/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cpu_node cpunodes[NCPU]; uint64_t cpu_q_entries; uint64_t dev_q_entries; uint64_t cpu_rq_entries; uint64_t cpu_nrq_entries; uint64_t ncpu_guest_max; void fill_cpu(md_t *, mde_cookie_t); static uint64_t get_mmu_ctx_bits(md_t *, mde_cookie_t); static uint64_t get_mmu_tsbs(md_t *, mde_cookie_t); static uint64_t get_mmu_shcontexts(md_t *, mde_cookie_t); static uint64_t get_cpu_pagesizes(md_t *, mde_cookie_t); static int check_mmu_pgsz_search(md_t *, mde_cookie_t); static char *construct_isalist(md_t *, mde_cookie_t, char **); static void init_md_broken(md_t *, mde_cookie_t *); static int get_l2_cache_info(md_t *, mde_cookie_t, uint64_t *, uint64_t *, uint64_t *); static void get_hwcaps(md_t *, mde_cookie_t); static void get_q_sizes(md_t *, mde_cookie_t); static void get_va_bits(md_t *, mde_cookie_t); static size_t get_ra_limit(md_t *); static int get_l2_cache_node_count(md_t *); static unsigned long names2bits(char *tokens, size_t tokenslen, char *bit_formatter, char *warning); uint64_t system_clock_freq; uint_t niommu_tsbs = 0; static int n_l2_caches = 0; /* prevent compilation with VAC defined */ #ifdef VAC #error "The sun4v architecture does not support VAC" #endif #define S_VAC_SIZE MMU_PAGESIZE #define S_VAC_SHIFT MMU_PAGESHIFT int vac_size = S_VAC_SIZE; uint_t vac_mask = MMU_PAGEMASK & (S_VAC_SIZE - 1); int vac_shift = S_VAC_SHIFT; uintptr_t shm_alignment = S_VAC_SIZE; void map_wellknown_devices() { } void fill_cpu(md_t *mdp, mde_cookie_t cpuc) { struct cpu_node *cpunode; uint64_t cpuid; uint64_t clk_freq; char *namebuf; char *namebufp; int namelen; uint64_t associativity = 0, linesize = 0, size = 0; if (md_get_prop_val(mdp, cpuc, "id", &cpuid)) { return; } /* All out-of-range cpus will be stopped later. */ if (cpuid >= NCPU) { cmn_err(CE_CONT, "fill_cpu: out of range cpuid %ld - " "cpu excluded from configuration\n", cpuid); return; } cpunode = &cpunodes[cpuid]; cpunode->cpuid = (int)cpuid; cpunode->device_id = cpuid; if (sizeof (cpunode->fru_fmri) > strlen(CPU_FRU_FMRI)) (void) strcpy(cpunode->fru_fmri, CPU_FRU_FMRI); if (md_get_prop_data(mdp, cpuc, "compatible", (uint8_t **)&namebuf, &namelen)) { cmn_err(CE_PANIC, "fill_cpu: Cannot read compatible " "property"); } namebufp = namebuf; if (strncmp(namebufp, "SUNW,", 5) == 0) namebufp += 5; if (strlen(namebufp) > sizeof (cpunode->name)) cmn_err(CE_PANIC, "Compatible property too big to " "fit into the cpunode name buffer"); (void) strcpy(cpunode->name, namebufp); if (md_get_prop_val(mdp, cpuc, "clock-frequency", &clk_freq)) { clk_freq = 0; } cpunode->clock_freq = clk_freq; ASSERT(cpunode->clock_freq != 0); /* * Compute scaling factor based on rate of %tick. This is used * to convert from ticks derived from %tick to nanoseconds. See * comment in sun4u/sys/clock.h for details. */ cpunode->tick_nsec_scale = (uint_t)(((uint64_t)NANOSEC << (32 - TICK_NSEC_SHIFT)) / cpunode->clock_freq); /* * The nodeid is not used in sun4v at all. Setting it * to positive value to make starting of slave CPUs * code happy. */ cpunode->nodeid = cpuid + 1; /* * Obtain the L2 cache information from MD. * If "Cache" node exists, then set L2 cache properties * as read from MD. * If node does not exists, then set the L2 cache properties * in individual CPU module. */ if ((!get_l2_cache_info(mdp, cpuc, &associativity, &size, &linesize)) || associativity == 0 || size == 0 || linesize == 0) { cpu_fiximp(cpunode); } else { /* * Do not expect L2 cache properties to be bigger * than 32-bit quantity. */ cpunode->ecache_associativity = (int)associativity; cpunode->ecache_size = (int)size; cpunode->ecache_linesize = (int)linesize; } cpunode->ecache_setsize = cpunode->ecache_size / cpunode->ecache_associativity; /* * Initialize the mapping for exec unit, chip and core. */ cpunode->exec_unit_mapping = NO_EU_MAPPING_FOUND; cpunode->l2_cache_mapping = NO_MAPPING_FOUND; cpunode->core_mapping = NO_CORE_MAPPING_FOUND; if (ecache_setsize == 0) ecache_setsize = cpunode->ecache_setsize; if (ecache_alignsize == 0) ecache_alignsize = cpunode->ecache_linesize; } void empty_cpu(int cpuid) { bzero(&cpunodes[cpuid], sizeof (struct cpu_node)); } /* * Use L2 cache node to derive the chip mapping. */ void setup_chip_mappings(md_t *mdp) { int ncache, ncpu; mde_cookie_t *node, *cachelist; int i, j; processorid_t cpuid; int idx = 0; ncache = md_alloc_scan_dag(mdp, md_root_node(mdp), "cache", "fwd", &cachelist); /* * The "cache" node is optional in MD, therefore ncaches can be 0. */ if (ncache < 1) { return; } for (i = 0; i < ncache; i++) { uint64_t cache_level; uint64_t lcpuid; if (md_get_prop_val(mdp, cachelist[i], "level", &cache_level)) continue; if (cache_level != 2) continue; /* * Found a l2 cache node. Find out the cpu nodes it * points to. */ ncpu = md_alloc_scan_dag(mdp, cachelist[i], "cpu", "back", &node); if (ncpu < 1) continue; for (j = 0; j < ncpu; j++) { if (md_get_prop_val(mdp, node[j], "id", &lcpuid)) continue; if (lcpuid >= NCPU) continue; cpuid = (processorid_t)lcpuid; cpunodes[cpuid].l2_cache_mapping = idx; } md_free_scan_dag(mdp, &node); idx++; } md_free_scan_dag(mdp, &cachelist); } void setup_exec_unit_mappings(md_t *mdp) { int num, num_eunits; mde_cookie_t cpus_node; mde_cookie_t *node, *eunit; int idx, i, j; processorid_t cpuid; char *eunit_name = broken_md_flag ? "exec_unit" : "exec-unit"; enum eu_type { INTEGER, FPU } etype; /* * Find the cpu integer exec units - and * setup the mappings appropriately. */ num = md_alloc_scan_dag(mdp, md_root_node(mdp), "cpus", "fwd", &node); if (num < 1) cmn_err(CE_PANIC, "No cpus node in machine description"); if (num > 1) cmn_err(CE_PANIC, "More than 1 cpus node in machine" " description"); cpus_node = node[0]; md_free_scan_dag(mdp, &node); num_eunits = md_alloc_scan_dag(mdp, cpus_node, eunit_name, "fwd", &eunit); if (num_eunits > 0) { char *int_str = broken_md_flag ? "int" : "integer"; char *fpu_str = "fp"; /* Spin through and find all the integer exec units */ for (i = 0; i < num_eunits; i++) { char *p; char *val; int vallen; uint64_t lcpuid; /* ignore nodes with no type */ if (md_get_prop_data(mdp, eunit[i], "type", (uint8_t **)&val, &vallen)) continue; for (p = val; *p != '\0'; p += strlen(p) + 1) { if (strcmp(p, int_str) == 0) { etype = INTEGER; goto found; } if (strcmp(p, fpu_str) == 0) { etype = FPU; goto found; } } continue; found: idx = NCPU + i; /* * find the cpus attached to this EU and * update their mapping indices */ num = md_alloc_scan_dag(mdp, eunit[i], "cpu", "back", &node); if (num < 1) cmn_err(CE_PANIC, "exec-unit node in MD" " not attached to a cpu node"); for (j = 0; j < num; j++) { if (md_get_prop_val(mdp, node[j], "id", &lcpuid)) continue; if (lcpuid >= NCPU) continue; cpuid = (processorid_t)lcpuid; switch (etype) { case INTEGER: cpunodes[cpuid].exec_unit_mapping = idx; break; case FPU: cpunodes[cpuid].fpu_mapping = idx; break; } } md_free_scan_dag(mdp, &node); } md_free_scan_dag(mdp, &eunit); } } /* * Setup instruction cache coherency. The "memory-coherent" property * is optional. Default for Icache_coherency is 1 (I$ is