/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Virtual disk server */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Virtual disk server initialization flags */ #define VDS_LDI 0x01 #define VDS_MDEG 0x02 /* Virtual disk server tunable parameters */ #define VDS_RETRIES 5 #define VDS_LDC_DELAY 1000 /* 1 msecs */ #define VDS_DEV_DELAY 10000000 /* 10 secs */ #define VDS_NCHAINS 32 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */ #define VDS_NAME "virtual-disk-server" #define VD_NAME "vd" #define VD_VOLUME_NAME "vdisk" #define VD_ASCIILABEL "Virtual Disk" #define VD_CHANNEL_ENDPOINT "channel-endpoint" #define VD_ID_PROP "id" #define VD_BLOCK_DEVICE_PROP "vds-block-device" #define VD_REG_PROP "reg" /* Virtual disk initialization flags */ #define VD_DISK_READY 0x01 #define VD_LOCKING 0x02 #define VD_LDC 0x04 #define VD_DRING 0x08 #define VD_SID 0x10 #define VD_SEQ_NUM 0x20 /* Flags for opening/closing backing devices via LDI */ #define VD_OPEN_FLAGS (FEXCL | FREAD | FWRITE) /* Flags for writing to a vdisk which is a file */ #define VD_FILE_WRITE_FLAGS SM_ASYNC /* Number of backup labels */ #define VD_FILE_NUM_BACKUP 5 /* Timeout for SCSI I/O */ #define VD_SCSI_RDWR_TIMEOUT 30 /* 30 secs */ /* * By Solaris convention, slice/partition 2 represents the entire disk; * unfortunately, this convention does not appear to be codified. */ #define VD_ENTIRE_DISK_SLICE 2 /* Return a cpp token as a string */ #define STRINGIZE(token) #token /* * Print a message prefixed with the current function name to the message log * (and optionally to the console for verbose boots); these macros use cpp's * concatenation of string literals and C99 variable-length-argument-list * macros */ #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "") #define _PRN(format, ...) \ cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__) /* Return a pointer to the "i"th vdisk dring element */ #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \ (vd->dring + (i)*vd->descriptor_size)) /* Return the virtual disk client's type as a string (for use in messages) */ #define VD_CLIENT(vd) \ (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \ (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" : \ (((vd)->xfer_mode == 0) ? "null client" : \ "unsupported client"))) /* Read disk label from a disk on file */ #define VD_FILE_LABEL_READ(vd, labelp) \ vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \ 0, sizeof (struct dk_label)) /* Write disk label to a disk on file */ #define VD_FILE_LABEL_WRITE(vd, labelp) \ vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \ 0, sizeof (struct dk_label)) /* * Specification of an MD node passed to the MDEG to filter any * 'vport' nodes that do not belong to the specified node. This * template is copied for each vds instance and filled in with * the appropriate 'cfg-handle' value before being passed to the MDEG. */ static mdeg_prop_spec_t vds_prop_template[] = { { MDET_PROP_STR, "name", VDS_NAME }, { MDET_PROP_VAL, "cfg-handle", NULL }, { MDET_LIST_END, NULL, NULL } }; #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val); /* * Matching criteria passed to the MDEG to register interest * in changes to 'virtual-device-port' nodes identified by their * 'id' property. */ static md_prop_match_t vd_prop_match[] = { { MDET_PROP_VAL, VD_ID_PROP }, { MDET_LIST_END, NULL } }; static mdeg_node_match_t vd_match = {"virtual-device-port", vd_prop_match}; /* Debugging macros */ #ifdef DEBUG static int vd_msglevel = 0; #define PR0 if (vd_msglevel > 0) PRN #define PR1 if (vd_msglevel > 1) PRN #define PR2 if (vd_msglevel > 2) PRN #define VD_DUMP_DRING_ELEM(elem) \ PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \ elem->hdr.dstate, \ elem->payload.operation, \ elem->payload.status, \ elem->payload.nbytes, \ elem->payload.addr, \ elem->payload.ncookies); char * vd_decode_state(int state) { char *str; #define CASE_STATE(_s) case _s: str = #_s; break; switch (state) { CASE_STATE(VD_STATE_INIT) CASE_STATE(VD_STATE_VER) CASE_STATE(VD_STATE_ATTR) CASE_STATE(VD_STATE_DRING) CASE_STATE(VD_STATE_RDX) CASE_STATE(VD_STATE_DATA) default: str = "unknown"; break; } #undef CASE_STATE return (str); } void vd_decode_tag(vio_msg_t *msg) { char *tstr, *sstr, *estr; #define CASE_TYPE(_s) case _s: tstr = #_s; break; switch (msg->tag.vio_msgtype) { CASE_TYPE(VIO_TYPE_CTRL) CASE_TYPE(VIO_TYPE_DATA) CASE_TYPE(VIO_TYPE_ERR) default: tstr = "unknown"; break; } #undef CASE_TYPE #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break; switch (msg->tag.vio_subtype) { CASE_SUBTYPE(VIO_SUBTYPE_INFO) CASE_SUBTYPE(VIO_SUBTYPE_ACK) CASE_SUBTYPE(VIO_SUBTYPE_NACK) default: sstr = "unknown"; break; } #undef CASE_SUBTYPE #define CASE_ENV(_s) case _s: estr = #_s; break; switch (msg->tag.vio_subtype_env) { CASE_ENV(VIO_VER_INFO) CASE_ENV(VIO_ATTR_INFO) CASE_ENV(VIO_DRING_REG) CASE_ENV(VIO_DRING_UNREG) CASE_ENV(VIO_RDX) CASE_ENV(VIO_PKT_DATA) CASE_ENV(VIO_DESC_DATA) CASE_ENV(VIO_DRING_DATA) default: estr = "unknown"; break; } #undef CASE_ENV PR1("(%x/%x/%x) message : (%s/%s/%s)", msg->tag.vio_msgtype, msg->tag.vio_subtype, msg->tag.vio_subtype_env, tstr, sstr, estr); } #else /* !DEBUG */ #define PR0(...) #define PR1(...) #define PR2(...) #define VD_DUMP_DRING_ELEM(elem) #define vd_decode_state(_s) (NULL) #define vd_decode_tag(_s) (NULL) #endif /* DEBUG */ /* * Soft state structure for a vds instance */ typedef struct vds { uint_t initialized; /* driver inst initialization flags */ dev_info_t *dip; /* driver inst devinfo pointer */ ldi_ident_t ldi_ident; /* driver's identifier for LDI */ mod_hash_t *vd_table; /* table of virtual disks served */ mdeg_node_spec_t *ispecp; /* mdeg node specification */ mdeg_handle_t mdeg; /* handle for MDEG operations */ } vds_t; /* * Types of descriptor-processing tasks */ typedef enum vd_task_type { VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */ VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */ } vd_task_type_t; /* * Structure describing the task for processing a descriptor */ typedef struct vd_task { struct vd *vd; /* vd instance task is for */ vd_task_type_t type; /* type of descriptor task */ int index; /* dring elem index for task */ vio_msg_t *msg; /* VIO message task is for */ size_t msglen; /* length of message content */ vd_dring_payload_t *request; /* request task will perform */ struct buf buf; /* buf(9s) for I/O request */ ldc_mem_handle_t mhdl; /* task memory handle */ int status; /* status of processing task */ int (*completef)(struct vd_task *task); /* completion func ptr */ } vd_task_t; /* * Soft state structure for a virtual disk instance */ typedef struct vd { uint_t initialized; /* vdisk initialization flags */ vds_t *vds; /* server for this vdisk */ ddi_taskq_t *startq; /* queue for I/O start tasks */ ddi_taskq_t *completionq; /* queue for completion tasks */ ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */ char device_path[MAXPATHLEN + 1]; /* vdisk device */ dev_t dev[V_NUMPAR]; /* dev numbers for slices */ uint_t nslices; /* number of slices */ size_t vdisk_size; /* number of blocks in vdisk */ vd_disk_type_t vdisk_type; /* slice or entire disk */ vd_disk_label_t vdisk_label; /* EFI or VTOC label */ ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */ boolean_t pseudo; /* underlying pseudo dev */ boolean_t file; /* underlying file */ vnode_t *file_vnode; /* file vnode */ size_t file_size; /* file size */ ddi_devid_t file_devid; /* devid for disk image */ struct