/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include "mpd_defs.h" #include "mpd_tables.h" int debug = 0; /* Debug flag */ static int pollfd_num = 0; /* Num. of poll descriptors */ static struct pollfd *pollfds = NULL; /* Array of poll descriptors */ /* All times below in ms */ int user_failure_detection_time; /* user specified failure detection */ /* time (fdt) */ int user_probe_interval; /* derived from user specified fdt */ static int rtsock_v4; /* AF_INET routing socket */ static int rtsock_v6; /* AF_INET6 routing socket */ int ifsock_v4 = -1; /* IPv4 socket for ioctls */ int ifsock_v6 = -1; /* IPv6 socket for ioctls */ static int lsock_v4; /* Listen socket to detect mpathd */ static int lsock_v6; /* Listen socket to detect mpathd */ static int mibfd = -1; /* fd to get mib info */ static boolean_t force_mcast = _B_FALSE; /* Only for test purposes */ boolean_t full_scan_required = _B_FALSE; static uint_t last_initifs_time; /* Time when initifs was last run */ static char **argv0; /* Saved for re-exec on SIGHUP */ boolean_t handle_link_notifications = _B_TRUE; static void initlog(void); static void run_timeouts(void); static void initifs(void); static void check_if_removed(struct phyint_instance *pii); static void select_test_ifs(void); static void ire_process_v4(mib2_ipRouteEntry_t *buf, size_t len); static void ire_process_v6(mib2_ipv6RouteEntry_t *buf, size_t len); static void router_add_v4(mib2_ipRouteEntry_t *rp1, struct in_addr nexthop_v4); static void router_add_v6(mib2_ipv6RouteEntry_t *rp1, struct in6_addr nexthop_v6); static void router_add_common(int af, char *ifname, struct in6_addr nexthop); static void init_router_targets(); static void cleanup(void); static int setup_listener(int af); static void check_config(void); static void check_addr_unique(int af, char *name); static void init_host_targets(void); static void dup_host_targets(struct phyint_instance *desired_pii); static void loopback_cmd(int sock, int family); static int poll_remove(int fd); static boolean_t daemonize(void); static int closefunc(void *, int); static unsigned int process_cmd(int newfd, union mi_commands *mpi); static unsigned int process_query(int fd, mi_query_t *miq); static unsigned int send_groupinfo(int fd, ipmp_groupinfo_t *grinfop); static unsigned int send_grouplist(int fd, ipmp_grouplist_t *grlistp); static unsigned int send_ifinfo(int fd, ipmp_ifinfo_t *ifinfop); static unsigned int send_result(int fd, unsigned int error, int syserror); /* * Return the current time in milliseconds (from an arbitrary reference) * truncated to fit into an int. Truncation is ok since we are interested * only in differences and not the absolute values. */ uint_t getcurrenttime(void) { uint_t cur_time; /* In ms */ /* * Use of a non-user-adjustable source of time is * required. However millisecond precision is sufficient. * divide by 10^6 */ cur_time = (uint_t)(gethrtime() / 1000000LL); return (cur_time); } /* * Add fd to the set being polled. Returns 0 if ok; -1 if failed. */ int poll_add(int fd) { int i; int new_num; struct pollfd *newfds; retry: /* Check if already present */ for (i = 0; i < pollfd_num; i++) { if (pollfds[i].fd == fd) return (0); } /* Check for empty spot already present */ for (i = 0; i < pollfd_num; i++) { if (pollfds[i].fd == -1) { pollfds[i].fd = fd; return (0); } } /* Allocate space for 32 more fds and initialize to -1 */ new_num = pollfd_num + 32; newfds = realloc(pollfds, new_num * sizeof (struct pollfd)); if (newfds == NULL) { logperror("poll_add: realloc"); return (-1); } for (i = pollfd_num; i < new_num; i++) { newfds[i].fd = -1; newfds[i].events = POLLIN; } pollfd_num = new_num; pollfds = newfds; goto retry; } /* * Remove fd from the set being polled. Returns 0 if ok; -1 if failed. */ static int poll_remove(int fd) { int i; /* Check if already present */ for (i = 0; i < pollfd_num; i++) { if (pollfds[i].fd == fd) { pollfds[i].fd = -1; return (0); } } return (-1); } /* * Extract information about the phyint instance. If the phyint instance still * exists in the kernel then set pii_in_use, else clear it. check_if_removed() * will use it to detect phyint instances that don't exist any longer and * remove them, from our database of phyint instances. * Return value: * returns true if the phyint instance exists in the kernel, * returns false otherwise */ static boolean_t pii_process(int af, char *name, struct phyint_instance **pii_p) { int err; struct phyint_instance *pii; struct phyint_instance *pii_other; if (debug & D_PHYINT) logdebug("pii_process(%s %s)\n", AF_STR(af), name); pii = phyint_inst_lookup(af, name); if (pii == NULL) { /* * Phyint instance does not exist in our tables, * create new phyint instance */ pii = phyint_inst_init_from_k(af, name); } else { /* Phyint exists in our tables */ err = phyint_inst_update_from_k(pii); switch (err) { case PI_IOCTL_ERROR: /* Some ioctl error. don't change anything */ pii->pii_in_use = 1; break; case PI_GROUP_CHANGED: /* * The phyint has changed group. */ restore_phyint(pii->pii_phyint); /* FALLTHRU */ case PI_IFINDEX_CHANGED: /* * Interface index has changed. Delete and * recreate the phyint as it is quite likely * the interface has been unplumbed and replumbed. */ pii_other = phyint_inst_other(pii); if (pii_other != NULL) phyint_inst_delete(pii_other); phyint_inst_delete(pii); pii = phyint_inst_init_from_k(af, name); break; case PI_DELETED: /* Phyint instance has disappeared from kernel */ pii->pii_in_use = 0; break; case PI_OK: /* Phyint instance exists and is fine */ pii->pii_in_use = 1; break; default: /* Unknown status */ logerr("pii_process: Unknown status %d\n", err); break; } } *pii_p = pii; if (pii != NULL) return (pii->pii_in_use ? _B_TRUE : _B_FALSE); else return (_B_FALSE); } /* * This phyint is leaving the group. Try to restore the phyint to its * initial state. Return the addresses that belong to other group members, * to the group, and take back any addresses owned by this phyint */ void restore_phyint(struct phyint *pi) { if (pi->pi_group == phyint_anongroup) return; /* * Move everthing to some other member in the group. * The phyint has changed group in the kernel. But we * have yet to do it in our tables. */ if (!pi->pi_empty) (void) try_failover(pi, FAILOVER_TO_ANY); /* * Move all addresses owned by 'pi' back to pi, from each * of the other members of the group */ (void) try_failback(pi, _B_FALSE); } /* * Scan all interfaces to detect changes as well as new and deleted interfaces */ static void initifs() { int n; int af; char *cp; char *buf; int numifs; struct lifnum lifn; struct lifconf lifc; struct lifreq *lifr; struct logint *li; struct phyint_instance *pii; struct phyint_instance *next_pii; char pi_name[LIFNAMSIZ + 1]; boolean_t exists; struct phyint *pi; if (debug & D_PHYINT) logdebug("initifs: Scanning interfaces\n"); last_initifs_time = getcurrenttime(); /* * Mark the interfaces so that we can find phyints and logints * which have disappeared from the kernel. pii_process() and * logint_init_from_k() will set {pii,li}_in_use when they find * the interface in the kernel. Also, clear dupaddr bit on probe * logint. check_addr_unique() will set the dupaddr bit on the * probe logint, if the testaddress is not unique. */ for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) { pii->pii_in_use = 0; for (li = pii->pii_logint; li != NULL; li = li->li_next) { li->li_in_use = 0; if (pii->pii_probe_logint == li) li->li_dupaddr = 0; } } lifn.lifn_family = AF_UNSPEC; lifn.lifn_flags = 0; if (ioctl(ifsock_v4, SIOCGLIFNUM, (char *)&lifn) < 0) { logperror("initifs: ioctl (get interface numbers)"); return; } numifs = lifn.lifn_count; buf = (char *)calloc(numifs, sizeof (struct lifreq)); if (buf == NULL) { logperror("initifs: calloc"); return; } lifc.lifc_family = AF_UNSPEC; lifc.lifc_flags = 0; lifc.lifc_len = numifs * sizeof (struct lifreq); lifc.lifc_buf = buf; if (ioctl(ifsock_v4, SIOCGLIFCONF, (char *)&lifc) < 0) { /* * EINVAL is commonly encountered, when things change * underneath us rapidly, (eg. at boot, when new interfaces * are plumbed successively) and the kernel finds the buffer * size we passed as too small. We will retry again * when we see the next routing socket msg, or at worst after * IF_SCAN_INTERVAL ms. */ if (errno != EINVAL) { logperror("initifs: ioctl" " (get interface configuration)"); } free(buf); return; } lifr = (struct lifreq *)lifc.lifc_req; /* * For each lifreq returned by SIOGGLIFCONF, call pii_process() * and get the state of the corresponding phyint_instance. If it is * successful, then call logint_init_from_k() to get the state of the * logint. */ for (n = lifc.lifc_len / sizeof (struct lifreq); n > 0; n--, lifr++) { af = lifr->lifr_addr.ss_family; /* * Need to pass a phyint name to pii_process. Insert the * null where the ':' IF_SEPARATOR is found in the logical * name. */ (void) strncpy(pi_name, lifr->lifr_name, sizeof (pi_name)); pi_name[sizeof (pi_name) - 1] = '\0'; if ((cp = strchr(pi_name, IF_SEPARATOR)) != NULL) *cp = '\0'; exists = pii_process(af, pi_name, &pii); if (exists) { /* The phyint is fine. So process the logint */ logint_init_from_k(pii, lifr->lifr_name); } check_addr_unique(af, lifr->lifr_name); } free(buf); /* * If the test address is now unique, and if it was not unique * previously, clear the li_dupaddrmsg_printed flag and log a * recovery