/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * fme.c -- fault management exercise module * * this module provides the simulated fault management exercise. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include "alloc.h" #include "out.h" #include "stats.h" #include "stable.h" #include "literals.h" #include "lut.h" #include "tree.h" #include "ptree.h" #include "itree.h" #include "ipath.h" #include "fme.h" #include "evnv.h" #include "eval.h" #include "config.h" #include "platform.h" /* imported from eft.c... */ extern char *Autoclose; extern int Dupclose; extern hrtime_t Hesitate; extern nv_alloc_t Eft_nv_hdl; extern int Max_fme; extern fmd_hdl_t *Hdl; static int Istat_need_save; /* fme under construction is global so we can free it on module abort */ static struct fme *Nfmep; static const char *Undiag_reason; static int Nextid = 0; static int Open_fme_count = 0; /* Count of open FMEs */ /* list of fault management exercises underway */ static struct fme { struct fme *next; /* next exercise */ unsigned long long ull; /* time when fme was created */ int id; /* FME id */ struct cfgdata *cfgdata; /* full configuration data */ struct lut *eventtree; /* propagation tree for this FME */ /* * The initial error report that created this FME is kept in * two forms. e0 points to the instance tree node and is used * by fme_eval() as the starting point for the inference * algorithm. e0r is the event handle FMD passed to us when * the ereport first arrived and is used when setting timers, * which are always relative to the time of this initial * report. */ struct event *e0; fmd_event_t *e0r; id_t timer; /* for setting an fmd time-out */ id_t htid; /* for setting hesitation timer */ struct event *ecurrent; /* ereport under consideration */ struct event *suspects; /* current suspect list */ struct event *psuspects; /* previous suspect list */ int nsuspects; /* count of suspects */ int nonfault; /* zero if all suspects T_FAULT */ int posted_suspects; /* true if we've posted a diagnosis */ int hesitated; /* true if we hesitated */ int uniqobs; /* number of unique events observed */ int peek; /* just peeking, don't track suspects */ int overflow; /* true if overflow FME */ enum fme_state { FME_NOTHING = 5000, /* not evaluated yet */ FME_WAIT, /* need to wait for more info */ FME_CREDIBLE, /* suspect list is credible */ FME_DISPROVED, /* no valid suspects found */ FME_DEFERRED /* don't know yet (k-count not met) */ } state; unsigned long long pull; /* time passed since created */ unsigned long long wull; /* wait until this time for re-eval */ struct event *observations; /* observation list */ struct lut *globals; /* values of global variables */ /* fmd interfacing */ fmd_hdl_t *hdl; /* handle for talking with fmd */ fmd_case_t *fmcase; /* what fmd 'case' we associate with */ /* stats */ struct stats *Rcount; struct stats *Hcallcount; struct stats *Rcallcount; struct stats *Ccallcount; struct stats *Ecallcount; struct stats *Tcallcount; struct stats *Marrowcount; struct stats *diags; } *FMElist, *EFMElist, *ClosedFMEs; static struct case_list { fmd_case_t *fmcase; struct case_list *next; } *Undiagablecaselist; static void fme_eval(struct fme *fmep, fmd_event_t *ffep); static enum fme_state hypothesise(struct fme *fmep, struct event *ep, unsigned long long at_latest_by, unsigned long long *pdelay); static struct node *eventprop_lookup(struct event *ep, const char *propname); static struct node *pathstring2epnamenp(char *path); static void publish_undiagnosable(fmd_hdl_t *hdl, fmd_event_t *ffep); static void restore_suspects(struct fme *fmep); static void save_suspects(struct fme *fmep); static void destroy_fme(struct fme *f); static void fme_receive_report(fmd_hdl_t *hdl, fmd_event_t *ffep, const char *eventstring, const struct ipath *ipp, nvlist_t *nvl); static struct fme * alloc_fme(void) { struct fme *fmep; fmep = MALLOC(sizeof (*fmep)); bzero(fmep, sizeof (*fmep)); return (fmep); } /* * fme_ready -- called when all initialization of the FME (except for * stats) has completed successfully. Adds the fme to global lists * and establishes its stats. */ static struct fme * fme_ready(struct fme *fmep) { char nbuf[100]; Nfmep = NULL; /* don't need to free this on module abort now */ if (EFMElist) { EFMElist->next = fmep; EFMElist = fmep; } else FMElist = EFMElist = fmep; (void) sprintf(nbuf, "fme%d.Rcount", fmep->id); fmep->Rcount = stats_new_counter(nbuf, "ereports received", 0); (void) sprintf(nbuf, "fme%d.Hcall", fmep->id); fmep->Hcallcount = stats_new_counter(nbuf, "calls to hypothesise()", 1); (void) sprintf(nbuf, "fme%d.Rcall", fmep->id); fmep->Rcallcount = stats_new_counter(nbuf, "calls to requirements_test()", 1); (void) sprintf(nbuf, "fme%d.Ccall", fmep->id); fmep->Ccallcount = stats_new_counter(nbuf, "calls to causes_test()", 1); (void) sprintf(nbuf, "fme%d.Ecall", fmep->id); fmep->Ecallcount = stats_new_counter(nbuf, "calls to effects_test()", 1); (void) sprintf(nbuf, "fme%d.Tcall", fmep->id); fmep->Tcallcount = stats_new_counter(nbuf, "calls to triggered()", 1); (void) sprintf(nbuf, "fme%d.Marrow", fmep->id); fmep->Marrowcount = stats_new_counter(nbuf, "arrows marked by mark_arrows()", 1); (void) sprintf(nbuf, "fme%d.diags", fmep->id); fmep->diags = stats_new_counter(nbuf, "suspect lists diagnosed", 0); out(O_ALTFP|O_VERB2, "newfme: config snapshot contains..."); config_print(O_ALTFP|O_VERB2, fmep->cfgdata->cooked); return (fmep); } static struct fme * newfme(const char *e0class, const struct ipath *e0ipp) { struct cfgdata *cfgdata; if ((cfgdata = config_snapshot()) == NULL) { out(O_ALTFP, "newfme: NULL configuration"); Undiag_reason = UD_NOCONF; return (NULL); } Nfmep = alloc_fme(); Nfmep->id = Nextid++; Nfmep->cfgdata = cfgdata; Nfmep->posted_suspects = 0; Nfmep->uniqobs = 0; Nfmep->state = FME_NOTHING; Nfmep->pull = 0ULL; Nfmep->overflow = 0; Nfmep->fmcase = NULL; Nfmep->hdl = NULL; if ((Nfmep->eventtree = itree_create(cfgdata->cooked)) == NULL) { out(O_ALTFP, "newfme: NULL instance tree"); Undiag_reason = UD_INSTFAIL; config_free(cfgdata); FREE(Nfmep); Nfmep = NULL; return (NULL); } itree_ptree(O_ALTFP|O_VERB2, Nfmep->eventtree); if ((Nfmep->e0 = itree_lookup(Nfmep->eventtree, e0class, e0ipp)) == NULL) { out(O_ALTFP, "newfme: e0 not in instance tree"); Undiag_reason = UD_BADEVENTI; itree_free(Nfmep->eventtree); config_free(cfgdata); FREE(Nfmep); Nfmep = NULL; return (NULL); } return (fme_ready(Nfmep)); } void fme_fini(void) { struct fme *sfp, *fp; struct case_list *ucasep, *nextcasep; ucasep = Undiagablecaselist; while (ucasep != NULL) { nextcasep = ucasep->next; FREE(ucasep); ucasep = nextcasep; } Undiagablecaselist = NULL; /* clean up closed fmes */ fp = ClosedFMEs; while (fp != NULL) { sfp = fp->next; destroy_fme(fp); fp = sfp; } ClosedFMEs = NULL; fp = FMElist; while (fp != NULL) { sfp = fp->next; destroy_fme(fp); fp = sfp; } FMElist = EFMElist = NULL; /* if we were in the middle of creating an fme, free it now */ if (Nfmep) { destroy_fme(Nfmep); Nfmep = NULL; } } /* * Allocated space for a buffer name. 20 bytes allows for * a ridiculous 9,999,999 unique observations. */ #define OBBUFNMSZ 20 /* * serialize_observation * * Create a recoverable version of the current observation * (f->ecurrent). We keep a serialized version of each unique * observation in order that we may resume correctly the fme in the * correct state if eft or fmd crashes and we're restarted. */ static void serialize_observation(struct fme *fp, const char *cls, const struct ipath *ipp) { size_t pkdlen; char tmpbuf[OBBUFNMSZ]; char *pkd = NULL; char *estr; (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", fp->uniqobs); estr = ipath2str(cls, ipp); fmd_buf_create(fp->hdl, fp->fmcase, tmpbuf, strlen(estr) + 1); fmd_buf_write(fp->hdl, fp->fmcase, tmpbuf, (void *)estr, strlen(estr) + 1); FREE(estr); if (fp->ecurrent != NULL && fp->ecurrent->nvp != NULL) { (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d.nvp", fp->uniqobs); if (nvlist_xpack(fp->ecurrent->nvp, &pkd, &pkdlen, NV_ENCODE_XDR, &Eft_nv_hdl) != 0) out(O_DIE|O_SYS, "pack of observed nvl failed"); fmd_buf_create(fp->hdl, fp->fmcase, tmpbuf, pkdlen); fmd_buf_write(fp->hdl, fp->fmcase, tmpbuf, (void *)pkd, pkdlen); FREE(pkd); } fp->uniqobs++; fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_NOBS, (void *)&fp->uniqobs, sizeof (fp->uniqobs)); } /* * init_fme_bufs -- We keep several bits of state about an fme for * use if eft or fmd crashes and we're restarted. */ static void init_fme_bufs(struct fme *fp) { size_t cfglen = fp->cfgdata->nextfree - fp->cfgdata->begin; fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_CFGLEN, sizeof (cfglen)); fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_CFGLEN, (void *)&cfglen, sizeof (cfglen)); if (cfglen != 0) { fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_CFG, cfglen); fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_CFG, fp->cfgdata->begin, cfglen); } fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_PULL, sizeof (fp->pull)); fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_PULL, (void *)&fp->pull, sizeof (fp->pull)); fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_ID, sizeof (fp->id)); fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_ID, (void *)&fp->id, sizeof (fp->id)); fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_NOBS, sizeof (fp->uniqobs)); fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_NOBS, (void *)&fp->uniqobs, sizeof (fp->uniqobs)); fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_POSTD, sizeof (fp->posted_suspects)); fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_POSTD, (void *)&fp->posted_suspects, sizeof (fp->posted_suspects)); } static void destroy_fme_bufs(struct fme *fp) { char tmpbuf[OBBUFNMSZ]; int o; fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_CFGLEN); fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_CFG); fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_PULL); fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_ID); fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_POSTD); fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_NOBS); for (o = 0; o < fp->uniqobs; o++) { (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", o); fmd_buf_destroy(fp->hdl, fp->fmcase, tmpbuf); (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d.nvp", o); fmd_buf_destroy(fp->hdl, fp->fmcase, tmpbuf); } } /* * reconstitute_observations -- convert a case's serialized observations * back into struct events. Returns zero if all observations are * successfully reconstituted. */ static int reconstitute_observations(struct fme *fmep) { struct event *ep; struct node *epnamenp = NULL; size_t pkdlen; char *pkd = NULL; char *tmpbuf = alloca(OBBUFNMSZ); char *sepptr; char *estr; int ocnt; int elen; for (ocnt = 0; ocnt < fmep->uniqobs; ocnt++) { (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", ocnt); elen = fmd_buf_size(fmep->hdl, fmep->fmcase, tmpbuf); if (elen == 0) { out(O_ALTFP, "reconstitute_observation: no %s buffer found.", tmpbuf); Undiag_reason = UD_MISSINGOBS; break; } estr = MALLOC(elen); fmd_buf_read(fmep->hdl, fmep->fmcase, tmpbuf, estr, elen); sepptr = strchr(estr, '@'); if (sepptr == NULL) { out(O_ALTFP, "reconstitute_observation: %s: " "missing @ separator in %s.", tmpbuf, estr); Undiag_reason = UD_MISSINGPATH; FREE(estr); break; } *sepptr = '\0'; if ((epnamenp = pathstring2epnamenp(sepptr + 1)) == NULL) { out(O_ALTFP, "reconstitute_observation: %s: " "trouble converting path string \"%s\" " "to internal representation.", tmpbuf, sepptr + 1); Undiag_reason = UD_MISSINGPATH; FREE(estr); break; } /* construct the event */ ep = itree_lookup(fmep->eventtree, stable(estr), ipath(epnamenp)); if (ep == NULL) { out(O_ALTFP, "reconstitute_observation: %s: " "lookup of \"%s\" in itree failed.", tmpbuf, ipath2str(estr, ipath(epnamenp))); Undiag_reason = UD_BADOBS; tree_free(epnamenp); FREE(estr); break; } tree_free(epnamenp); /* * We may or may not have a saved nvlist for the observation */ (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d.nvp", ocnt); pkdlen = fmd_buf_size(fmep->hdl, fmep->fmcase, tmpbuf); if (pkdlen != 0) { pkd = MALLOC(pkdlen); fmd_buf_read(fmep->hdl, fmep->fmcase, tmpbuf, pkd, pkdlen); ASSERT(ep->nvp == NULL); if (nvlist_xunpack(pkd, pkdlen, &ep->nvp, &Eft_nv_hdl) != 0) out(O_DIE|O_SYS, "pack of observed nvl failed"); FREE(pkd); } if (ocnt == 0) fmep->e0 = ep; FREE(estr); fmep->ecurrent = ep; ep->count++; /* link it into list of observations seen */ ep->observations = fmep->observations; fmep->observations = ep; } if (ocnt == fmep->uniqobs) { (void) fme_ready(fmep); return (0); } return (1); } /* * restart_fme -- called during eft initialization. Reconstitutes * an in-progress fme. */ void fme_restart(fmd_hdl_t *hdl, fmd_case_t *inprogress) { nvlist_t *defect; struct case_list *bad; struct fme *fmep; struct cfgdata *cfgdata = NULL; size_t rawsz; fmep = alloc_fme(); fmep->fmcase = inprogress; fmep->hdl = hdl; if (fmd_buf_size(hdl, inprogress, WOBUF_CFGLEN) != sizeof (size_t)) { out(O_ALTFP, "restart_fme: No config data"); Undiag_reason = UD_MISSINGINFO; goto badcase; } fmd_buf_read(hdl, inprogress, WOBUF_CFGLEN, (void *)&rawsz, sizeof (size_t)); if ((fmep->e0r = fmd_case_getprincipal(hdl, inprogress)) == NULL) { out(O_ALTFP, "restart_fme: No event zero"); Undiag_reason = UD_MISSINGZERO; goto badcase; } cfgdata = MALLOC(sizeof (struct cfgdata)); cfgdata->cooked = NULL; cfgdata->devcache = NULL; cfgdata->cpucache = NULL; cfgdata->refcnt = 1; if (rawsz > 0) { if (fmd_buf_size(hdl, inprogress, WOBUF_CFG) != rawsz) { out(O_ALTFP, "restart_fme: Config data size mismatch"); Undiag_reason = UD_CFGMISMATCH; goto badcase; } cfgdata->begin = MALLOC(rawsz); cfgdata->end = cfgdata->nextfree = cfgdata->begin + rawsz; fmd_buf_read(hdl, inprogress, WOBUF_CFG, cfgdata->begin, rawsz); } else { cfgdata->begin = cfgdata->end = cfgdata->nextfree = NULL; } fmep->cfgdata = cfgdata; config_cook(cfgdata); if ((fmep->eventtree = itree_create(cfgdata->cooked)) == NULL) { /* case not properly saved or irretrievable */ out(O_ALTFP, "restart_fme: NULL instance tree"); Undiag_reason = UD_INSTFAIL; goto badcase; } itree_ptree(O_ALTFP|O_VERB2, fmep->eventtree); if (fmd_buf_size(hdl, inprogress, WOBUF_PULL) == 0) { out(O_ALTFP, "restart_fme: no saved wait time"); Undiag_reason = UD_MISSINGINFO; goto badcase; } else { fmd_buf_read(hdl, inprogress, WOBUF_PULL, (void *)&fmep->pull, sizeof (fmep->pull)); } if (fmd_buf_size(hdl, inprogress, WOBUF_POSTD) == 0) { out(O_ALTFP, "restart_fme: no saved posted status"); Undiag_reason = UD_MISSINGINFO; goto badcase; } else { fmd_buf_read(hdl, inprogress, WOBUF_POSTD, (void *)&fmep->posted_suspects, sizeof (fmep->posted_suspects)); } if (fmd_buf_size(hdl, inprogress, WOBUF_ID) == 0) { out(O_ALTFP, "restart_fme: no saved id"); Undiag_reason = UD_MISSINGINFO; goto badcase; } else { fmd_buf_read(hdl, inprogress, WOBUF_ID, (void *)&fmep->id, sizeof (fmep->id)); } if (Nextid <= fmep->id) Nextid = fmep->id + 1; if (fmd_buf_size(hdl, inprogress, WOBUF_NOBS) == 0) { out(O_ALTFP, "restart_fme: no count of observations"); Undiag_reason = UD_MISSINGINFO; goto badcase; } else { fmd_buf_read(hdl, inprogress, WOBUF_NOBS, (void *)&fmep->uniqobs, sizeof (fmep->uniqobs)); } if (reconstitute_observations(fmep) != 0) goto badcase; Open_fme_count++; /* give the diagnosis algorithm a shot at the new FME state */ fme_eval(fmep, NULL); return; badcase: if (fmep->eventtree != NULL) itree_free(fmep->eventtree); config_free(cfgdata); destroy_fme_bufs(fmep); FREE(fmep); /* * Since we're unable to restart the case, add it to the undiagable * list and solve and close it as appropriate. */ bad = MALLOC(sizeof (struct case_list)); bad->next = NULL; if (Undiagablecaselist != NULL) bad->next = Undiagablecaselist; Undiagablecaselist = bad; bad->fmcase = inprogress; out(O_ALTFP, "[case %s (unable to restart), ", fmd_case_uuid(hdl, bad->fmcase)); if (fmd_case_solved(hdl, bad->fmcase)) { out(O_ALTFP, "already solved, "); } else { out(O_ALTFP, "solving, "); defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100, NULL, NULL, NULL); if (Undiag_reason != NULL) (void) nvlist_add_string(defect, UNDIAG_REASON, Undiag_reason); fmd_case_add_suspect(hdl, bad->fmcase, defect); fmd_case_solve(hdl, bad->fmcase); } if (fmd_case_closed(hdl, bad->fmcase)) { out(O_ALTFP, "already closed ]"); } else { out(O_ALTFP, "closing ]"); fmd_case_close(hdl, bad->fmcase); } } /*ARGSUSED*/ static void globals_destructor(void *left, void *right, void *arg) { struct evalue *evp = (struct evalue *)right; if (evp->t == NODEPTR) tree_free((struct node *)(uintptr_t)evp->v); evp->v = NULL; FREE(evp); } void destroy_fme(struct fme *f) { stats_delete(f->Rcount); stats_delete(f->Hcallcount); stats_delete(f->Rcallcount); stats_delete(f->Ccallcount); stats_delete(f->Ecallcount); stats_delete(f->Tcallcount); stats_delete(f->Marrowcount); stats_delete(f->diags); itree_free(f->eventtree); config_free(f->cfgdata); lut_free(f->globals, globals_destructor, NULL); FREE(f); } static const char * fme_state2str(enum fme_state s) { switch (s) { case FME_NOTHING: return ("NOTHING"); case FME_WAIT: return ("WAIT"); case FME_CREDIBLE: return ("CREDIBLE"); case FME_DISPROVED: return ("DISPROVED"); case FME_DEFERRED: return ("DEFERRED"); default: return ("UNKNOWN"); } } static int is_problem(enum nametype t) { return (t == N_FAULT || t == N_DEFECT || t == N_UPSET); } static int is_fault(enum nametype t) { return (t == N_FAULT); } static int is_defect(enum nametype t) { return (t == N_DEFECT); } static int is_upset(enum nametype t) { return (t == N_UPSET); } static void fme_print(int flags, struct fme *fmep) { struct event *ep; out(flags, "Fault Management Exercise %d", fmep->id); out(flags, "\t State: %s", fme_state2str(fmep->state)); out(flags|O_NONL, "\t Start time: "); ptree_timeval(flags|O_NONL, &fmep->ull); out(flags, NULL); if (fmep->wull) { out(flags|O_NONL, "\t Wait time: "); ptree_timeval(flags|O_NONL, &fmep->wull); out(flags, NULL); } out(flags|O_NONL, "\t E0: "); if (fmep->e0) itree_pevent_brief(flags|O_NONL, fmep->e0); else out(flags|O_NONL, "NULL"); out(flags, NULL); out(flags|O_NONL, "\tObservations:"); for (ep = fmep->observations; ep; ep = ep->observations) { out(flags|O_NONL, " "); itree_pevent_brief(flags|O_NONL, ep); } out(flags, NULL); out(flags|O_NONL, "\tSuspect list:"); for (ep = fmep->suspects; ep; ep = ep->suspects) { out(flags|O_NONL, " "); itree_pevent_brief(flags|O_NONL, ep); } out(flags, NULL); out(flags|O_VERB2, "\t Tree:"); itree_ptree(flags|O_VERB2, fmep->eventtree); } static struct node * pathstring2epnamenp(char *path) { char *sep = "/"; struct node *ret; char *ptr; if ((ptr = strtok(path, sep)) == NULL) out(O_DIE, "pathstring2epnamenp: invalid empty class"); ret = tree_iname(stable(ptr), NULL, 0); while ((ptr = strtok(NULL, sep)) != NULL) ret = tree_name_append(ret, tree_iname(stable(ptr), NULL, 0)); return (ret); } /* * for a given upset sp, increment the corresponding SERD engine. if the * SERD engine trips, return the ename and ipp of the resulting ereport. * returns true if engine tripped and *enamep and *ippp were filled in. */ static int serd_eval(struct fme *fmep, fmd_hdl_t *hdl, fmd_event_t *ffep, fmd_case_t *fmcase, struct event *sp, const char **enamep, const struct ipath **ippp) { struct node *serdinst; char *serdname; struct node *nid; ASSERT(sp->t == N_UPSET); ASSERT(ffep != NULL); /* * obtain instanced SERD engine from the upset sp. from this * derive serdname, the string used to identify the SERD engine. */ serdinst = eventprop_lookup(sp, L_engine); if (serdinst == NULL) return (NULL); serdname = ipath2str(serdinst->u.stmt.np->u.event.ename->u.name.s, ipath(serdinst->u.stmt.np->u.event.epname)); /* handle serd engine "id" property, if there is one */ if ((nid = lut_lookup(serdinst->u.stmt.lutp, (void *)L_id, NULL)) != NULL) { struct evalue *gval; char suffixbuf[200]; char *suffix; char *nserdname; size_t nname; out(O_ALTFP|O_NONL, "serd \"%s\" id: ", serdname); ptree_name_iter(O_ALTFP|O_NONL, nid); ASSERTinfo(nid->t == T_GLOBID, ptree_nodetype2str(nid->t)); if ((gval = lut_lookup(fmep->globals, (void *)nid->u.globid.s, NULL)) == NULL) { out(O_ALTFP, " undefined"); } else if (gval->t == UINT64) { out(O_ALTFP, " %llu", gval->v); (void) sprintf(suffixbuf, "%llu", gval->v); suffix = suffixbuf; } else { out(O_ALTFP, " \"%s\"", (char *)(uintptr_t)gval->v); suffix = (char *)(uintptr_t)gval->v; } nname = strlen(serdname) + strlen(suffix) + 2; nserdname = MALLOC(nname); (void) snprintf(nserdname, nname, "%s:%s", serdname, suffix); FREE(serdname); serdname = nserdname; } if (!fmd_serd_exists(hdl, serdname)) { struct node *nN, *nT; /* no SERD engine yet, so create it */ nN = lut_lookup(serdinst->u.stmt.lutp, (void *)L_N, NULL); nT = lut_lookup(serdinst->u.stmt.lutp, (void *)L_T, NULL); ASSERT(nN->t == T_NUM); ASSERT(nT->t == T_TIMEVAL); fmd_serd_create(hdl, serdname, (uint_t)nN->u.ull, (hrtime_t)nT->u.ull); } /* * increment SERD engine. if engine fires, reset serd * engine and return trip_strcode */ if (fmd_serd_record(hdl, serdname, ffep)) { struct node *tripinst = lut_lookup(serdinst->u.stmt.lutp, (void *)L_trip, NULL); ASSERT(tripinst != NULL); *enamep = tripinst->u.event.ename->u.name.s; *ippp = ipath(tripinst->u.event.epname); fmd_case_add_serd(hdl, fmcase, serdname); fmd_serd_reset(hdl, serdname); out(O_ALTFP|O_NONL, "[engine fired: %s, sending: ", serdname); ipath_print(O_ALTFP|O_NONL, *enamep, *ippp); out(O_ALTFP, "]"); FREE(serdname); return (1); } FREE(serdname); return (0); } /* * search a suspect list for upsets. feed each upset to serd_eval() and * build up tripped[], an array of ereports produced by the firing of * any SERD engines. then feed each ereport back into * fme_receive_report(). * * returns ntrip, the number of these ereports produced. */ static int upsets_eval(struct fme *fmep, fmd_event_t *ffep) { /* we build an array of tripped ereports that we send ourselves */ struct { const char *ename; const struct ipath *ipp; } *tripped; struct event *sp; int ntrip, nupset, i; /* * count the number of upsets to determine the upper limit on * expected trip ereport strings. remember that one upset can * lead to at most one ereport. */ nupset = 0; for (sp = fmep->suspects; sp; sp = sp->suspects) { if (sp->t == N_UPSET) nupset++; } if (nupset == 0) return (0); /* * get to this point if we have upsets and expect some trip * ereports */ tripped = alloca(sizeof (*tripped) * nupset); bzero((void *)tripped, sizeof (*tripped) * nupset); ntrip = 0; for (sp = fmep->suspects; sp; sp = sp->suspects) if (sp->t == N_UPSET && serd_eval(fmep, fmep->hdl, ffep, fmep->fmcase, sp, &tripped[ntrip].ename, &tripped[ntrip].ipp)) ntrip++; for (i = 0; i < ntrip; i++) fme_receive_report(fmep->hdl, ffep, tripped[i].ename, tripped[i].ipp, NULL); return (ntrip); } /* * fme_receive_external_report -- call when an external ereport comes in * * this routine just converts the relevant information from the ereport * into a format used internally and passes it on to fme_receive_report(). */ void fme_receive_external_report(fmd_hdl_t *hdl, fmd_event_t *ffep, nvlist_t *nvl, const char *eventstring) { struct node *epnamenp = platform_getpath(nvl); const struct ipath *ipp; /* * XFILE: If we ended up without a path, it's an X-file. * For now, use our undiagnosable interface. */ if (epnamenp == NULL) { out(O_ALTFP, "XFILE: Unable to get path from ereport"); Undiag_reason = UD_NOPATH; publish_undiagnosable(hdl, ffep); return; } ipp = ipath(epnamenp); tree_free(epnamenp); fme_receive_report(hdl, ffep, stable(eventstring), ipp, nvl); } static int mark_arrows(struct fme *fmep, struct event *ep, int mark, unsigned long long at_latest_by, unsigned long long *pdelay); /* ARGSUSED */ static void clear_arrows(struct event *ep, struct event *ep2, struct fme *fmep) { struct bubble *bp; struct arrowlist *ap; ep->cached_state = 0; for (bp = itree_next_bubble(ep, NULL); bp; bp = itree_next_bubble(ep, bp)) { if (bp->t != B_FROM) continue; bp->mark = 0; for (ap = itree_next_arrow(bp, NULL); ap; ap = itree_next_arrow(bp, ap)) ap->arrowp->mark = 0; } } static void fme_receive_report(fmd_hdl_t *hdl, fmd_event_t *ffep, const char *eventstring, const struct ipath *ipp, nvlist_t *nvl) { struct event *ep; struct fme *fmep = NULL; struct fme *ofmep = NULL; struct fme *cfmep, *svfmep; int matched = 0; nvlist_t *defect; out(O_ALTFP|O_NONL, "fme_receive_report: "); ipath_print(O_ALTFP|O_NONL, eventstring, ipp); out(O_ALTFP|O_STAMP, NULL); /* decide which FME it goes to */ for (fmep = FMElist; fmep; fmep = fmep->next) { int prev_verbose; unsigned long long my_delay = TIMEVAL_EVENTUALLY; enum fme_state state; nvlist_t *pre_peek_nvp = NULL; if (fmep->overflow) { if (!(fmd_case_closed(fmep->hdl, fmep->fmcase))) ofmep = fmep; continue; } /* look up event in event tree for this FME */ if ((ep = itree_lookup(fmep->eventtree, eventstring, ipp)) == NULL) continue; /* note observation */ fmep->ecurrent = ep; if (ep->count++ == 0) { /* link it into list of observations seen */ ep->observations = fmep->observations; fmep->observations = ep; ep->nvp = evnv_dupnvl(nvl); } else { /* use new payload values for peek */ pre_peek_nvp = ep->nvp; ep->nvp = evnv_dupnvl(nvl); } /* tell hypothesise() not to mess with suspect list */ fmep->peek = 1; /* don't want this to be verbose (unless Debug is set) */ prev_verbose = Verbose; if (Debug == 0) Verbose = 0; lut_walk(fmep->eventtree, (lut_cb)clear_arrows, (void *)fmep); state = hypothesise(fmep, fmep->e0, fmep->ull, &my_delay); fmep->peek = 0; /* put verbose flag back */ Verbose = prev_verbose; if (state != FME_DISPROVED) { /* found an FME that explains the ereport */ matched++; out(O_ALTFP|O_NONL, "["); ipath_print(O_ALTFP|O_NONL, eventstring, ipp); out(O_ALTFP, " explained by FME%d]", fmep->id); if (pre_peek_nvp) nvlist_free(pre_peek_nvp); if (ep->count == 1) serialize_observation(fmep, eventstring, ipp); if (ffep) fmd_case_add_ereport(hdl, fmep->fmcase, ffep); stats_counter_bump(fmep->Rcount); /* re-eval FME */ fme_eval(fmep, ffep); } else { /* not a match, undo noting of observation */ fmep->ecurrent = NULL; if (--ep->count == 0) { /* unlink it from observations */ fmep->observations = ep->observations; ep->observations = NULL; nvlist_free(ep->nvp); ep->nvp = NULL; } else { nvlist_free(ep->nvp); ep->nvp = pre_peek_nvp; } } } if (matched) return; /* explained by at least one existing FME */ /* clean up closed fmes */ cfmep = ClosedFMEs; while (cfmep != NULL) { svfmep = cfmep->next; destroy_fme(cfmep); cfmep = svfmep; } ClosedFMEs = NULL; if (ofmep) { out(O_ALTFP|O_NONL, "["); ipath_print(O_ALTFP|O_NONL, eventstring, ipp); out(O_ALTFP, " ADDING TO OVERFLOW FME]"); if (ffep) fmd_case_add_ereport(hdl, ofmep->fmcase, ffep); return; } else if (Max_fme && (Open_fme_count >= Max_fme)) { out(O_ALTFP|O_NONL, "["); ipath_print(O_ALTFP|O_NONL, eventstring, ipp); out(O_ALTFP, " MAX OPEN FME REACHED]"); /* Create overflow fme */ if ((fmep = newfme(eventstring, ipp)) == NULL) { out(O_ALTFP|O_NONL, "["); ipath_print(O_ALTFP|O_NONL, eventstring, ipp); out(O_ALTFP, " CANNOT OPEN OVERFLOW FME]"); publish_undiagnosable(hdl, ffep); return; } Open_fme_count++; fmep->fmcase = fmd_case_open(hdl, NULL); fmep->hdl = hdl; init_fme_bufs(fmep); fmep->overflow = B_TRUE; if (ffep) fmd_case_add_ereport(hdl, fmep->fmcase, ffep); defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100, NULL, NULL, NULL); (void) nvlist_add_string(defect, UNDIAG_REASON, UD_MAXFME); fmd_case_add_suspect(hdl, fmep->fmcase, defect); fmd_case_solve(hdl, fmep->fmcase); return; } /* start a new FME */ if ((fmep = newfme(eventstring, ipp)) == NULL) { out(O_ALTFP|O_NONL, "["); ipath_print(O_ALTFP|O_NONL, eventstring, ipp); out(O_ALTFP, " CANNOT DIAGNOSE]"); publish_undiagnosable(hdl, ffep); return; } Open_fme_count++; /* open a case */ fmep->fmcase = fmd_case_open(hdl, NULL); fmep->hdl = hdl; init_fme_bufs(fmep); out(O_ALTFP|O_NONL, "["); ipath_print(O_ALTFP|O_NONL, eventstring, ipp); out(O_ALTFP, " created FME%d, case %s]", fmep->id, fmd_case_uuid(hdl, fmep->fmcase)); ep = fmep->e0; ASSERT(ep != NULL); /* note observation */ fmep->ecurrent = ep; if (ep->count++ == 0) { /* link it into list of observations seen */ ep->observations = fmep->observations; fmep->observations = ep; ep->nvp = evnv_dupnvl(nvl); serialize_observation(fmep, eventstring, ipp); } else { /* new payload overrides any previous */ nvlist_free(ep->nvp); ep->nvp = evnv_dupnvl(nvl); } stats_counter_bump(fmep->Rcount); if (ffep) { fmd_case_add_ereport(hdl, fmep->fmcase, ffep); fmd_case_setprincipal(hdl, fmep->fmcase, ffep); fmep->e0r = ffep; } /* give the diagnosis algorithm a shot at the new FME state */ fme_eval(fmep, ffep); } void fme_status(int flags) { struct fme *fmep; if (FMElist == NULL) { out(flags, "No fault management exercises underway."); return; } for (fmep = FMElist; fmep; fmep = fmep->next) fme_print(flags, fmep); } /* * "indent" routines used mostly for nicely formatted debug output, but also * for sanity checking for infinite recursion bugs. */ #define MAX_INDENT 1024 static const char *indent_s[MAX_INDENT]; static int current_indent; static void indent_push(const char *s) { if (current_indent < MAX_INDENT) indent_s[current_indent++] = s; else out(O_DIE, "unexpected recursion depth (%d)", current_indent); } static void indent_set(const char *s) { current_indent = 0; indent_push(s); } static void indent_pop(void) { if (current_indent > 0) current_indent--; else out(O_DIE, "recursion underflow"); } static void indent(void) { int i; if (!Verbose) return; for (i = 0; i < current_indent; i++) out(O_ALTFP|O_VERB|O_NONL, indent_s[i]); } static int suspects_changed(struct fme *fmep) { struct event *suspects = fmep->suspects; struct event *psuspects = fmep->psuspects; while (suspects != NULL && psuspects != NULL) { if (suspects != psuspects) return (1); suspects = suspects->suspects; psuspects = psuspects->psuspects; } return (suspects != psuspects); } #define SLNEW 1 #define SLCHANGED 2 #define SLWAIT 3 #define SLDISPROVED 4 static void print_suspects(int circumstance, struct fme *fmep) { struct event *ep; out(O_ALTFP|O_NONL, "["); if (circumstance == SLCHANGED) { out(O_ALTFP|O_NONL, "FME%d diagnosis changed. state: %s, " "suspect list:", fmep->id, fme_state2str(fmep->state)); } else if (circumstance == SLWAIT) { out(O_ALTFP|O_NONL, "FME%d set wait timer ", fmep->id); ptree_timeval(O_ALTFP|O_NONL, &fmep->wull); } else if (circumstance == SLDISPROVED) { out(O_ALTFP|O_NONL, "FME%d DIAGNOSIS UNKNOWN", fmep->id); } else { out(O_ALTFP|O_NONL, "FME%d DIAGNOSIS PRODUCED:", fmep->id); } if (circumstance == SLWAIT || circumstance == SLDISPROVED) { out(O_ALTFP, "]"); return; } for (ep = fmep->suspects; ep; ep = ep->suspects) { out(O_ALTFP|O_NONL, " "); itree_pevent_brief(O_ALTFP|O_NONL, ep); } out(O_ALTFP, "]"); } static struct node * eventprop_lookup(struct event *ep, const char *propname) { return (lut_lookup(ep->props, (void *)propname, NULL)); } #define MAXDIGITIDX 23 static char numbuf[MAXDIGITIDX + 1]; static int node2uint(struct node *n, uint_t *valp) { struct evalue value; struct lut *globals = NULL; if (n == NULL) return (1); /* * check value.v since we are being asked to convert an unsigned * long long int to an unsigned int */ if (! eval_expr(n, NULL, NULL, &globals, NULL, NULL, 0, &value) || value.t != UINT64 || value.v > (1ULL << 32)) return (1); *valp = (uint_t)value.v; return (0); } static nvlist_t * node2fmri(struct node *n) { nvlist_t **pa, *f, *p; struct node *nc; uint_t depth = 0; char *numstr, *nullbyte; char *failure; int err, i; /* XXX do we need to be able to handle a non-T_NAME node? */ if (n == NULL || n->t != T_NAME) return (NULL); for (nc = n; nc != NULL; nc = nc->u.name.next) { if (nc->u.name.child == NULL || nc->u.name.child->t != T_NUM) break; depth++; } if (nc != NULL) { /* We bailed early, something went wrong */ return (NULL); } if ((err = nvlist_xalloc(&f, NV_UNIQUE_NAME, &Eft_nv_hdl)) != 0) out(O_DIE|O_SYS, "alloc of fmri nvl failed"); pa = alloca(depth * sizeof (nvlist_t *)); for (i = 0; i < depth; i++) pa[i] = NULL; err = nvlist_add_string(f, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC); err |= nvlist_add_uint8(f, FM_VERSION, FM_HC_SCHEME_VERSION); err |= nvlist_add_string(f, FM_FMRI_HC_ROOT, ""); err |= nvlist_add_uint32(f, FM_FMRI_HC_LIST_SZ, depth); if (err != 0) { failure = "basic construction of FMRI failed"; goto boom; } numbuf[MAXDIGITIDX] = '\0'; nullbyte = &numbuf[MAXDIGITIDX]; i = 0; for (nc = n; nc != NULL; nc = nc->u.name.next) { err = nvlist_xalloc(&p, NV_UNIQUE_NAME, &Eft_nv_hdl); if (err != 0) { failure = "alloc of an hc-pair failed"; goto boom; } err = nvlist_add_string(p, FM_FMRI_HC_NAME, nc->u.name.s); numstr = ulltostr(nc->u.name.child->u.ull, nullbyte); err |= nvlist_add_string(p, FM_FMRI_HC_ID, numstr); if (err != 0) { failure = "construction of an hc-pair failed"; goto boom; } pa[i++] = p; } err = nvlist_add_nvlist_array(f, FM_FMRI_HC_LIST, pa, depth); if (err == 0) { for (i = 0; i < depth; i++) if (pa[i] != NULL) nvlist_free(pa[i]); return (f); } failure = "addition of hc-pair array to FMRI failed"; boom: for (i = 0; i < depth; i++) if (pa[i] != NULL) nvlist_free(pa[i]); nvlist_free(f); out(O_DIE, "%s", failure); /*NOTREACHED*/ return (NULL); } static uint_t avg(uint_t sum, uint_t cnt) { unsigned long long s = sum * 10; return ((s / cnt / 10) + (((s / cnt % 10) >= 5) ? 1 : 0)); } static uint8_t percentof(uint_t part, uint_t whole) { unsigned long long p = part * 1000; return ((p / whole / 10) + (((p / whole % 10) >= 5) ? 1 : 0)); } struct rsl { struct event *suspect; nvlist_t *asru; nvlist_t *fru; nvlist_t *rsrc; }; /* * rslfree -- free internal members of struct rsl not expected to be * freed elsewhere. */ static void rslfree(struct rsl *freeme) { if (freeme->asru != NULL) nvlist_free(freeme->asru); if (freeme->fru != NULL) nvlist_free(freeme->fru); if (freeme->rsrc != NULL && freeme->rsrc != freeme->asru) nvlist_free(freeme->rsrc); } /* * rslcmp -- compare two rsl structures. Use the following * comparisons to establish cardinality: * * 1. Name of the suspect's class. (simple strcmp) * 2. Name of the suspect's ASRU. (trickier, since nvlist) * */ static int rslcmp(const void *a, const void *b) { struct rsl *r1 = (struct rsl *)a; struct rsl *r2 = (struct rsl *)b; int rv; rv = strcmp(r1->suspect->enode->u.event.ename->u.name.s, r2->suspect->enode->u.event.ename->u.name.s); if (rv != 0) return (rv); if (r1->asru == NULL && r2->asru == NULL) return (0); if (r1->asru == NULL) return (-1); if (r2->asru == NULL) return (1); return (evnv_cmpnvl(r1->asru, r2->asru, 0)); } /* * rsluniq -- given an array of rsl structures, seek out and "remove" * any duplicates. Dups are "remove"d by NULLing the suspect pointer * of the array element. Removal also means updating the number of * problems and the number of problems which are not faults. User * provides the first and last element pointers. */ static void rsluniq(struct rsl *first, struct rsl *last, int *nprobs, int *nnonf) { struct rsl *cr; if (*nprobs == 1) return; /* * At this point, we only expect duplicate defects. * Eversholt's diagnosis algorithm prevents duplicate * suspects, but we rewrite defects in the platform code after * the diagnosis is made, and that can introduce new * duplicates. */ while (first <= last) { if (first->suspect == NULL || !is_defect(first->suspect->t)) { first++; continue; } cr = first + 1; while (cr <= last) { if (is_defect(first->suspect->t)) { if (rslcmp(first, cr) == 0) { cr->suspect = NULL; rslfree(cr); (*nprobs)--; (*nnonf)--; } } /* * assume all defects are in order after our * sort and short circuit here with "else break" ? */ cr++; } first++; } } /* * get_resources -- for a given suspect, determine what ASRU, FRU and * RSRC nvlists should be advertised in the final suspect list. */ void get_resources(struct event *sp, struct rsl *rsrcs, struct config *croot) { struct node *asrudef, *frudef; nvlist_t *asru, *fru; nvlist_t *rsrc = NULL; char *pathstr; /* * First find any ASRU and/or FRU defined in the * initial fault tree. */ asrudef = eventprop_lookup(sp, L_ASRU); frudef = eventprop_lookup(sp, L_FRU); /* * Create FMRIs based on those definitions */ asru = node2fmri(asrudef); fru = node2fmri(frudef); pathstr = ipath2str(NULL, sp->ipp); /* * Allow for platform translations of the FMRIs */ platform_units_translate(is_defect(sp->t), croot, &asru, &fru, &rsrc, pathstr); FREE(pathstr); rsrcs->suspect = sp; rsrcs->asru = asru; rsrcs->fru = fru; rsrcs->rsrc = rsrc; } /* * trim_suspects -- prior to publishing, we may need to remove some * suspects from the list. If we're auto-closing upsets, we don't * want any of those in the published list. If the ASRUs for multiple * defects resolve to the same ASRU (driver) we only want to publish * that as a single suspect. */ static void trim_suspects(struct fme *fmep, boolean_t no_upsets, struct rsl **begin, struct rsl **end) { struct event *ep; struct rsl *rp; int rpcnt; /* * First save the suspects in the psuspects, then copy back * only the ones we wish to retain. This resets nsuspects to * zero. */ rpcnt = fmep->nsuspects; save_suspects(fmep); /* * allocate an array of resource pointers for the suspects. * We may end up using less than the full allocation, but this * is a very short-lived array. publish_suspects() will free * this array when it's done using it. */ rp = *begin = MALLOC(rpcnt * sizeof (struct rsl)); bzero(rp, rpcnt * sizeof (struct rsl)); /* first pass, remove any unwanted upsets and populate our array */ for (ep = fmep->psuspects; ep; ep = ep->psuspects) { if (no_upsets && is_upset(ep->t)) continue; get_resources(ep, rp, fmep->cfgdata->cooked); rp++; fmep->nsuspects++; if (!is_fault(ep->t)) fmep->nonfault++; } /* if all we had was unwanted upsets, we're done */ if (fmep->nsuspects == 0) return; *end = rp - 1; /* sort the array */ qsort(*begin, fmep->nsuspects, sizeof (struct rsl), rslcmp); rsluniq(*begin, *end, &fmep->nsuspects, &fmep->nonfault); } /* * addpayloadprop -- add a payload prop to a problem */ static void addpayloadprop(const char *lhs, struct evalue *rhs, nvlist_t *fault) { ASSERT(fault != NULL); ASSERT(lhs != NULL); ASSERT(rhs != NULL); if (rhs->t == UINT64) { out(O_ALTFP|O_VERB2, "addpayloadprop: %s=%llu", lhs, rhs->v); if (nvlist_add_uint64(fault, lhs, rhs->v) != 0) out(O_DIE, "cannot add payloadprop \"%s\" to fault", lhs); } else { out(O_ALTFP|O_VERB2, "addpayloadprop: %s=\"%s\"", lhs, (char *)(uintptr_t)rhs->v); if (nvlist_add_string(fault, lhs, (char *)(uintptr_t)rhs->v) != 0) out(O_DIE, "cannot add payloadprop \"%s\" to fault", lhs); } } static char *Istatbuf; static char *Istatbufptr; static int Istatsz; /* * istataddsize -- calculate size of istat and add it to Istatsz */ /*ARGSUSED2*/ static void istataddsize(const struct istat_entry *lhs, struct stats *rhs, void *arg) { int val; ASSERT(lhs != NULL); ASSERT(rhs != NULL); if ((val = stats_counter_value(rhs)) == 0) return; /* skip zero-valued stats */ /* count up the size of the stat name */ Istatsz += ipath2strlen(lhs->ename, lhs->ipath); Istatsz++; /* for the trailing NULL byte */ /* count up the size of the stat value */ Istatsz += snprintf(NULL, 0, "%d", val); Istatsz++; /* for the