/* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Copyright (c) 1983, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgment: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sbin/routed/table.c,v 1.15 2000/08/11 08:24:38 sheldonh Exp $ */ #pragma ident "%Z%%M% %I% %E% SMI" #include "defs.h" #include #include #include #include #include /* This structure is used to store a disassembled routing socket message. */ struct rt_addrinfo { int rti_addrs; struct sockaddr_storage *rti_info[RTAX_MAX]; }; static struct rt_spare *rts_better(struct rt_entry *); static struct rt_spare rts_empty = EMPTY_RT_SPARE; static void set_need_flash(void); static void rtbad(struct rt_entry *, struct interface *); static int rt_xaddrs(struct rt_addrinfo *, struct sockaddr_storage *, char *, int); static struct interface *gwkludge_iflookup(in_addr_t, in_addr_t, in_addr_t); struct radix_node_head *rhead; /* root of the radix tree */ /* Flash update needed. _B_TRUE to suppress the 1st. */ boolean_t need_flash = _B_TRUE; struct timeval age_timer; /* next check of old routes */ struct timeval need_kern = { /* need to update kernel table */ EPOCH+MIN_WAITTIME-1, 0 }; static uint32_t total_routes; #define ROUNDUP_LONG(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof (long) - 1))) : sizeof (long)) /* * It is desirable to "aggregate" routes, to combine differing routes of * the same metric and next hop into a common route with a smaller netmask * or to suppress redundant routes, routes that add no information to * routes with smaller netmasks. * * A route is redundant if and only if any and all routes with smaller * but matching netmasks and nets are the same. Since routes are * kept sorted in the radix tree, redundant routes always come second. * * There are two kinds of aggregations. First, two routes of the same bit * mask and differing only in the least significant bit of the network * number can be combined into a single route with a coarser mask. * * Second, a route can be suppressed in favor of another route with a more * coarse mask provided no incompatible routes with intermediate masks * are present. The second kind of aggregation involves suppressing routes. * A route must not be suppressed if an incompatible route exists with * an intermediate mask, since the suppressed route would be covered * by the intermediate. * * This code relies on the radix tree walk encountering routes * sorted first by address, with the smallest address first. */ static struct ag_info ag_slots[NUM_AG_SLOTS], *ag_avail, *ag_corsest, *ag_finest; #ifdef DEBUG_AG #define CHECK_AG() do { int acnt = 0; struct ag_info *cag; \ for (cag = ag_avail; cag != NULL; cag = cag->ag_fine) \ acnt++; \ for (cag = ag_corsest; cag != NULL; cag = cag->ag_fine) \ acnt++; \ if (acnt != NUM_AG_SLOTS) \ abort(); \ } while (_B_FALSE) #else #define CHECK_AG() (void)0 #endif /* * Output the contents of an aggregation table slot. * This function must always be immediately followed with the deletion * of the target slot. */ static void ag_out(struct ag_info *ag, void (*out)(struct ag_info *)) { struct ag_info *ag_cors; uint32_t bit; /* Forget it if this route should not be output for split-horizon. */ if (ag->ag_state & AGS_SPLIT_HZ) return; /* * If we output both the even and odd twins, then the immediate parent, * if it is present, is redundant, unless the parent manages to * aggregate into something coarser. * On successive calls, this code detects the even and odd twins, * and marks the parent. * * Note that the order in which the radix tree code emits routes * ensures that the twins are seen before the parent is emitted. */ ag_cors = ag->ag_cors; if (ag_cors != NULL && ag_cors->ag_mask == (ag->ag_mask << 1) && ag_cors->ag_dst_h == (ag->ag_dst_h & ag_cors->ag_mask)) { ag_cors->ag_state |= ((ag_cors->ag_dst_h == ag->ag_dst_h) ? AGS_REDUN0 : AGS_REDUN1); } /* * Skip it if this route is itself redundant. * * It is ok to change the contents of the slot here, since it is * always deleted next. */ if (ag->ag_state & AGS_REDUN0) { if (ag->ag_state & AGS_REDUN1) return; /* quit if fully redundant */ /* make it finer if it is half-redundant */ bit = (-ag->ag_mask) >> 1; ag->ag_dst_h |= bit; ag->ag_mask |= bit; } else if (ag->ag_state & AGS_REDUN1) { /* make it finer if it is half-redundant */ bit = (-ag->ag_mask) >> 1; ag->ag_mask |= bit; } out(ag); } static void ag_del(struct ag_info *ag) { CHECK_AG(); if (ag->ag_cors == NULL) ag_corsest = ag->ag_fine; else ag->ag_cors->ag_fine = ag->ag_fine; if (ag->ag_fine == NULL) ag_finest = ag->ag_cors; else ag->ag_fine->ag_cors = ag->ag_cors; ag->ag_fine = ag_avail; ag_avail = ag; CHECK_AG(); } /* Look for a route that can suppress the given route. */ static struct ag_info * ag_find_suppressor(struct ag_info *ag) { struct ag_info *ag_cors; in_addr_t dst_h = ag->ag_dst_h; for (ag_cors = ag->ag_cors; ag_cors != NULL; ag_cors = ag_cors->ag_cors) { if ((dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h) { /* * We found a route with a coarser mask that covers * the given target. It can suppress the target * only if it has a good enough metric and it * either has the same (gateway, ifp), or if its state * includes AGS_CORS_GATE or the target's state * includes AGS_FINE_GATE. */ if (ag_cors->ag_pref <= ag->ag_pref && (((ag->ag_nhop == ag_cors->ag_nhop) && (ag->ag_ifp == ag_cors->ag_ifp)) || ag_cors->ag_state & AGS_CORS_GATE || ag->ag_state & AGS_FINE_GATE)) { return (ag_cors); } } } return (NULL); } /* * Flush routes waiting for aggregation. * This must not suppress a route unless it is known that among all routes * with coarser masks that match it, the one with the longest mask is * appropriate. This is ensured by scanning the routes in lexical order, * and with the most restrictive mask first among routes to the same * destination. */ void ag_flush(in_addr_t lim_dst_h, /* flush routes to here */ in_addr_t lim_mask, /* matching this mask */ void (*out)(struct ag_info *)) { struct ag_info *ag, *ag_cors, *ag_supr; in_addr_t dst_h; for (ag = ag_finest; ag != NULL && ag->ag_mask >= lim_mask; ag = ag_cors) { /* Get the next route now, before we delete ag. */ ag_cors = ag->ag_cors; /* Work on only the specified routes. */ dst_h = ag->ag_dst_h; if ((dst_h & lim_mask) != lim_dst_h) continue; /* * Don't try to suppress the route if its state doesn't * include AGS_SUPPRESS. */ if (!(ag->ag_state & AGS_SUPPRESS)) { ag_out(ag, out); ag_del(ag); continue; } ag_supr = ag_find_suppressor(ag); if (ag_supr == NULL) { /* * We didn't find a route which suppresses the * target, so the target can go out. */ ag_out(ag, out); } else { /* * We found a route which suppresses the target, so * don't output the target. */ if (TRACEACTIONS) { trace_misc("aggregated away %s", rtname(htonl(ag->ag_dst_h), ag->ag_mask, ag->ag_nhop)); trace_misc("on coarser route %s", rtname(htonl(ag_supr->ag_dst_h), ag_supr->ag_mask, ag_supr->ag_nhop)); } /* * If the suppressed target was redundant, then * mark the suppressor as redundant. */ if (AG_IS_REDUN(ag->ag_state) && ag_supr->ag_mask == (ag->ag_mask<<1)) { if (ag_supr->ag_dst_h == dst_h) ag_supr->ag_state |= AGS_REDUN0; else ag_supr->ag_state |= AGS_REDUN1; } if (ag->ag_tag != ag_supr->ag_tag) ag_supr->ag_tag = 0; if (ag->ag_nhop != ag_supr->ag_nhop) ag_supr->ag_nhop = 0; } /* The route has either been output or suppressed */ ag_del(ag); } CHECK_AG(); } /* Try to aggregate a route with previous routes. */ void ag_check(in_addr_t dst, in_addr_t mask, in_addr_t gate, struct interface *ifp, in_addr_t nhop, uint8_t metric, uint8_t pref, uint32_t seqno, uint16_t tag, uint16_t state, void (*out)(struct ag_info *)) /* output using this */ { struct ag_info *ag, *nag, *ag_cors; in_addr_t xaddr; int tmp; struct interface *xifp; dst = ntohl(dst); /* * Don't bother trying to aggregate routes with non-contiguous * subnet masks. * * (X & -X) contains a single bit if and only if X is a power of 2. * (X + (X & -X)) == 0 if and only if X is a power of 2. */ if ((mask & -mask) + mask != 0) { struct ag_info nc_ag; nc_ag.ag_dst_h = dst; nc_ag.ag_mask = mask; nc_ag.ag_gate = gate; nc_ag.ag_ifp = ifp; nc_ag.ag_nhop = nhop; nc_ag.ag_metric = metric; nc_ag.ag_pref = pref; nc_ag.ag_tag = tag; nc_ag.ag_state = state; nc_ag.ag_seqno = seqno; out(&nc_ag); return; } /* Search for the right slot in the aggregation table. */ ag_cors = NULL; ag = ag_corsest; while (ag != NULL) { if (ag->ag_mask >= mask) break; /* * Suppress old routes (i.e. combine with compatible routes * with coarser masks) as we look for the right slot in the * aggregation table for the new route. * A route to an address less than the current destination * will not be affected by the current route or any route * seen hereafter. That means it is safe to suppress it. * This check keeps poor routes (e.g. with large hop counts) * from preventing suppression of finer routes. */ if (ag_cors != NULL && ag->ag_dst_h < dst && (ag->ag_state & AGS_SUPPRESS) && ag_cors->ag_pref <= ag->ag_pref && (ag->ag_dst_h & ag_cors->ag_mask) == ag_cors->ag_dst_h && ((ag_cors->ag_nhop == ag->ag_nhop && (ag_cors->ag_ifp == ag->ag_ifp))|| (ag->ag_state & AGS_FINE_GATE) || (ag_cors->ag_state & AGS_CORS_GATE))) { /* * If the suppressed target was redundant, * then mark the suppressor redundant. */ if (AG_IS_REDUN(ag->ag_state) && ag_cors->ag_mask == (ag->ag_mask << 1)) { if (ag_cors->ag_dst_h == dst) ag_cors->ag_state |= AGS_REDUN0; else ag_cors->ag_state |= AGS_REDUN1; } if (ag->ag_tag != ag_cors->ag_tag) ag_cors->ag_tag = 0; if (ag->ag_nhop != ag_cors->ag_nhop) ag_cors->ag_nhop = 0; ag_del(ag); CHECK_AG(); } else { ag_cors = ag; } ag = ag_cors->ag_fine; } /* * If we find the even/odd twin of the new route, and if the * masks and so forth are equal, we can aggregate them. * We can probably promote one of the pair. * * Since the routes are encountered in lexical order, * the new route must be odd. However, the second or later * times around this loop, it could be the even twin promoted * from the even/odd pair of twins of the finer route. */ while (ag != NULL && ag->ag_mask == mask && ((ag->ag_dst_h ^ dst) & (mask<<1)) == 0) { /* * Here we know the target route and the route in the current * slot have the same netmasks and differ by at most the * last bit. They are either for the same destination, or * for an even/odd pair of destinations. */ if (ag->ag_dst_h == dst) { if (ag->ag_nhop == nhop && ag->ag_ifp == ifp) { /* * We have two routes to the same destination, * with the same nexthop and interface. * Routes are encountered in lexical order, * so a route is never promoted until the * parent route is already present. So we * know that the new route is a promoted (or * aggregated) pair and the route already in * the slot is the explicit route. * * Prefer the best route if their metrics * differ, or the aggregated one if not, * following a sort of longest-match rule. */ if (pref <= ag->ag_pref) { ag->ag_gate = gate; ag->ag_ifp = ifp; ag->ag_nhop = nhop; ag->ag_tag = tag; ag->ag_metric = metric; ag->ag_pref = pref; if (seqno > ag->ag_seqno) ag->ag_seqno = seqno; tmp = ag->ag_state; ag->ag_state = state; state = tmp; } /* * Some bits are set if they are set on * either route, except when the route is * for an interface. */ if (!(ag->ag_state & AGS_IF)) ag->ag_state |= (state & (AGS_AGGREGATE_EITHER | AGS_REDUN0 | AGS_REDUN1)); return; } else { /* * multiple routes to same dest/mask with * differing gate nexthop/or ifp. Flush * both out. */ break; } } /* * If one of the routes can be promoted and the other can * be suppressed, it may be possible to combine them or * worthwhile to promote one. * * Any route that can be promoted is always * marked to be eligible to be suppressed. */ if (!((state & AGS_AGGREGATE) && (ag->ag_state & AGS_SUPPRESS)) && !((ag->ag_state & AGS_AGGREGATE) && (state & AGS_SUPPRESS))) break; /* * A pair of even/odd twin routes can be combined * if either is redundant, or if they are via the * same gateway and have the same metric. */ if (AG_IS_REDUN(ag->ag_state) || AG_IS_REDUN(state) || (ag->ag_nhop == nhop && ag->ag_ifp == ifp && ag->ag_pref == pref && (state & ag->ag_state & AGS_AGGREGATE) != 0)) { /* * We have both the even and odd pairs. * Since the routes are encountered in order, * the route in the slot must be the even twin. * * Combine and promote (aggregate) the pair of routes. */ if (seqno < ag->ag_seqno) seqno = ag->ag_seqno; if (!AG_IS_REDUN(state)) state &= ~AGS_REDUN1; if (AG_IS_REDUN(ag->ag_state)) state |= AGS_REDUN0; else state &= ~AGS_REDUN0; state |= (ag->ag_state & AGS_AGGREGATE_EITHER); if (ag->ag_tag != tag) tag = 0; if (ag->ag_nhop != nhop) nhop = 0; /* * Get rid of the even twin that was already * in the slot. */ ag_del(ag); } else if (ag->ag_pref >= pref && (ag->ag_state & AGS_AGGREGATE)) { /* * If we cannot combine the pair, maybe the route * with the worse metric can be promoted. * * Promote the old, even twin, by giving its slot * in the table to the new, odd twin. */ ag->ag_dst_h = dst; xaddr = ag->ag_gate; ag->ag_gate = gate; gate = xaddr; xifp = ag->ag_ifp; ag->ag_ifp = ifp; ifp = xifp; xaddr = ag->ag_nhop; ag->ag_nhop = nhop; nhop = xaddr; tmp = ag->ag_tag; ag->ag_tag = tag; tag = tmp; /* * The promoted route is even-redundant only if the * even twin was fully redundant. It is not * odd-redundant because the odd-twin will still be * in the table. */ tmp = ag->ag_state; if (!AG_IS_REDUN(tmp)) tmp &= ~AGS_REDUN0; tmp &= ~AGS_REDUN1; ag->ag_state = state; state = tmp; tmp = ag->ag_metric; ag->ag_metric = metric; metric = tmp; tmp = ag->ag_pref; ag->ag_pref = pref; pref = tmp; /* take the newest sequence number */ if (seqno <= ag->ag_seqno) seqno = ag->ag_seqno; else ag->ag_seqno = seqno; } else { if (!(state & AGS_AGGREGATE)) break; /* cannot promote either twin */ /* * Promote the new, odd twin by shaving its * mask and address. * The promoted route is odd-redundant only if the * odd twin was fully redundant. It is not * even-redundant because the even twin is still in * the table. */ if (!AG_IS_REDUN(state)) state &= ~AGS_REDUN1; state &= ~AGS_REDUN0; if (seqno < ag->ag_seqno) seqno = ag->ag_seqno; else ag->ag_seqno = seqno; } mask <<= 1; dst &= mask; if (ag_cors == NULL) { ag = ag_corsest; break; } ag = ag_cors; ag_cors = ag->ag_cors; } /* * When we can no longer promote and combine routes, * flush the old route in the target slot. Also flush * any finer routes that we know will never be aggregated by * the new route. * * In case we moved toward coarser masks, * get back where we belong */ if (ag != NULL && ag->ag_mask < mask) { ag_cors = ag; ag = ag->ag_fine; } /* Empty the target slot */ if (ag != NULL && ag->ag_mask == mask) { ag_flush(ag->ag_dst_h, ag->ag_mask, out); ag = (ag_cors == NULL) ? ag_corsest : ag_cors->ag_fine; } #ifdef DEBUG_AG if (ag == NULL && ag_cors != ag_finest) abort(); if (ag_cors == NULL && ag != ag_corsest) abort(); if (ag != NULL && ag->ag_cors != ag_cors) abort(); if (ag_cors != NULL && ag_cors->ag_fine != ag) abort(); CHECK_AG(); #endif /* Save the new route on the end of the table. */ nag = ag_avail; ag_avail = nag->ag_fine; nag->ag_dst_h = dst; nag->ag_mask = mask; nag->ag_ifp = ifp; nag->ag_gate = gate; nag->ag_nhop = nhop; nag->ag_metric = metric; nag->ag_pref = pref; nag->ag_tag = tag; nag->ag_state = state; nag->ag_seqno = seqno; nag->ag_fine = ag; if (ag != NULL) ag->ag_cors = nag; else ag_finest = nag; nag->ag_cors = ag_cors; if (ag_cors == NULL) ag_corsest = nag; else ag_cors->ag_fine = nag; CHECK_AG(); } static const char * rtm_type_name(uchar_t type) { static const char *rtm_types[] = { "RTM_ADD", "RTM_DELETE", "RTM_CHANGE", "RTM_GET", "RTM_LOSING", "RTM_REDIRECT", "RTM_MISS", "RTM_LOCK", "RTM_OLDADD", "RTM_OLDDEL", "RTM_RESOLVE", "RTM_NEWADDR", "RTM_DELADDR", "RTM_IFINFO", "RTM_NEWMADDR", "RTM_DELMADDR" }; #define NEW_RTM_PAT "RTM type %#x" static char