), MSG_LD_TRACE_OBJS_SIZE) == 0)) || ((len == MSG_LD_TRACE_OBJS_E_SIZE) && (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { char *s0 = (char *)s1; select |= SEL_ACT_SPEC_2; variable = ENV_FLG_TRACE_OBJS; #if defined(__sparc) || defined(__x86) /* * The simplest way to "disable" this variable is to * truncate this string to "LD_'\0'". This string is * ignored by any ld.so.1 environment processing. * Use of such interfaces as unsetenv(3c) are overkill, * and would drag too much libc implementation detail * into ld.so.1. */ *s0 = '\0'; #else /* * Verify that the above write is appropriate for any new platforms. */ #error unsupported architecture! #endif } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_PTHS), MSG_LD_TRACE_PTHS_SIZE) == 0)) { select |= SEL_ACT_LML; val = LML_FLG_TRC_SEARCH; variable = ENV_FLG_TRACE_PTHS; } } /* * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). */ else if (*s1 == 'U') { if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { select |= SEL_ACT_LML; val = LML_FLG_TRC_UNREF; variable = ENV_FLG_UNREF; } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { select |= SEL_ACT_LML; val = LML_FLG_TRC_UNUSED; variable = ENV_FLG_UNUSED; } } /* * LD_VERBOSE (internal, used by ldd(1)). */ else if (*s1 == 'V') { if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { select |= SEL_ACT_LML; val = LML_FLG_TRC_VERBOSE; variable = ENV_FLG_VERBOSE; } } /* * LD_WARN (internal, used by ldd(1)). */ else if (*s1 == 'W') { if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { select |= SEL_ACT_LML; val = LML_FLG_TRC_WARN; variable = ENV_FLG_WARN; } } if (variable == 0) return; /* * If the variable is already processed with and ISA specific variable, * no further processing is needed. */ if (((select & SEL_REPLACE) && (rplisa & variable)) || ((select & SEL_PERMANT) && (prmisa & variable))) return; /* * If this variable has already been set via the command line, then * ignore this variable. The command line, -e, takes precedence. */ if (env_flags & ENV_TYP_ISA) { if (cmdisa & variable) return; if (env_flags & ENV_TYP_CMDLINE) cmdisa |= variable; } else { if (cmdgen & variable) return; if (env_flags & ENV_TYP_CMDLINE) cmdgen |= variable; } /* * Mark the appropriate variables. */ if (env_flags & ENV_TYP_ISA) { /* * This is an ISA setting. */ if (select & SEL_REPLACE) { if (rplisa & variable) return; rplisa |= variable; } else { prmisa |= variable; } } else { /* * This is a non-ISA setting. */ if (select & SEL_REPLACE) { if (rplgen & variable) return; rplgen |= variable; } else prmgen |= variable; } /* * Now perform the setting. */ if (select & SEL_ACT_RT) { if (s2) rtld_flags |= val; else rtld_flags &= ~val; } else if (select & SEL_ACT_RT2) { if (s2) rtld_flags2 |= val; else rtld_flags2 &= ~val; } else if (select & SEL_ACT_STR) { if (env_flags & ENV_TYP_NULL) *str = NULL; else *str = s2; } else if (select & SEL_ACT_LML) { if (s2) *lmflags |= val; else *lmflags &= ~val; } else if (select & SEL_ACT_LMLT) { if (s2) *lmtflags |= val; else *lmtflags &= ~val; } else if (select & SEL_ACT_SPEC_1) { /* * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH */ if (env_flags & ENV_TYP_NULL) *str = NULL; else *str = s2; if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { if (s2) { if (variable == ENV_FLG_FLAGS) env_info |= ENV_INF_FLAGCFG; else env_info |= ENV_INF_PATHCFG; } else { if (variable == ENV_FLG_FLAGS) env_info &= ~ENV_INF_FLAGCFG; else env_info &= ~ENV_INF_PATHCFG; } } } else if (select & SEL_ACT_SPEC_2) { /* * variables can be: ENV_FLG_ * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE, * SIGNAL, TRACE_OBJS */ switch (variable) { case ENV_FLG_AUDIT_ARGS: if (s2) { audit_argcnt = atoi(s2); audit_argcnt += audit_argcnt % 2; } else audit_argcnt = 0; break; case ENV_FLG_BINDINGS: if (s2) rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); else rpl_debug = NULL; break; case ENV_FLG_CONFGEN: if (s2) { rtld_flags |= RT_FL_CONFGEN; *lmflags |= LML_FLG_IGNRELERR; } else { rtld_flags &= ~RT_FL_CONFGEN; *lmflags &= ~LML_FLG_IGNRELERR; } break; case ENV_FLG_LOADFLTR: if (s2) { *lmtflags |= LML_TFLG_LOADFLTR; if (*s2 == '2') rtld_flags |= RT_FL_WARNFLTR; } else { *lmtflags &= ~LML_TFLG_LOADFLTR; rtld_flags &= ~RT_FL_WARNFLTR; } break; case ENV_FLG_PROFILE: profile_name = s2; if (s2) { if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { return; } /* BEGIN CSTYLED */ if (rtld_flags & RT_FL_SECURE) { profile_lib = #if defined(_ELF64) MSG_ORIG(MSG_PTH_LDPROFSE_64); #else MSG_ORIG(MSG_PTH_LDPROFSE); #endif } else { profile_lib = #if defined(_ELF64) MSG_ORIG(MSG_PTH_LDPROF_64); #else MSG_ORIG(MSG_PTH_LDPROF); #endif } /* END CSTYLED */ } else profile_lib = NULL; break; case ENV_FLG_SIGNAL: killsig = s2 ? atoi(s2) : SIGKILL; break; case ENV_FLG_TRACE_OBJS: if (s2) { *lmflags |= LML_FLG_TRC_ENABLE; if (*s2 == '2') *lmflags |= LML_FLG_TRC_LDDSTUB; } else *lmflags &= ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); break; } } } /* * Determine whether we have an architecture specific environment variable. * If we do, and we're the wrong architecture, it'll just get ignored. * Otherwise the variable is processed in it's architecture neutral form. */ static int ld_arch_env(const char *s1, size_t *len) { size_t _len = *len - 3; if (s1[_len++] == '_') { if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { #if defined(_ELF64) return (ENV_TYP_IGNORE); #else *len = *len - 3; return (ENV_TYP_ISA); #endif } if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { #if defined(_ELF64) *len = *len - 3; return (ENV_TYP_ISA); #else return (ENV_TYP_IGNORE); #endif } } return (0); } /* * Process an LD_FLAGS environment variable. The value can be a comma * separated set of tokens, which are sent (in upper case) into the generic * LD_XXXX environment variable engine. For example: * * LD_FLAGS=bind_now= -> LD_BIND_NOW= * LD_FLAGS=bind_now -> LD_BIND_NOW=1 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH= * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail * or * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail */ static int ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, uint_t env_flags, int aout) { char *nstr, *sstr, *estr = NULL; size_t nlen, len; if (str == NULL) return (0); /* * Create a new string as we're going to transform the token(s) into * uppercase and separate tokens with nulls. */ len = strlen(str); if ((nstr = malloc(len + 1)) == NULL) return (1); (void) strcpy(nstr, str); for (sstr = nstr; sstr; sstr++, len--) { int flags = 0; if ((*sstr != '\0') && (*sstr != ',')) { if (estr == NULL) { if (*sstr == '=') estr = sstr; else { /* * Translate token to uppercase. Don't * use toupper(3C) as including this * code doubles the size of ld.so.1. */ if ((*sstr >= 'a') && (*sstr <= 'z')) *sstr = *sstr - ('a' - 'A'); } } continue; } *sstr = '\0'; /* * Have we discovered an "=" string. */ if (estr) { nlen = estr - nstr; /* * If this is an unqualified "=", then this variable * is intended to ensure a feature is disabled. */ if ((*++estr == '\0') || (*estr == ',')) estr = NULL; } else { nlen = sstr - nstr; /* * If there is no "=" found, fabricate a boolean * definition for any unqualified variable. Thus, * LD_FLAGS=bind_now is represented as BIND_NOW=1. * The value "1" is sufficient to assert any boolean * variables. Setting of ENV_TYP_NULL ensures any * string usage is reset to a NULL string, thus * LD_FLAGS=library_path is equivalent to * LIBRARY_PATH='\0'. */ flags |= ENV_TYP_NULL; estr = (char *)MSG_ORIG(MSG_STR_ONE); } /* * Determine whether the environment variable is 32- or 64-bit * specific. The length, len, will reflect the architecture * neutral portion of the string. */ if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { ld_generic_env(nstr, nlen, estr, lmflags, lmtflags, (env_flags | flags), aout); } if (len == 0) break; nstr = sstr + 1; estr = NULL; } return (0); } /* * Variant of getopt(), intended for use when ld.so.1 is invoked directly * from the command line. The only command line option allowed is -e followed * by a runtime linker environment variable. */ int rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, Word *lmtflags, int aout) { int ndx; for (ndx = 1; argv[ndx]; ndx++) { char *str; if (argv[ndx][0] != '-') break; if (argv[ndx][1] == '\0') { ndx++; break; } if (argv[ndx][1] != 'e') return (1); if (argv[ndx][2] == '\0') { ndx++; if (argv[ndx] == NULL) return (1); str = argv[ndx]; } else str = &argv[ndx][2]; /* * If the environment variable starts with LD_, strip the LD_. * Otherwise, take things as is. Indicate that this variable * originates from the command line, as these variables take * precedence over any environment variables, or configuration * file variables. */ if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && (str[3] != '\0')) str += 3; if (ld_flags_env(str, lmflags, lmtflags, ENV_TYP_CMDLINE, aout) == 1) return (1); } /* * Make sure an object file has been specified. */ if (argv[ndx] == NULL) return (1); /* * Having gotten the arguments, clean ourselves off of the stack. * This results in a process that looks as if it was executed directly * from the application. */ stack_cleanup(argv, envp, auxv, ndx); return (0); } /* * Process a single LD_XXXX string. */ static void ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, int aout) { const char *s2; size_t len; int flags; /* * In a branded process we must ignore all LD_XXXX variables because * they are intended for the brand's linker. To affect the native * linker, use LD_BRAND_XXXX instead. */ if (rtld_flags2 & RT_FL2_BRANDED) { if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), MSG_LD_BRAND_PREFIX_SIZE) != 0) return; s1 += MSG_LD_BRAND_PREFIX_SIZE; } /* * Variables with no value (ie. LD_XXXX=) turn a capability off. */ if ((s2 = strchr(s1, '=')) == NULL) { len = strlen(s1); s2 = NULL; } else if (*++s2 == '\0') { len = strlen(s1) - 1; s2 = NULL; } else { len = s2 - s1 - 1; while (conv_strproc_isspace(*s2)) s2++; } /* * Determine whether the environment variable is 32-bit or 64-bit * specific. The length, len, will reflect the architecture neutral * portion of the string. */ if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) return; env_flags |= flags; ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); } /* * Internal getenv routine. Called immediately after ld.so.1 initializes * itself to process any locale specific environment variables, and collect * any LD_XXXX variables for later processing. */ #define LOC_LANG 1 #define LOC_MESG 2 #define LOC_ALL 3 int readenv_user(const char **envp, APlist **ealpp) { char *locale; const char *s1; int loc = 0; for (s1 = *envp; s1; envp++, s1 = *envp) { const char *s2; if (*s1++ != 'L') continue; /* * See if we have any locale environment