coherent). * If we find an Icache with coherency == 0, then enable non-coherent * Icache support. */ void setup_icache_coherency(md_t *mdp) { int ncache; mde_cookie_t *cachelist; int i; ncache = md_alloc_scan_dag(mdp, md_root_node(mdp), "cache", "fwd", &cachelist); /* * The "cache" node is optional in MD, therefore ncaches can be 0. */ if (ncache < 1) { return; } for (i = 0; i < ncache; i++) { uint64_t cache_level; uint64_t memory_coherent; uint8_t *type; int typelen; if (md_get_prop_val(mdp, cachelist[i], "level", &cache_level)) continue; if (cache_level != 1) continue; if (md_get_prop_data(mdp, cachelist[i], "type", &type, &typelen)) continue; if (strcmp((char *)type, "instn") != 0) continue; if (md_get_prop_val(mdp, cachelist[i], "memory-coherent", &memory_coherent)) continue; if (memory_coherent != 0) continue; mach_setup_icache(memory_coherent); break; } md_free_scan_dag(mdp, &cachelist); } /* * All the common setup of sun4v CPU modules is done by this routine. */ void cpu_setup_common(char **cpu_module_isa_set) { extern int mmu_exported_pagesize_mask; int nocpus, i; size_t ra_limit; mde_cookie_t *cpulist; md_t *mdp; if ((mdp = md_get_handle()) == NULL) cmn_err(CE_PANIC, "Unable to initialize machine description"); boot_ncpus = nocpus = md_alloc_scan_dag(mdp, md_root_node(mdp), "cpu", "fwd", &cpulist); if (nocpus < 1) { cmn_err(CE_PANIC, "cpu_common_setup: cpulist allocation " "failed or incorrect number of CPUs in MD"); } init_md_broken(mdp, cpulist); if (use_page_coloring) { do_pg_coloring = 1; } /* * Get the valid mmu page sizes mask, Q sizes and isalist/r * from the MD for the first available CPU in cpulist. * * Do not expect the MMU page sizes mask to be more than 32-bit. */ mmu_exported_pagesize_mask = (int)get_cpu_pagesizes(mdp, cpulist[0]); /* * Get the number of contexts and tsbs supported. */ if (get_mmu_shcontexts(mdp, cpulist[0]) >= MIN_NSHCONTEXTS && get_mmu_tsbs(mdp, cpulist[0]) >= MIN_NTSBS) { shctx_on = 1; } /* * Get and check page search register properties. */ pgsz_search_on = check_mmu_pgsz_search(mdp, cpulist[0]); for (i = 0; i < nocpus; i++) fill_cpu(mdp, cpulist[i]); /* setup l2 cache count. */ n_l2_caches = get_l2_cache_node_count(mdp); setup_chip_mappings(mdp); setup_exec_unit_mappings(mdp); setup_icache_coherency(mdp); /* * If MD is broken then append the passed ISA set, * otherwise trust the MD. */ if (broken_md_flag) isa_list = construct_isalist(mdp, cpulist[0], cpu_module_isa_set); else isa_list = construct_isalist(mdp, cpulist[0], NULL); get_hwcaps(mdp, cpulist[0]); get_q_sizes(mdp, cpulist[0]); get_va_bits(mdp, cpulist[0]); /* * ra_limit is the highest real address in the machine. */ ra_limit = get_ra_limit(mdp); md_free_scan_dag(mdp, &cpulist); (void) md_fini_handle(mdp); /* * Block stores invalidate all pages of the d$ so pagecopy * et. al. do not need virtual translations with virtual * coloring taken into consideration. */ pp_consistent_coloring = 0; /* * The kpm mapping window. * kpm_size: * The size of a single kpm range. * The overall size will be: kpm_size * vac_colors. * kpm_vbase: * The virtual start address of the kpm range within the kernel * virtual address space. kpm_vbase has to be kpm_size aligned. */ /* * Make kpm_vbase, kpm_size aligned to kpm_size_shift. * To do this find the nearest power of 2 size that the * actual ra_limit fits within. * If it is an even power of two use that, otherwise use the * next power of two larger than ra_limit. */ ASSERT(ra_limit != 0); kpm_size_shift = (ra_limit & (ra_limit - 1)) != 0 ? highbit(ra_limit) : highbit(ra_limit) - 1; /* * No virtual caches on sun4v so size matches size shift */ kpm_size = 1ul << kpm_size_shift; if (va_bits < VA_ADDRESS_SPACE_BITS) { /* * In case of VA hole * kpm_base = hole_end + 1TB * Starting 1TB beyond where VA hole ends because on Niagara * processor software must not use pages within 4GB of the * VA hole as instruction pages to avoid problems with * prefetching into the VA hole. */ kpm_vbase = (caddr_t)((0ull - (1ull << (va_bits - 1))) + (1ull << 40)); } else { /* Number of VA bits 64 ... no VA hole */ kpm_vbase = (caddr_t)0x8000000000000000ull; /* 8 EB */ } /* * The traptrace code uses either %tick or %stick for * timestamping. The sun4v require use of %stick. */ traptrace_use_stick = 1; } /* * Get the nctxs from MD. If absent panic. */ static uint64_t get_mmu_ctx_bits(md_t *mdp, mde_cookie_t cpu_node_cookie) { uint64_t ctx_bits; if (md_get_prop_val(mdp, cpu_node_cookie, "mmu-#context-bits", &ctx_bits)) ctx_bits = 0; if (ctx_bits < MIN_NCTXS_BITS || ctx_bits > MAX_NCTXS_BITS) cmn_err(CE_PANIC, "Incorrect %ld number of contexts bits " "returned by MD", ctx_bits); return (ctx_bits); } /* * Get the number of tsbs from MD. If absent the default value is 0. */ static uint64_t get_mmu_tsbs(md_t *mdp, mde_cookie_t cpu_node_cookie) { uint64_t number_tsbs; if (md_get_prop_val(mdp, cpu_node_cookie, "mmu-max-#tsbs", &number_tsbs)) number_tsbs = 0; return (number_tsbs); } /* * Get the number of shared contexts from MD. If absent the default value is 0. * */ static uint64_t get_mmu_shcontexts(md_t *mdp, mde_cookie_t cpu_node_cookie) { uint64_t number_contexts; if (md_get_prop_val(mdp, cpu_node_cookie, "mmu-#shared-contexts", &number_contexts)) number_contexts = 0; return (number_contexts); } /* * Initalize supported page sizes information. * Set to 0, if the page sizes mask information is absent in MD. */ static uint64_t get_cpu_pagesizes(md_t *mdp, mde_cookie_t cpu_node_cookie) { uint64_t mmu_page_size_list; if (md_get_prop_val(mdp, cpu_node_cookie, "mmu-page-size-list", &mmu_page_size_list)) mmu_page_size_list = 0; if (mmu_page_size_list == 0 || mmu_page_size_list > MAX_PAGESIZE_MASK) cmn_err(CE_PANIC, "Incorrect 0x%lx pagesize mask returned" "by MD", mmu_page_size_list); return (mmu_page_size_list); } /* * This routine gets the isalist information from MD and appends * the CPU module ISA set if required. */ static char * construct_isalist(md_t *mdp, mde_cookie_t cpu_node_cookie, char **cpu_module_isa_set) { extern int at_flags; char *md_isalist; int md_isalen; char *isabuf; int isalen; char **isa_set; char *p, *q; int cpu_module_isalen = 0, found = 0; (void) md_get_prop_data(mdp, cpu_node_cookie, "isalist", (uint8_t **)&isabuf, &isalen); /* * We support binaries for all the cpus that have shipped so far. * The kernel emulates instructions that are not supported by hardware. */ at_flags = EF_SPARC_SUN_US3 | EF_SPARC_32PLUS | EF_SPARC_SUN_US1; /* * Construct the space separated isa_list. */ if (cpu_module_isa_set != NULL) { for (isa_set = cpu_module_isa_set; *isa_set != NULL; isa_set++) { cpu_module_isalen += strlen(*isa_set); cpu_module_isalen++; /* for space character */ } } /* * Allocate the buffer of MD isa buffer length + CPU module * isa buffer length. */ md_isalen = isalen + cpu_module_isalen + 2; md_isalist = (char *)prom_alloc((caddr_t)0, md_isalen, 0); if (md_isalist == NULL) cmn_err(CE_PANIC, "construct_isalist: Allocation failed for " "md_isalist"); md_isalist[0] = '\0'; /* create an empty string to start */ for (p = isabuf, q = p + isalen; p < q; p += strlen(p) + 1) { (void) strlcat(md_isalist, p, md_isalen); (void) strcat(md_isalist, " "); } /* * Check if the isa_set is present in isalist returned by MD. * If yes, then no need to append it, if no then append it to * isalist returned by MD. */ if (cpu_module_isa_set != NULL) { for (isa_set = cpu_module_isa_set; *isa_set != NULL; isa_set++) { found = 0; for (p = isabuf, q = p + isalen; p < q; p += strlen(p) + 1) { if (strcmp(p, *isa_set) == 0) { found = 1; break; } } if (!found) { (void) strlcat(md_isalist, *isa_set, md_isalen); (void) strcat(md_isalist, " "); } } } /* Get rid of any trailing white spaces */ md_isalist[strlen(md_isalist) - 1] = '\0'; return (md_isalist); } static void get_hwcaps(md_t *mdp, mde_cookie_t cpu_node_cookie) { char *hwcapbuf; int hwcaplen; if (md_get_prop_data(mdp, cpu_node_cookie, "hwcap-list", (uint8_t **)&hwcapbuf, &hwcaplen)) { /* Property not found */ return; } cpu_hwcap_flags |= names2bits(hwcapbuf, hwcaplen, FMT_AV_SPARC, "unrecognized token: %s"); } /* * Does the opposite of cmn_err(9f) "%b" conversion specification: * Given a list of strings, converts them to a bit-vector. * * tokens - is a buffer of [NUL-terminated] strings. * tokenslen - length of tokenbuf in bytes. * bit_formatter - is a %b format string, such as FMT_AV_SPARC * from /usr/include/sys/auxv_SPARC.h, of the form: * []... * is ignored. * is [1-32], as per cmn_err(9f). * warning - is a printf-style format string containing "%s", * which is used to print a warning message when an unrecognized * token is found. If warning is NULL, no warning is printed. * Returns a bit-vector corresponding to the specified tokens. */ static unsigned long names2bits(char *tokens, size_t tokenslen, char *bit_formatter, char *warning) { char *cur; size_t curlen; unsigned long ul = 0; char *hit; char *bs; bit_formatter++; /* skip base; not needed for input */ cur = tokens; while (tokenslen) { curlen = strlen(cur); bs = bit_formatter; /* * We need a complicated while loop and the >=32 check, * instead of a simple "if (strstr())" so that when the * token is "vis", we don't match on "vis2" (for example). */ /* LINTED E_EQUALITY_NOT_ASSIGNMENT */ while ((hit = strstr(bs, cur)) && *(hit + curlen) >= 32) { /* * We're still in the middle of a word, i.e., not * pointing at a . So advance ptr * to ensure forward progress. */ bs = hit + curlen + 1; } if (hit != NULL) { ul |= (1<<(*(hit-1) - 1)); } else { /* The token wasn't found in bit_formatter */ if (warning != NULL) cmn_err(CE_WARN, warning, cur); } tokenslen -= curlen + 1; cur += curlen + 1; } return (ul); } uint64_t get_ra_limit(md_t *mdp) { mde_cookie_t *mem_list; mde_cookie_t *mblock_list; int i; int memnodes; int nmblock; uint64_t base; uint64_t size; uint64_t ra_limit = 0, new_limit = 0; memnodes = md_alloc_scan_dag(mdp, md_root_node(mdp), "memory", "fwd", &mem_list); ASSERT(memnodes == 1); nmblock = md_alloc_scan_dag(mdp, mem_list[0], "mblock", "fwd", &mblock_list); if (nmblock < 1) cmn_err(CE_PANIC, "cannot find mblock nodes in MD"); for (i = 0; i < nmblock; i++) { if (md_get_prop_val(mdp, mblock_list[i], "base", &base)) cmn_err(CE_PANIC, "base property missing from MD" " mblock node"); if (md_get_prop_val(mdp, mblock_list[i], "size", &size)) cmn_err(CE_PANIC, "size property missing from MD" " mblock node"); ASSERT(size != 0); new_limit = base + size; if (base > new_limit) cmn_err(CE_PANIC, "mblock in MD wrapped around"); if (new_limit > ra_limit) ra_limit = new_limit; } ASSERT(ra_limit != 0); if (ra_limit > MAX_REAL_ADDRESS) { cmn_err(CE_WARN, "Highest