name0[sizeof (NEW_RTM_PAT) + 2]; if (type > sizeof (rtm_types) / sizeof (rtm_types[0]) || type == 0) { (void) snprintf(name0, sizeof (name0), NEW_RTM_PAT, type); return (name0); } else { return (rtm_types[type-1]); } #undef NEW_RTM_PAT } static void dump_rt_msg(const char *act, struct rt_msghdr *rtm, int mlen) { const char *mtype; uchar_t *cp; int i, j; char buffer[16*3 + 1], *ibs; struct ifa_msghdr *ifam; struct if_msghdr *ifm; switch (rtm->rtm_type) { case RTM_NEWADDR: case RTM_DELADDR: mtype = "ifam"; break; case RTM_IFINFO: mtype = "ifm"; break; default: mtype = "rtm"; break; } trace_misc("%s %s %d bytes", act, mtype, mlen); if (mlen > rtm->rtm_msglen) { trace_misc("%s: extra %d bytes ignored", mtype, mlen - rtm->rtm_msglen); mlen = rtm->rtm_msglen; } else if (mlen < rtm->rtm_msglen) { trace_misc("%s: truncated by %d bytes", mtype, rtm->rtm_msglen - mlen); } switch (rtm->rtm_type) { case RTM_NEWADDR: case RTM_DELADDR: ifam = (struct ifa_msghdr *)rtm; trace_misc("ifam: msglen %d version %d type %d addrs %X", ifam->ifam_msglen, ifam->ifam_version, ifam->ifam_type, ifam->ifam_addrs); trace_misc("ifam: flags %X index %d metric %d", ifam->ifam_flags, ifam->ifam_index, ifam->ifam_metric); cp = (uchar_t *)(ifam + 1); break; case RTM_IFINFO: ifm = (struct if_msghdr *)rtm; trace_misc("ifm: msglen %d version %d type %d addrs %X", ifm->ifm_msglen, ifm->ifm_version, ifm->ifm_type, ifm->ifm_addrs); ibs = if_bit_string(ifm->ifm_flags, _B_TRUE); if (ibs == NULL) { trace_misc("ifm: flags %#x index %d", ifm->ifm_flags, ifm->ifm_index); } else { trace_misc("ifm: flags %s index %d", ibs, ifm->ifm_index); free(ibs); } cp = (uchar_t *)(ifm + 1); break; default: trace_misc("rtm: msglen %d version %d type %d index %d", rtm->rtm_msglen, rtm->rtm_version, rtm->rtm_type, rtm->rtm_index); trace_misc("rtm: flags %X addrs %X pid %d seq %d", rtm->rtm_flags, rtm->rtm_addrs, rtm->rtm_pid, rtm->rtm_seq); trace_misc("rtm: errno %d use %d inits %X", rtm->rtm_errno, rtm->rtm_use, rtm->rtm_inits); cp = (uchar_t *)(rtm + 1); break; } i = mlen - (cp - (uint8_t *)rtm); while (i > 0) { buffer[0] = '\0'; ibs = buffer; for (j = 0; j < 16 && i > 0; j++, i--) ibs += sprintf(ibs, " %02X", *cp++); trace_misc("addr%s", buffer); } } /* * Tell the kernel to add, delete or change a route * Pass k_state from khash in for diagnostic info. */ static void rtioctl(int action, /* RTM_DELETE, etc */ in_addr_t dst, in_addr_t gate, in_addr_t mask, struct interface *ifp, uint8_t metric, int flags) { static int rt_sock_seqno = 0; struct { struct rt_msghdr w_rtm; struct sockaddr_in w_dst; struct sockaddr_in w_gate; uint8_t w_space[512]; } w; struct sockaddr_in w_mask; struct sockaddr_dl w_ifp; uint8_t *cp; long cc; #define PAT " %-10s %s metric=%d flags=%#x" #define ARGS rtm_type_name(action), rtname(dst, mask, gate), metric, flags again: (void) memset(&w, 0, sizeof (w)); (void) memset(&w_mask, 0, sizeof (w_mask)); (void) memset(&w_ifp, 0, sizeof (w_ifp)); cp = w.w_space; w.w_rtm.rtm_msglen = sizeof (struct rt_msghdr) + 2 * ROUNDUP_LONG(sizeof (struct sockaddr_in)); w.w_rtm.rtm_version = RTM_VERSION; w.w_rtm.rtm_type = action; w.w_rtm.rtm_flags = flags; w.w_rtm.rtm_seq = ++rt_sock_seqno; w.w_rtm.rtm_addrs = RTA_DST|RTA_GATEWAY; if (metric != 0 || action == RTM_CHANGE) { w.w_rtm.rtm_rmx.rmx_hopcount = metric; w.w_rtm.rtm_inits |= RTV_HOPCOUNT; } w.w_dst.sin_family = AF_INET; w.w_dst.sin_addr.s_addr = dst; w.w_gate.sin_family = AF_INET; w.w_gate.sin_addr.s_addr = gate; if (mask == HOST_MASK) { w.w_rtm.rtm_flags |= RTF_HOST; } else { w.w_rtm.rtm_addrs |= RTA_NETMASK; w_mask.sin_family = AF_INET; w_mask.sin_addr.s_addr = htonl(mask); (void) memmove(cp, &w_mask, sizeof (w_mask)); cp += ROUNDUP_LONG(sizeof (struct sockaddr_in)); w.w_rtm.rtm_msglen += ROUNDUP_LONG(sizeof (struct sockaddr_in)); } if (ifp == NULL) ifp = iflookup(gate); if ((ifp == NULL) || (ifp->int_phys == NULL)) { trace_misc("no ifp for" PAT, ARGS); } else { if (ifp->int_phys->phyi_index > UINT16_MAX) { trace_misc("ifindex %d is too big for sdl_index", ifp->int_phys->phyi_index); } else { w_ifp.sdl_family = AF_LINK; w.w_rtm.rtm_addrs |= RTA_IFP; w_ifp.sdl_index = ifp->int_phys->phyi_index; (void) memmove(cp, &w_ifp, sizeof (w_ifp)); w.w_rtm.rtm_msglen += ROUNDUP_LONG(sizeof (struct sockaddr_dl)); } } if (!no_install) { if (TRACERTS) dump_rt_msg("write", &w.w_rtm, w.w_rtm.rtm_msglen); cc = write(rt_sock, &w, w.w_rtm.rtm_msglen); if (cc < 0) { if (errno == ESRCH && (action == RTM_CHANGE || action == RTM_DELETE)) { trace_act("route disappeared before" PAT, ARGS); if (action == RTM_CHANGE) { action = RTM_ADD; goto again; } return; } writelog(LOG_WARNING, "write(rt_sock)" PAT ": %s ", ARGS, rip_strerror(errno)); return; } else if (cc != w.w_rtm.rtm_msglen) { msglog("write(rt_sock) wrote %ld instead of %d for" PAT, cc, w.w_rtm.rtm_msglen, ARGS); return; } } if (TRACEKERNEL) trace_misc("write kernel" PAT, ARGS); #undef PAT #undef ARGS } /* Hash table containing our image of the kernel forwarding table. */ #define KHASH_SIZE 71 /* should be prime */ #define KHASH(a, m) khash_bins[((a) ^ (m)) % KHASH_SIZE] static struct khash *khash_bins[KHASH_SIZE]; #define K_KEEP_LIM 30 /* k_keep */ static struct khash * kern_find(in_addr_t dst, in_addr_t mask, in_addr_t gate, struct interface *ifp, struct khash ***ppk) { struct khash *k, **pk; for (pk = &KHASH(dst, mask); (k = *pk) != NULL; pk = &k->k_next) { if (k->k_dst == dst && k->k_mask == mask && (gate == 0 || k->k_gate == gate) && (ifp == NULL || k->k_ifp == ifp)) { break; } } if (ppk != NULL) *ppk = pk; return (k); } /* * Find out if there is an alternate route to a given destination * off of a given interface. */ static struct khash * kern_alternate(in_addr_t dst, in_addr_t mask, in_addr_t gate, struct interface *ifp, struct khash ***ppk) { struct khash *k, **pk; for (pk = &KHASH(dst, mask); (k = *pk) != NULL; pk = &k->k_next) { if (k->k_dst == dst && k->k_mask == mask && (k->k_gate != gate) && (k->k_ifp == ifp)) { break; } } if (ppk != NULL) *ppk = pk; return (k); } static struct khash * kern_add(in_addr_t dst, uint32_t mask, in_addr_t gate, struct interface *ifp) { struct khash *k, **pk; k = kern_find(dst, mask, gate, ifp, &pk); if (k != NULL) return (k); k = rtmalloc(sizeof (*k), "kern_add"); (void) memset(k, 0, sizeof (*k)); k->k_dst = dst; k->k_mask = mask; k->k_state = KS_NEW; k->k_keep = now.tv_sec; k->k_gate = gate; k->k_ifp = ifp; *pk = k; return (k); } /* delete all khash entries that are wired through the interface ifp */ void kern_flush_ifp(struct interface *ifp) { struct khash *k, *kprev, *knext; int i; for (i = 0; i < KHASH_SIZE; i++) { kprev = NULL; for (k = khash_bins[i]; k != NULL; k = knext) { knext = k->k_next; if (k->k_ifp == ifp) { if (kprev != NULL) kprev->k_next = k->k_next; else khash_bins[i] = k->k_next; free(k); continue; } kprev = k; } } } /* * rewire khash entries that currently go through oldifp to * go through newifp. */ void kern_rewire_ifp(struct interface *oldifp, struct interface *newifp) { struct khash *k; int i; for (i = 0; i < KHASH_SIZE; i++) { for (k = khash_bins[i]; k; k = k->k_next) { if (k->k_ifp == oldifp) { k->k_ifp = newifp; trace_misc("kern_rewire_ifp k 0x%lx " "from %s to %s", k, oldifp->int_name, newifp->int_name); } } } } /* * Check that a static route it is still in the daemon table, and not * deleted by interfaces coming and going. This is also the routine * responsible for adding new static routes to the daemon table. */ static void kern_check_static(struct khash *k, struct interface *ifp) { struct rt_entry *rt; struct rt_spare new; uint16_t rt_state = RS_STATIC; (void) memset(&new, 0, sizeof (new)); new.rts_ifp = ifp; new.rts_gate = k->k_gate; new.rts_router = (ifp != NULL) ? ifp->int_addr : loopaddr; new.rts_metric = k->k_metric; new.rts_time = now.tv_sec; new.rts_origin = RO_STATIC; rt = rtget(k->k_dst, k->k_mask); if ((ifp != NULL && !IS_IFF_ROUTING(ifp->int_if_flags)) || (k->k_state & KS_PRIVATE)) rt_state |= RS_NOPROPAGATE; if (rt != NULL) { if ((rt->rt_state & RS_STATIC) == 0) { /* * We are already tracking this dest/mask * via RIP/RDISC. Ignore the static route, * because we don't currently have a good * way to compare metrics on static routes * with rip metrics, and therefore cannot * mix and match the two. */ return; } rt_state |= rt->rt_state; if (rt->rt_state != rt_state) rtchange(rt, rt_state, &new, 0); } else { rtadd(k->k_dst, k->k_mask, rt_state, &new); } } /* operate on a kernel entry */ static void kern_ioctl(struct khash *k, int action, /* RTM_DELETE, etc */ int flags) { if (((k->k_state & (KS_IF|KS_PASSIVE)) == KS_IF) || (k->k_state & KS_DEPRE_IF)) { /* * Prevent execution of RTM_DELETE, RTM_ADD or * RTM_CHANGE of interface routes */ trace_act("Blocking execution of %s %s --> %s ", rtm_type_name(action), addrname(k->k_dst, k->k_mask, 0), naddr_ntoa(k->k_gate)); return; } switch (action) { case RTM_DELETE: k->k_state &= ~KS_DYNAMIC; if (k->k_state & KS_DELETED) return; k->k_state |= KS_DELETED; break; case RTM_ADD: k->k_state &= ~KS_DELETED; break; case RTM_CHANGE: if (k->k_state & KS_DELETED) { action = RTM_ADD; k->k_state &= ~KS_DELETED; } break; } rtioctl(action, k->k_dst, k->k_gate, k->k_mask, k->k_ifp, k->k_metric, flags); } /* add a route the kernel told us */ static void rtm_add(struct rt_msghdr *rtm, struct rt_addrinfo *info, time_t keep, boolean_t interf_route, struct interface *ifptr) { struct khash *k; struct interface *ifp = ifptr; in_addr_t mask, gate = 0; static struct msg_limit msg_no_ifp; if (rtm->rtm_flags & RTF_HOST) { mask = HOST_MASK; } else if (INFO_MASK(info) != 0) { mask = ntohl(S_ADDR(INFO_MASK(info))); } else { writelog(LOG_WARNING, "ignore %s without mask", rtm_type_name(rtm->rtm_type)); return; } /* * Find the interface toward the gateway. */ if (INFO_GATE(info) != NULL) gate = S_ADDR(INFO_GATE(info)); if (ifp == NULL) { if (INFO_GATE(info) != NULL) ifp = iflookup(gate); if (ifp == NULL) msglim(&msg_no_ifp, gate, "route %s --> %s nexthop is not directly connected", addrname(S_ADDR(INFO_DST(info)), mask, 0), naddr_ntoa(gate)); } k = kern_add(S_ADDR(INFO_DST(info)), mask, gate, ifp); if (k->k_state & KS_NEW) k->k_keep = now.tv_sec+keep; if (INFO_GATE(info) == 0) { trace_act("note %s without gateway", rtm_type_name(rtm->rtm_type)); k->k_metric = HOPCNT_INFINITY; } else if (INFO_GATE(info)->ss_family != AF_INET) { trace_act("note %s with gateway AF=%d", rtm_type_name(rtm->rtm_type), INFO_GATE(info)->ss_family); k->k_metric = HOPCNT_INFINITY; } else { k->k_gate = S_ADDR(INFO_GATE(info)); k->k_metric = rtm->rtm_rmx.rmx_hopcount; if (k->k_metric < 0) k->k_metric = 0; else if (k->k_metric > HOPCNT_INFINITY-1) k->k_metric = HOPCNT_INFINITY-1; } if ((k->k_state & KS_NEW) && interf_route) { if (k->k_gate != 0 && findifaddr(k->k_gate) == NULL) k->k_state |= KS_DEPRE_IF; else k->k_state |= KS_IF; } k->k_state &= ~(KS_NEW | KS_DELETE | KS_ADD | KS_CHANGE | KS_DEL_ADD | KS_STATIC | KS_GATEWAY | KS_DELETED | KS_PRIVATE | KS_CHECK); if (rtm->rtm_flags & RTF_GATEWAY) k->k_state |= KS_GATEWAY; if (rtm->rtm_flags & RTF_STATIC) k->k_state |= KS_STATIC; if (rtm->rtm_flags & RTF_PRIVATE) k->k_state |= KS_PRIVATE; if (rtm->rtm_flags & (RTF_DYNAMIC | RTF_MODIFIED)) { if (INFO_AUTHOR(info) != 0 && INFO_AUTHOR(info)->ss_family == AF_INET) ifp = iflookup(S_ADDR(INFO_AUTHOR(info))); else ifp = NULL; if (should_supply(ifp) && (ifp == NULL || !(ifp->int_state & IS_REDIRECT_OK))) { /* * Routers are not supposed to listen to redirects, * so delete it if it came via an unknown interface * or the interface does not have special permission. */ k->k_state &= ~KS_DYNAMIC; k->k_state |= KS_DELETE; LIM_SEC(need_kern, 0); trace_act("mark for deletion redirected %s --> %s" " via %s", addrname(k->k_dst, k->k_mask, 0), naddr_ntoa(k->k_gate), ifp ? ifp->int_name : "unknown interface"); } else { k->k_state |= KS_DYNAMIC; k->k_redirect_time = now.tv_sec; trace_act("accept redirected %s --> %s via %s", addrname(k->k_dst, k->k_mask, 0), naddr_ntoa(k->k_gate), ifp ? ifp->int_name : "unknown interface"); } return; } /* * If it is not a static route, quit until the next comparison * between the kernel and daemon tables, when it will be deleted. */ if (!(k->k_state & KS_STATIC)) { if (!(k->k_state & (KS_IF|KS_DEPRE_IF|KS_FILE))) k->k_state |= KS_DELETE; LIM_SEC(need_kern, k->k_keep); return; } /* * Put static routes with real metrics into the daemon table so * they can be advertised. */ kern_check_static(k, ifp); } /* deal with packet loss */ static void rtm_lose(struct rt_msghdr *rtm, struct rt_addrinfo *info) { if (INFO_GATE(info) == NULL || INFO_GATE(info)->ss_family != AF_INET) { trace_act("ignore %s without gateway", rtm_type_name(rtm->rtm_type)); age(0); return; } if (rdisc_ok) rdisc_age(S_ADDR(INFO_GATE(info))); age(S_ADDR(INFO_GATE(info))); } /* * Make the gateway slot of an info structure point to something * useful. If it is not already useful, but it specifies an interface, * then fill in the sockaddr_in provided and point it there. */ static int get_info_gate(struct sockaddr_storage **ssp, struct sockaddr_in *sin) { struct sockaddr_dl *sdl = (struct sockaddr_dl *)*ssp; struct interface *ifp; if (sdl == NULL) return (0); if ((sdl)->sdl_family == AF_INET) return (1); if ((sdl)->sdl_family != AF_LINK) return (0); ifp = ifwithindex(sdl->sdl_index, _B_TRUE); if (ifp == NULL) return (0); sin->sin_addr.s_addr = ifp->int_addr; sin->sin_family = AF_INET; /* LINTED */ *ssp = (struct sockaddr_storage *)sin; return (1); } /* * Clean the kernel table by copying it to the daemon image. * Eventually the daemon will delete any extra routes. */ void sync_kern(void) { int i; struct khash *k; struct { struct T_optmgmt_req req; struct opthdr hdr; } req; union { struct T_optmgmt_ack ack; unsigned char space[64]; } ack; struct opthdr *rh; struct strbuf cbuf, dbuf; int ipfd, nroutes, flags, r; mib2_ipRouteEntry_t routes[8]; mib2_ipRouteEntry_t *rp; struct rt_msghdr rtm; struct rt_addrinfo info; struct sockaddr_in sin_dst; struct sockaddr_in sin_gate; struct sockaddr_in sin_mask; struct sockaddr_in sin_author; struct interface *ifp; char ifname[LIFNAMSIZ + 1]; for (i = 0; i < KHASH_SIZE; i++) { for (k = khash_bins[i]; k != NULL; k = k->k_next) { if (!(k->k_state & (KS_IF|KS_DEPRE_IF))) k->k_state |= KS_CHECK; } } ipfd = open(IP_DEV_NAME, O_RDWR); if (ipfd == -1) { msglog("open " IP_DEV_NAME ": %s", rip_strerror(errno)); goto hash_clean; } req.req.PRIM_type = T_OPTMGMT_REQ; req.req.OPT_offset = (caddr_t)&req.hdr - (caddr_t)&req; req.req.OPT_length = sizeof (req.hdr); req.req.MGMT_flags = T_CURRENT; req.hdr.level = MIB2_IP; req.hdr.name = 0; req.hdr.len = 0; cbuf.buf = (caddr_t)&req; cbuf.len = sizeof (req); if (putmsg(ipfd, &cbuf, NULL, 0) == -1) { msglog("T_OPTMGMT_REQ putmsg: %s", rip_strerror(errno)); goto hash_clean; } for (;;) { cbuf.buf = (caddr_t)&ack; cbuf.maxlen = sizeof (ack); dbuf.buf = (caddr_t)routes; dbuf.maxlen = sizeof (routes); flags = 0; r = getmsg(ipfd, &cbuf, &dbuf, &flags); if (r == -1) { msglog("T_OPTMGMT_REQ getmsg: %s", rip_strerror(errno)); goto hash_clean; } if (cbuf.len < sizeof (struct T_optmgmt_ack) || ack.ack.PRIM_type != T_OPTMGMT_ACK || ack.ack.MGMT_flags != T_SUCCESS || ack.ack.OPT_length < sizeof (struct opthdr)) { msglog("bad T_OPTMGMT response; len=%d prim=%d " "flags=%d optlen=%d", cbuf.len, ack.ack.PRIM_type, ack.ack.MGMT_flags, ack.ack.OPT_length); goto hash_clean; } /* LINTED */ rh = (struct opthdr *)((caddr_t)&ack + ack.ack.OPT_offset); if (rh->level == 0 && rh->name == 0) { break; } if (rh->level != MIB2_IP || rh->name != MIB2_IP_21) { while (r == MOREDATA) { r = getmsg(ipfd, NULL, &dbuf, &flags); } continue; } break; } (void) memset(&rtm, 0, sizeof (rtm)); (void) memset(&info, 0, sizeof (info)); (void) memset(&sin_dst, 0, sizeof (sin_dst)); (void) memset(&sin_gate, 0, sizeof (sin_gate)); (void) memset(&sin_mask, 0, sizeof (sin_mask)); (void) memset(&sin_author, 0, sizeof (sin_author)); sin_dst.sin_family = AF_INET; /* LINTED */ info.rti_info[RTAX_DST] = (struct sockaddr_storage *)&sin_dst; sin_gate.sin_family = AF_INET; /* LINTED */ info.rti_info[RTAX_GATEWAY] = (struct sockaddr_storage *)&sin_gate; sin_mask.sin_family = AF_INET; /* LINTED */ info.rti_info[RTAX_NETMASK] = (struct sockaddr_storage *)&sin_mask; sin_dst.sin_family = AF_INET; /* LINTED */ info.rti_info[RTAX_AUTHOR] = (struct sockaddr_storage *)&sin_author; for (;;) { nroutes = dbuf.len / sizeof (mib2_ipRouteEntry_t); for (rp = routes; nroutes > 0; ++rp, nroutes--) { /* * Ignore IRE cache, broadcast, and local address * entries; they're not subject to routing socket * control. */ if (rp->ipRouteInfo.re_ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOCAL)) continue; /* ignore multicast addresses */ if (IN_MULTICAST(ntohl(rp->ipRouteDest))) continue; #ifdef DEBUG_KERNEL_ROUTE_READ (void) fprintf(stderr, "route type %d, ire type %08X, " "flags %08X: %s", rp->ipRouteType, rp->ipRouteInfo.re_ire_type, rp->ipRouteInfo.re_flags, naddr_ntoa(rp->ipRouteDest)); (void) fprintf(stderr, " %s", naddr_ntoa(rp->ipRouteMask)); (void) fprintf(stderr, " %s\n", naddr_ntoa(rp->ipRouteNextHop)); #endif /* Fake up the needed entries */ rtm.rtm_flags = rp->ipRouteInfo.re_flags; rtm.rtm_type = RTM_GET; rtm.rtm_rmx.rmx_hopcount = rp->ipRouteMetric1; (void) memset(ifname, 0, sizeof (ifname)); if (rp->ipRouteIfIndex.o_length < sizeof (rp->ipRouteIfIndex.o_bytes)) rp->ipRouteIfIndex.o_bytes[ rp->ipRouteIfIndex.o_length] = '\0'; (void) strncpy(ifname, rp->ipRouteIfIndex.o_bytes, sizeof (ifname)); /* * First try to match up on gwkludge entries * before trying to match ifp by name. */ if ((ifp = gwkludge_iflookup(rp->ipRouteDest, rp->ipRouteNextHop, rp->ipRouteMask)) == NULL) ifp = ifwithname(ifname); info.rti_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK; if (rp->ipRouteInfo.re_ire_type & IRE_HOST_REDIRECT) info.rti_addrs |= RTA_AUTHOR; sin_dst.sin_addr.s_addr = rp->ipRouteDest; sin_gate.sin_addr.s_addr = rp->ipRouteNextHop; sin_mask.sin_addr.s_addr = rp->ipRouteMask; sin_author.sin_addr.s_addr = rp->ipRouteInfo.re_src_addr; /* * Note static routes and interface routes, and also * preload the image of the kernel table so that * we can later clean it, as well as avoid making * unneeded changes. Keep the old kernel routes for a * few seconds to allow a RIP or router-discovery * response to be heard. */ rtm_add(&rtm, &info, MAX_WAITTIME, ((rp->ipRouteInfo.re_ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) != 0), ifp); } if (r == 0) { break; } r = getmsg(ipfd, NULL, &dbuf, &flags); } hash_clean: if (ipfd != -1) (void) close(ipfd); for (i = 0; i < KHASH_SIZE; i++) { for (k = khash_bins[i]; k != NULL; k = k->k_next) { /* * KS_DELETED routes have been removed from the * kernel, but we keep them around for reasons * stated in del_static(), so we skip the check * for KS_DELETED routes here. */ if ((k->k_state & (KS_CHECK|KS_DELETED)) == KS_CHECK) { if (!(k->k_state & KS_DYNAMIC)) writelog(LOG_WARNING, "%s --> %s disappeared from kernel", addrname(k->k_dst, k->k_mask, 0), naddr_ntoa(k->k_gate)); del_static(k->k_dst, k->k_mask, k->k_gate, k->k_ifp, 1); } } } } /* Listen to announcements from the kernel */ void read_rt(void) { long cc; struct interface *ifp; struct sockaddr_in gate_sin; in_addr_t mask, gate; union { struct { struct rt_msghdr rtm; struct sockaddr_storage addrs[RTA_NUMBITS]; } r; struct if_msghdr ifm; } m; char str[100], *strp; struct rt_addrinfo info; for (;;) { cc = read(rt_sock, &m, sizeof (m)); if (cc <= 0) { if (cc < 0 && errno != EWOULDBLOCK) LOGERR("read(rt_sock)"); return; } if (TRACERTS) dump_rt_msg("read", &m.r.rtm, cc); if (cc < m.r.rtm.rtm_msglen) { msglog("routing message truncated (%d < %d)", cc, m.r.rtm.rtm_msglen); } if (m.r.rtm.rtm_version != RTM_VERSION) { msglog("bogus routing message version %d", m.r.rtm.rtm_version); continue; } ifp = NULL; if (m.r.rtm.rtm_type == RTM_IFINFO || m.r.rtm.rtm_type == RTM_NEWADDR || m.r.rtm.rtm_type == RTM_DELADDR) { strp = if_bit_string(m.ifm.ifm_flags, _B_TRUE); if (strp == NULL) { strp = str; (void) sprintf(str, "%#x", m.ifm.ifm_flags); } ifp = ifwithindex(m.ifm.ifm_index, m.r.rtm.rtm_type != RTM_DELADDR); if (ifp == NULL) { char ifname[LIFNAMSIZ], *ifnamep; ifnamep = if_indextoname(m.ifm.ifm_index, ifname); if (ifnamep == NULL) { trace_act("note %s with flags %s" " for unknown interface index #%d", rtm_type_name(m.r.rtm.rtm_type), strp, m.ifm.ifm_index); } else { trace_act("note %s with flags %s" " for unknown interface %s", rtm_type_name(m.r.rtm.rtm_type), strp, ifnamep); } } else { trace_act("note %s with flags %s for %s", rtm_type_name(m.r.rtm.rtm_type), strp, ifp->int_name); } if (strp != str) free(strp); /* * After being informed of a change to an interface, * check them all now if the check would otherwise * be a long time from now, if the interface is * not known, or if the interface has been turned * off or on. */ if (ifscan_timer.tv_sec-now.tv_sec >= CHECK_BAD_INTERVAL || ifp == NULL || ((ifp->int_if_flags ^ m.ifm.ifm_flags) & IFF_UP) != 0) ifscan_timer.tv_sec = now.tv_sec; continue; } else { if (m.r.rtm.rtm_index != 0) ifp = ifwithindex(m.r.rtm.rtm_index, 1); } (void) strlcpy(str, rtm_type_name(m.r.rtm.rtm_type), sizeof (str)); strp = &str[strlen(str)]; if (m.r.rtm.rtm_type <= RTM_CHANGE) strp += snprintf(strp, sizeof (str) - (strp - str), " from pid %d", (int)m.r.rtm.rtm_pid); /* LINTED */ (void) rt_xaddrs(&info, (struct sockaddr_storage *)(&m.r.rtm + 1), (char *)&m + cc, m.r.rtm.rtm_addrs); if (INFO_DST(&info) == 0) { trace_act("ignore %s without dst", str); continue; } if (INFO_DST(&info)->ss_family != AF_INET) { trace_act("ignore %s for AF %d", str, INFO_DST(&info)->ss_family); continue; } mask = ((INFO_MASK(&info) != 0) ? ntohl(S_ADDR(INFO_MASK(&info))) : (m.r.rtm.rtm_flags & RTF_HOST) ? HOST_MASK : std_mask(S_ADDR(INFO_DST(&info)))); strp += snprintf(strp, sizeof (str) - (strp - str), ": %s", addrname(S_ADDR(INFO_DST(&info)), mask, 0)); if (IN_MULTICAST(ntohl(S_ADDR(INFO_DST(&info))))) { trace_act("ignore multicast %s", str); continue; } if (m.r.rtm.rtm_flags & RTF_LLINFO) { trace_act("ignore ARP %s", str); continue; } if (get_info_gate(&INFO_GATE(&info), &gate_sin)) { gate = S_ADDR(INFO_GATE(&info)); strp += snprintf(strp, sizeof (str) - (strp - str), " --> %s", naddr_ntoa(gate)); } else { gate = 0; } if (INFO_AUTHOR(&info) != 0) strp += snprintf(strp, sizeof (str) - (strp - str), " by authority of %s", saddr_ntoa(INFO_AUTHOR(&info))); switch (m.r.rtm.rtm_type) { case RTM_ADD: case RTM_CHANGE: case RTM_REDIRECT: if (m.r.rtm.rtm_errno != 0) { trace_act("ignore %s with \"%s\" error", str, rip_strerror(m.r.rtm.rtm_errno)); } else { trace_act("%s", str); rtm_add(&m.r.rtm, &info, 0, !(m.r.rtm.rtm_flags & RTF_GATEWAY) && m.r.rtm.rtm_type != RTM_REDIRECT, ifp); } break; case RTM_DELETE: if (m.r.rtm.rtm_errno != 0 && m.r.rtm.rtm_errno != ESRCH) { trace_act("ignore %s with \"%s\" error", str, rip_strerror(m.r.rtm.rtm_errno)); } else { trace_act("%s", str); del_static(S_ADDR(INFO_DST(&info)), mask, gate, ifp, 1); } break; case RTM_LOSING: trace_act("%s", str); rtm_lose(&m.r.rtm, &info); break; default: trace_act("ignore %s", str); break; } } } /* * Disassemble a routing message. The result is an array of pointers * to sockaddr_storage structures stored in the info argument. * * ss is a pointer to the beginning of the data following the * rt_msghdr contained in the routing socket message, which consists * of a string of concatenated sockaddr structure of different types. */ static int rt_xaddrs(struct rt_addrinfo *info, struct sockaddr_storage *ss, char *lim, int addrs) { int retv = 0; int i; int abit; int complaints; static int prev_complaints; #define XBAD_AF 0x1 #define XBAD_SHORT 0x2 #define XBAD_LONG 0x4 (void) memset(info, 0, sizeof (*info)); info->rti_addrs = addrs; complaints = 0; for (i = 0, abit = 1; i < RTAX_MAX && (char *)ss < lim; i++, abit <<= 1) { if ((addrs & abit) == 0) continue; info->rti_info[i] = ss; /* Horrible interface here */ switch (ss->ss_family) { case AF_UNIX: /* LINTED */ ss = (struct sockaddr_storage *)( (struct sockaddr_un *)ss + 1); break; case AF_INET: /* LINTED */ ss = (struct sockaddr_storage *)( (struct sockaddr_in *)ss + 1); break; case AF_LINK: /* LINTED */ ss = (struct sockaddr_storage *)( (struct sockaddr_dl *)ss + 1); break; case AF_INET6: /* LINTED */ ss = (struct sockaddr_storage *)( (struct sockaddr_in6 *)ss + 1); break; default: if (!