message */ for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) { struct logint *li; char abuf[INET6_ADDRSTRLEN]; li = pii->pii_probe_logint; if ((li != NULL) && !li->li_dupaddr && li->li_dupaddrmsg_printed) { logerr("Test address %s is unique; enabling probe-" "based failure detection\n", pr_addr(pii->pii_af, li->li_addr, abuf, sizeof (abuf))); li->li_dupaddrmsg_printed = 0; } } /* * Scan for phyints and logints that have disappeared from the * kernel, and delete them. */ pii = phyint_instances; while (pii != NULL) { next_pii = pii->pii_next; check_if_removed(pii); pii = next_pii; } /* * Select a test address for sending probes on each phyint instance */ select_test_ifs(); /* * Handle link up/down notifications from the NICs. */ process_link_state_changes(); for (pi = phyints; pi != NULL; pi = pi->pi_next) { /* * If this is a case of group failure, we don't have much * to do until the group recovers again. */ if (GROUP_FAILED(pi->pi_group)) continue; /* * Try/Retry any pending failovers / failbacks, that did not * not complete, or that could not be initiated previously. * This implements the 3 invariants described in the big block * comment at the beginning of probe.c */ if (pi->pi_flags & IFF_INACTIVE) { if (!pi->pi_empty) (void) try_failover(pi, FAILOVER_TO_NONSTANDBY); } else { struct phyint_instance *pii; pii = pi->pi_v4; if (LINK_UP(pi) && !PROBE_CAPABLE(pii)) pii = pi->pi_v6; if (LINK_UP(pi) && !PROBE_CAPABLE(pii)) continue; /* * It is possible that the phyint has started * receiving packets, after it has been marked * PI_FAILED. Don't initiate failover, if the * phyint has started recovering. failure_state() * captures this check. A similar logic is used * for failback/repair case. */ if (pi->pi_state == PI_FAILED && !pi->pi_empty && (failure_state(pii) == PHYINT_FAILURE)) { (void) try_failover(pi, FAILOVER_NORMAL); } else if (pi->pi_state == PI_RUNNING && !pi->pi_full) { if (try_failback(pi, _B_FALSE) != IPMP_FAILURE) { (void) change_lif_flags(pi, IFF_FAILED, _B_FALSE); /* Per state diagram */ pi->pi_empty = 0; } } } } } /* * Check that test/probe addresses are always unique. link-locals and * ptp unnumbered may not be unique, and bind to such an (IFF_NOFAILOVER) * address can produce unexpected results. Log an error and alert the user. */ static void check_addr_unique(int af, char *name) { struct lifreq lifr; struct phyint *pi; struct in6_addr addr; struct phyint_instance *pii; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; int ifsock; char abuf[INET6_ADDRSTRLEN]; /* Get the socket for doing ioctls */ ifsock = (af == AF_INET) ? ifsock_v4 : ifsock_v6; (void) strncpy(lifr.lifr_name, name, sizeof (lifr.lifr_name)); lifr.lifr_name[sizeof (lifr.lifr_name) - 1] = '\0'; /* * Get the address corresponding to 'name'. We cannot * do a logint lookup in our tables, because, not all logints * in the system are tracked by mpathd. (eg. things not in a group) */ if (ioctl(ifsock, SIOCGLIFADDR, (char *)&lifr) < 0) { if (errno == ENXIO) { /* Interface has vanished */ return; } else { logperror("ioctl (get addr)"); return; } } if (af == AF_INET) { sin = (struct sockaddr_in *)&lifr.lifr_addr; IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &addr); } else { sin6 = (struct sockaddr_in6 *)&lifr.lifr_addr; addr = sin6->sin6_addr; } /* * Does the address 'addr' match any known test address ? If so * it is a duplicate, unless we are looking at the same logint */ for (pi = phyints; pi != NULL; pi = pi->pi_next) { pii = PHYINT_INSTANCE(pi, af); if (pii == NULL || pii->pii_probe_logint == NULL) continue; if (!IN6_ARE_ADDR_EQUAL(&addr, &pii->pii_probe_logint->li_addr)) { continue; } if (strncmp(pii->pii_probe_logint->li_name, name, sizeof (pii->pii_probe_logint->li_name)) == 0) { continue; } /* * This test address is not unique. Set the dupaddr bit */ pii->pii_probe_logint->li_dupaddr = 1; /* * Log an error message if not already logged */ if (pii->pii_probe_logint->li_dupaddrmsg_printed) continue; logerr("Test address %s is not unique; disabling " "probe-based failure detection\n", pr_addr(af, addr, abuf, sizeof (abuf))); pii->pii_probe_logint->li_dupaddrmsg_printed = 1; } } /* * The pii_probe_logint used for probing, must satisfy the following properties * with respect to its li_flags. * IFF_NOFAILOVER - must be set (except in singleton group case) * IFF_UP - must be set * IFF_NOXMIT - must be clear * IFF_NOLOCAL - must be clear * IFF_DEPRECATED - preferably set (for IPv4) */ #define BEST_FLAG_SET (IFF_NOFAILOVER | IFF_UP | IFF_DEPRECATED) #define CLEAR_FLAG_SET (IFF_NOXMIT | IFF_NOLOCAL) #define TEST_CLEAR_FLAG_SET CLEAR_FLAG_SET #define TEST_MINIMAL_FLAG_SET (IFF_UP | CLEAR_FLAG_SET) #define TEST_BEST_FLAG_SET (BEST_FLAG_SET | CLEAR_FLAG_SET) /* * Stop probing an interface. Called when an interface is offlined. * The probe socket is closed on each interface instance, and the * interface state set to PI_OFFLINE. */ static void stop_probing(struct phyint *pi) { struct phyint_instance *pii; pii = pi->pi_v4; if (pii != NULL) { if (pii->pii_probe_sock != -1) close_probe_socket(pii, _B_TRUE); pii->pii_probe_logint = NULL; } pii = pi->pi_v6; if (pii != NULL) { if (pii->pii_probe_sock != -1) close_probe_socket(pii, _B_TRUE); pii->pii_probe_logint = NULL; } phyint_chstate(pi, PI_OFFLINE); } /* * Do the test address selection for each phyint instance. Pick an * IFF_NOFAILOVER address as test address. For singleton case, * if user didn't configure an IFF_NOFAILOVER address, we will pick a * normal address as test address. For (multiple adapter) groups, * user is required to configure IFF_NOFAILOVER test address. Call * phyint_inst_sockinit() to complete the initializations. */ static void select_test_ifs(void) { struct phyint *pi; struct phyint_instance *pii; struct phyint_instance *next_pii; struct logint *li; struct logint *test_logint; boolean_t target_scan_reqd = _B_FALSE; struct target *tg; if (debug & D_PHYINT) logdebug("select_test_ifs\n"); /* * For each phyint instance, do the test address selection */ for (pii = phyint_instances; pii != NULL; pii = next_pii) { next_pii = pii->pii_next; /* * An interface that is offline, should not be probed. * Offline interfaces should always in PI_OFFLINE state, * unless some other entity has set the offline flag. */ if (pii->pii_phyint->pi_flags & IFF_OFFLINE) { if (pii->pii_phyint->pi_state != PI_OFFLINE) { logerr("shouldn't be probing offline" " interface %s (state is: %u)." " Stopping probes.\n", pii->pii_phyint->pi_name, pii->pii_phyint->pi_state); stop_probing(pii->pii_phyint); } continue; } test_logint = pii->pii_probe_logint; if (test_logint != NULL) { if ((test_logint->li_flags & TEST_BEST_FLAG_SET) == BEST_FLAG_SET) continue; /* * If user configures IFF_NOXMIT or IFF_NOLOCAL * flags on test addresses after in.mpathd has * has started, the daemon aborts. In future * this can be better handling, i.e. instead * of abort the daemon, a more appropriate * action may be issuing a warning and choose * a different test address. */ assert((test_logint->li_flags & TEST_CLEAR_FLAG_SET) == 0); } /* * Walk the logints of this phyint instance, and select * the best available test address */ for (li = pii->pii_logint; li != NULL; li = li->li_next) { /* * Skip any IPv6 logints that are not link-local, * since we should always have a link-local address * anyway and in6_data() expects link-local replies. */ if (pii->pii_af == AF_INET6 && !IN6_IS_ADDR_LINKLOCAL(&li->li_addr)) continue; if ((li->li_flags & TEST_MINIMAL_FLAG_SET) == IFF_UP) { /* * Now we have a testaddress, that satisfies * the minimal properties. */ if ((li->li_flags & TEST_BEST_FLAG_SET) == BEST_FLAG_SET) { /* * This is the best possible address. * So break, and continue to the * next phyint */ test_logint = li; break; } if ((test_logint == NULL) || (!(test_logint->li_flags & IFF_NOFAILOVER) && (li->li_flags & IFF_NOFAILOVER))) /* * This is a possible candidate, * unless we find a better one. */ test_logint = li; } } /* * If we've gone from a singleton group to a multiple adapter * group, and we haven't found an IFF_NOFAILOVER test address * by now, the old test address is no longer valid. If we are * not dealing with a singleton group, and the above test * address selection loop has selected a non IFF_NOFAILOVER * address as a candidate, we will correct that here. */ if ((test_logint != NULL) && !SINGLETON_GROUP(pii->pii_phyint) && !