trailing NULL byte */ } /* * istat2str -- serialize an istat, writing result to *Istatbufptr */ /*ARGSUSED2*/ static void istat2str(const struct istat_entry *lhs, struct stats *rhs, void *arg) { char *str; int len; int val; ASSERT(lhs != NULL); ASSERT(rhs != NULL); if ((val = stats_counter_value(rhs)) == 0) return; /* skip zero-valued stats */ /* serialize the stat name */ str = ipath2str(lhs->ename, lhs->ipath); len = strlen(str); ASSERT(Istatbufptr + len + 1 < &Istatbuf[Istatsz]); (void) strlcpy(Istatbufptr, str, &Istatbuf[Istatsz] - Istatbufptr); Istatbufptr += len; FREE(str); *Istatbufptr++ = '\0'; /* serialize the stat value */ Istatbufptr += snprintf(Istatbufptr, &Istatbuf[Istatsz] - Istatbufptr, "%d", val); *Istatbufptr++ = '\0'; ASSERT(Istatbufptr <= &Istatbuf[Istatsz]); } void istat_save() { if (Istat_need_save == 0) return; /* figure out how big the serialzed info is */ Istatsz = 0; lut_walk(Istats, (lut_cb)istataddsize, NULL); if (Istatsz == 0) { /* no stats to save */ fmd_buf_destroy(Hdl, NULL, WOBUF_ISTATS); return; } /* create the serialized buffer */ Istatbufptr = Istatbuf = MALLOC(Istatsz); lut_walk(Istats, (lut_cb)istat2str, NULL); /* clear out current saved stats */ fmd_buf_destroy(Hdl, NULL, WOBUF_ISTATS); /* write out the new version */ fmd_buf_write(Hdl, NULL, WOBUF_ISTATS, Istatbuf, Istatsz); FREE(Istatbuf); Istat_need_save = 0; } int istat_cmp(struct istat_entry *ent1, struct istat_entry *ent2) { if (ent1->ename != ent2->ename) return (ent2->ename - ent1->ename); if (ent1->ipath != ent2->ipath) return ((char *)ent2->ipath - (char *)ent1->ipath); return (0); } /* * istat-verify -- verify the component associated with a stat still exists * * if the component no longer exists, this routine resets the stat and * returns 0. if the component still exists, it returns 1. */ static int istat_verify(struct node *snp, struct istat_entry *entp) { struct stats *statp; nvlist_t *fmri; fmri = node2fmri(snp->u.event.epname); if (platform_path_exists(fmri)) { nvlist_free(fmri); return (1); } nvlist_free(fmri); /* component no longer in system. zero out the associated stats */ if ((statp = (struct stats *) lut_lookup(Istats, entp, (lut_cmp)istat_cmp)) == NULL || stats_counter_value(statp) == 0) return (0); /* stat is already reset */ Istat_need_save = 1; stats_counter_reset(statp); return (0); } static void istat_bump(struct node *snp, int n) { struct stats *statp; struct istat_entry ent; ASSERT(snp != NULL); ASSERTinfo(snp->t == T_EVENT, ptree_nodetype2str(snp->t)); ASSERT(snp->u.event.epname != NULL); /* class name should be hoisted into a single stable entry */ ASSERT(snp->u.event.ename->u.name.next == NULL); ent.ename = snp->u.event.ename->u.name.s; ent.ipath = ipath(snp->u.event.epname); if (!istat_verify(snp, &ent)) { /* component no longer exists in system, nothing to do */ return; } if ((statp = (struct stats *) lut_lookup(Istats, &ent, (lut_cmp)istat_cmp)) == NULL) { /* need to create the counter */ int cnt = 0; struct node *np; char *sname; char *snamep; struct istat_entry *newentp; /* count up the size of the stat name */ np = snp->u.event.ename; while (np != NULL) { cnt += strlen(np->u.name.s); cnt++; /* for the '.' or '@' */ np = np->u.name.next; } np = snp->u.event.epname; while (np != NULL) { cnt += snprintf(NULL, 0, "%s%llu", np->u.name.s, np->u.name.child->u.ull); cnt++; /* for the '/' or trailing NULL byte */ np = np->u.name.next; } /* build the stat name */ snamep = sname = alloca(cnt); np = snp->u.event.ename; while (np != NULL) { snamep += snprintf(snamep, &sname[cnt] - snamep, "%s", np->u.name.s); np = np->u.name.next; if (np) *snamep++ = '.'; } *snamep++ = '@'; np = snp->u.event.epname; while (np != NULL) { snamep += snprintf(snamep, &sname[cnt] - snamep, "%s%llu", np->u.name.s, np->u.name.child->u.ull); np = np->u.name.next; if (np) *snamep++ = '/'; } *snamep++ = '\0'; /* create the new stat & add it to our list */ newentp = MALLOC(sizeof (*newentp)); *newentp = ent; statp = stats_new_counter(NULL, sname, 0); Istats = lut_add(Istats, (void *)newentp, (void *)statp, (lut_cmp)istat_cmp); } /* if n is non-zero, set that value instead of bumping */ if (n) { stats_counter_reset(statp); stats_counter_add(statp, n); } else stats_counter_bump(statp); Istat_need_save = 1; } /*ARGSUSED*/ static void istat_destructor(void *left, void *right, void *arg) { struct istat_entry *entp = (struct istat_entry *)left; struct stats *statp = (struct stats *)right; FREE(entp); stats_delete(statp); } void istat_fini(void) { lut_free(Istats, istat_destructor, NULL); } static void publish_suspects(struct fme *fmep) { struct event *ep; struct rsl *srl = NULL; struct rsl *erl; struct rsl *rp; nvlist_t *fault; uint8_t cert; uint_t *frs; uint_t fravg, frsum, fr; uint_t messval; struct node *snp; int frcnt, fridx; boolean_t no_upsets = B_FALSE; boolean_t allfaulty = B_TRUE; stats_counter_bump(fmep->diags); /* * The current fmd interfaces don't allow us to solve a case * that's already solved. If we make a new case, what of the * ereports? We don't appear to have an interface that allows * us to access the ereports attached to a case (if we wanted * to copy the original case's ereport attachments to the new * case) and it's also a bit unclear if there would be any * problems with having ereports attached to multiple cases * and/or attaching DIAGNOSED ereports to a case. For now, * we'll just output a message. */ if (fmep->posted_suspects || fmd_case_solved(fmep->hdl, fmep->fmcase)) { out(O_ALTFP|O_NONL, "Revised diagnosis for case %s: ", fmd_case_uuid(fmep->hdl, fmep->fmcase)); for (ep = fmep->suspects; ep; ep = ep->suspects) { out(O_ALTFP|O_NONL, " "); itree_pevent_brief(O_ALTFP|O_NONL, ep); } out(O_ALTFP, NULL); return; } /* * If we're auto-closing upsets, we don't want to include them * in any produced suspect lists or certainty accounting. */ if (Autoclose != NULL) if (strcmp(Autoclose, "true") == 0 || strcmp(Autoclose, "all") == 0 || strcmp(Autoclose, "upsets") == 0) no_upsets = B_TRUE; trim_suspects(fmep, no_upsets, &srl, &erl); /* * If the resulting suspect list has no members, we're * done. Returning here will simply close the case. */ if (fmep->nsuspects == 0) { out(O_ALTFP, "[FME%d, case %s (all suspects are upsets)]", fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase)); FREE(srl); restore_suspects(fmep); return; } /* * If the suspect list is all faults, then for a given fault, * say X of N, X's certainty is computed via: * * fitrate(X) / (fitrate(1) + ... + fitrate(N)) * 100 * * If none of the suspects are faults, and there are N suspects, * the certainty of a given suspect is 100/N. * * If there are are a mixture of faults and other problems in * the suspect list, we take an average of the faults' * FITrates and treat this average as the FITrate for any * non-faults. The fitrate of any given suspect is then * computed per the first formula above. */ if (fmep->nonfault == fmep->nsuspects) { /* NO faults in the suspect list */ cert = percentof(1, fmep->nsuspects); } else { /* sum the fitrates */ frs = alloca(fmep->nsuspects * sizeof (uint_t)); fridx = frcnt = frsum = 0; for (rp = srl; rp <= erl; rp++) { struct node *n; if (rp->suspect == NULL) continue; if (!is_fault(rp->suspect->t)) { frs[fridx++] = 0; continue; } n = eventprop_lookup(rp->suspect, L_FITrate); if (node2uint(n, &fr) != 0) { out(O_DEBUG|O_NONL, "event "); ipath_print(O_DEBUG|O_NONL, ep->enode->u.event.ename->u.name.s, ep->ipp); out(O_DEBUG, " has no FITrate (using 1)"); fr = 1; } else if (fr == 0) { out(O_DEBUG|O_NONL, "event "); ipath_print(O_DEBUG|O_NONL, ep->enode->u.event.ename->u.name.s, ep->ipp); out(O_DEBUG, " has zero FITrate (using 1)"); fr = 1; } frs[fridx++] = fr; frsum += fr; frcnt++; } fravg = avg(frsum, frcnt); for (fridx = 0; fridx < fmep->nsuspects; fridx++) if (frs[fridx] == 0) { frs[fridx] = fravg; frsum += fravg; } } /* Add them in reverse order of our sort, as fmd reverses order */ for (rp = erl; rp >= srl; rp--) { if (rp->suspect == NULL) continue; if (!is_fault(rp->suspect->t)) allfaulty = B_FALSE; if (fmep->nonfault != fmep->nsuspects) cert = percentof(frs[--fridx], frsum); fault = fmd_nvl_create_fault(fmep->hdl, rp->suspect->enode->u.event.ename->u.name.s, cert, rp->asru, rp->fru, rp->rsrc); if (fault == NULL) out(O_DIE, "fault creation failed"); /* if "message" property exists, add it to the fault */ if (node2uint(eventprop_lookup(rp->suspect, L_message), &messval) == 0) { out(O_ALTFP, "[FME%d, %s adds message=%d to suspect list]", fmep->id, rp->suspect->enode->u.event.ename->u.name.s, messval); if (nvlist_add_boolean_value(fault, FM_SUSPECT_MESSAGE, (messval) ? B_TRUE : B_FALSE) != 0) { out(O_DIE, "cannot add no-message to fault"); } } /* add any payload properties */ lut_walk(rp->suspect->payloadprops, (lut_cb)addpayloadprop, (void *)fault); fmd_case_add_suspect(fmep->hdl, fmep->fmcase, fault); rp->suspect->fault = fault; rslfree(rp); /* * If "action" property exists, evaluate it; this must be done * before the dupclose check below since some actions may * modify the asru to be used in fmd_nvl_fmri_faulty. This * needs to be restructured if any new actions are introduced * that have effects that we do not want to be visible if * we decide not to publish in the dupclose check below. */ if ((snp = eventprop_lookup(rp->suspect, L_action)) != NULL) { struct evalue evalue; out(O_ALTFP|O_NONL, "[FME%d, %s action ", fmep->id, rp->suspect->enode->u.event.ename->u.name.s); ptree_name_iter(O_ALTFP|O_NONL, snp); out(O_ALTFP, "]"); Action_nvl = fault; (void) eval_expr(snp, NULL, NULL, NULL, NULL, NULL, 0, &evalue); } /* * if "dupclose" tunable is set, check if the asru is * already marked as "faulty". */ if (Dupclose && allfaulty) { nvlist_t *asru; out(O_ALTFP|O_VERB, "FMD%d dupclose check ", fmep->id); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, rp->suspect); out(O_ALTFP|O_VERB|O_NONL, " "); if (nvlist_lookup_nvlist(fault, FM_FAULT_ASRU, &asru) != 0) { out(O_ALTFP|O_VERB, "NULL asru"); allfaulty = B_FALSE; } else if (fmd_nvl_fmri_faulty(fmep->hdl, asru)) { out(O_ALTFP|O_VERB, "faulty"); } else { out(O_ALTFP|O_VERB, "not faulty"); allfaulty = B_FALSE; } } } /* * Close the case if all asrus are already known to be faulty and if * Dupclose is enabled. Otherwise we are going to publish so take * any pre-publication actions. */ if (Dupclose && allfaulty) { out(O_ALTFP, "[dupclose FME%d, case %s]", fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase)); fmd_case_close(fmep->hdl, fmep->fmcase); } else { for (rp = erl; rp >= srl; rp--) { struct event *suspect = rp->suspect; if (suspect == NULL) continue; fault = suspect->fault; /* if "count" exists, increment the appropriate stat */ if ((snp = eventprop_lookup(suspect, L_count)) != NULL) { out(O_ALTFP|O_NONL, "[FME%d, %s count ", fmep->id, suspect->enode->u.event.ename->u.name.s); ptree_name_iter(O_ALTFP|O_NONL, snp); out(O_ALTFP, "]"); istat_bump(snp, 0); } } istat_save(); /* write out any istat changes */ out(O_ALTFP, "[solving FME%d, case %s]", fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase)); fmd_case_solve(fmep->hdl, fmep->fmcase); } /* * revert to the original suspect list */ FREE(srl); restore_suspects(fmep); } static void publish_undiagnosable(fmd_hdl_t *hdl, fmd_event_t *ffep) { struct case_list *newcase; nvlist_t *defect; out(O_ALTFP, "[undiagnosable ereport received, " "creating and closing a new case (%s)]", Undiag_reason ? Undiag_reason : "reason not provided"); newcase = MALLOC(sizeof (struct case_list)); newcase->next = NULL; newcase->fmcase = fmd_case_open(hdl, NULL); if (Undiagablecaselist != NULL) newcase->next = Undiagablecaselist; Undiagablecaselist = newcase; if (ffep != NULL) fmd_case_add_ereport(hdl, newcase->fmcase, ffep); defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100, NULL, NULL, NULL); if (Undiag_reason != NULL) (void) nvlist_add_string(defect, UNDIAG_REASON, Undiag_reason); fmd_case_add_suspect(hdl, newcase->fmcase, defect); fmd_case_solve(hdl, newcase->fmcase); fmd_case_close(hdl, newcase->fmcase); } static void fme_undiagnosable(struct fme *f) { nvlist_t *defect; out(O_ALTFP, "[solving/closing FME%d, case %s (%s)]", f->id, fmd_case_uuid(f->hdl, f->fmcase), Undiag_reason ? Undiag_reason : "undiagnosable"); defect = fmd_nvl_create_fault(f->hdl, UNDIAGNOSABLE_DEFECT, 100, NULL, NULL, NULL); if (Undiag_reason != NULL) (void) nvlist_add_string(defect, UNDIAG_REASON, Undiag_reason); fmd_case_add_suspect(f->hdl, f->fmcase, defect); fmd_case_solve(f->hdl, f->fmcase); destroy_fme_bufs(f); fmd_case_close(f->hdl, f->fmcase); } /* * fme_close_case * * Find the requested case amongst our fmes and close it. Free up * the related fme. */ void fme_close_case(fmd_hdl_t *hdl, fmd_case_t *fmcase) { struct case_list *ucasep, *prevcasep = NULL; struct fme *prev = NULL; struct fme *fmep; for (ucasep = Undiagablecaselist; ucasep; ucasep = ucasep->next) { if (fmcase != ucasep->fmcase) { prevcasep = ucasep; continue; } if (prevcasep == NULL) Undiagablecaselist = Undiagablecaselist->next; else prevcasep->next = ucasep->next; FREE(ucasep); return; } for (fmep = FMElist; fmep; fmep = fmep->next) { if (fmep->hdl == hdl && fmep->fmcase == fmcase) break; prev = fmep; } if (fmep == NULL) { out(O_WARN, "Eft asked to close unrecognized case [%s].", fmd_case_uuid(hdl, fmcase)); return; } if (EFMElist == fmep) EFMElist = prev; if (prev == NULL) FMElist = FMElist->next; else prev->next = fmep->next; fmep->next = NULL; /* Get rid of any timer this fme has set */ if (fmep->wull != 0) fmd_timer_remove(fmep->hdl, fmep->timer); if (ClosedFMEs == NULL) { ClosedFMEs = fmep; } else { fmep->next = ClosedFMEs; ClosedFMEs = fmep; } Open_fme_count--; /* See if we can close the overflow FME */ if (Open_fme_count <= Max_fme) { for (fmep = FMElist; fmep; fmep = fmep->next) { if (fmep->overflow && !(fmd_case_closed(fmep->hdl, fmep->fmcase))) break; } if (fmep != NULL) fmd_case_close(fmep->hdl, fmep->fmcase); } } /* * fme_set_timer() * If the time we need to wait for the given FME is less than the * current timer, kick that old timer out and establish a new one. */ static int fme_set_timer(struct fme *fmep, unsigned long long wull) { out(O_ALTFP|O_VERB|O_NONL, " fme_set_timer: request to wait "); ptree_timeval(O_ALTFP|O_VERB, &wull); if (wull <= fmep->pull) { out(O_ALTFP|O_VERB|O_NONL, "already have waited at least "); ptree_timeval(O_ALTFP|O_VERB, &fmep->pull); out(O_ALTFP|O_VERB, NULL); /* we've waited at least wull already, don't need timer */ return (0); } out(O_ALTFP|O_VERB|O_NONL, " currently "); if (fmep->wull != 0) { out(O_ALTFP|O_VERB|O_NONL, "waiting "); ptree_timeval(O_ALTFP|O_VERB, &fmep->wull); out(O_ALTFP|O_VERB, NULL); } else { out(O_ALTFP|O_VERB|O_NONL, "not waiting"); out(O_ALTFP|O_VERB, NULL); } if (fmep->wull != 0) if (wull >= fmep->wull) /* New timer would fire later than established timer */ return (0); if (fmep->wull != 0) { fmd_timer_remove(fmep->hdl, fmep->timer); if (fmep->timer == fmep->htid) { out(O_ALTFP, "[stopped hesitating FME%d, case %s]", fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase)); fmep->htid = 0; } } fmep->timer = fmd_timer_install(fmep->hdl, (void *)fmep, fmep->e0r, wull); out(O_ALTFP|O_VERB, "timer set, id is %ld", fmep->timer); fmep->wull = wull; return (1); } void fme_timer_fired(struct fme *fmep, id_t tid) { struct fme *ffmep = NULL; for (ffmep = FMElist; ffmep; ffmep = ffmep->next) if (ffmep == fmep) break; if (ffmep == NULL) { out(O_WARN, "Timer fired for an FME (%p) not in FMEs list.", (void *)fmep); return; } out(O_ALTFP, "Timer fired %lx %lx", tid, fmep->htid); if (tid != fmep->htid) { /* * normal timer (not the hesitation timer) */ fmep->pull = fmep->wull; fmep->wull = 0; fmd_buf_write(fmep->hdl, fmep->fmcase, WOBUF_PULL, (void *)&fmep->pull, sizeof (fmep->pull)); /* * no point in heistating if we've already waited. */ fmep->hesitated = 1; } else { fmep->hesitated = 1; } fme_eval(fmep, NULL); } /* * Preserve the fme's suspect list in its psuspects list, NULLing the * suspects list in the meantime. */ static void save_suspects(struct fme *fmep) { struct event *ep; struct event *nextep; /* zero out the previous suspect list */ for (ep = fmep->psuspects; ep; ep = nextep) { nextep = ep->psuspects; ep->psuspects = NULL; } fmep->psuspects = NULL; /* zero out the suspect list, copying it to previous suspect list */ fmep->psuspects = fmep->suspects; for (ep = fmep->suspects; ep; ep = nextep) { nextep = ep->suspects; ep->psuspects = ep->suspects; ep->suspects = NULL; ep->is_suspect = 0; } fmep->suspects = NULL; fmep->nsuspects = 0; fmep->nonfault = 0; } /* * Retrieve the fme's suspect list from its psuspects list. */ static void restore_suspects(struct fme *fmep) { struct event *ep; struct event *nextep; fmep->nsuspects = fmep->nonfault = 0; fmep->suspects = fmep->psuspects; for (ep = fmep->psuspects; ep; ep = nextep) { fmep->nsuspects++; if (!is_fault(ep->t)) fmep->nonfault++; nextep = ep->psuspects; ep->suspects = ep->psuspects; } } /* * this is what we use to call the Emrys prototype code instead of main() */ static void fme_eval(struct fme *fmep, fmd_event_t *ffep) { struct event *ep; unsigned long long my_delay = TIMEVAL_EVENTUALLY; save_suspects(fmep); out(O_ALTFP|O_VERB, "Evaluate FME %d", fmep->id); indent_set(" "); lut_walk(fmep->eventtree, (lut_cb)clear_arrows, (void *)fmep); fmep->state = hypothesise(fmep, fmep->e0, fmep->ull, &my_delay); out(O_ALTFP|O_VERB|O_NONL, "FME%d state: %s, suspect list:", fmep->id, fme_state2str(fmep->state)); for (ep = fmep->suspects; ep; ep = ep->suspects) { out(O_ALTFP|O_VERB|O_NONL, " "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); } out(O_ALTFP|O_VERB, NULL); if (fmep->posted_suspects) { /* * this FME has already posted a diagnosis, so see if * the event changed the diagnosis and print a warning * if it did. * */ if (suspects_changed(fmep)) { print_suspects(SLCHANGED, fmep); publish_suspects(fmep); } } else { switch (fmep->state) { case FME_CREDIBLE: /* * if the suspect list contains any upsets, we * turn off the hesitation logic (by setting * the hesitate flag which normally indicates * we've already done the hesitate logic). * this is done because hesitating with upsets * causes us to explain away additional soft errors * while the upset FME stays open. */ if (fmep->hesitated == 0) { struct event *s; for (s = fmep->suspects; s; s = s->suspects) { if (s->t == N_UPSET) { fmep->hesitated = 1; break; } } } if (Hesitate && fmep->suspects != NULL && fmep->suspects->suspects != NULL && fmep->hesitated == 0) { /* * about to publish multi-entry suspect list, * set the hesitation timer if not already set. */ if (fmep->htid == 0) { out(O_ALTFP|O_NONL, "[hesitate FME%d, case %s ", fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase)); ptree_timeval(O_ALTFP|O_NONL, (unsigned long long *)&Hesitate); out(O_ALTFP, "]"); if (fme_set_timer(fmep, Hesitate)) fmep->htid = fmep->timer; } else { out(O_ALTFP, "[still hesitating FME%d, case %s]", fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase)); } } else { print_suspects(SLNEW, fmep); (void) upsets_eval(fmep, ffep); publish_suspects(fmep); fmep->posted_suspects = 1; fmd_buf_write(fmep->hdl, fmep->fmcase, WOBUF_POSTD, (void *)&fmep->posted_suspects, sizeof (fmep->posted_suspects)); } break; case FME_WAIT: /* * singleton suspect list implies * no point in waiting */ if (fmep->suspects && fmep->suspects->suspects == NULL) { print_suspects(SLNEW, fmep); (void) upsets_eval(fmep, ffep); publish_suspects(fmep); fmep->posted_suspects = 1; fmd_buf_write(fmep->hdl, fmep->fmcase, WOBUF_POSTD, (void *)&fmep->posted_suspects, sizeof (fmep->posted_suspects)); fmep->state = FME_CREDIBLE; } else { ASSERT(my_delay > fmep->ull); (void) fme_set_timer(fmep, my_delay); print_suspects(SLWAIT, fmep); } break; case FME_DISPROVED: print_suspects(SLDISPROVED, fmep); Undiag_reason = UD_UNSOLVD; fme_undiagnosable(fmep); break; } } if (fmep->posted_suspects == 1 && Autoclose != NULL) { int doclose = 0; if (strcmp(Autoclose, "true") == 0 || strcmp(Autoclose, "all") == 0) doclose = 1; if (strcmp(Autoclose, "upsets") == 0) { doclose = 1; for (ep = fmep->suspects; ep; ep = ep->suspects) { if (ep->t != N_UPSET) { doclose = 0; break; } } } if (doclose) { out(O_ALTFP, "[closing FME%d, case %s (autoclose)]", fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase)); destroy_fme_bufs(fmep); fmd_case_close(fmep->hdl, fmep->fmcase); } } } static void indent(void); static int triggered(struct fme *fmep, struct event *ep, int mark); static enum fme_state effects_test(struct fme *fmep, struct event *fault_event, unsigned long long at_latest_by, unsigned long long *pdelay); static enum fme_state requirements_test(struct fme *fmep, struct event *ep, unsigned long long at_latest_by, unsigned long long *pdelay); static enum fme_state causes_test(struct fme *fmep, struct event *ep, unsigned long long at_latest_by, unsigned long long *pdelay); static int checkconstraints(struct fme *fmep, struct arrow *arrowp) { struct constraintlist *ctp; struct evalue value; if (arrowp->forever_false) { char *sep = ""; indent(); out(O_ALTFP|O_VERB|O_NONL, " Forever false constraint: "); for (ctp = arrowp->constraints; ctp != NULL; ctp = ctp->next) { out(O_ALTFP|O_VERB|O_NONL, sep); ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0); sep = ", "; } out(O_ALTFP|O_VERB, NULL); return (0); } for (ctp = arrowp->constraints; ctp != NULL; ctp = ctp->next) { if (eval_expr(ctp->cnode, NULL, NULL, &fmep->globals, fmep->cfgdata->cooked, arrowp, 0, &value)) { /* evaluation successful */ if (value.t == UNDEFINED || value.v == 0) { /* known false */ arrowp->forever_false = 1; indent(); out(O_ALTFP|O_VERB|O_NONL, " False constraint: "); ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0); out(O_ALTFP|O_VERB, NULL); return (0); } } else { /* evaluation unsuccessful -- unknown value */ indent(); out(O_ALTFP|O_VERB|O_NONL, " Deferred constraint: "); ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0); out(O_ALTFP|O_VERB, NULL); return (2); } } /* known true */ return (1); } static int triggered(struct fme *fmep, struct event *ep, int mark) { struct bubble *bp; struct arrowlist *ap; int count = 0; stats_counter_bump(fmep->Tcallcount); for (bp = itree_next_bubble(ep, NULL); bp; bp = itree_next_bubble(ep, bp)) { if (bp->t != B_TO) continue; for (ap = itree_next_arrow(bp, NULL); ap; ap = itree_next_arrow(bp, ap)) { /* check count of marks against K in the bubble */ if ((ap->arrowp->mark & mark) && ++count >= bp->nork) return (1); } } return (0); } static int mark_arrows(struct fme *fmep, struct event *ep, int mark, unsigned long long at_latest_by, unsigned long long *pdelay) { struct bubble *bp; struct arrowlist *ap; unsigned long long overall_delay = TIMEVAL_EVENTUALLY; unsigned long long my_delay; enum fme_state result; int retval = 0; for (bp = itree_next_bubble(ep, NULL); bp; bp = itree_next_bubble(ep, bp)) { if (bp->t != B_FROM) continue; stats_counter_bump(fmep->Marrowcount); for (ap = itree_next_arrow(bp, NULL); ap; ap = itree_next_arrow(bp, ap)) { struct event *ep2 = ap->arrowp->head->myevent; /* * if we're clearing marks, we can avoid doing * all that work evaluating constraints. */ if (mark == 0) { ap->arrowp->mark &= ~EFFECTS_COUNTER; ep2->cached_state &= ~(WAIT_EFFECT|CREDIBLE_EFFECT|PARENT_WAIT); (void) mark_arrows(fmep, ep2, mark, 0, NULL); continue; } if (ep2->cached_state & REQMNTS_DISPROVED) { indent(); out(O_ALTFP|O_VERB|O_NONL, " ALREADY DISPROVED "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); out(O_ALTFP|O_VERB, NULL); continue; } if (ep2->cached_state & WAIT_EFFECT) { indent(); out(O_ALTFP|O_VERB|O_NONL, " ALREADY EFFECTS WAIT "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); out(O_ALTFP|O_VERB, NULL); continue; } if (ep2->cached_state & CREDIBLE_EFFECT) { indent(); out(O_ALTFP|O_VERB|O_NONL, " ALREADY EFFECTS CREDIBLE "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); out(O_ALTFP|O_VERB, NULL); continue; } if ((ep2->cached_state & PARENT_WAIT) && (mark & PARENT_WAIT)) { indent(); out(O_ALTFP|O_VERB|O_NONL, " ALREADY PARENT EFFECTS WAIT "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); out(O_ALTFP|O_VERB, NULL); continue; } platform_set_payloadnvp(ep2->nvp); if (checkconstraints(fmep, ap->arrowp) != 1) { platform_set_payloadnvp(NULL); indent(); out(O_ALTFP|O_VERB|O_NONL, " CONSTRAINTS FAIL "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); out(O_ALTFP|O_VERB, NULL); continue; } platform_set_payloadnvp(NULL); ap->arrowp->mark |= EFFECTS_COUNTER; if (!triggered(fmep, ep2, EFFECTS_COUNTER)) { indent(); out(O_ALTFP|O_VERB|O_NONL, " K-COUNT NOT YET MET "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); out(O_ALTFP|O_VERB, NULL); continue; } ep2->cached_state &= ~PARENT_WAIT; result = requirements_test(fmep, ep2, at_latest_by + ap->arrowp->maxdelay, &my_delay); if (result == FME_WAIT) { retval = WAIT_EFFECT; if (overall_delay > my_delay) overall_delay = my_delay; ep2->cached_state |= WAIT_EFFECT; indent(); out(O_ALTFP|O_VERB|O_NONL, " EFFECTS WAIT "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); out(O_ALTFP|O_VERB, NULL); indent_push(" E"); if (mark_arrows(fmep, ep2, PARENT_WAIT, at_latest_by, &my_delay) == WAIT_EFFECT) { retval = WAIT_EFFECT; if (overall_delay > my_delay) overall_delay = my_delay; } indent_pop(); } else if (result == FME_DISPROVED) { indent(); out(O_ALTFP|O_VERB|O_NONL, " EFFECTS DISPROVED "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); out(O_ALTFP|O_VERB, NULL); } else { ep2->cached_state |= mark; indent(); if (mark == CREDIBLE_EFFECT) out(O_ALTFP|O_VERB|O_NONL, " EFFECTS CREDIBLE "); else out(O_ALTFP|O_VERB|O_NONL, " PARENT EFFECTS WAIT "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); out(O_ALTFP|O_VERB, NULL); indent_push(" E"); if (mark_arrows(fmep, ep2, mark, at_latest_by, &my_delay) == WAIT_EFFECT) { retval = WAIT_EFFECT; if (overall_delay > my_delay) overall_delay = my_delay; } indent_pop(); } } } if (retval == WAIT_EFFECT) *pdelay = overall_delay; return (retval); } static enum fme_state effects_test(struct fme *fmep, struct event *fault_event, unsigned long long at_latest_by, unsigned long long *pdelay) { struct event *error_event; enum fme_state return_value = FME_CREDIBLE; unsigned long long overall_delay = TIMEVAL_EVENTUALLY; unsigned long long my_delay; stats_counter_bump(fmep->Ecallcount); indent_push(" E"); indent(); out(O_ALTFP|O_VERB|O_NONL, "->"); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, fault_event); out(O_ALTFP|O_VERB, NULL); (void) mark_arrows(fmep, fault_event, CREDIBLE_EFFECT, at_latest_by, &my_delay); for (error_event = fmep->observations; error_event; error_event = error_event->observations) { indent(); out(O_ALTFP|O_VERB|O_NONL, " "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, error_event); if (!(error_event->cached_state & CREDIBLE_EFFECT)) { if (error_event->cached_state & (PARENT_WAIT|WAIT_EFFECT)) { return_value = FME_WAIT; if (overall_delay > my_delay) overall_delay = my_delay; out(O_ALTFP|O_VERB, " NOT YET triggered"); continue; } return_value = FME_DISPROVED; out(O_ALTFP|O_VERB, " NOT triggered"); break; } else { out(O_ALTFP|O_VERB, " triggered"); } } (void) mark_arrows(fmep, fault_event, 0, 0, NULL); indent(); out(O_ALTFP|O_VERB|O_NONL, "<-EFFECTS %s ", fme_state2str(return_value)); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, fault_event); out(O_ALTFP|O_VERB, NULL); indent_pop(); if (return_value == FME_WAIT) *pdelay = overall_delay; return (return_value); } static enum fme_state requirements_test(struct fme *fmep, struct event *ep, unsigned long long at_latest_by, unsigned long long *pdelay) { int waiting_events; int credible_events; int deferred_events; enum fme_state return_value = FME_CREDIBLE; unsigned long long overall_delay = TIMEVAL_EVENTUALLY; unsigned long long arrow_delay; unsigned long long my_delay; struct event *ep2; struct bubble *bp; struct arrowlist *ap; if (ep->cached_state & REQMNTS_CREDIBLE) { indent(); out(O_ALTFP|O_VERB|O_NONL, " REQMNTS ALREADY CREDIBLE "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, NULL); return (FME_CREDIBLE); } if (ep->cached_state & REQMNTS_DISPROVED) { indent(); out(O_ALTFP|O_VERB|O_NONL, " REQMNTS ALREADY DISPROVED "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, NULL); return (FME_DISPROVED); } if (ep->cached_state & REQMNTS_WAIT) { indent(); *pdelay = ep->cached_delay; out(O_ALTFP|O_VERB|O_NONL, " REQMNTS ALREADY WAIT "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB|O_NONL, ", wait for: "); ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); out(O_ALTFP|O_VERB, NULL); return (FME_WAIT); } stats_counter_bump(fmep->Rcallcount); indent_push(" R"); indent(); out(O_ALTFP|O_VERB|O_NONL, "->"); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB|O_NONL, ", at latest by: "); ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); out(O_ALTFP|O_VERB, NULL); if (ep->t == N_EREPORT) { if (ep->count == 0) { if (fmep->pull >= at_latest_by) { return_value = FME_DISPROVED; } else { ep->cached_delay = *pdelay = at_latest_by; return_value = FME_WAIT; } } indent(); switch (return_value) { case FME_CREDIBLE: ep->cached_state |= REQMNTS_CREDIBLE; out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS CREDIBLE "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); break; case FME_DISPROVED: ep->cached_state |= REQMNTS_DISPROVED; out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS DISPROVED "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); break; case FME_WAIT: ep->cached_state |= REQMNTS_WAIT; out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS WAIT "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB|O_NONL, " to "); ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); break; default: out(O_DIE, "requirements_test: unexpected fme_state"); break; } out(O_ALTFP|O_VERB, NULL); indent_pop(); return (return_value); } /* this event is not a report, descend the tree */ for (bp = itree_next_bubble(ep, NULL); bp; bp = itree_next_bubble(ep, bp)) { int n; if (bp->t != B_FROM) continue; n = bp->nork; credible_events = 0; waiting_events = 0; deferred_events = 0; arrow_delay = TIMEVAL_EVENTUALLY; /* * n is -1 for 'A' so adjust it. * XXX just count up the arrows for now. */ if (n < 0) { n = 0; for (ap = itree_next_arrow(bp, NULL); ap; ap = itree_next_arrow(bp, ap)) n++; indent(); out(O_ALTFP|O_VERB, " Bubble Counted N=%d", n); } else { indent(); out(O_ALTFP|O_VERB, " Bubble N=%d", n); } if (n == 0) continue; if (!