(prev_complaints & XBAD_AF)) writelog(LOG_WARNING, "unknown address family %d " "encountered", ss->ss_family); if (complaints & XBAD_AF) goto xaddr_done; /* LINTED */ ss = (struct sockaddr_storage *)( (struct sockaddr *)ss + 1); complaints |= XBAD_AF; info->rti_addrs &= abit - 1; addrs = info->rti_addrs; retv = -1; break; } if ((char *)ss > lim) { if (!(prev_complaints & XBAD_SHORT)) msglog("sockaddr %d too short by %d " "bytes", i + 1, (char *)ss - lim); complaints |= XBAD_SHORT; info->rti_info[i] = NULL; info->rti_addrs &= abit - 1; retv = -1; goto xaddr_done; } } if ((char *)ss != lim) { if (!(prev_complaints & XBAD_LONG)) msglog("%d bytes of routing message left over", lim - (char *)ss); complaints |= XBAD_LONG; retv = -1; } xaddr_done: prev_complaints = complaints; return (retv); } /* after aggregating, note routes that belong in the kernel */ static void kern_out(struct ag_info *ag) { struct khash *k; /* * Do not install bad routes if they are not already present. * This includes routes that had RS_NET_SYN for interfaces that * recently died. */ if (ag->ag_metric == HOPCNT_INFINITY) { k = kern_find(htonl(ag->ag_dst_h), ag->ag_mask, ag->ag_nhop, ag->ag_ifp, NULL); if (k == NULL) return; } else { k = kern_add(htonl(ag->ag_dst_h), ag->ag_mask, ag->ag_nhop, ag->ag_ifp); } if (k->k_state & KS_NEW) { /* will need to add new entry to the kernel table */ k->k_state = KS_ADD; if (ag->ag_state & AGS_GATEWAY) k->k_state |= KS_GATEWAY; if (ag->ag_state & AGS_IF) k->k_state |= KS_IF; if (ag->ag_state & AGS_PASSIVE) k->k_state |= KS_PASSIVE; if (ag->ag_state & AGS_FILE) k->k_state |= KS_FILE; k->k_gate = ag->ag_nhop; k->k_ifp = ag->ag_ifp; k->k_metric = ag->ag_metric; return; } if ((k->k_state & (KS_STATIC|KS_DEPRE_IF)) || ((k->k_state & (KS_IF|KS_PASSIVE)) == KS_IF)) { return; } /* modify existing kernel entry if necessary */ if (k->k_gate == ag->ag_nhop && k->k_ifp == ag->ag_ifp && k->k_metric != ag->ag_metric) { /* * Must delete bad interface routes etc. * to change them. */ if (k->k_metric == HOPCNT_INFINITY) k->k_state |= KS_DEL_ADD; k->k_gate = ag->ag_nhop; k->k_metric = ag->ag_metric; k->k_state |= KS_CHANGE; } /* * If the daemon thinks the route should exist, forget * about any redirections. * If the daemon thinks the route should exist, eventually * override manual intervention by the operator. */ if ((k->k_state & (KS_DYNAMIC | KS_DELETED)) != 0) { k->k_state &= ~KS_DYNAMIC; k->k_state |= (KS_ADD | KS_DEL_ADD); } if ((k->k_state & KS_GATEWAY) && !(ag->ag_state & AGS_GATEWAY)) { k->k_state &= ~KS_GATEWAY; k->k_state |= (KS_ADD | KS_DEL_ADD); } else if (!(k->k_state & KS_GATEWAY) && (ag->ag_state & AGS_GATEWAY)) { k->k_state |= KS_GATEWAY; k->k_state |= (KS_ADD | KS_DEL_ADD); } /* * Deleting-and-adding is necessary to change aspects of a route. * Just delete instead of deleting and then adding a bad route. * Otherwise, we want to keep the route in the kernel. */ if (k->k_metric == HOPCNT_INFINITY && (k->k_state & KS_DEL_ADD)) k->k_state |= KS_DELETE; else k->k_state &= ~KS_DELETE; #undef RT } /* * Update our image of the kernel forwarding table using the given * route from our internal routing table. */ /*ARGSUSED1*/ static int walk_kern(struct radix_node *rn, void *argp) { #define RT ((struct rt_entry *)rn) uint8_t metric, pref; uint_t ags = 0; int i; struct rt_spare *rts; /* Do not install synthetic routes */ if (RT->rt_state & RS_NET_SYN) return (0); /* * Do not install static routes here. Only * read_rt->rtm_add->kern_add should install those */ if ((RT->rt_state & RS_STATIC) && (RT->rt_spares[0].rts_origin != RO_FILE)) return (0); /* Do not clobber kernel if this is a route for a dead interface */ if (RT->rt_state & RS_BADIF) return (0); if (!(RT->rt_state & RS_IF)) { /* This is an ordinary route, not for an interface. */ /* * aggregate, ordinary good routes without regard to * their metric */ pref = 1; ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE); /* * Do not install host routes directly to hosts, to avoid * interfering with ARP entries in the kernel table. */ if (RT_ISHOST(RT) && ntohl(RT->rt_dst) == RT->rt_gate) return (0); } else { /* * This is an interface route. * Do not install routes for "external" remote interfaces. */ if (RT->rt_ifp != NULL && (RT->rt_ifp->int_state & IS_EXTERNAL)) return (0); /* Interfaces should override received routes. */ pref = 0; ags |= (AGS_IF | AGS_CORS_GATE); if (RT->rt_ifp != NULL && !(RT->rt_ifp->int_if_flags & IFF_LOOPBACK) && (RT->rt_ifp->int_state & (IS_PASSIVE|IS_ALIAS)) == IS_PASSIVE) { ags |= AGS_PASSIVE; } /* * If it is not an interface, or an alias for an interface, * it must be a "gateway." * * If it is a "remote" interface, it is also a "gateway" to * the kernel if is not a alias. */ if (RT->rt_ifp == NULL || (RT->rt_ifp->int_state & IS_REMOTE)) ags |= (AGS_GATEWAY | AGS_SUPPRESS | AGS_AGGREGATE); } metric = RT->rt_metric; if (metric == HOPCNT_INFINITY) { /* If the route is dead, try hard to aggregate. */ pref = HOPCNT_INFINITY; ags |= (AGS_FINE_GATE | AGS_SUPPRESS); ags &= ~(AGS_IF | AGS_CORS_GATE); } /* * dump all routes that have the same metric as rt_spares[0] * into the kern_table, to be added to the kernel. */ for (i = 0; i < RT->rt_num_spares; i++) { rts = &RT->rt_spares[i]; /* Do not install external routes */ if (rts->rts_flags & RTS_EXTERNAL) continue; if (rts->rts_metric == metric) { ag_check(RT->rt_dst, RT->rt_mask, rts->rts_router, rts->rts_ifp, rts->rts_gate, metric, pref, 0, 0, (rts->rts_origin & RO_FILE) ? (ags|AGS_FILE) : ags, kern_out); } } return (0); #undef RT } /* Update the kernel table to match the daemon table. */ static void fix_kern(void) { int i; struct khash *k, *pk, *knext; need_kern = age_timer; /* Walk daemon table, updating the copy of the kernel table. */ (void) rn_walktree(rhead, walk_kern, NULL); ag_flush(0, 0, kern_out); for (i = 0; i < KHASH_SIZE; i++) { pk = NULL; for (k = khash_bins[i]; k != NULL; k = knext) { knext = k->k_next; /* Do not touch local interface routes */ if ((k->k_state & KS_DEPRE_IF) || (k->k_state & (KS_IF|KS_PASSIVE)) == KS_IF) { pk = k; continue; } /* Do not touch static routes */ if (k->k_state & KS_STATIC) { kern_check_static(k, 0); pk = k; continue; } /* check hold on routes deleted by the operator */ if (k->k_keep > now.tv_sec) { /* ensure we check when the hold is over */ LIM_SEC(need_kern, k->k_keep); pk = k; continue; } if ((k->k_state & KS_DELETE) && !