(test_logint->li_flags & IFF_NOFAILOVER)) { test_logint = NULL; if (pii->pii_probe_sock != -1) close_probe_socket(pii, _B_TRUE); pii->pii_probe_logint = NULL; } if (test_logint == NULL) { /* * We don't have a test address. Don't print an * error message immediately. check_config() will * take care of it. Zero out the probe stats array * since it is no longer relevant. Optimize by * checking if it is already zeroed out. */ int pr_ndx; pr_ndx = PROBE_INDEX_PREV(pii->pii_probe_next); if (pii->pii_probes[pr_ndx].pr_status != PR_UNUSED) { clear_pii_probe_stats(pii); reset_crtt_all(pii->pii_phyint); } continue; } else if (test_logint == pii->pii_probe_logint) { /* * If we didn't find any new test addr, go to the * next phyint. */ continue; } /* * The phyint is either being assigned a new testaddr * or is being assigned a testaddr for the 1st time. * Need to initialize the phyint socket */ pii->pii_probe_logint = test_logint; if (!phyint_inst_sockinit(pii)) { if (debug & D_PHYINT) { logdebug("select_test_ifs: " "phyint_sockinit failed\n"); } phyint_inst_delete(pii); continue; } /* * This phyint instance is now enabled for probes; this * impacts our state machine in two ways: * * 1. If we're probe *capable* as well (i.e., we have * probe targets) and the interface is in PI_NOTARGETS, * then transition to PI_RUNNING. * * 2. If we're not probe capable, and the other phyint * instance is also not probe capable, and we were in * PI_RUNNING, then transition to PI_NOTARGETS. * * Also see the state diagram in mpd_probe.c. */ if (PROBE_CAPABLE(pii)) { if (pii->pii_phyint->pi_state == PI_NOTARGETS) phyint_chstate(pii->pii_phyint, PI_RUNNING); } else if (!PROBE_CAPABLE(phyint_inst_other(pii))) { if (pii->pii_phyint->pi_state == PI_RUNNING) phyint_chstate(pii->pii_phyint, PI_NOTARGETS); } if (pii->pii_phyint->pi_flags & IFF_POINTOPOINT) { tg = pii->pii_targets; if (tg != NULL) target_delete(tg); assert(pii->pii_targets == NULL); assert(pii->pii_target_next == NULL); assert(pii->pii_ntargets == 0); target_create(pii, test_logint->li_dstaddr, _B_TRUE); } /* * If no targets are currently known for this phyint * we need to call init_router_targets. Since * init_router_targets() initializes the list of targets * for all phyints it is done below the loop. */ if (pii->pii_targets == NULL) target_scan_reqd = _B_TRUE; /* * Start the probe timer for this instance. */ if (!pii->pii_basetime_inited && pii->pii_probe_sock != -1) { start_timer(pii); pii->pii_basetime_inited = 1; } } /* * Check the interface list for any interfaces that are marked * PI_FAILED but no longer enabled to send probes, and call * phyint_check_for_repair() to see if the link now indicates that the * interface should be repaired. Also see the state diagram in * mpd_probe.c. */ for (pi = phyints; pi != NULL; pi = pi->pi_next) { if (pi->pi_state == PI_FAILED && !PROBE_ENABLED(pi->pi_v4) && !PROBE_ENABLED(pi->pi_v6)) { phyint_check_for_repair(pi); } } /* * Try to populate the target list. init_router_targets populates * the target list from the routing table. If our target list is * still empty, init_host_targets adds host targets based on the * host target list of other phyints in the group. */ if (target_scan_reqd) { init_router_targets(); init_host_targets(); } } /* * Check phyint group configuration, to detect any inconsistencies, * and log an error message. This is called from runtimeouts every * 20 secs. But the error message is displayed once. If the * consistency is resolved by the admin, a recovery message is displayed * once. */ static void check_config(void) { struct phyint_group *pg; struct phyint *pi; boolean_t v4_in_group; boolean_t v6_in_group; /* * All phyints of a group must be homogenous to ensure that * failover or failback can be done. If any phyint in a group * has IPv4 plumbed, check that all phyints have IPv4 plumbed. * Do a similar check for IPv6. */ for (pg = phyint_groups; pg != NULL; pg = pg->pg_next) { if (pg == phyint_anongroup) continue; v4_in_group = _B_FALSE; v6_in_group = _B_FALSE; /* * 1st pass. Determine if at least 1 phyint in the group * has IPv4 plumbed and if so set v4_in_group to true. * Repeat similarly for IPv6. */ for (pi = pg->pg_phyint; pi != NULL; pi = pi->pi_pgnext) { if (pi->pi_v4 != NULL) v4_in_group = _B_TRUE; if (pi->pi_v6 != NULL) v6_in_group = _B_TRUE; } /* * 2nd pass. If v4_in_group is true, check that phyint * has IPv4 plumbed. Repeat similarly for IPv6. Print * out a message the 1st time only. */ for (pi = pg->pg_phyint; pi != NULL; pi = pi->pi_pgnext) { if (pi->pi_flags & IFF_OFFLINE) continue; if (v4_in_group == _B_TRUE && pi->pi_v4 == NULL) { if (!pi->pi_cfgmsg_printed) { logerr("NIC %s of group %s is" " not plumbed for IPv4 and may" " affect failover capability\n", pi->pi_name, pi->pi_group->pg_name); pi->pi_cfgmsg_printed = 1; } } else if (v6_in_group == _B_TRUE && pi->pi_v6 == NULL) { if (!pi->pi_cfgmsg_printed) { logerr("NIC %s of group %s is" " not plumbed for IPv6 and may" " affect failover capability\n", pi->pi_name, pi->pi_group->pg_name); pi->pi_cfgmsg_printed = 1; } } else { /* * The phyint matches the group configuration, * if we have reached this point. If it was * improperly configured earlier, log an * error recovery message */ if (pi->pi_cfgmsg_printed) { logerr("NIC %s is now consistent with " "group %s and failover capability " "is restored\n", pi->pi_name, pi->pi_group->pg_name); pi->pi_cfgmsg_printed = 0; } } } } /* * In order to perform probe-based failure detection, a phyint must * have at least 1 test/probe address for sending and receiving probes * (either on IPv4 or IPv6 instance or both). If no test address has * been configured, notify the administrator, but continue on since we * can still perform load spreading, along with "link up/down" based * failure detection. * * Note: In the singleton group case, when user didn't configure * a test address, the probe address is picked by this daemon. */ for (pi = phyints; pi != NULL; pi = pi->pi_next) { if (pi->pi_flags & IFF_OFFLINE) continue; if ((pi->pi_v4 == NULL || pi->pi_v4->pii_probe_logint == NULL) && (pi->pi_v6 == NULL || pi->pi_v6->pii_probe_logint == NULL)) { if (!pi->pi_taddrmsg_printed) { logerr("No test address configured on " "interface %s; disabling probe-based " "failure detection on it\n", pi->pi_name); pi->pi_taddrmsg_printed = 1; } } else if (pi->pi_taddrmsg_printed) { logerr("Test address now configured on interface %s; " "enabling probe-based failure detection on it\n", pi->pi_name); pi->pi_taddrmsg_printed = 0; } } } /* * Timer mechanism using relative time (in milliseconds) from the * previous timer event. Timers exceeding TIMER_INFINITY milliseconds * will fire after TIMER_INFINITY milliseconds. * Unsigned arithmetic note: We assume a 32-bit circular sequence space for * time values. Hence 2 consecutive timer events cannot be spaced farther * than 0x7fffffff. We call this TIMER_INFINITY, and it is the maximum value * that can be passed for the delay parameter of timer_schedule() */ static uint_t timer_next; /* Currently scheduled timeout */ static boolean_t timer_active = _B_FALSE; /* SIGALRM has not yet occurred */ static void timer_init(void) { timer_next = getcurrenttime() + TIMER_INFINITY; /* * The call to run_timeouts() will get the timer started * Since there are no phyints at this point, the timer will * be set for IF_SCAN_INTERVAL ms. */ run_timeouts(); } /* * Make sure the next SIGALRM occurs delay milliseconds from the current * time if not earlier. We are interested only in time differences. */ void timer_schedule(uint_t delay) { uint_t now; struct itimerval itimerval; if (debug & D_TIMER) logdebug("timer_schedule(%u)\n", delay); assert(delay <= TIMER_INFINITY); now = getcurrenttime(); if (delay == 0) { /* Minimum allowed delay */ delay = 1; } /* Will this timer occur before the currently scheduled SIGALRM? */ if (timer_active && TIME_GE(now + delay, timer_next)) { if (debug & D_TIMER) { logdebug("timer_schedule(%u) - no action: " "now %u next %u\n", delay, now, timer_next); } return; } timer_next = now + delay; itimerval.it_value.tv_sec = delay / 1000; itimerval.it_value.tv_usec = (delay % 1000) * 1000; itimerval.it_interval.tv_sec = 0; itimerval.it_interval.tv_usec = 0; if (debug & D_TIMER) { logdebug("timer_schedule(%u): sec %ld usec %ld\n", delay, itimerval.it_value.tv_sec, itimerval.it_value.tv_usec); } timer_active = _B_TRUE; if (setitimer(ITIMER_REAL, &itimerval, NULL) < 0) { logperror("timer_schedule: setitimer"); exit(2); } } /* * Timer has fired. Determine when the next timer event will occur by asking * all the timer routines. Should not be called from a timer routine. */ static void run_timeouts(void) { uint_t next; uint_t next_event_time; struct phyint_instance *pii; struct phyint_instance *next_pii; static boolean_t timeout_running; /* assert that recursive timeouts don't happen. */ assert(!timeout_running); timeout_running = _B_TRUE; if (debug & D_TIMER) logdebug("run_timeouts()\n"); next = TIMER_INFINITY; for (pii = phyint_instances; pii != NULL; pii = next_pii) { next_pii = pii->pii_next; next_event_time = phyint_inst_timer(pii); if (next_event_time != TIMER_INFINITY && next_event_time < next) next = next_event_time; if (debug & D_TIMER) { logdebug("run_timeouts(%s %s): next scheduled for" " this phyint inst %u, next scheduled global" " %u ms\n", AF_STR(pii->pii_af), pii->pii_phyint->pi_name, next_event_time, next); } } /* * Make sure initifs() is called at least once every * IF_SCAN_INTERVAL, to make sure that we are in sync * with the kernel, in case we have missed any routing * socket messages. */ if (next > IF_SCAN_INTERVAL) next = IF_SCAN_INTERVAL; if ((getcurrenttime() - last_initifs_time) > IF_SCAN_INTERVAL) { initifs(); check_config(); } if (debug & D_TIMER) logdebug("run_timeouts: %u ms\n", next); timer_schedule(next); timeout_running = _B_FALSE; } static int eventpipe_read = -1; /* Used for synchronous signal delivery */ static int eventpipe_write = -1; static boolean_t cleanup_started = _B_FALSE; /* Don't write to eventpipe if in cleanup */ /* * Ensure that signals are processed synchronously with the rest of * the code by just writing a one character signal number on the pipe. * The poll loop will pick this up and process the signal event. */ static