real address in MD too large" " clipping to %llx\n", MAX_REAL_ADDRESS); ra_limit = MAX_REAL_ADDRESS; } md_free_scan_dag(mdp, &mblock_list); md_free_scan_dag(mdp, &mem_list); return (ra_limit); } /* * This routine sets the globals for CPU and DEV mondo queue entries and * resumable and non-resumable error queue entries. * * First, look up the number of bits available to pass an entry number. * This can vary by platform and may result in allocating an unreasonably * (or impossibly) large amount of memory for the corresponding table, * so we clamp it by 'max_entries'. Finally, since the q size is used when * calling contig_mem_alloc(), which expects a power of 2, clamp the q size * down to a power of 2. If the prop is missing, use 'default_entries'. */ static uint64_t get_single_q_size(md_t *mdp, mde_cookie_t cpu_node_cookie, char *qnamep, uint64_t default_entries, uint64_t max_entries) { uint64_t entries; if (default_entries > max_entries) cmn_err(CE_CONT, "!get_single_q_size: dflt %ld > " "max %ld for %s\n", default_entries, max_entries, qnamep); if (md_get_prop_val(mdp, cpu_node_cookie, qnamep, &entries)) { if (!broken_md_flag) cmn_err(CE_PANIC, "Missing %s property in MD cpu node", qnamep); entries = default_entries; } else { entries = 1 << entries; } entries = MIN(entries, max_entries); /* If not a power of 2, truncate to a power of 2. */ if ((entries & (entries - 1)) != 0) { entries = 1 << (highbit(entries) - 1); } return (entries); } /* Scaling constant used to compute size of cpu mondo queue */ #define CPU_MONDO_Q_MULTIPLIER 8 static void get_q_sizes(md_t *mdp, mde_cookie_t cpu_node_cookie) { uint64_t max_qsize; mde_cookie_t *platlist; int nrnode; /* * Compute the maximum number of entries for the cpu mondo queue. * Use the appropriate property in the platform node, if it is * available. Else, base it on NCPU. */ nrnode = md_alloc_scan_dag(mdp, md_root_node(mdp), "platform", "fwd", &platlist); ASSERT(nrnode == 1); ncpu_guest_max = NCPU; (void) md_get_prop_val(mdp, platlist[0], "max-cpus", &ncpu_guest_max); max_qsize = ncpu_guest_max * CPU_MONDO_Q_MULTIPLIER; md_free_scan_dag(mdp, &platlist); cpu_q_entries = get_single_q_size(mdp, cpu_node_cookie, "q-cpu-mondo-#bits", DEFAULT_CPU_Q_ENTRIES, max_qsize); dev_q_entries = get_single_q_size(mdp, cpu_node_cookie, "q-dev-mondo-#bits", DEFAULT_DEV_Q_ENTRIES, MAXIVNUM); cpu_rq_entries = get_single_q_size(mdp, cpu_node_cookie, "q-resumable-#bits", CPU_RQ_ENTRIES, MAX_CPU_RQ_ENTRIES); cpu_nrq_entries = get_single_q_size(mdp, cpu_node_cookie, "q-nonresumable-#bits", CPU_NRQ_ENTRIES, MAX_CPU_NRQ_ENTRIES); } static void get_va_bits(md_t *mdp, mde_cookie_t cpu_node_cookie) { uint64_t value = VA_ADDRESS_SPACE_BITS; if (md_get_prop_val(mdp, cpu_node_cookie, "mmu-#va-bits", &value)) cmn_err(CE_PANIC, "mmu-#va-bits property not found in MD"); if (value == 0 || value > VA_ADDRESS_SPACE_BITS) cmn_err(CE_PANIC, "Incorrect number of va bits in MD"); /* Do not expect number of VA bits to be more than 32-bit quantity */ va_bits = (int)value; /* * Correct the value for VA bits on UltraSPARC-T1 based systems * in case of broken MD. */ if (broken_md_flag) va_bits = DEFAULT_VA_ADDRESS_SPACE_BITS; } int l2_cache_node_count(void) { return (n_l2_caches); } /* * count the number of l2 caches. */ int get_l2_cache_node_count(md_t *mdp) { int i; mde_cookie_t *cachenodes; uint64_t level; int n_cachenodes = md_alloc_scan_dag(mdp, md_root_node(mdp), "cache", "fwd", &cachenodes); int l2_caches = 0; for (i = 0; i < n_cachenodes; i++) { if (md_get_prop_val(mdp, cachenodes[i], "level", &level) != 0) { level = 0; } if (level == 2) { l2_caches++; } } md_free_scan_dag(mdp, &cachenodes); return (l2_caches); } /* * This routine returns the L2 cache information such as -- associativity, * size and linesize. */ static int get_l2_cache_info(md_t *mdp, mde_cookie_t cpu_node_cookie, uint64_t *associativity, uint64_t *size, uint64_t *linesize) { mde_cookie_t *cachelist; int ncaches, i; uint64_t cache_level = 0; ncaches = md_alloc_scan_dag(mdp, cpu_node_cookie, "cache", "fwd", &cachelist); /* * The "cache" node is optional in MD, therefore ncaches can be 0. */ if (ncaches < 1) { return (0); } for (i = 0; i < ncaches; i++) { uint64_t local_assoc; uint64_t local_size; uint64_t local_lsize; if (md_get_prop_val(mdp, cachelist[i], "level", &cache_level)) continue; if (cache_level != 2) continue; /* If properties are missing from this cache ignore it */ if ((md_get_prop_val(mdp, cachelist[i], "associativity", &local_assoc))) { continue; } if ((md_get_prop_val(mdp, cachelist[i], "size", &local_size))) { continue; } if ((md_get_prop_val(mdp, cachelist[i], "line-size", &local_lsize))) { continue; } *associativity = local_assoc; *size = local_size; *linesize = local_lsize; break; } md_free_scan_dag(mdp, &cachelist); return ((cache_level == 2) ? 1 : 0); } /* * Set the broken_md_flag to 1 if the MD doesn't have * the domaining-enabled property in the platform node and the * platform uses the UltraSPARC-T1 cpu. This flag is used to * workaround some of the incorrect MD properties. */ static void init_md_broken(md_t *mdp, mde_cookie_t *cpulist) { int nrnode; mde_cookie_t *platlist, rootnode; uint64_t val = 0; char *namebuf; int namelen; rootnode = md_root_node(mdp); ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); ASSERT(cpulist); nrnode = md_alloc_scan_dag(mdp, rootnode, "platform", "fwd", &platlist); if (nrnode < 1) cmn_err(CE_PANIC, "init_md_broken: platform node missing"); if (md_get_prop_data(mdp, cpulist[0], "compatible", (uint8_t **)&namebuf, &namelen)) { cmn_err(CE_PANIC, "init_md_broken: " "Cannot read 'compatible' property of 'cpu' node"); } if (md_get_prop_val(mdp, platlist[0], "domaining-enabled", &val) == -1 && strcmp(namebuf, "SUNW,UltraSPARC-T1") == 0) broken_md_flag = 1; md_free_scan_dag(mdp, &platlist); } /* * This routine gets the MD properties associated with the TLB search order API * and compares these against the expected values for a processor which supports * this API. The return value is used to determine whether use the API. */ static int check_mmu_pgsz_search(md_t *mdp, mde_cookie_t cpu_node_cookie) { uint64_t mmu_search_nshared_contexts; uint64_t mmu_max_search_order; uint64_t mmu_non_priv_search_unified; uint64_t mmu_search_page_size_list; if (md_get_prop_val(mdp, cpu_node_cookie, "mmu-search-#shared-contexts", &mmu_search_nshared_contexts)) mmu_search_nshared_contexts = 0; if (mmu_search_nshared_contexts == 0 || mmu_search_nshared_contexts != NSEARCH_SHCONTEXTS) return (0); if (md_get_prop_val(mdp, cpu_node_cookie, "mmu-max-search-order", &mmu_max_search_order)) mmu_max_search_order = 0; if (mmu_max_search_order == 0 || mmu_max_search_order != MAX_PGSZ_SEARCH_ORDER) return (0); if (md_get_prop_val(mdp, cpu_node_cookie, "mmu-non-priv-search-unified", &mmu_non_priv_search_unified)) mmu_non_priv_search_unified = -1; if (mmu_non_priv_search_unified != 1) { return (0); } if (md_get_prop_val(mdp, cpu_node_cookie, "mmu-search-page-size-list", &mmu_search_page_size_list)) { mmu_search_page_size_list = 0; return (0); } return (1); }