settings. These * environment variables have a precedence, LC_ALL is higher * than LC_MESSAGES which is higher than LANG. */ s2 = s1; if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { s2 += MSG_LC_ALL_SIZE; if ((*s2 != '\0') && (loc < LOC_ALL)) { glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; loc = LOC_ALL; } } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), MSG_LC_MESSAGES_SIZE) == 0) { s2 += MSG_LC_MESSAGES_SIZE; if ((*s2 != '\0') && (loc < LOC_MESG)) { glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; loc = LOC_MESG; } } continue; } s2 = s1; if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; loc = LOC_LANG; continue; } /* * Pick off any LD_XXXX environment variables. */ if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL) return (1); } } /* * If we have a locale setting make sure it's worth processing further. * C and POSIX locales don't need any processing. In addition, to * ensure no one escapes the /usr/lib/locale hierarchy, don't allow * the locale to contain a segment that leads upward in the file system * hierarchy (i.e. no '..' segments). Given that we'll be confined to * the /usr/lib/locale hierarchy, there is no need to extensively * validate the mode or ownership of any message file (as libc's * generic handling of message files does), or be concerned with * symbolic links that might otherwise send us elsewhere. Duplicate * the string so that new locale setting can generically cleanup any * previous locales. */ if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { if (((*locale == 'C') && (*(locale + 1) == '\0')) || (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; else glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); } return (0); } /* * Process any LD_XXXX environment variables collected by readenv_user(). */ int procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags, int aout) { Aliste idx; const char *s1; for (APLIST_TRAVERSE(ealp, idx, s1)) ld_str_env(s1, lmflags, lmtflags, 0, aout); /* * Having collected the best representation of any LD_FLAGS, process * these strings. */ if (rpl_ldflags) { if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) return (1); rpl_ldflags = NULL; } /* * Don't allow environment controlled auditing when tracing or if * explicitly disabled. Trigger all tracing modes from * LML_FLG_TRC_ENABLE. */ if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) rpl_audit = profile_lib = profile_name = NULL; if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) *lmflags &= ~LML_MSK_TRC; /* * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. */ if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) rtld_flags2 &= ~RT_FL2_BINDLAZY; /* * When using ldd(1) -r or -d against an executable, assert -p. */ if ((*lmflags & (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) *lmflags |= LML_FLG_TRC_NOPAREXT; return (0); } /* * Configuration environment processing. Called after the a.out has been * processed (as the a.out can specify its own configuration file). */ int readenv_config(Rtc_env * envtbl, Addr addr, int aout) { Word *lmflags = &(lml_main.lm_flags); Word *lmtflags = &(lml_main.lm_tflags); if (envtbl == NULL) return (0); while (envtbl->env_str) { uint_t env_flags = ENV_TYP_CONFIG; const char *s1 = (const char *)(envtbl->env_str + addr); if (envtbl->env_flags & RTC_ENV_PERMANT) env_flags |= ENV_TYP_PERMANT; if ((*s1++ == 'L') && (*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) ld_str_env(s1, lmflags, lmtflags, env_flags, 0); envtbl++; } /* * Having collected the best representation of any LD_FLAGS, process * these strings. */ if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) return (1); if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, aout) == 1) return (1); /* * Don't allow environment controlled auditing when tracing or if * explicitly disabled. Trigger all tracing modes from * LML_FLG_TRC_ENABLE. */ if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) prm_audit = profile_lib = profile_name = NULL; if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) *lmflags &= ~LML_MSK_TRC; return (0); } int dowrite(Prfbuf * prf) { /* * We do not have a valid file descriptor, so we are unable * to flush the buffer. */ if (prf->pr_fd == -1) return (0); (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); prf->pr_cur = prf->pr_buf; return (1); } /* * Simplified printing. The following conversion specifications are supported: * * % [#] [-] [min field width] [. precision] s|d|x|c * * * dorprf takes the output buffer in the form of Prfbuf which permits * the verification of the output buffer size and the concatenation * of data to an already existing output buffer. The Prfbuf * structure contains the following: * * pr_buf pointer to the beginning of the output buffer. * pr_cur pointer to the next available byte in the output buffer. By * setting pr_cur ahead of pr_buf you can append to an already * existing buffer. * pr_len the size of the output buffer. By setting pr_len to '0' you * disable protection from overflows in the output buffer. * pr_fd a pointer to the file-descriptor the buffer will eventually be * output to. If pr_fd is set to '-1' then it's assumed there is * no output buffer, and doprf() will return with an error to * indicate an output buffer overflow. If pr_fd is > -1 then when * the output buffer is filled it will be