void sig_handler(int signo) { uchar_t buf = (uchar_t)signo; /* * Don't write to pipe if cleanup has already begun. cleanup() * might have closed the pipe already */ if (cleanup_started) return; if (eventpipe_write == -1) { logerr("sig_handler: no pipe found\n"); return; } if (write(eventpipe_write, &buf, sizeof (buf)) < 0) logperror("sig_handler: write"); } extern struct probes_missed probes_missed; /* * Pick up a signal "byte" from the pipe and process it. */ static void in_signal(int fd) { uchar_t buf; uint64_t sent, acked, lost, unacked, unknown; struct phyint_instance *pii; int pr_ndx; switch (read(fd, &buf, sizeof (buf))) { case -1: logperror("in_signal: read"); exit(1); /* NOTREACHED */ case 1: break; case 0: logerr("in_signal: read end of file\n"); exit(1); /* NOTREACHED */ default: logerr("in_signal: read > 1\n"); exit(1); } if (debug & D_TIMER) logdebug("in_signal() got %d\n", buf); switch (buf) { case SIGALRM: if (debug & D_TIMER) { uint_t now = getcurrenttime(); logdebug("in_signal(SIGALRM) delta %u\n", now - timer_next); } timer_active = _B_FALSE; run_timeouts(); break; case SIGUSR1: logdebug("Printing configuration:\n"); /* Print out the internal tables */ phyint_inst_print_all(); /* * Print out the accumulated statistics about missed * probes (happens due to scheduling delay). */ logerr("Missed sending total of %d probes spread over" " %d occurrences\n", probes_missed.pm_nprobes, probes_missed.pm_ntimes); /* * Print out the accumulated statistics about probes * that were sent. */ for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) { unacked = 0; acked = pii->pii_cum_stats.acked; lost = pii->pii_cum_stats.lost; sent = pii->pii_cum_stats.sent; unknown = pii->pii_cum_stats.unknown; for (pr_ndx = 0; pr_ndx < PROBE_STATS_COUNT; pr_ndx++) { switch (pii->pii_probes[pr_ndx].pr_status) { case PR_ACKED: acked++; break; case PR_LOST: lost++; break; case PR_UNACKED: unacked++; break; } } logerr("\nProbe stats on (%s %s)\n" "Number of probes sent %lld\n" "Number of probe acks received %lld\n" "Number of probes/acks lost %lld\n" "Number of valid unacknowled probes %lld\n" "Number of ambiguous probe acks received %lld\n", AF_STR(pii->pii_af), pii->pii_name, sent, acked, lost, unacked, unknown); } break; case SIGHUP: logerr("SIGHUP: restart and reread config file\n"); cleanup(); (void) execv(argv0[0], argv0); _exit(0177); /* NOTREACHED */ case SIGINT: case SIGTERM: case SIGQUIT: cleanup(); exit(0); /* NOTREACHED */ default: logerr("in_signal: unknown signal: %d\n", buf); } } static void cleanup(void) { struct phyint_instance *pii; struct phyint_instance *next_pii; /* * Make sure that we don't write to eventpipe in * sig_handler() if any signal notably SIGALRM, * occurs after we close the eventpipe descriptor below */ cleanup_started = _B_TRUE; for (pii = phyint_instances; pii != NULL; pii = next_pii) { next_pii = pii->pii_next; phyint_inst_delete(pii); } (void) close(ifsock_v4); (void) close(ifsock_v6); (void) close(rtsock_v4); (void) close(rtsock_v6); (void) close(lsock_v4); (void) close(lsock_v6); (void) close(0); (void) close(1); (void) close(2); (void) close(mibfd); (void) close(eventpipe_read); (void) close(eventpipe_write); } /* * Create pipe for signal delivery and set up signal handlers. */ static void setup_eventpipe(void) { int fds[2]; struct sigaction act; if ((pipe(fds)) < 0) { logperror("setup_eventpipe: pipe"); exit(1); } eventpipe_read = fds[0]; eventpipe_write = fds[1]; if (poll_add(eventpipe_read) == -1) { exit(1); } act.sa_handler = sig_handler; act.sa_flags = SA_RESTART; (void) sigaction(SIGALRM, &act, NULL); (void) sigset(SIGHUP, sig_handler); (void) sigset(SIGUSR1, sig_handler); (void) sigset(SIGTERM, sig_handler); (void) sigset(SIGINT, sig_handler); (void) sigset(SIGQUIT, sig_handler); } /* * Create a routing socket for receiving RTM_IFINFO messages. */ static int setup_rtsock(int af) { int s; int flags; s = socket(PF_ROUTE, SOCK_RAW, af); if (s == -1) { logperror("setup_rtsock: socket PF_ROUTE"); exit(1); } if ((flags = fcntl(s, F_GETFL, 0)) < 0) { logperror("setup_rtsock: fcntl F_GETFL"); (void) close(s); exit(1); } if ((fcntl(s, F_SETFL, flags | O_NONBLOCK)) < 0) { logperror("setup_rtsock: fcntl F_SETFL"); (void) close(s); exit(1); } if (poll_add(s) == -1) { (void) close(s); exit(1); } return (s); } /* * Process an RTM_IFINFO message received on a routing socket. * The return value indicates whether a full interface scan is required. * Link up/down notifications from the NICs are reflected in the * IFF_RUNNING flag. * If just the state of the IFF_RUNNING interface flag has changed, a * a full interface scan isn't required. */ static boolean_t process_rtm_ifinfo(if_msghdr_t *ifm, int type) { struct sockaddr_dl *sdl; struct phyint *pi; uint64_t old_flags; struct phyint_instance *pii; assert(ifm->ifm_type == RTM_IFINFO && ifm->ifm_addrs == RTA_IFP); /* * Although the sockaddr_dl structure is directly after the * if_msghdr_t structure. At the time of writing, the size of the * if_msghdr_t structure is different on 32 and 64 bit kernels, due * to the presence of a timeval structure, which contains longs, * in the if_data structure. Anyway, we know where the message ends, * so we work backwards to get the start of the sockaddr_dl structure. */ /*LINTED*/ sdl = (struct sockaddr_dl *)((char *)ifm + ifm->ifm_msglen - sizeof (struct sockaddr_dl)); assert(sdl->sdl_family == AF_LINK); /* * The interface name is in sdl_data. * RTM_IFINFO messages are only generated for logical interface * zero, so there is no colon and logical interface number to * strip from the name. The name is not null terminated, but * there should be enough space in sdl_data to add the null. */ if (sdl->sdl_nlen >= sizeof (sdl->sdl_data)) { if (debug & D_LINKNOTE) logdebug("process_rtm_ifinfo: " "phyint name too long\n"); return (_B_TRUE); } sdl->sdl_data[sdl->sdl_nlen] = 0; pi = phyint_lookup(sdl->sdl_data); if (pi == NULL) { if (debug & D_LINKNOTE) logdebug("process_rtm_ifinfo: phyint lookup failed" " for %s\n", sdl->sdl_data); return (_B_TRUE); } /* * We want to try and avoid doing a full interface scan for * link state notifications from the NICs, as indicated * by the state of the IFF_RUNNING flag. If just the * IFF_RUNNING flag has changed state, the link state changes * are processed without a full scan. * If there is both an IPv4 and IPv6 instance associated with * the physical interface, we will get an RTM_IFINFO message * for each instance. If we just maintained a single copy of * the physical interface flags, it would appear that no flags * had changed when the second message is processed, leading us * to believe that the message wasn't generated by a flags change, * and that a full interface scan is required. * To get around this problem, two additional copies of the flags * are kept, one copy for each instance. These are only used in * this routine. At any one time, all three copies of the flags * should be identical except for the IFF_RUNNING flag. The * copy of the flags in the "phyint" structure is always up to * date. */ pii = (type == AF_INET) ? pi->pi_v4 : pi->pi_v6; if (pii == NULL) { if (debug & D_LINKNOTE) logdebug("process_rtm_ifinfo: no instance of address " "family %s for %s\n", AF_STR(type), pi->pi_name); return (_B_TRUE); } old_flags = pii->pii_flags; pii->pii_flags = PHYINT_FLAGS(ifm->ifm_flags); pi->pi_flags = pii->pii_flags; if (debug & D_LINKNOTE) { logdebug("process_rtm_ifinfo: %s address family: %s, " "old flags: %llx, new flags: %llx\n", pi->pi_name, AF_STR(type), old_flags, pi->pi_flags); } /* * If IFF_STANDBY has changed, indicate that the interface has changed * types. */ if ((old_flags ^ pii->pii_flags) & IFF_STANDBY) phyint_newtype(pi); /* * If IFF_INACTIVE has been set, then no data addresses should be * hosted on the interface. If IFF_INACTIVE has been cleared, then * move previously failed-over addresses back to it, provided it is * not failed. For details, see the state diagram in mpd_probe.c. */ if ((old_flags ^ pii->pii_flags) & IFF_INACTIVE) { if (pii->pii_flags & IFF_INACTIVE) { assert(pii->pii_flags & IFF_STANDBY); if (!pi->pi_empty) { (void) try_failover(pi, FAILOVER_TO_NONSTANDBY); } } else { if (pi->pi_state == PI_RUNNING && !pi->pi_full) { pi->pi_empty = 0; (void) try_failback(pi, _B_FALSE); } } } /* Has just the IFF_RUNNING flag changed state ? */ if ((old_flags ^ pii->pii_flags) != IFF_RUNNING) { struct phyint_instance *pii_other; /* * It wasn't just a link state change. Update * the other instance's copy of the flags. */ pii_other = phyint_inst_other(pii); if (pii_other != NULL) pii_other->pii_flags = pii->pii_flags; return (_B_TRUE); } return (_B_FALSE); } /* * Retrieve as many routing socket messages as possible, and try to * empty the routing sockets. Initiate full scan of targets or interfaces * as needed. * We listen on separate IPv4 an IPv6 sockets so that we can accurately * detect changes in certain flags (see "process_rtm_ifinfo()" above). */ static void process_rtsock(int rtsock_v4, int rtsock_v6) { int nbytes; int64_t msg[2048 / 8]; struct rt_msghdr *rtm; boolean_t need_if_scan = _B_FALSE; boolean_t need_rt_scan = _B_FALSE; boolean_t rtm_ifinfo_seen = _B_FALSE; int type; /* Read as many messages as possible and try to empty the sockets */ for (type = AF_INET; ; type = AF_INET6) { for (;;) { nbytes = read((type == AF_INET) ? rtsock_v4 : rtsock_v6, msg, sizeof (msg)); if (nbytes <= 0) { /* No more messages */ break; } rtm = (struct rt_msghdr *)msg; if (rtm->rtm_version != RTM_VERSION) { logerr("process_rtsock: version %d " "not understood\n", rtm->rtm_version); break; } if (debug & D_PHYINT) { logdebug("process_rtsock: message %d\n", rtm->rtm_type); } switch (rtm->rtm_type) { case RTM_NEWADDR: case RTM_DELADDR: /* * Some logical interface has changed, * have to scan everything to determine * what actually changed. */ need_if_scan = _B_TRUE; break; case RTM_IFINFO: rtm_ifinfo_seen = _B_TRUE; need_if_scan |= process_rtm_ifinfo((if_msghdr_t *)rtm, type); break; case RTM_ADD: case RTM_DELETE: case RTM_CHANGE: case RTM_OLDADD: case RTM_OLDDEL: need_rt_scan = _B_TRUE; break; default: /* Not interesting */ break; } } if (type == AF_INET6) break; } if (need_if_scan) { if (debug & D_LINKNOTE && rtm_ifinfo_seen) logdebug("process_rtsock: synchronizing with kernel\n"); initifs(); } else if (rtm_ifinfo_seen) { if (debug & D_LINKNOTE) logdebug("process_rtsock: " "link up/down notification(s) seen\n"); process_link_state_changes(); } if (need_rt_scan) init_router_targets(); } /* * Look if the phyint instance or one of its logints have been removed from * the kernel and take appropriate action. * Uses {pii,li}_in_use. */ static void check_if_removed(struct phyint_instance *pii) { struct logint *li; struct logint *next_li; /* Detect phyints that have been removed from the kernel. */ if (!pii->pii_in_use) { logtrace("%s %s has been removed from kernel\n", AF_STR(pii->pii_af), pii->pii_phyint->pi_name); phyint_inst_delete(pii); } else { /* Detect logints that have been removed. */ for (li = pii->pii_logint; li != NULL; li = next_li) { next_li = li->li_next; if (!li->li_in_use) { logint_delete(li); } } } } /* * Send down a T_OPTMGMT_REQ to ip asking for all data in the various * tables defined by mib2.h. Parse the returned data and extract * the 'routing' information table. Process the 'routing' table * to get the list of known onlink routers, and update our database. * These onlink routers will serve as our probe targets. * Returns false, if any system calls resulted in errors, true otherwise. */ static boolean_t update_router_list(int fd) { union { char ubuf[1024]; union T_primitives uprim; } buf; int flags; struct strbuf ctlbuf; struct strbuf databuf; struct T_optmgmt_req *tor; struct T_optmgmt_ack *toa; struct T_error_ack *tea; struct opthdr *optp; struct opthdr *req; int status; t_scalar_t prim; tor = (struct T_optmgmt_req *)&buf; tor->PRIM_type = T_SVR4_OPTMGMT_REQ; tor->OPT_offset = sizeof (struct T_optmgmt_req); tor->OPT_length = sizeof (struct opthdr); tor->MGMT_flags = T_CURRENT; req = (struct opthdr *)&tor[1]; req->level = MIB2_IP; /* any MIB2_xxx value ok here */ req->name = 0; req->len = 0; ctlbuf.buf = (char *)&buf; ctlbuf.len = tor->OPT_length + tor->OPT_offset; ctlbuf.maxlen = sizeof (buf); flags = 0; if (putmsg(fd, &ctlbuf, NULL, flags) == -1) { logperror("update_router_list: putmsg(ctl)"); return (_B_FALSE); } /* * The response consists of multiple T_OPTMGMT_ACK msgs, 1 msg for * each table defined in mib2.h. Each T_OPTMGMT_ACK msg contains * a control and data part. The control part contains a struct * T_optmgmt_ack followed by a struct opthdr. The 'opthdr' identifies * the level, name and length of the data in the data part. The * data part contains the actual table data. The last message * is an end-of-data (EOD), consisting of a T_OPTMGMT_ACK and a * single option with zero optlen. */ for (;;) { /* * Go around this loop once for each table. Ignore * all tables except the routing information table. */ flags = 0; status = getmsg(fd, &ctlbuf, NULL, &flags); if (status < 0) { if (errno == EINTR) continue; logperror("update_router_list: getmsg(ctl)"); return (_B_FALSE); } if (ctlbuf.len < sizeof (t_scalar_t)) { logerr("update_router_list: ctlbuf.len %d\n", ctlbuf.len); return (_B_FALSE); } prim = buf.uprim.type; switch (prim) { case T_ERROR_ACK: tea = &buf.uprim.error_ack; if (ctlbuf.len < sizeof (struct T_error_ack)) { logerr("update_router_list: T_ERROR_ACK" " ctlbuf.len %d\n", ctlbuf.len); return (_B_FALSE); } logerr("update_router_list: T_ERROR_ACK:" " TLI_error = 0x%lx, UNIX_error = 0x%lx\n", tea->TLI_error, tea->UNIX_error); return (_B_FALSE); case T_OPTMGMT_ACK: toa = &buf.uprim.optmgmt_ack; optp = (struct opthdr *)&toa[1]; if (ctlbuf.len < sizeof (struct T_optmgmt_ack)) { logerr("update_router_list: ctlbuf.len %d\n", ctlbuf.len); return (_B_FALSE); } if (toa->MGMT_flags != T_SUCCESS) { logerr("update_router_list: MGMT_flags 0x%lx\n", toa->MGMT_flags); return (_B_FALSE); } break; default: logerr("update_router_list: unknown primitive %ld\n", prim); return (_B_FALSE); } /* Process the T_OPGMGMT_ACK below */ assert(prim == T_OPTMGMT_ACK); switch (status) { case 0: /* * We have reached the end of this T_OPTMGMT_ACK * message. If this is the last message i.e EOD, * return, else process the next T_OPTMGMT_ACK msg. */ if ((ctlbuf.len == sizeof (struct T_optmgmt_ack) + sizeof (struct opthdr)) && optp->len == 0 && optp->name == 0 && optp->level == 0) { /* * This is the EOD message. Return */ return (_B_TRUE); } continue; case MORECTL: case MORECTL | MOREDATA: /* * This should not happen. We should be able to read * the control portion in a single getmsg. */ logerr("update_router_list: MORECTL\n"); return (_B_FALSE); case MOREDATA: databuf.maxlen = optp->len; /* malloc of 0 bytes is ok */ databuf.buf = malloc((size_t)optp->len); if (databuf.maxlen != 0 && databuf.buf == NULL) { logperror("update_router_list: malloc"); return (_B_FALSE); } databuf.len = 0; flags = 0; for (;;) { status = getmsg(fd, NULL, &databuf, &flags); if (status >= 0) { break; } else if (errno == EINTR) { continue; } else { logperror("update_router_list:" " getmsg(data)"); free(databuf.buf); return (_B_FALSE); } } if (optp->level == MIB2_IP && optp->name == MIB2_IP_ROUTE) { /* LINTED */ ire_process_v4((mib2_ipRouteEntry_t *) databuf.buf, databuf.len); } else if (optp->level == MIB2_IP6 && optp->name == MIB2_IP6_ROUTE) { /* LINTED */ ire_process_v6((mib2_ipv6RouteEntry_t *) databuf.buf, databuf.len); } free(databuf.buf); } } /* NOTREACHED */ } /* * Examine the IPv4 routing table, for default routers. For each default * router, populate the list of targets of each phyint that is on the same * link as the default router */ static void ire_process_v4(mib2_ipRouteEntry_t *buf, size_t len) { mib2_ipRouteEntry_t *rp; mib2_ipRouteEntry_t *rp1; struct in_addr nexthop_v4; mib2_ipRouteEntry_t *endp; if (len == 0) return; assert((len % sizeof (mib2_ipRouteEntry_t)) == 0); endp = buf + (len / sizeof (mib2_ipRouteEntry_t)); /* * Loop thru the routing table entries. Process any IRE_DEFAULT, * IRE_PREFIX, IRE_HOST, IRE_HOST_REDIRECT ire. Ignore the others. * For each such IRE_OFFSUBNET ire, get the nexthop gateway address. * This is a potential target for probing, which we try to add * to the list of probe targets. */ for (rp = buf; rp < endp; rp++) { if (!(rp->ipRouteInfo.re_ire_type & IRE_OFFSUBNET)) continue; /* Get the nexthop address. */ nexthop_v4.s_addr = rp->ipRouteNextHop; /* * Get the nexthop address. Then determine the outgoing * interface, by examining all interface IREs, and picking the * match. We don't look at the interface specified in the route * because we need to add the router target on all matching * interfaces anyway; the goal is to avoid falling back to * multicast when some interfaces are in the same subnet but * not in the same group. */ for (rp1 = buf; rp1 < endp; rp1++) { if (!(rp1->ipRouteInfo.re_ire_type & IRE_INTERFACE)) { continue; } /* * Determine the interface IRE that matches the nexthop. * i.e. (IRE addr & IRE mask) == (nexthop & IRE mask) */ if ((rp1->ipRouteDest & rp1->ipRouteMask) == (nexthop_v4.s_addr & rp1->ipRouteMask)) { /* * We found the interface ire */ router_add_v4(rp1, nexthop_v4); } } } } void router_add_v4(mib2_ipRouteEntry_t *rp1, struct in_addr nexthop_v4) { char *cp; char ifname[LIFNAMSIZ + 1]; struct in6_addr nexthop; int len; if (debug & D_TARGET) logdebug("router_add_v4()\n"); len = MIN(rp1->ipRouteIfIndex.o_length, sizeof (ifname) - 1); (void) memcpy(ifname, rp1->ipRouteIfIndex.o_bytes, len); ifname[len] = '\0'; if (ifname[0] == '\0') return; cp = strchr(ifname, IF_SEPARATOR); if (cp != NULL) *cp = '\0'; IN6_INADDR_TO_V4MAPPED(&nexthop_v4, &nexthop); router_add_common(AF_INET, ifname, nexthop); } void router_add_common(int af, char *ifname, struct in6_addr nexthop) { struct phyint_instance *pii; struct phyint *pi; if (debug & D_TARGET) logdebug("router_add_common(%s %s)\n", AF_STR(af), ifname); /* * Retrieve the phyint instance; bail if it's not known to us yet. */ pii = phyint_inst_lookup(af, ifname); if (pii == NULL) return; /* * Don't use our own addresses as targets. */ if (own_address(pii->pii_af, nexthop)) return; /* * If the phyint is part a named group, then add the address to all * members of the group; note that this is suboptimal in the IPv4 case * as it has already been added to all matching interfaces in * ire_process_v4(). Otherwise, add the address only to the phyint * itself, since other phyints in the anongroup may not be on the same * subnet. */ pi = pii->pii_phyint; if (pi->pi_group == phyint_anongroup) { target_add(pii, nexthop, _B_TRUE); } else { pi = pi->pi_group->pg_phyint; for (; pi != NULL; pi = pi->pi_pgnext) target_add(PHYINT_INSTANCE(pi, af), nexthop, _B_TRUE); } } /* * Examine the IPv6 routing table, for default routers. For each default * router, populate the list of targets of each phyint that is on the same * link as the default router */ static void ire_process_v6(mib2_ipv6RouteEntry_t *buf, size_t len) { mib2_ipv6RouteEntry_t *rp; mib2_ipv6RouteEntry_t *endp; struct in6_addr nexthop_v6; if (debug & D_TARGET) logdebug("ire_process_v6(len %d)\n", len); if (len == 0) return; assert((len % sizeof (mib2_ipv6RouteEntry_t)) == 0); endp = buf + (len / sizeof (mib2_ipv6RouteEntry_t)); /* * Loop thru the routing table entries. Process any IRE_DEFAULT, * IRE_PREFIX, IRE_HOST, IRE_HOST_REDIRECT ire. Ignore the others. * For each such IRE_OFFSUBNET ire, get the nexthop gateway address. * This is a potential target for probing, which we try to add * to the list of probe targets. */ for (rp = buf; rp < endp; rp++) { if (!