(k->k_state & KS_DYNAMIC)) { if ((k->k_dst == RIP_DEFAULT) && (k->k_ifp != NULL) && (kern_alternate(RIP_DEFAULT, k->k_mask, k->k_gate, k->k_ifp, NULL) == NULL)) rdisc_restore(k->k_ifp); kern_ioctl(k, RTM_DELETE, 0); if (pk != NULL) pk->k_next = knext; else khash_bins[i] = knext; free(k); continue; } if (k->k_state & KS_DEL_ADD) kern_ioctl(k, RTM_DELETE, 0); if (k->k_state & KS_ADD) { if ((k->k_dst == RIP_DEFAULT) && (k->k_ifp != NULL)) rdisc_suppress(k->k_ifp); kern_ioctl(k, RTM_ADD, ((0 != (k->k_state & (KS_GATEWAY | KS_DYNAMIC))) ? RTF_GATEWAY : 0)); } else if (k->k_state & KS_CHANGE) { /* * Should be using RTM_CHANGE here, but * since RTM_CHANGE is currently * not multipath-aware, and assumes * that RTF_GATEWAY implies the gateway * of the route for dst has to be * changed, we play safe, and do a del + add. */ kern_ioctl(k, RTM_DELETE, 0); kern_ioctl(k, RTM_ADD, ((0 != (k->k_state & (KS_GATEWAY | KS_DYNAMIC))) ? RTF_GATEWAY : 0)); } k->k_state &= ~(KS_ADD|KS_CHANGE|KS_DEL_ADD); /* * Mark this route to be deleted in the next cycle. * This deletes routes that disappear from the * daemon table, since the normal aging code * will clear the bit for routes that have not * disappeared from the daemon table. */ k->k_state |= KS_DELETE; pk = k; } } } /* Delete a static route in the image of the kernel table. */ void del_static(in_addr_t dst, in_addr_t mask, in_addr_t gate, struct interface *ifp, int gone) { struct khash *k; struct rt_entry *rt; /* * Just mark it in the table to be deleted next time the kernel * table is updated. * If it has already been deleted, mark it as such, and set its * keep-timer so that it will not be deleted again for a while. * This lets the operator delete a route added by the daemon * and add a replacement. */ k = kern_find(dst, mask, gate, ifp, NULL); if (k != NULL && (gate == 0 || k->k_gate == gate)) { k->k_state &= ~(KS_STATIC | KS_DYNAMIC | KS_CHECK); k->k_state |= KS_DELETE; if (gone) { k->k_state |= KS_DELETED; k->k_keep = now.tv_sec + K_KEEP_LIM; } } rt = rtget(dst, mask); if (rt != NULL && (rt->rt_state & RS_STATIC)) rtbad(rt, NULL); } /* * Delete all routes generated from ICMP Redirects that use a given gateway, * as well as old redirected routes. */ void del_redirects(in_addr_t bad_gate, time_t old) { int i; struct khash *k; boolean_t dosupply = should_supply(NULL); for (i = 0; i < KHASH_SIZE; i++) { for (k = khash_bins[i]; k != NULL; k = k->k_next) { if (!(k->k_state & KS_DYNAMIC) || (k->k_state & (KS_STATIC|KS_IF|KS_DEPRE_IF))) continue; if (k->k_gate != bad_gate && k->k_redirect_time > old && !dosupply) continue; k->k_state |= KS_DELETE; k->k_state &= ~KS_DYNAMIC; need_kern.tv_sec = now.tv_sec; trace_act("mark redirected %s --> %s for deletion", addrname(k->k_dst, k->k_mask, 0), naddr_ntoa(k->k_gate)); } } } /* Start the daemon tables. */ void rtinit(void) { int i; struct ag_info *ag; /* Initialize the radix trees */ rn_init(); (void) rn_inithead((void**)&rhead, 32); /* mark all of the slots in the table free */ ag_avail = ag_slots; for (ag = ag_slots, i = 1; i < NUM_AG_SLOTS; i++) { ag->ag_fine = ag+1; ag++; } } static struct sockaddr_in dst_sock = {AF_INET}; static struct sockaddr_in mask_sock = {AF_INET}; static void set_need_flash(void) { if (!need_flash) { need_flash = _B_TRUE; /* * Do not send the flash update immediately. Wait a little * while to hear from other routers. */ no_flash.tv_sec = now.tv_sec + MIN_WAITTIME; } } /* Get a particular routing table entry */ struct rt_entry * rtget(in_addr_t dst, in_addr_t mask) { struct rt_entry *rt; dst_sock.sin_addr.s_addr = dst; mask_sock.sin_addr.s_addr = htonl(mask); rt = (struct rt_entry *)rhead->rnh_lookup(&dst_sock, &mask_sock, rhead); if (rt == NULL || rt->rt_dst != dst || rt->rt_mask != mask) return (NULL); return (rt); } /* Find a route to dst as the kernel would. */ struct rt_entry * rtfind(in_addr_t dst) { dst_sock.sin_addr.s_addr = dst; return ((struct rt_entry *)rhead->rnh_matchaddr(&dst_sock, rhead)); } /* add a route to the table */ void rtadd(in_addr_t dst, in_addr_t mask, uint16_t state, /* rt_state for the entry */ struct rt_spare *new) { struct rt_entry *rt; in_addr_t smask; int i; struct rt_spare *rts; /* This is the only function that increments total_routes. */ if (total_routes == MAX_ROUTES) { msglog("have maximum (%d) routes", total_routes); return; } rt = rtmalloc(sizeof (*rt), "rtadd"); (void) memset(rt, 0, sizeof (*rt)); rt->rt_spares = rtmalloc(SPARE_INC * sizeof (struct rt_spare), "rtadd"); rt->rt_num_spares = SPARE_INC; (void) memset(rt->rt_spares, 0, SPARE_INC * sizeof (struct rt_spare)); for (rts = rt->rt_spares, i = rt->rt_num_spares; i != 0; i--, rts++) rts->rts_metric = HOPCNT_INFINITY; rt->rt_nodes->rn_key = (uint8_t *)&rt->rt_dst_sock; rt->rt_dst = dst; rt->rt_dst_sock.sin_family = AF_INET; if (mask != HOST_MASK) { smask = std_mask(dst); if ((smask & ~mask) == 0 && mask > smask) state |= RS_SUBNET; } mask_sock.sin_addr.s_addr = htonl(mask); rt->rt_mask = mask; rt->rt_spares[0] = *new; rt->rt_state = state; rt->rt_time = now.tv_sec; rt->rt_poison_metric = HOPCNT_INFINITY; rt->rt_seqno = update_seqno; if (TRACEACTIONS) trace_add_del("Add", rt); need_kern.tv_sec = now.tv_sec; set_need_flash(); if (NULL == rhead->rnh_addaddr(&rt->rt_dst_sock, &mask_sock, rhead, rt->rt_nodes)) { msglog("rnh_addaddr() failed for %s mask=%s", naddr_ntoa(dst), naddr_ntoa(htonl(mask))); free(rt); } total_routes++; } /* notice a changed route */ void rtchange(struct rt_entry *rt, uint16_t state, /* new state bits */ struct rt_spare *new, char *label) { if (rt->rt_metric != new->rts_metric) { /* * Fix the kernel immediately if it seems the route * has gone bad, since there may be a working route that * aggregates this route. */ if (new->rts_metric == HOPCNT_INFINITY) { need_kern.tv_sec = now.tv_sec; if (new->rts_time >= now.tv_sec - EXPIRE_TIME) new->rts_time = now.tv_sec - EXPIRE_TIME; } rt->rt_seqno = update_seqno; set_need_flash(); } if (rt->rt_gate != new->rts_gate) { need_kern.tv_sec = now.tv_sec; rt->rt_seqno = update_seqno; set_need_flash(); } state |= (rt->rt_state & RS_SUBNET); /* Keep various things from deciding ageless routes are stale. */ if (!AGE_RT(state, rt->rt_spares[0].rts_origin, new->rts_ifp)) new->rts_time = now.tv_sec; if (TRACEACTIONS) trace_change(rt, state, new, label ? label : "Chg "); rt->rt_state = state; /* * If the interface state of the new primary route is good, * turn off RS_BADIF flag */ if ((rt->rt_state & RS_BADIF) && IS_IFF_UP(new->rts_ifp->int_if_flags) && !(new->rts_ifp->int_state & (IS_BROKE | IS_SICK))) rt->rt_state &= ~(RS_BADIF); rt->rt_spares[0] = *new; } /* check for a better route among the spares */ static struct rt_spare * rts_better(struct rt_entry *rt) { struct rt_spare *rts, *rts1; int i; /* find the best alternative among the spares */ rts = rt->rt_spares+1; for (i = rt->rt_num_spares, rts1 = rts+1; i > 2; i--, rts1++) { if (BETTER_LINK(rt, rts1, rts)) rts = rts1; } return (rts); } /* switch to a backup route */ void rtswitch(struct rt_entry *rt, struct rt_spare *rts) { struct rt_spare swap; char label[10]; /* Do not change permanent routes */ if (0 != (rt->rt_state & (RS_MHOME | RS_STATIC | RS_NET_SYN | RS_IF))) return; /* find the best alternative among the spares */ if (rts == NULL) rts = rts_better(rt); /* Do not bother if it is not worthwhile. */ if (!BETTER_LINK(rt, rts, rt->rt_spares)) return; swap = rt->rt_spares[0]; (void) snprintf(label, sizeof (label), "Use #%d", (int)(rts - rt->rt_spares)); rtchange(rt, rt->rt_state & ~(RS_NET_SYN), rts, label); if (swap.rts_metric == HOPCNT_INFINITY) { *rts = rts_empty; } else { *rts = swap; } } void rtdelete(struct rt_entry *rt) { struct rt_entry *deleted_rt; struct rt_spare *rts; int i; in_addr_t gate = rt->rt_gate; /* for debugging */ if (TRACEACTIONS) trace_add_del("Del", rt); for (i = 0; i < rt->rt_num_spares; i++) { rts = &rt->rt_spares[i]; rts_delete(rt, rts); } dst_sock.sin_addr.s_addr = rt->rt_dst; mask_sock.sin_addr.s_addr = htonl(rt->rt_mask); if (rt != (deleted_rt = ((struct rt_entry *)rhead->rnh_deladdr(&dst_sock, &mask_sock, rhead)))) { msglog("rnh_deladdr(%s) failed; found rt 0x%lx", rtname(rt->rt_dst, rt->rt_mask, gate), deleted_rt); if (deleted_rt != NULL) free(deleted_rt); } total_routes--; free(rt); if (dst_sock.sin_addr.s_addr == RIP_DEFAULT) { /* * we just deleted the default route. Trigger rdisc_sort * so that we can recover from any rdisc information that * is valid */ rdisc_timer.tv_sec = 0; } } void rts_delete(struct rt_entry *rt, struct rt_spare *rts) { struct khash *k; trace_upslot(rt, rts, &rts_empty); k = kern_find(rt->rt_dst, rt->rt_mask, rts->rts_gate, rts->rts_ifp, NULL); if (k != NULL && !