flushed to pr_fd and will * then be available for additional data. */ #define FLG_UT_MINUS 0x0001 /* - */ #define FLG_UT_SHARP 0x0002 /* # */ #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ /* * This macro is for use from within doprf only. It is to be used for checking * the output buffer size and placing characters into the buffer. */ #define PUTC(c) \ { \ char tmpc; \ \ tmpc = (c); \ if (bufsiz && (bp >= bufend)) { \ prf->pr_cur = bp; \ if (dowrite(prf) == 0) \ return (0); \ bp = prf->pr_cur; \ } \ *bp++ = tmpc; \ } /* * Define a local buffer size for building a numeric value - large enough to * hold a 64-bit value. */ #define NUM_SIZE 22 size_t doprf(const char *format, va_list args, Prfbuf *prf) { char c; char *bp = prf->pr_cur; char *bufend = prf->pr_buf + prf->pr_len; size_t bufsiz = prf->pr_len; while ((c = *format++) != '\0') { if (c != '%') { PUTC(c); } else { int base = 0, flag = 0, width = 0, prec = 0; size_t _i; int _c, _n; char *_s; int ls = 0; again: c = *format++; switch (c) { case '-': flag |= FLG_UT_MINUS; goto again; case '#': flag |= FLG_UT_SHARP; goto again; case '.': flag |= FLG_UT_DOTSEEN; goto again; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if (flag & FLG_UT_DOTSEEN) prec = (prec * 10) + c - '0'; else width = (width * 10) + c - '0'; goto again; case 'x': case 'X': base = 16; break; case 'd': case 'D': case 'u': base = 10; flag &= ~FLG_UT_SHARP; break; case 'l': base = 10; ls++; /* number of l's (long or long long) */ if ((*format == 'l') || (*format == 'd') || (*format == 'D') || (*format == 'x') || (*format == 'X') || (*format == 'o') || (*format == 'O') || (*format == 'u') || (*format == 'U')) goto again; break; case 'o': case 'O': base = 8; break; case 'c': _c = va_arg(args, int); for (_i = 24; _i > 0; _i -= 8) { if ((c = ((_c >> _i) & 0x7f)) != 0) { PUTC(c); } } if ((c = ((_c >> _i) & 0x7f)) != 0) { PUTC(c); } break; case 's': _s = va_arg(args, char *); _i = strlen(_s); /* LINTED */ _n = (int)(width - _i); if (!prec) /* LINTED */ prec = (int)_i; if (width && !(flag & FLG_UT_MINUS)) { while (_n-- > 0) PUTC(' '); } while (((c = *_s++) != 0) && prec--) { PUTC(c); } if (width && (flag & FLG_UT_MINUS)) { while (_n-- > 0) PUTC(' '); } break; case '%': PUTC('%'); break; default: break; } /* * Numeric processing */ if (base) { char local[NUM_SIZE]; size_t ssize = 0, psize = 0; const char *string = MSG_ORIG(MSG_STR_HEXNUM); const char *prefix = MSG_ORIG(MSG_STR_EMPTY); u_longlong_t num; switch (ls) { case 0: /* int */ num = (u_longlong_t) va_arg(args, uint_t); break; case 1: /* long */ num = (u_longlong_t) va_arg(args, ulong_t); break; case 2: /* long long */ num = va_arg(args, u_longlong_t); break; } if (flag & FLG_UT_SHARP) { if (base == 16) { prefix = MSG_ORIG(MSG_STR_HEX); psize = 2; } else { prefix = MSG_ORIG(MSG_STR_ZERO); psize = 1; } } if ((base == 10) && (long)num < 0) { prefix = MSG_ORIG(MSG_STR_NEGATE); psize = MSG_STR_NEGATE_SIZE; num = (u_longlong_t)(-(longlong_t)num); } /* * Convert the numeric value into a local * string (stored in reverse order). */ _s = local; do { *_s++ = string[num % base]; num /= base; ssize++; } while (num); ASSERT(ssize < sizeof (local)); /* * Provide any precision or width padding. */ if (prec) { /* LINTED */ _n = (int)(prec - ssize); while ((_n-- > 0) && (ssize < sizeof (local))) { *_s++ = '0'; ssize++; } } if (width && !(flag & FLG_UT_MINUS)) { /* LINTED */ _n = (int)(width - ssize - psize); while (_n-- > 0) { PUTC(' '); } } /* * Print any prefix and the numeric string */ while (*prefix) PUTC(*prefix++); do { PUTC(*--_s); } while (_s > local); /* * Provide any width padding. */ if (width && (flag & FLG_UT_MINUS)) { /* LINTED */ _n = (int)(width - ssize - psize); while (_n-- > 0) PUTC(' '); } } } } PUTC('\0'); prf->pr_cur = bp; return (1); } static int doprintf(const char *format, va_list args, Prfbuf *prf) { char *ocur = prf->pr_cur; if (doprf(format, args, prf) == 0) return (0); /* LINTED */ return ((int)(prf->pr_cur - ocur)); } /* VARARGS2 */ int sprintf(char *buf, const char *format, ...) { va_list args; int len; Prfbuf prf; va_start(args, format); prf.pr_buf = prf.pr_cur = buf; prf.pr_len = 0; prf.pr_fd = -1; len = doprintf(format, args, &prf); va_end(args); /* * sprintf() return value excludes the terminating null byte. */ return (len - 1); } /* VARARGS3 */ int snprintf(char *buf, size_t n, const char *format, ...) { va_list args; int len; Prfbuf prf; va_start(args, format); prf.pr_buf = prf.pr_cur = buf; prf.pr_len = n; prf.pr_fd = -1; len = doprintf(format, args, &prf); va_end(args); return (len); } /* VARARGS2 */ int bufprint(Prfbuf *prf, const char *format, ...) { va_list args; int len; va_start(args, format); len = doprintf(format, args, prf); va_end(args); return (len); } /*PRINTFLIKE1*/ int printf(const char *format, ...) { va_list args; char buffer[ERRSIZE]; Prfbuf prf; va_start(args, format); prf.pr_buf = prf.pr_cur = buffer; prf.pr_len = ERRSIZE; prf.pr_fd = 1; (void) doprf(format, args, &prf); va_end(args); /* * Trim trailing '\0' form buffer */ prf.pr_cur--; return (dowrite(&prf)); } static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; /* * All error messages go through eprintf(). During process initialization, * these messages are directed to the standard error, however once control has * been passed to the applications code these messages are stored in an internal * buffer for use with dlerror(). Note, fatal error conditions that may occur * while running the application will still cause a standard error message, see * rtldexit() in this file for details. * The RT_FL_APPLIC flag serves to indicate the transition between process * initialization and when the applications code is running. */ void veprintf(Lm_list *lml, Error error, const char *format, va_list args) { int overflow = 0; static int lock = 0; Prfbuf prf; if (lock || (nextptr == (errbuf + ERRSIZE))) return; /* * Note: this lock is here to prevent the same thread from recursively * entering itself during a eprintf. ie: during eprintf malloc() fails * and we try and call eprintf ... and then malloc() fails .... */ lock = 1; /* * If we have completed startup initialization, all error messages * must be saved. These are reported through dlerror(). If we're * still in the initialization stage, output the error directly and * add a newline. */ prf.pr_buf = prf.pr_cur = nextptr; prf.pr_len = ERRSIZE - (nextptr - errbuf); if ((rtld_flags & RT_FL_APPLIC) == 0) prf.pr_fd = 2; else prf.pr_fd = -1; if (error > ERR_NONE) { if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) error = ERR_WARNING; switch (error) { case ERR_WARNING_NF: if (err_strs[ERR_WARNING_NF] == NULL) err_strs[ERR_WARNING_NF] = MSG_INTL(MSG_ERR_WARNING); break; case ERR_WARNING: if (err_strs[ERR_WARNING] == NULL) err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING); break; case ERR_GUIDANCE: if (err_strs[ERR_GUIDANCE] == NULL) err_strs[ERR_GUIDANCE] = MSG_INTL(MSG_ERR_GUIDANCE); break; case ERR_FATAL: if (err_strs[ERR_FATAL] == NULL) err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); break; case ERR_ELF: if (err_strs[ERR_ELF] == NULL) err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); break; } if (procname) { if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), rtldname, procname, err_strs[error]) == 0) overflow = 1; } else { if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), rtldname, err_strs[error]) == 0) overflow = 1; } if (overflow == 0) { /* * Remove the terminating '\0'. */ prf.pr_cur--; } } if ((overflow == 0) && doprf(format, args, &prf) == 0) overflow = 1; /* * If this is an ELF error, it will have been generated by a support * object that has a dependency on libelf. ld.so.1 doesn't generate any * ELF error messages as it doesn't interact with libelf. Determine the * ELF error string. */ if ((overflow == 0) && (error == ERR_ELF)) { static int (*elfeno)() = 0; static const char *(*elfemg)(); const char *emsg; Rt_map *dlmp, *lmp = lml_rtld.lm_head; if (NEXT(lmp) && (elfeno == 0)) { if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == NULL) || ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) elfeno = 0; } /* * Lookup the message; equivalent to elf_errmsg(elf_errno()). */ if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { prf.pr_cur--; if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), emsg) == 0) overflow = 1; } } /* * Push out any message that's been built. Note, in the case of an * overflow condition, this message may be incomplete, in which case * make sure any partial string is null terminated. */ if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { *(prf.pr_cur - 1) = '\n'; (void) dowrite(&prf); } if (overflow) *(prf.pr_cur - 1) = '\0'; DBG_CALL(Dbg_util_str(lml, nextptr)); /* * Determine if there was insufficient space left in the buffer to * complete the message. If so, we'll have printed out as much as had * been processed if we're not yet executing the application. * Otherwise, there will be some debugging diagnostic indicating * as much of the error message as possible. Write out a final buffer * overflow diagnostic - unlocalized, so we don't chance more errors. */ if (overflow) { char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); if ((rtld_flags & RT_FL_SILENCERR) == 0) { lasterr = str; if ((rtld_flags & RT_FL_APPLIC) == 0) { (void) write(2, str, strlen(str)); (void) write(2, MSG_ORIG(MSG_STR_NL), MSG_STR_NL_SIZE); } } DBG_CALL(Dbg_util_str(lml, str)); lock = 0; nextptr = errbuf + ERRSIZE; return; } /* * If the application has started, then error messages are being saved * for retrieval by dlerror(), or possible flushing from rtldexit() in * the case of a fatal error. In this case, establish the next error * pointer. If we haven't started the application, the whole message * buffer can be reused. */ if ((rtld_flags & RT_FL_SILENCERR) == 0) { lasterr = nextptr; /* * Note, should we encounter an error such as ENOMEM, there may * be a number of the same error messages (ie. an operation * fails with ENOMEM, and then the attempts to construct the * error message itself, which incurs additional ENOMEM errors). * Compare any previous error message with the one we've just * created to prevent any duplication clutter. */ if ((rtld_flags & RT_FL_APPLIC) && ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { prevptr = nextptr; nextptr = prf.pr_cur; *nextptr = '\0'; } } lock = 0; } /*PRINTFLIKE3*/ void eprintf(Lm_list *lml, Error error, const char *format, ...) { va_list args; va_start(args, format); veprintf(lml, error, format, args); va_end(args); } #if DEBUG /* * Provide assfail() for ASSERT() statements. See for further * details. */ int assfail(const char *a, const char *f, int