(rp->ipv6RouteInfo.re_ire_type & IRE_OFFSUBNET)) continue; /* * We have the outgoing interface in ipv6RouteIfIndex * if ipv6RouteIfindex.o_length is non-zero. The outgoing * interface must be present for link-local addresses. Since * we use only link-local addreses for probing, we don't * consider the case when the outgoing interface is not * known and we need to scan interface ires */ nexthop_v6 = rp->ipv6RouteNextHop; if (rp->ipv6RouteIfIndex.o_length != 0) { /* * We already have the outgoing interface * in ipv6RouteIfIndex. */ router_add_v6(rp, nexthop_v6); } } } void router_add_v6(mib2_ipv6RouteEntry_t *rp1, struct in6_addr nexthop_v6) { char ifname[LIFNAMSIZ + 1]; char *cp; int len; if (debug & D_TARGET) logdebug("router_add_v6()\n"); len = MIN(rp1->ipv6RouteIfIndex.o_length, sizeof (ifname) - 1); (void) memcpy(ifname, rp1->ipv6RouteIfIndex.o_bytes, len); ifname[len] = '\0'; if (ifname[0] == '\0') return; cp = strchr(ifname, IF_SEPARATOR); if (cp != NULL) *cp = '\0'; router_add_common(AF_INET6, ifname, nexthop_v6); } /* * Build a list of target routers, by scanning the routing tables. * It is assumed that interface routes exist, to reach the routers. */ static void init_router_targets(void) { struct target *tg; struct target *next_tg; struct phyint_instance *pii; struct phyint *pi; if (force_mcast) return; for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) { pi = pii->pii_phyint; /* * Exclude ptp and host targets. Set tg_in_use to false, * only for router targets. */ if (!pii->pii_targets_are_routers || (pi->pi_flags & IFF_POINTOPOINT)) continue; for (tg = pii->pii_targets; tg != NULL; tg = tg->tg_next) tg->tg_in_use = 0; } if (mibfd < 0) { mibfd = open("/dev/ip", O_RDWR); if (mibfd < 0) { logperror("mibopen: ip open"); exit(1); } } if (!update_router_list(mibfd)) { (void) close(mibfd); mibfd = -1; } for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) { if (!pii->pii_targets_are_routers || (pi->pi_flags & IFF_POINTOPOINT)) continue; for (tg = pii->pii_targets; tg != NULL; tg = next_tg) { next_tg = tg->tg_next; if (!tg->tg_in_use) { target_delete(tg); } } } } /* * Attempt to assign host targets to any interfaces that do not currently * have probe targets by sharing targets with other interfaces in the group. */ static void init_host_targets(void) { struct phyint_instance *pii; struct phyint_group *pg; for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) { pg = pii->pii_phyint->pi_group; if (pg != phyint_anongroup && pii->pii_targets == NULL) dup_host_targets(pii); } } /* * Duplicate host targets from other phyints of the group to * the phyint instance 'desired_pii'. */ static void dup_host_targets(struct phyint_instance *desired_pii) { int af; struct phyint *pi; struct phyint_instance *pii; struct target *tg; assert(desired_pii->pii_phyint->pi_group != phyint_anongroup); af = desired_pii->pii_af; /* * For every phyint in the same group as desired_pii, check if * it has any host targets. If so add them to desired_pii. */ for (pi = desired_pii->pii_phyint; pi != NULL; pi = pi->pi_pgnext) { pii = PHYINT_INSTANCE(pi, af); /* * We know that we don't have targets on this phyint instance * since we have been called. But we still check for * pii_targets_are_routers because another phyint instance * could have router targets, since IFF_NOFAILOVER addresses * on different phyint instances may belong to different * subnets. */ if ((pii == NULL) || (pii == desired_pii) || pii->pii_targets_are_routers) continue; for (tg = pii->pii_targets; tg != NULL; tg = tg->tg_next) { target_create(desired_pii, tg->tg_address, _B_FALSE); } } } static void usage(char *cmd) { (void) fprintf(stderr, "usage: %s\n", cmd); } #define MPATHD_DEFAULT_FILE "/etc/default/mpathd" /* Get an option from the /etc/default/mpathd file */ static char * getdefault(char *name) { char namebuf[BUFSIZ]; char *value = NULL; if (defopen(MPATHD_DEFAULT_FILE) == 0) { char *cp; int flags; /* * ignore case */ flags = defcntl(DC_GETFLAGS, 0); TURNOFF(flags, DC_CASE); (void) defcntl(DC_SETFLAGS, flags); /* Add "=" to the name */ (void) strncpy(namebuf, name, sizeof (namebuf) - 2); (void) strncat(namebuf, "=", 2); if ((cp = defread(namebuf)) != NULL) value = strdup(cp); /* close */ (void) defopen((char *)NULL); } return (value); } /* * Command line options below */ boolean_t failback_enabled = _B_TRUE; /* failback enabled/disabled */ boolean_t track_all_phyints = _B_FALSE; /* option to track all NICs */ static boolean_t adopt = _B_FALSE; static boolean_t foreground = _B_FALSE; int main(int argc, char *argv[]) { int i; int c; struct phyint_instance *pii; char *value; argv0 = argv; /* Saved for re-exec on SIGHUP */ srandom(gethostid()); /* Initialize the random number generator */ /* * NOTE: The messages output by in.mpathd are not suitable for * translation, so we do not call textdomain(). */ (void) setlocale(LC_ALL, ""); /* * Get the user specified value of 'failure detection time' * from /etc/default/mpathd */ value = getdefault("FAILURE_DETECTION_TIME"); if (value != NULL) { user_failure_detection_time = (int)strtol((char *)value, NULL, 0); if (user_failure_detection_time <= 0) { user_failure_detection_time = FAILURE_DETECTION_TIME; logerr("Invalid failure detection time %s, assuming " "default %d\n", value, user_failure_detection_time); } else if (user_failure_detection_time < MIN_FAILURE_DETECTION_TIME) { user_failure_detection_time = MIN_FAILURE_DETECTION_TIME; logerr("Too small failure detection time of %s, " "assuming minimum %d\n", value, user_failure_detection_time); } free(value); } else { /* User has not specified the parameter, Use default value */ user_failure_detection_time = FAILURE_DETECTION_TIME; } /* * This gives the frequency at which probes will be sent. * When fdt ms elapses, we should be able to determine * whether 5 consecutive probes have failed or not. * 1 probe will be sent in every user_probe_interval ms, * randomly anytime in the (0.5 - 1.0) 2nd half of every * user_probe_interval. Thus when we send out probe 'n' we * can be sure that probe 'n - 2' is lost, if we have not * got the ack. (since the probe interval is > crtt). But * probe 'n - 1' may be a valid unacked probe, since the * time between 2 successive probes could be as small as * 0.5 * user_probe_interval. Hence the NUM_PROBE_FAILS + 2 */ user_probe_interval = user_failure_detection_time / (NUM_PROBE_FAILS + 2); /* * Get the user specified value of failback_enabled from * /etc/default/mpathd */ value = getdefault("FAILBACK"); if (value != NULL) { if (strncasecmp(value, "yes", 3) == 0) failback_enabled = _B_TRUE; else if (strncasecmp(value, "no", 2) == 0) failback_enabled = _B_FALSE; else logerr("Invalid value for FAILBACK %s\n", value); free(value); } else { failback_enabled = _B_TRUE; } /* * Get the user specified value of track_all_phyints from * /etc/default/mpathd. The sense is reversed in * TRACK_INTERFACES_ONLY_WITH_GROUPS. */ value = getdefault("TRACK_INTERFACES_ONLY_WITH_GROUPS"); if (value != NULL) { if (strncasecmp(value, "yes", 3) == 0) track_all_phyints = _B_FALSE; else if (strncasecmp(value, "no", 2) == 0) track_all_phyints = _B_TRUE; else logerr("Invalid value for " "TRACK_INTERFACES_ONLY_WITH_GROUPS %s\n", value); free(value); } else { track_all_phyints = _B_FALSE; } while ((c = getopt(argc, argv, "adD:ml")) != EOF) { switch (c) { case 'a': adopt = _B_TRUE; break; case 'm': force_mcast = _B_TRUE; break; case 'd': debug = D_ALL; foreground = _B_TRUE; break; case 'D': i = (int)strtol(optarg, NULL, 0); if (i == 0) { (void) fprintf(stderr, "Bad debug flags: %s\n", optarg); exit(1); } debug |= i; foreground = _B_TRUE; break; case 'l': /* * Turn off link state notification handling. * Undocumented command line flag, for debugging * purposes. */ handle_link_notifications = _B_FALSE; break; default: usage(argv[0]); exit(1); } } /* * The sockets for the loopback command interface should be listening * before we fork and exit in daemonize(). This way, whoever started us * can use the loopback interface as soon as they get a zero exit * status. */ lsock_v4 = setup_listener(AF_INET); lsock_v6 = setup_listener(AF_INET6); if (lsock_v4 < 0 && lsock_v6 < 0) { logerr("main: setup_listener failed for both IPv4 and IPv6\n"); exit(1); } if (!foreground) { if (!daemonize()) { logerr("cannot