(k->k_state & KS_DEPRE_IF) && ((k->k_state & (KS_IF|KS_PASSIVE)) != KS_IF)) { k->k_state |= KS_DELETE; need_kern.tv_sec = now.tv_sec; } *rts = rts_empty; } /* * Get rid of a bad route, and try to switch to a replacement. * If the route has gone bad because of a bad interface, * the information about the dead interface is available in badifp * for the purpose of sanity checks, if_flags checks etc. */ static void rtbad(struct rt_entry *rt, struct interface *badifp) { struct rt_spare new; uint16_t rt_state; if (badifp == NULL || (rt->rt_spares[0].rts_ifp == badifp)) { /* Poison the route */ new = rt->rt_spares[0]; new.rts_metric = HOPCNT_INFINITY; rt_state = rt->rt_state & ~(RS_IF | RS_LOCAL | RS_STATIC); } if (badifp != NULL) { /* * Dont mark the rtentry bad unless the ifp for the primary * route is the bad ifp */ if (rt->rt_spares[0].rts_ifp != badifp) return; /* * badifp has just gone bad. We want to keep this * rt_entry around so that we tell our rip-neighbors * about the bad route, but we can't do anything * to the kernel itself, so mark it as RS_BADIF */ trace_misc("rtbad:Setting RS_BADIF (%s)", badifp->int_name); rt_state |= RS_BADIF; new.rts_ifp = &dummy_ifp; } rtchange(rt, rt_state, &new, 0); rtswitch(rt, 0); } /* * Junk a RS_NET_SYN or RS_LOCAL route, * unless it is needed by another interface. */ void rtbad_sub(struct rt_entry *rt, struct interface *badifp) { struct interface *ifp, *ifp1; struct intnet *intnetp; uint_t state; ifp1 = NULL; state = 0; if (rt->rt_state & RS_LOCAL) { /* * Is this the route through loopback for the interface? * If so, see if it is used by any other interfaces, such * as a point-to-point interface with the same local address. */ for (ifp = ifnet; ifp != NULL; ifp = ifp->int_next) { /* Retain it if another interface needs it. */ if (ifp->int_addr == rt->rt_ifp->int_addr) { state |= RS_LOCAL; ifp1 = ifp; break; } } } if (!(state & RS_LOCAL)) { /* * Retain RIPv1 logical network route if there is another * interface that justifies it. */ if (rt->rt_state & RS_NET_SYN) { for (ifp = ifnet; ifp != NULL; ifp = ifp->int_next) { if ((ifp->int_state & IS_NEED_NET_SYN) && rt->rt_mask == ifp->int_std_mask && rt->rt_dst == ifp->int_std_addr) { state |= RS_NET_SYN; ifp1 = ifp; break; } } } /* or if there is an authority route that needs it. */ for (intnetp = intnets; intnetp != NULL; intnetp = intnetp->intnet_next) { if (intnetp->intnet_addr == rt->rt_dst && intnetp->intnet_mask == rt->rt_mask) { state |= (RS_NET_SYN | RS_NET_INT); break; } } } if (ifp1 != NULL || (state & RS_NET_SYN)) { struct rt_spare new = rt->rt_spares[0]; new.rts_ifp = ifp1; rtchange(rt, ((rt->rt_state & ~(RS_NET_SYN|RS_LOCAL)) | state), &new, 0); } else { rtbad(rt, badifp); } } /* * Called while walking the table looking for sick interfaces * or after a time change. */ int walk_bad(struct radix_node *rn, void *argp) { #define RT ((struct rt_entry *)rn) struct rt_spare *rts; int i, j = -1; /* fix any spare routes through the interface */ for (i = 1; i < RT->rt_num_spares; i++) { rts = &((struct rt_entry *)rn)->rt_spares[i]; if (rts->rts_metric < HOPCNT_INFINITY && (rts->rts_ifp == NULL || (rts->rts_ifp->int_state & IS_BROKE))) rts_delete(RT, rts); else { if (rts->rts_origin != RO_NONE) j = i; } } /* * Deal with the main route * finished if it has been handled before or if its interface is ok */ if (RT->rt_ifp == NULL || !(RT->rt_ifp->int_state & IS_BROKE)) return (0); /* Bad routes for other than interfaces are easy. */ if (!(RT->rt_state & (RS_IF | RS_NET_SYN | RS_LOCAL))) { if (j > 0) rtswitch(RT, NULL); else rtbad(RT, (struct interface *)argp); return (0); } rtbad_sub(RT, (struct interface *)argp); return (0); #undef RT } /* * Called while walking the table to replace a duplicate interface * with a backup. */ int walk_rewire(struct radix_node *rn, void *argp) { struct rt_entry *RT = (struct rt_entry *)rn; struct rewire_data *wire = (struct rewire_data *)argp; struct rt_spare *rts; int i; /* fix any spare routes through the interface */ rts = RT->rt_spares; for (i = RT->rt_num_spares; i > 0; i--, rts++) { if (rts->rts_ifp == wire->if_old) { rts->rts_ifp = wire->if_new; if ((RT->rt_dst == RIP_DEFAULT) && (wire->if_old->int_state & IS_SUPPRESS_RDISC)) rdisc_suppress(rts->rts_ifp); if ((rts->rts_metric += wire->metric_delta) > HOPCNT_INFINITY) rts->rts_metric = HOPCNT_INFINITY; /* * If the main route is getting a worse metric, * then it may be time to switch to a backup. */ if (i == RT->rt_num_spares && wire->metric_delta > 0) { rtswitch(RT, NULL); } } } return (0); } /* Check the age of an individual route. */ static int walk_age(struct radix_node *rn, void *argp) { #define RT ((struct rt_entry *)rn) struct interface *ifp; struct rt_spare *rts; int i; in_addr_t age_bad_gate = *(in_addr_t *)argp; /* * age all of the spare routes, including the primary route * currently in use */ rts = RT->rt_spares; for (i = RT->rt_num_spares; i != 0; i--, rts++) { ifp = rts->rts_ifp; if (i == RT->rt_num_spares) { if (!AGE_RT(RT->rt_state, rts->rts_origin, ifp)) { /* * Keep various things from deciding ageless * routes are stale */ rts->rts_time = now.tv_sec; continue; } /* forget RIP routes after RIP has been turned off. */ if (rip_sock < 0) { rts->rts_time = now_stale + 1; } } /* age failing routes */ if (age_bad_gate == rts->rts_gate && rts->rts_time >= now_stale) { rts->rts_time -= SUPPLY_INTERVAL; } /* trash the spare routes when they go bad */ if (rts->rts_origin == RO_RIP && ((rip_sock < 0) || (rts->rts_metric < HOPCNT_INFINITY && now_garbage > rts->rts_time)) && i != RT->rt_num_spares) { rts_delete(RT, rts); } } /* finished if the active route is still fresh */ if (now_stale <= RT->rt_time) return (0); /* try to switch to an alternative */ rtswitch(RT, NULL); /* Delete a dead route after it has been publically mourned. */ if (now_garbage > RT->rt_time) { rtdelete(RT); return (0); } /* Start poisoning a bad route before deleting it. */ if (now.tv_sec - RT->rt_time > EXPIRE_TIME) { struct rt_spare new = RT->rt_spares[0]; new.rts_metric = HOPCNT_INFINITY; rtchange(RT, RT->rt_state, &new, 0); } return (0); } /* Watch for dead routes and interfaces. */ void age(in_addr_t bad_gate) { struct interface *ifp; int need_query = 0; /* * If not listening to RIP, there is no need to age the routes in * the table. */ age_timer.tv_sec = (now.tv_sec + ((rip_sock < 0) ? NEVER : SUPPLY_INTERVAL)); /* * Check for dead IS_REMOTE interfaces by timing their * transmissions. */ for (ifp = ifnet; ifp; ifp = ifp->int_next) { if (!(ifp->int_state & IS_REMOTE)) continue; /* ignore unreachable remote interfaces */ if (!check_remote(ifp)) continue; /* Restore remote interface that has become reachable */ if (ifp->int_state & IS_BROKE) if_ok(ifp, "remote ", _B_FALSE); if (ifp->int_act_time != NEVER && now.tv_sec - ifp->int_act_time > EXPIRE_TIME) { writelog(LOG_NOTICE, "remote interface %s to %s timed out after" " %ld:%ld", ifp->int_name, naddr_ntoa(ifp->int_dstaddr), (now.tv_sec - ifp->int_act_time)/60, (now.tv_sec - ifp->int_act_time)%60); if_sick(ifp, _B_FALSE); } /* * If we have not heard from the other router * recently, ask it. */ if (now.tv_sec >= ifp->int_query_time) { ifp->int_query_time = NEVER; need_query = 1; } } /* Age routes. */ (void) rn_walktree(rhead, walk_age, &bad_gate); /* * delete old redirected routes to keep the kernel table small * and prevent blackholes */ del_redirects(bad_gate, now.tv_sec-STALE_TIME); /* Update the kernel routing table. */ fix_kern(); /* poke reticent remote gateways */ if (need_query) rip_query(); } void kern_dump(void) { int i; struct khash *k; for (i = 0; i < KHASH_SIZE; i++) { for (k = khash_bins[i]; k != NULL; k = k->k_next) trace_khash(k); } } static struct interface * gwkludge_iflookup(in_addr_t dstaddr, in_addr_t addr, in_addr_t mask) { uint32_t int_state; struct interface *ifp; for (ifp = ifnet; ifp != NULL; ifp = ifp->int_next) { int_state = ifp->int_state; if (!(int_state & IS_REMOTE)) continue; if (ifp->int_dstaddr == dstaddr && ifp->int_addr == addr && ifp->int_mask == mask) return (ifp); } return (NULL); }