l) { (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); (void) _lwp_kill(_lwp_self(), SIGABRT); return (0); } void assfail3(const char *msg, uintmax_t a, const char *op, uintmax_t b, const char *f, int l) { (void) printf("assertion failed: %s (%llu %s %llu), " "file: %s, line: %d\n", msg, a, op, b, f, l); (void) _lwp_kill(_lwp_self(), SIGABRT); } #endif /* * Exit. If we arrive here with a non zero status it's because of a fatal * error condition (most commonly a relocation error). If the application has * already had control, then the actual fatal error message will have been * recorded in the dlerror() message buffer. Print the message before really * exiting. */ void rtldexit(Lm_list * lml, int status) { if (status) { if (rtld_flags & RT_FL_APPLIC) { /* * If the error buffer has been used, write out all * pending messages - lasterr is simply a pointer to * the last message in this buffer. However, if the * buffer couldn't be created at all, lasterr points * to a constant error message string. */ if (*errbuf) { char *errptr = errbuf; char *errend = errbuf + ERRSIZE; while ((errptr < errend) && *errptr) { size_t size = strlen(errptr); (void) write(2, errptr, size); (void) write(2, MSG_ORIG(MSG_STR_NL), MSG_STR_NL_SIZE); errptr += (size + 1); } } if (lasterr && ((lasterr < errbuf) || (lasterr > (errbuf + ERRSIZE)))) { (void) write(2, lasterr, strlen(lasterr)); (void) write(2, MSG_ORIG(MSG_STR_NL), MSG_STR_NL_SIZE); } } leave(lml, 0); (void) _lwp_kill(_lwp_self(), killsig); } _exit(status); } /* * Map anonymous memory via MAP_ANON (added in Solaris 8). */ void * dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) { caddr_t va; if ((va = (caddr_t)mmap(addr, len, prot, (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { int err = errno; eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), strerror(err)); return (MAP_FAILED); } return (va); } static int nu_fd = FD_UNAVAIL; void * nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) { caddr_t va; int err; if (nu_fd == FD_UNAVAIL) { if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), O_RDONLY)) == FD_UNAVAIL) { err = errno; eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); return (MAP_FAILED); } } if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == MAP_FAILED) { err = errno; eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); } return (va); } /* * Generic entry point from user code - simply grabs a lock, and bumps the * entrance count. */ int enter(int flags) { if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { if (!thr_flg_nolock) (void) rt_mutex_lock(&rtldlock); if (rtld_flags & RT_FL_OPERATION) { ld_entry_cnt++; /* * Reset the diagnostic time information for each new * "operation". Thus timing diagnostics are relative * to entering ld.so.1. */ if (DBG_ISTIME() && (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) { DBG_DELTATIME = DBG_TOTALTIME; DBG_ONRESET(); } } return (1); } return (0); } /* * Determine whether a search path has been used. */ static void is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) { Pdesc *pdp; Aliste idx; for (ALIST_TRAVERSE(alp, idx, pdp)) { const char *fmt, *name; if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) continue; /* * If this pathname originated from an expanded token, use the * original for any diagnostic output. */ if ((name = pdp->pd_oname) == NULL) name = pdp->pd_pname; if (unref == 0) { if ((*nl)++ == 0) DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); continue; } if (pdp->pd_flags & LA_SER_LIBPATH) { if (pdp->pd_flags & LA_SER_CONFIG) { if (pdp->pd_flags & PD_FLG_DUPLICAT) fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); else fmt = MSG_INTL(MSG_USD_LDLIBPATHC); } else { if (pdp->pd_flags & PD_FLG_DUPLICAT) fmt = MSG_INTL(MSG_DUP_LDLIBPATH); else fmt = MSG_INTL(MSG_USD_LDLIBPATH); } } else if (pdp->pd_flags & LA_SER_RUNPATH) { fmt = MSG_INTL(MSG_USD_RUNPATH); } else continue; if ((*nl)++ == 0) (void) printf(MSG_ORIG(MSG_STR_NL)); (void) printf(fmt, name, obj); } } /* * Generate diagnostics as to whether an object has been used. A symbolic * reference that gets bound to an object marks it as used. Dependencies that * are unused when RTLD_NOW is in effect should be removed from future builds * of an object. Dependencies that are unused without RTLD_NOW in effect are * candidates for lazy-loading. * * Unreferenced objects identify objects that are defined as dependencies but * are unreferenced by the caller. These unreferenced objects may however be * referenced by other objects within the process, and therefore don't qualify * as completely unused. They are still an unnecessary overhead. * * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" * debugging. */ void unused(Lm_list *lml) { Rt_map *lmp; int nl = 0; Word unref, unuse; /* * If we're not tracing unused references or dependencies, or debugging * there's nothing to do. */ unref = lml->lm_flags & LML_FLG_TRC_UNREF; unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) return; /* * Detect unused global search paths. */ if (rpl_libdirs) is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); if (prm_libdirs) is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); nl = 0; lmp = lml->lm_head; if (RLIST(lmp)) is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); /* * Traverse the link-maps looking for unreferenced or unused * dependencies. Ignore the first object on a link-map list, as