daemonize\n"); exit(EXIT_FAILURE); } initlog(); } /* * Initializations: * 1. Create ifsock* sockets. These are used for performing SIOC* * ioctls. We have 2 sockets 1 each for IPv4 and IPv6. * 2. Initialize a pipe for handling/recording signal events. * 3. Create the routing sockets, used for listening * to routing / interface changes. * 4. phyint_init() - Initialize physical interface state * (in mpd_tables.c). Must be done before creating interfaces, * which timer_init() does indirectly. * 5. timer_init() - Initialize timer related stuff * 6. initifs() - Initialize our database of all known interfaces * 7. init_router_targets() - Initialize our database of all known * router targets. */ ifsock_v4 = socket(AF_INET, SOCK_DGRAM, 0); if (ifsock_v4 < 0) { logperror("main: IPv4 socket open"); exit(1); } ifsock_v6 = socket(AF_INET6, SOCK_DGRAM, 0); if (ifsock_v6 < 0) { logperror("main: IPv6 socket open"); exit(1); } setup_eventpipe(); rtsock_v4 = setup_rtsock(AF_INET); rtsock_v6 = setup_rtsock(AF_INET6); if (phyint_init() == -1) { logerr("cannot initialize physical interface structures"); exit(1); } timer_init(); initifs(); /* * If we're operating in "adopt" mode and no interfaces need to be * tracked, shut down (ifconfig(1M) will restart us on demand if * interfaces are subsequently put into multipathing groups). */ if (adopt && phyint_instances == NULL) exit(0); /* * Main body. Keep listening for activity on any of the sockets * that we are monitoring and take appropriate action as necessary. * signals are also handled synchronously. */ for (;;) { if (poll(pollfds, pollfd_num, -1) < 0) { if (errno == EINTR) continue; logperror("main: poll"); exit(1); } for (i = 0; i < pollfd_num; i++) { if ((pollfds[i].fd == -1) || !(pollfds[i].revents & POLLIN)) continue; if (pollfds[i].fd == eventpipe_read) { in_signal(eventpipe_read); break; } if (pollfds[i].fd == rtsock_v4 || pollfds[i].fd == rtsock_v6) { process_rtsock(rtsock_v4, rtsock_v6); break; } for (pii = phyint_instances; pii != NULL; pii = pii->pii_next) { if (pollfds[i].fd == pii->pii_probe_sock) { if (pii->pii_af == AF_INET) in_data(pii); else in6_data(pii); break; } } if (pollfds[i].fd == lsock_v4) loopback_cmd(lsock_v4, AF_INET); else if (pollfds[i].fd == lsock_v6) loopback_cmd(lsock_v6, AF_INET6); } if (full_scan_required) { initifs(); full_scan_required = _B_FALSE; } } /* NOTREACHED */ return (EXIT_SUCCESS); } static int setup_listener(int af) { int sock; int on; int len; int ret; struct sockaddr_storage laddr; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; struct in6_addr loopback_addr = IN6ADDR_LOOPBACK_INIT; assert(af == AF_INET || af == AF_INET6); sock = socket(af, SOCK_STREAM, 0); if (sock < 0) { logperror("setup_listener: socket"); exit(1); } on = 1; if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char *)&on, sizeof (on)) < 0) { logperror("setup_listener: setsockopt (SO_REUSEADDR)"); exit(1); } bzero(&laddr, sizeof (laddr)); laddr.ss_family = af; if (af == AF_INET) { sin = (struct sockaddr_in *)&laddr; sin->sin_port = htons(MPATHD_PORT); sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK); len = sizeof (struct sockaddr_in); } else { sin6 = (struct sockaddr_in6 *)&laddr; sin6->sin6_port = htons(MPATHD_PORT); sin6->sin6_addr = loopback_addr; len = sizeof (struct sockaddr_in6); } ret = bind(sock, (struct sockaddr *)&laddr, len); if (ret < 0) { if (errno == EADDRINUSE) { /* * Another instance of mpathd may be already active. */ logerr("main: is another instance of in.mpathd " "already active?\n"); exit(1); } else { (void) close(sock); return (-1); } } if (listen(sock, 30) < 0) { logperror("main: listen"); exit(1); } if (poll_add(sock) == -1) { (void) close(sock); exit(1); } return (sock); } /* * Table of commands and their expected size; used by loopback_cmd(). */ static struct { const char *name; unsigned int size; } commands[] = { { "MI_PING", sizeof (uint32_t) }, { "MI_OFFLINE", sizeof (mi_offline_t) }, { "MI_UNDO_OFFLINE", sizeof (mi_undo_offline_t) }, { "MI_SETOINDEX", sizeof (mi_setoindex_t) }, { "MI_QUERY", sizeof (mi_query_t) } }; /* * Commands received over the loopback interface come here. Currently * the agents that send commands are ifconfig, if_mpadm and the RCM IPMP * module. ifconfig only makes a connection, and closes it to check if * in.mpathd is running. * if_mpadm sends commands in the format specified by the mpathd_interface * structure. */ static void loopback_cmd(int sock, int family) { int newfd; ssize_t len; struct sockaddr_storage peer; struct sockaddr_in *peer_sin; struct sockaddr_in6 *peer_sin6; socklen_t peerlen; union mi_commands mpi; struct in6_addr loopback_addr = IN6ADDR_LOOPBACK_INIT; char abuf[INET6_ADDRSTRLEN]; uint_t cmd; int retval; peerlen = sizeof (peer); newfd = accept(sock, (struct sockaddr *)&peer, &peerlen); if (newfd < 0) { logperror("loopback_cmd: accept"); return; } switch (family) { case AF_INET: /* * Validate the address and port to make sure that * non privileged processes don't connect and start * talking to us. */ if (peerlen != sizeof (struct sockaddr_in)) { logerr("loopback_cmd: AF_INET peerlen %d\n", peerlen); (void) close(newfd); return; } peer_sin = (struct sockaddr_in *)&peer; if ((ntohs(peer_sin->sin_port) >= IPPORT_RESERVED) || (ntohl(peer_sin->sin_addr.s_addr) != INADDR_LOOPBACK)) { (void) inet_ntop(AF_INET, &peer_sin->sin_addr.s_addr, abuf, sizeof (abuf)); logerr("Attempt to connect from addr %s port %d\n", abuf, ntohs(peer_sin->sin_port)); (void) close(newfd); return; } break; case AF_INET6: if (peerlen != sizeof (struct sockaddr_in6)) { logerr("loopback_cmd: AF_INET6 peerlen %d\n", peerlen); (void) close(newfd); return; } /* * Validate the address and port to make sure that * non privileged processes don't connect and start * talking to us. */ peer_sin6 = (struct sockaddr_in6 *)&peer; if ((ntohs(peer_sin6->sin6_port) >= IPPORT_RESERVED) || (!IN6_ARE_ADDR_EQUAL(&peer_sin6->sin6_addr, &loopback_addr))) { (void) inet_ntop(AF_INET6, &peer_sin6->sin6_addr, abuf, sizeof (abuf)); logerr("Attempt to connect from addr %s port %d\n", abuf, ntohs(peer_sin6->sin6_port)); (void) close(newfd); return; } default: logdebug("loopback_cmd: family %d\n", family); (void) close(newfd); return; } /* * The sizeof the 'mpi' buffer corresponds to the maximum size of * all supported commands */ len = read(newfd, &mpi, sizeof (mpi)); /* * ifconfig does not send any data. Just tests to see if mpathd * is already running. */ if (len <= 0) { (void) close(newfd); return; } /* * In theory, we can receive any sized message for a stream socket, * but we don't expect that to happen for a small message over a * loopback connection. */ if (len < sizeof (uint32_t)) { logerr("loopback_cmd: bad command format or read returns " "partial data %d\n", len); } cmd = mpi.mi_command; if (cmd >= MI_NCMD) { logerr("loopback_cmd: unknown command id `%d'\n", cmd); (void) close(newfd); return; } if (len < commands[cmd].size) { logerr("loopback_cmd: short %s command (expected %d, got %d)\n", commands[cmd].name, commands[cmd].size, len); (void) close(newfd); return; } retval = process_cmd(newfd, &mpi); if (retval != IPMP_SUCCESS) { logerr("failed processing %s: %s\n", commands[cmd].name, ipmp_errmsg(retval)); } (void) close(newfd); } extern int global_errno; /* set by failover() or failback() */ /* * Process the offline, undo offline and set original index commands, * received from if_mpadm(1M) */ static unsigned int process_cmd(int newfd, union mi_commands *mpi) { uint_t nif = 0; uint32_t cmd; struct phyint *pi; struct phyint *pi2; struct phyint_group *pg; boolean_t success; int error; struct mi_offline *mio; struct mi_undo_offline *miu; struct lifreq lifr; int ifsock; struct mi_setoindex *mis; cmd = mpi->mi_command; switch (cmd) { case MI_OFFLINE: mio = &mpi->mi_ocmd; /* * Lookup the interface that needs to be offlined. * If it does not exist, return a suitable error. */ pi = phyint_lookup(mio->mio_ifname); if (pi == NULL) return (send_result(newfd, IPMP_FAILURE, EINVAL)); /* * Verify that the minimum redundancy requirements are met. * The multipathing group must have at least the specified * number of functional interfaces after offlining the * requested interface. Otherwise return a suitable error. */ pg = pi->pi_group; nif = 0; if (pg != phyint_anongroup) { for (nif = 0, pi2 = pg->pg_phyint; pi2 != NULL; pi2 = pi2->pi_pgnext) { if ((pi2->pi_state == PI_RUNNING) || (pg->pg_groupfailed && !