(bp->mark & (BUBBLE_ELIDED|BUBBLE_OK))) { for (ap = itree_next_arrow(bp, NULL); ap; ap = itree_next_arrow(bp, ap)) { ep2 = ap->arrowp->head->myevent; platform_set_payloadnvp(ep2->nvp); if (checkconstraints(fmep, ap->arrowp) == 0) { /* * if any arrow is invalidated by the * constraints, then we should elide the * whole bubble to be consistant with * the tree creation time behaviour */ bp->mark |= BUBBLE_ELIDED; platform_set_payloadnvp(NULL); break; } platform_set_payloadnvp(NULL); } } if (bp->mark & BUBBLE_ELIDED) continue; bp->mark |= BUBBLE_OK; for (ap = itree_next_arrow(bp, NULL); ap; ap = itree_next_arrow(bp, ap)) { ep2 = ap->arrowp->head->myevent; if (n <= credible_events) break; ap->arrowp->mark |= REQMNTS_COUNTER; if (triggered(fmep, ep2, REQMNTS_COUNTER)) /* XXX adding max timevals! */ switch (requirements_test(fmep, ep2, at_latest_by + ap->arrowp->maxdelay, &my_delay)) { case FME_DEFERRED: deferred_events++; break; case FME_CREDIBLE: credible_events++; break; case FME_DISPROVED: break; case FME_WAIT: if (my_delay < arrow_delay) arrow_delay = my_delay; waiting_events++; break; default: out(O_DIE, "Bug in requirements_test."); } else deferred_events++; } indent(); out(O_ALTFP|O_VERB, " Credible: %d Waiting %d", credible_events + deferred_events, waiting_events); if (credible_events + deferred_events + waiting_events < n) { /* Can never meet requirements */ ep->cached_state |= REQMNTS_DISPROVED; indent(); out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS DISPROVED "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, NULL); indent_pop(); return (FME_DISPROVED); } if (credible_events + deferred_events < n) { /* will have to wait */ /* wait time is shortest known */ if (arrow_delay < overall_delay) overall_delay = arrow_delay; return_value = FME_WAIT; } else if (credible_events < n) { if (return_value != FME_WAIT) return_value = FME_DEFERRED; } } /* * don't mark as FME_DEFERRED. If this event isn't reached by another * path, then this will be considered FME_CREDIBLE. But if it is * reached by a different path so the K-count is met, then might * get overridden by FME_WAIT or FME_DISPROVED. */ if (return_value == FME_WAIT) { ep->cached_state |= REQMNTS_WAIT; ep->cached_delay = *pdelay = overall_delay; } else if (return_value == FME_CREDIBLE) { ep->cached_state |= REQMNTS_CREDIBLE; } indent(); out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS %s ", fme_state2str(return_value)); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, NULL); indent_pop(); return (return_value); } static enum fme_state causes_test(struct fme *fmep, struct event *ep, unsigned long long at_latest_by, unsigned long long *pdelay) { unsigned long long overall_delay = TIMEVAL_EVENTUALLY; unsigned long long my_delay; int credible_results = 0; int waiting_results = 0; enum fme_state fstate; struct event *tail_event; struct bubble *bp; struct arrowlist *ap; int k = 1; stats_counter_bump(fmep->Ccallcount); indent_push(" C"); indent(); out(O_ALTFP|O_VERB|O_NONL, "->"); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, NULL); for (bp = itree_next_bubble(ep, NULL); bp; bp = itree_next_bubble(ep, bp)) { if (bp->t != B_TO) continue; k = bp->nork; /* remember the K value */ for (ap = itree_next_arrow(bp, NULL); ap; ap = itree_next_arrow(bp, ap)) { int do_not_follow = 0; /* * if we get to the same event multiple times * only worry about the first one. */ if (ap->arrowp->tail->myevent->cached_state & CAUSES_TESTED) { indent(); out(O_ALTFP|O_VERB|O_NONL, " causes test already run for "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ap->arrowp->tail->myevent); out(O_ALTFP|O_VERB, NULL); continue; } /* * see if false constraint prevents us * from traversing this arrow */ platform_set_payloadnvp(ep->nvp); if (checkconstraints(fmep, ap->arrowp) != 1) do_not_follow = 1; platform_set_payloadnvp(NULL); if (do_not_follow) { indent(); out(O_ALTFP|O_VERB|O_NONL, " False arrow from "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ap->arrowp->tail->myevent); out(O_ALTFP|O_VERB, NULL); continue; } ap->arrowp->tail->myevent->cached_state |= CAUSES_TESTED; tail_event = ap->arrowp->tail->myevent; fstate = hypothesise(fmep, tail_event, at_latest_by, &my_delay); switch (fstate) { case FME_WAIT: if (my_delay < overall_delay) overall_delay = my_delay; waiting_results++; break; case FME_CREDIBLE: credible_results++; break; case FME_DISPROVED: break; default: out(O_DIE, "Bug in causes_test"); } } } /* compare against K */ if (credible_results + waiting_results < k) { indent(); out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES DISPROVED "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, NULL); indent_pop(); return (FME_DISPROVED); } if (waiting_results != 0) { *pdelay = overall_delay; indent(); out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES WAIT "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB|O_NONL, " to "); ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); out(O_ALTFP|O_VERB, NULL); indent_pop(); return (FME_WAIT); } indent(); out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES CREDIBLE "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, NULL); indent_pop(); return (FME_CREDIBLE); } static enum fme_state hypothesise(struct fme *fmep, struct event *ep, unsigned long long at_latest_by, unsigned long long *pdelay) { enum fme_state rtr, otr; unsigned long long my_delay; unsigned long long overall_delay = TIMEVAL_EVENTUALLY; stats_counter_bump(fmep->Hcallcount); indent_push(" H"); indent(); out(O_ALTFP|O_VERB|O_NONL, "->"); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB|O_NONL, ", at latest by: "); ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); out(O_ALTFP|O_VERB, NULL); rtr = requirements_test(fmep, ep, at_latest_by, &my_delay); if ((rtr == FME_WAIT) && (my_delay < overall_delay)) overall_delay = my_delay; if (rtr != FME_DISPROVED) { if (is_problem(ep->t)) { otr = effects_test(fmep, ep, at_latest_by, &my_delay); if (otr != FME_DISPROVED) { if (fmep->peek == 0 && ep->is_suspect++ == 0) { ep->suspects = fmep->suspects; fmep->suspects = ep; fmep->nsuspects++; if (!is_fault(ep->t)) fmep->nonfault++; } } } else otr = causes_test(fmep, ep, at_latest_by, &my_delay); if ((otr == FME_WAIT) && (my_delay < overall_delay)) overall_delay = my_delay; if ((otr != FME_DISPROVED) && ((rtr == FME_WAIT) || (otr == FME_WAIT))) *pdelay = overall_delay; } if (rtr == FME_DISPROVED) { indent(); out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, " (doesn't meet requirements)"); indent_pop(); return (FME_DISPROVED); } if ((otr == FME_DISPROVED) && is_problem(ep->t)) { indent(); out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, " (doesn't explain all reports)"); indent_pop(); return (FME_DISPROVED); } if (otr == FME_DISPROVED) { indent(); out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, " (causes are not credible)"); indent_pop(); return (FME_DISPROVED); } if ((rtr == FME_WAIT) || (otr == FME_WAIT)) { indent(); out(O_ALTFP|O_VERB|O_NONL, "<-WAIT "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB|O_NONL, " to "); ptree_timeval(O_ALTFP|O_VERB|O_NONL, &overall_delay); out(O_ALTFP|O_VERB, NULL); indent_pop(); return (FME_WAIT); } indent(); out(O_ALTFP|O_VERB|O_NONL, "<-CREDIBLE "); itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); out(O_ALTFP|O_VERB, NULL); indent_pop(); return (FME_CREDIBLE); } /* * fme_istat_load -- reconstitute any persistent istats */ void fme_istat_load(fmd_hdl_t *hdl) { int sz; char *sbuf; char *ptr; if ((sz = fmd_buf_size(hdl, NULL, WOBUF_ISTATS)) == 0) { out(O_ALTFP, "fme_istat_load: No stats"); return; } sbuf = alloca(sz); fmd_buf_read(hdl, NULL, WOBUF_ISTATS, sbuf, sz); /* * pick apart the serialized stats * * format is: * , '@', , '\0', , '\0' * for example: * "stat.first@stat0/path0\02\0stat.second@stat0/path1\023\0" * * since this is parsing our own serialized data, any parsing issues * are fatal, so we check for them all with ASSERT() below. */ ptr = sbuf; while (ptr < &sbuf[sz]) { char *sepptr; struct node *np; int val; sepptr = strchr(ptr, '@'); ASSERT(sepptr != NULL); *sepptr = '\0'; /* construct the event */ np = newnode(T_EVENT, NULL, 0); np->u.event.ename = newnode(T_NAME, NULL, 0); np->u.event.ename->u.name.t = N_STAT; np->u.event.ename->u.name.s = stable(ptr); np->u.event.ename->u.name.it = IT_ENAME; np->u.event.ename->u.name.last = np->u.event.ename; ptr = sepptr + 1; ASSERT(ptr < &sbuf[sz]); ptr += strlen(ptr); ptr++; /* move past the '\0' separating path from value */ ASSERT(ptr < &sbuf[sz]); ASSERT(isdigit(*ptr)); val = atoi(ptr); ASSERT(val > 0); ptr += strlen(ptr); ptr++; /* move past the final '\0' for this entry */ np->u.event.epname = pathstring2epnamenp(sepptr + 1); ASSERT(np->u.event.epname != NULL); istat_bump(np, val); tree_free(np); } istat_save(); }