this * is always used. */ nl = 0; for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { /* * Determine if this object contains any runpaths that have * not been used. */ if (RLIST(lmp)) is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); /* * If tracing unreferenced objects, or under debugging, * determine whether any of this objects callers haven't * referenced it. */ if (unref || DBG_ENABLED) { Bnd_desc *bdp; Aliste idx; for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { Rt_map *clmp; if (bdp->b_flags & BND_REFER) continue; clmp = bdp->b_caller; if (FLAGS1(clmp) & FL1_RT_LDDSTUB) continue; /* BEGIN CSTYLED */ if (nl++ == 0) { if (unref) (void) printf(MSG_ORIG(MSG_STR_NL)); else DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); } if (unref) (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), NAME(lmp), NAME(clmp)); else DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); /* END CSTYLED */ } } /* * If tracing unused objects simply display those objects that * haven't been referenced by anyone. */ if (FLAGS1(lmp) & FL1_RT_USED) continue; if (nl++ == 0) { if (unref || unuse) (void) printf(MSG_ORIG(MSG_STR_NL)); else DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); } if (CYCGROUP(lmp)) { if (unref || unuse) (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), NAME(lmp), CYCGROUP(lmp)); else DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, CYCGROUP(lmp))); } else { if (unref || unuse) (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), NAME(lmp)); else DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); } } DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); } /* * Generic cleanup routine called prior to returning control to the user. * Ensures that any ld.so.1 specific file descriptors or temporary mapping are * released, and any locks dropped. */ void leave(Lm_list *lml, int flags) { /* * Alert the debuggers that the link-maps are consistent. */ rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT); /* * Alert any auditors that the link-maps are consistent. */ if (lml->lm_flags & LML_FLG_ACTAUDIT) { audit_activity(lml->lm_head, LA_ACT_CONSISTENT); lml->lm_flags &= ~LML_FLG_ACTAUDIT; } if (nu_fd != FD_UNAVAIL) { (void) close(nu_fd); nu_fd = FD_UNAVAIL; } /* * Reinitialize error message pointer, and any overflow indication. */ nextptr = errbuf; prevptr = NULL; /* * Defragment any freed memory. */ if (aplist_nitems(free_alp)) defrag(); /* * Don't drop our lock if we are running on our link-map list as * there's little point in doing so since we are single-threaded. * * LML_FLG_HOLDLOCK is set for: * - The ld.so.1's link-map list. * - The auditor's link-map if the environment is pre-UPM. */ if (lml->lm_flags & LML_FLG_HOLDLOCK) return; if (rt_bind_clear(0) & THR_FLG_RTLD) { if (!thr_flg_nolock) (void) rt_mutex_unlock(&rtldlock); (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); } } int callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) { APlist *calp, *dalp; Aliste idx1, idx2; Grp_hdl *ghp1, *ghp2; /* * An object can always find symbols within itself. */ if (clmp == dlmp) return (1); /* * The search for a singleton must look in every loaded object. */ if (slflags & LKUP_SINGLETON) return (1); /* * Don't allow an object to bind to an object that is being deleted * unless the binder is also being deleted. */ if ((FLAGS(dlmp) & FLG_RT_DELETE) && ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) return (0); /* * An object with world access can always bind to an object with global * visibility. */ if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && (MODE(dlmp) & RTLD_GLOBAL)) return (1); /* * An object with local access can only bind to an object that is a * member of the same group. */ if (((MODE(clmp) & RTLD_GROUP) == 0) || ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) return (0); /* * Traverse the list of groups the caller is a part of. */ for (APLIST_TRAVERSE(calp, idx1, ghp1)) { /* * If we're testing for the ability of two objects to bind to * each other regardless of a specific group, ignore that group. */ if (ghp && (ghp1 == ghp)) continue; /* * Traverse the list of groups the destination is a part of. */ for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { Grp_desc *gdp; Aliste idx3; if (ghp1 != ghp2) continue; /* * Make sure the relationship between the destination * and the caller provide symbols for relocation. * Parents are maintained as callers, but unless the * destination object was opened with RTLD_PARENT, the * parent doesn't provide symbols for the destination * to relocate against. */ for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { if (dlmp != gdp->gd_depend) continue; if (gdp->gd_flags & GPD_RELOC) return (1); } } } return (0); } /* * Initialize the environ symbol. Traditionally this is carried out by the crt * code prior to jumping to main. However, init sections get fired before this * variable is initialized, so ld.so.1 sets this directly from the AUX vector * information. In addition, a process may have multiple link-maps (ld.so.1's * debugging and preloading objects), and link auditing, and each may need an * environ variable set. * * This routine is called after a relocation() pass, and thus provides for: * * - setting environ on the main link-map after the initial application and * its dependencies have been established. Typically