(pi2->pi_flags & IFF_OFFLINE))) nif++; } } if (nif < mio->mio_min_redundancy) return (send_result(newfd, IPMP_EMINRED, 0)); /* * The order of operation is to set IFF_OFFLINE, followed by * failover. Setting IFF_OFFLINE ensures that no new ipif's * can be created. Subsequent failover moves everything on * the OFFLINE interface to some other functional interface. */ success = change_lif_flags(pi, IFF_OFFLINE, _B_TRUE); if (success) { if (!pi->pi_empty) { error = try_failover(pi, FAILOVER_NORMAL); if (error != 0) { if (!change_lif_flags(pi, IFF_OFFLINE, _B_FALSE)) { logerr("process_cmd: couldn't" " clear OFFLINE flag on" " %s\n", pi->pi_name); /* * Offline interfaces should * not be probed. */ stop_probing(pi); } return (send_result(newfd, error, global_errno)); } } } else { return (send_result(newfd, IPMP_FAILURE, errno)); } /* * The interface is now Offline, so stop probing it. * Note that if_mpadm(1M) will down the test addresses, * after receiving a success reply from us. The routing * socket message will then make us close the socket used * for sending probes. But it is more logical that an * offlined interface must not be probed, even if it has * test addresses. */ stop_probing(pi); return (send_result(newfd, IPMP_SUCCESS, 0)); case MI_UNDO_OFFLINE: miu = &mpi->mi_ucmd; /* * Undo the offline command. As usual lookup the interface. * Send an error if it does not exist. */ pi = phyint_lookup(miu->miu_ifname); if (pi == NULL) return (send_result(newfd, IPMP_FAILURE, EINVAL)); /* * Inverse of the offline operation. Do a failback, and then * clear the IFF_OFFLINE flag. */ error = do_failback(pi, _B_TRUE); if (error == IPMP_EFBPARTIAL) return (send_result(newfd, IPMP_EFBPARTIAL, 0)); error = do_failback(pi, _B_FALSE); switch (error) { case IPMP_SUCCESS: if (!change_lif_flags(pi, IFF_OFFLINE, _B_FALSE)) { logdebug("undo error %X\n", global_errno); error = IPMP_FAILURE; break; } /* FALLTHROUGH */ case IPMP_EFBPARTIAL: /* * Reset the state of the interface based on the * current link state; if this phyint subsequently * acquires a test address, the state will be changed * again later as a result of the probes. */ if (LINK_UP(pi)) phyint_chstate(pi, PI_RUNNING); else phyint_chstate(pi, PI_FAILED); break; case IPMP_FAILURE: break; default: logdebug("do_failback: unexpected return value\n"); break; } return (send_result(newfd, error, global_errno)); case MI_SETOINDEX: mis = &mpi->mi_scmd; /* Get the socket for doing ioctls */ ifsock = (mis->mis_iftype == AF_INET) ? ifsock_v4 : ifsock_v6; /* * Get index of new original interface. * The index is returned in lifr.lifr_index. */ (void) strlcpy(lifr.lifr_name, mis->mis_new_pifname, sizeof (lifr.lifr_name)); if (ioctl(ifsock, SIOCGLIFINDEX, (char *)&lifr) < 0) return (send_result(newfd, IPMP_FAILURE, errno)); /* * Set new original interface index. * The new index was put into lifr.lifr_index by the * SIOCGLIFINDEX ioctl. */ (void) strlcpy(lifr.lifr_name, mis->mis_lifname, sizeof (lifr.lifr_name)); if (ioctl(ifsock, SIOCSLIFOINDEX, (char *)&lifr) < 0) return (send_result(newfd, IPMP_FAILURE, errno)); return (send_result(newfd, IPMP_SUCCESS, 0)); case MI_QUERY: return (process_query(newfd, &mpi->mi_qcmd)); default: break; } return (send_result(newfd, IPMP_EPROTO, 0)); } /* * Process the query request pointed to by `miq' and send a reply on file * descriptor `fd'. Returns an IPMP error code. */ static unsigned int process_query(int fd, mi_query_t *miq) { ipmp_groupinfo_t *grinfop; ipmp_groupinfolist_t *grlp; ipmp_grouplist_t *grlistp; ipmp_ifinfo_t *ifinfop; ipmp_ifinfolist_t *iflp; ipmp_snap_t *snap; unsigned int retval; switch (miq->miq_inforeq) { case IPMP_GROUPLIST: retval = getgrouplist(&grlistp); if (retval != IPMP_SUCCESS) return (send_result(fd, retval, errno)); retval = send_result(fd, IPMP_SUCCESS, 0); if (retval == IPMP_SUCCESS) retval = send_grouplist(fd, grlistp); ipmp_freegrouplist(grlistp); return (retval); case IPMP_GROUPINFO: miq->miq_grname[LIFGRNAMSIZ - 1] = '\0'; retval = getgroupinfo(miq->miq_ifname, &grinfop); if (retval != IPMP_SUCCESS) return (send_result(fd, retval, errno)); retval = send_result(fd, IPMP_SUCCESS, 0); if (retval == IPMP_SUCCESS) retval = send_groupinfo(fd, grinfop); ipmp_freegroupinfo(grinfop); return (retval); case IPMP_IFINFO: miq->miq_ifname[LIFNAMSIZ - 1] = '\0'; retval = getifinfo(miq->miq_ifname, &ifinfop); if (retval != IPMP_SUCCESS) return (send_result(fd, retval, errno)); retval = send_result(fd, IPMP_SUCCESS, 0); if (retval == IPMP_SUCCESS) retval = send_ifinfo(fd, ifinfop); ipmp_freeifinfo(ifinfop); return (retval); case IPMP_SNAP: retval = getsnap(&snap); if (retval != IPMP_SUCCESS) return (send_result(fd, retval, errno)); retval = send_result(fd, IPMP_SUCCESS, 0); if (retval != IPMP_SUCCESS) goto out; retval = ipmp_writetlv(fd, IPMP_SNAP, sizeof (*snap), snap); if (retval != IPMP_SUCCESS) goto out; retval = send_grouplist(fd, snap->sn_grlistp); if (retval != IPMP_SUCCESS) goto out; iflp = snap->sn_ifinfolistp; for (; iflp != NULL; iflp = iflp->ifl_next) { retval = send_ifinfo(fd, iflp->ifl_ifinfop); if (retval != IPMP_SUCCESS) goto out; } grlp = snap->sn_grinfolistp; for (; grlp != NULL; grlp = grlp->grl_next) { retval = send_groupinfo(fd, grlp->grl_grinfop); if (retval != IPMP_SUCCESS) goto out; } out: ipmp_snap_free(snap); return (retval); default: break; } return (send_result(fd, IPMP_EPROTO, 0)); } /* * Send the group information pointed to by `grinfop' on file descriptor `fd'. * Returns an IPMP error code. */ static unsigned int send_groupinfo(int fd, ipmp_groupinfo_t *grinfop) { ipmp_iflist_t *iflistp = grinfop->gr_iflistp; unsigned int retval; retval = ipmp_writetlv(fd, IPMP_GROUPINFO, sizeof (*grinfop), grinfop); if (retval != IPMP_SUCCESS) return (retval); return (ipmp_writetlv(fd, IPMP_IFLIST, IPMP_IFLIST_SIZE(iflistp->il_nif), iflistp)); } /* * Send the interface information pointed to by `ifinfop' on file descriptor * `fd'. Returns an IPMP error code. */ static unsigned int send_ifinfo(int fd, ipmp_ifinfo_t *ifinfop) { return (ipmp_writetlv(fd, IPMP_IFINFO, sizeof (*ifinfop), ifinfop)); } /* * Send the group list pointed to by `grlistp' on file descriptor `fd'. * Returns an IPMP error code. */ static unsigned int send_grouplist(int fd, ipmp_grouplist_t *grlistp) { return (ipmp_writetlv(fd, IPMP_GROUPLIST, IPMP_GROUPLIST_SIZE(grlistp->gl_ngroup), grlistp)); } /* * Initialize an mi_result_t structure using `error' and `syserror' and * send it on file descriptor `fd'. Returns an IPMP error code. */ static unsigned int send_result(int fd, unsigned int error, int syserror) { mi_result_t me; me.me_mpathd_error = error; if (error == IPMP_FAILURE) me.me_sys_error = syserror; else me.me_sys_error = 0; return (ipmp_write(fd, &me, sizeof (me))); } /* * Daemonize the process. */ static boolean_t daemonize(void) { switch (fork()) { case -1: return (_B_FALSE); case 0: /* * Lose our controlling terminal, and become both a session * leader and a process group leader. */ if (setsid() == -1) return (_B_FALSE); /* * Under POSIX, a session leader can accidentally (through * open(2)) acquire a controlling terminal if it does not * have one. Just to be safe, fork() again so we are not a * session leader. */ switch (fork()) { case -1: return (_B_FALSE); case 0: (void) chdir("/"); (void) umask(022); (void) fdwalk(closefunc, NULL); break; default: _exit(EXIT_SUCCESS); } break; default: _exit(EXIT_SUCCESS); } return (_B_TRUE); } /* * The parent has created some fds before forking on purpose, keep them open. */ static int closefunc(void *not_used, int fd) /* ARGSUSED */ { if (fd != lsock_v4 && fd != lsock_v6) (void) close(fd); return (0); } /* LOGGER */ #include /* * Logging routines. All routines log to syslog, unless the daemon is * running in the foreground, in which case the logging goes to stderr. * * The following routines are available: * * logdebug(): A printf-like function for outputting debug messages * (messages at LOG_DEBUG) that are only of use to developers. * * logtrace(): A printf-like function for outputting tracing messages * (messages at LOG_INFO) from the daemon. This is typically used * to log the receipt of interesting network-related conditions. * * logerr(): A printf-like function for outputting error messages * (messages at LOG_ERR) from the daemon. * * logperror*(): A set of functions used to output error messages * (messages at LOG_ERR); these automatically append strerror(errno) * and a newline to the message passed to them. * * NOTE: since the logging functions write to syslog, the messages passed * to them are not eligible for localization. Thus, gettext() must * *not* be used. */ static int logging = 0; static void initlog(void) { logging++; openlog("in.mpathd", LOG_PID | LOG_CONS, LOG_DAEMON); } /* PRINTFLIKE1 */ void logerr(char *fmt, ...) { va_list ap; va_start(ap, fmt); if (logging) vsyslog(LOG_ERR, fmt, ap); else (void) vfprintf(stderr, fmt, ap); va_end(ap); } /* PRINTFLIKE1 */ void logtrace(char *fmt, ...) { va_list ap; va_start(ap, fmt); if (logging) vsyslog(LOG_INFO, fmt, ap); else (void) vfprintf(stderr, fmt, ap); va_end(ap); } /* PRINTFLIKE1 */ void logdebug(char *fmt, ...) { va_list ap; va_start(ap, fmt); if (logging) vsyslog(LOG_DEBUG, fmt, ap); else (void) vfprintf(stderr, fmt, ap); va_end(ap); } /* PRINTFLIKE1 */ void logperror(char *str) { if (logging) syslog(LOG_ERR, "%s: %m\n", str); else (void) fprintf(stderr, "%s: %s\n", str, strerror(errno)); } void logperror_pii(struct phyint_instance *pii, char *str) { if (logging) { syslog(LOG_ERR, "%s (%s %s): %m\n", str, AF_STR(pii->pii_af), pii->pii_phyint->pi_name); } else { (void) fprintf(stderr, "%s (%s %s): %s\n", str, AF_STR(pii->pii_af), pii->pii_phyint->pi_name, strerror(errno)); } } void logperror_li(struct logint *li, char *str) { struct phyint_instance *pii = li->li_phyint_inst; if (logging) { syslog(LOG_ERR, "%s (%s %s): %m\n", str, AF_STR(pii->pii_af), li->li_name); } else { (void) fprintf(stderr, "%s (%s %s): %s\n", str, AF_STR(pii->pii_af), li->li_name, strerror(errno)); } } void close_probe_socket(struct phyint_instance *pii, boolean_t polled) { if (polled) (void) poll_remove(pii->pii_probe_sock); (void) close(pii->pii_probe_sock); pii->pii_probe_sock = -1; pii->pii_basetime_inited = 0; }