environ lives in the * application (provided by its crt), but in older applications it might * be in libc. Who knows what's expected of applications not built on * Solaris. * * - after loading a new shared object. We can add shared objects to various * link-maps, and any link-map dependencies requiring getopt() require * their own environ. In addition, lazy loading might bring in the * supplier of environ (libc used to be a lazy loading candidate) after * the link-map has been established and other objects are present. * * This routine handles all these scenarios, without adding unnecessary overhead * to ld.so.1. */ void set_environ(Lm_list *lml) { Slookup sl; Sresult sr; uint_t binfo; /* * Initialize the symbol lookup, and symbol result, data structures. */ SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON)); if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) { Rt_map *dlmp = sr.sr_dmap; lml->lm_environ = (char ***)sr.sr_sym->st_value; if (!(FLAGS(dlmp) & FLG_RT_FIXED)) lml->lm_environ = (char ***)((uintptr_t)lml->lm_environ + (uintptr_t)ADDR(dlmp)); *(lml->lm_environ) = (char **)environ; lml->lm_flags |= LML_FLG_ENVIRON; } } /* * Determine whether we have a secure executable. Uid and gid information * can be passed to us via the aux vector, however if these values are -1 * then use the appropriate system call to obtain them. * * - If the user is the root they can do anything * * - If the real and effective uid's don't match, or the real and * effective gid's don't match then this is determined to be a `secure' * application. * * This function is called prior to any dependency processing (see _setup.c). * Any secure setting will remain in effect for the life of the process. */ void security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) { if (auxflags != -1) { if ((auxflags & AF_SUN_SETUGID) != 0) rtld_flags |= RT_FL_SECURE; return; } if (uid == (uid_t)-1) uid = getuid(); if (uid) { if (euid == (uid_t)-1) euid = geteuid(); if (uid != euid) rtld_flags |= RT_FL_SECURE; else { if (gid == (gid_t)-1) gid = getgid(); if (egid == (gid_t)-1) egid = getegid(); if (gid != egid) rtld_flags |= RT_FL_SECURE; } } } /* * Determine whether ld.so.1 itself is owned by root and has its mode setuid. */ int is_rtld_setuid() { rtld_stat_t status; const char *name; if (rtld_flags2 & RT_FL2_SETUID) return (1); if (interp && interp->i_name) name = interp->i_name; else name = NAME(lml_rtld.lm_head); if (((rtld_stat(name, &status) == 0) && (status.st_uid == 0) && (status.st_mode & S_ISUID))) { rtld_flags2 |= RT_FL2_SETUID; return (1); } return (0); } /* * Determine that systems platform name. Normally, this name is provided from * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a * fall back. */ void platform_name(Syscapset *scapset) { char info[SYS_NMLN]; size_t size; if ((scapset->sc_platsz = size = sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1) return; if ((scapset->sc_plat = malloc(size)) == NULL) { scapset->sc_platsz = (size_t)-1; return; } (void) strcpy(scapset->sc_plat, info); } /* * Determine that systems machine name. Normally, this name is provided from * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a * fall back. */ void machine_name(Syscapset *scapset) { char info[SYS_NMLN]; size_t size; if ((scapset->sc_machsz = size = sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1) return; if ((scapset->sc_mach = malloc(size)) == NULL) { scapset->sc_machsz = (size_t)-1; return; } (void) strcpy(scapset->sc_mach, info); } /* * _REENTRANT code gets errno redefined to a function so provide for return * of the thread errno if applicable. This has no meaning in ld.so.1 which * is basically singled threaded. Provide the interface for our dependencies. */ #undef errno int * ___errno() { extern int errno; return (&errno); } /* * Determine whether a symbol name should be demangled. */ const char * demangle(const char *name) { if (rtld_flags & RT_FL_DEMANGLE) return (conv_demangle_name(name)); else return (name); } #ifndef _LP64 /* * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() * underneath while preserving the object size limits of a non-largefile * enabled 32-bit process. The purpose of this is to prevent large inode * values from causing stat() to fail. */ inline static int rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) { extern int errno; /* * Although we used a 64-bit capable stat(), the 32-bit rtld * can only handle objects < 2GB in size. If this object is * too big, turn the success into an overflow error. */ if ((lbuf->st_size & 0xffffffff80000000) != 0) { errno = EOVERFLOW; return (-1); } /* * Transfer the information needed by rtld into a rtld_stat_t * structure that preserves the non-largile types for everything * except inode. */ buf->st_dev = lbuf->st_dev; buf->st_ino = lbuf->st_ino; buf->st_mode = lbuf->st_mode; buf->st_uid = lbuf->st_uid; buf->st_size = (off_t)lbuf->st_size; buf->st_mtim = lbuf->st_mtim; #ifdef sparc buf->st_blksize = lbuf->st_blksize; #endif return (r); } int rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) { struct stat64 lbuf; int r; r = stat64(path, &lbuf); if (r != -1) r = rtld_stat_process(r, &lbuf, buf); return (r); } int rtld_fstat(int fildes, rtld_stat_t *restrict buf) { struct stat64 lbuf; int r; r = fstat64(fildes, &lbuf); if (r != -1) r = rtld_stat_process(r, &lbuf, buf); return (r); } #endif