dk_efi dk_efi; /* synthetic for slice type */ struct dk_geom dk_geom; /* synthetic for slice type */ struct vtoc vtoc; /* synthetic for slice type */ ldc_status_t ldc_state; /* LDC connection state */ ldc_handle_t ldc_handle; /* handle for LDC comm */ size_t max_msglen; /* largest LDC message len */ vd_state_t state; /* client handshake state */ uint8_t xfer_mode; /* transfer mode with client */ uint32_t sid; /* client's session ID */ uint64_t seq_num; /* message sequence number */ uint64_t dring_ident; /* identifier of dring */ ldc_dring_handle_t dring_handle; /* handle for dring ops */ uint32_t descriptor_size; /* num bytes in desc */ uint32_t dring_len; /* number of dring elements */ caddr_t dring; /* address of dring */ caddr_t vio_msgp; /* vio msg staging buffer */ vd_task_t inband_task; /* task for inband descriptor */ vd_task_t *dring_task; /* tasks dring elements */ kmutex_t lock; /* protects variables below */ boolean_t enabled; /* is vdisk enabled? */ boolean_t reset_state; /* reset connection state? */ boolean_t reset_ldc; /* reset LDC channel? */ } vd_t; typedef struct vds_operation { char *namep; uint8_t operation; int (*start)(vd_task_t *task); int (*complete)(vd_task_t *task); } vds_operation_t; typedef struct vd_ioctl { uint8_t operation; /* vdisk operation */ const char *operation_name; /* vdisk operation name */ size_t nbytes; /* size of operation buffer */ int cmd; /* corresponding ioctl cmd */ const char *cmd_name; /* ioctl cmd name */ void *arg; /* ioctl cmd argument */ /* convert input vd_buf to output ioctl_arg */ void (*copyin)(void *vd_buf, void *ioctl_arg); /* convert input ioctl_arg to output vd_buf */ void (*copyout)(void *ioctl_arg, void *vd_buf); } vd_ioctl_t; /* Define trivial copyin/copyout conversion function flag */ #define VD_IDENTITY ((void (*)(void *, void *))-1) static int vds_ldc_retries = VDS_RETRIES; static int vds_ldc_delay = VDS_LDC_DELAY; static int vds_dev_retries = VDS_RETRIES; static int vds_dev_delay = VDS_DEV_DELAY; static void *vds_state; static uint64_t vds_operations; /* see vds_operation[] definition below */ static int vd_open_flags = VD_OPEN_FLAGS; static uint_t vd_file_write_flags = VD_FILE_WRITE_FLAGS; static short vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT; /* * Supported protocol version pairs, from highest (newest) to lowest (oldest) * * Each supported major version should appear only once, paired with (and only * with) its highest supported minor version number (as the protocol requires * supporting all lower minor version numbers as well) */ static const vio_ver_t vds_version[] = {{1, 0}}; static const size_t vds_num_versions = sizeof (vds_version)/sizeof (vds_version[0]); static void vd_free_dring_task(vd_t *vdp); static int vd_setup_vd(vd_t *vd); static boolean_t vd_enabled(vd_t *vd); /* * Function: * vd_file_rw * * Description: * Read or write to a disk on file. * * Parameters: * vd - disk on which the operation is performed. * slice - slice on which the operation is performed, * VD_SLICE_NONE indicates that the operation * is done using an absolute disk offset. * operation - operation to execute: read (VD_OP_BREAD) or * write (VD_OP_BWRITE). * data - buffer where data are read to or written from. * blk - starting block for the operation. * len - number of bytes to read or write. * * Return Code: * n >= 0 - success, n indicates the number of bytes read * or written. * -1 - error. */ static ssize_t vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk, size_t len) { caddr_t maddr; size_t offset, maxlen, moffset, mlen, n; uint_t smflags; enum seg_rw srw; ASSERT(vd->file); ASSERT(len > 0); if (slice == VD_SLICE_NONE) { /* raw disk access */ offset = blk * DEV_BSIZE; } else { ASSERT(slice >= 0 && slice < V_NUMPAR); if (blk >= vd->vtoc.v_part[slice].p_size) { /* address past the end of the slice */ PR0("req_addr (0x%lx) > psize (0x%lx)", blk, vd->vtoc.v_part[slice].p_size); return (0); } offset = (vd->vtoc.v_part[slice].p_start + blk) * DEV_BSIZE; /* * If the requested size is greater than the size * of the partition, truncate the read/write. */ maxlen = (vd->vtoc.v_part[slice].p_size - blk) * DEV_BSIZE; if (len > maxlen) { PR0("I/O size truncated to %lu bytes from %lu bytes", maxlen, len); len = maxlen; } } /* * We have to ensure that we are reading/writing into the mmap * range. If we have a partial disk image (e.g. an image of * s0 instead s2) the system can try to access slices that * are not included into the disk image. */ if ((offset + len) >= vd->file_size) { PR0("offset + nbytes (0x%lx + 0x%lx) >= " "file_size (0x%lx)", offset, len, vd->file_size); return (-1); } srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE; smflags = (operation == VD_OP_BREAD)? 0 : (SM_WRITE | vd_file_write_flags); n = len; do { /* * segmap_getmapflt() returns a MAXBSIZE chunk which is * MAXBSIZE aligned. */ moffset = offset & MAXBOFFSET; mlen = MIN(MAXBSIZE - moffset, n); maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset, mlen, 1, srw); /* * Fault in the pages so we can check for error and ensure * that we can safely used the mapped address. */ if (segmap_fault(kas.a_hat, segkmap, maddr, mlen, F_SOFTLOCK, srw) != 0) { (void) segmap_release(segkmap, maddr, 0); return (-1); } if (operation == VD_OP_BREAD) bcopy(maddr + moffset, data, mlen); else bcopy(data, maddr + moffset, mlen); if (segmap_fault(kas.a_hat, segkmap, maddr, mlen, F_SOFTUNLOCK, srw) != 0) { (void) segmap_release(segkmap, maddr, 0); return (-1); } if (segmap_release(segkmap, maddr, smflags) != 0) return (-1); n -= mlen; offset += mlen; data += mlen; } while (n > 0); return (len); } /* * Function: * vd_file_set_vtoc * * Description: * Set the vtoc of a disk image by writing the label and backup * labels into the disk image backend. * * Parameters: * vd - disk on which the operation is performed. * label - the data to be written. * * Return Code: * 0 - success. * n > 0 - error, n indicates the errno code. */ static int vd_file_set_vtoc(vd_t *vd, struct dk_label *label) { int blk, sec, cyl, head, cnt; ASSERT(vd->file); if (VD_FILE_LABEL_WRITE(vd, label) < 0) { PR0("fail to write disk label"); return (EIO); } /* * Backup labels are on the last alternate cylinder's * first five odd sectors. */ if (label->dkl_acyl == 0) { PR0("no alternate cylinder, can not store backup labels"); return (0); } cyl = label->dkl_ncyl + label->dkl_acyl - 1; head = label->dkl_nhead - 1; blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) + (head * label->dkl_nsect); /* * Write the backup labels. Make sure we don't try to write past * the last cylinder. */ sec = 1; for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) { if (sec >= label->dkl_nsect) { PR0("not enough sector to store all backup labels"); return (0); } if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) { PR0("error writing backup label at block %d\n", blk + sec); return (EIO); } PR1("wrote backup label at block %d\n", blk + sec); sec += 2; } return (0); } /* * Function: * vd_file_get_devid_block * * Description: * Return the block number where the device id is stored. * * Parameters: * vd - disk on which the operation is performed. * blkp - pointer to the block number * * Return Code: * 0 - success * ENOSPC - disk has no space to store a device id */ static int vd_file_get_devid_block(vd_t *vd, size_t *blkp) { diskaddr_t spc, head, cyl; ASSERT(vd->file); ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); /* this geometry doesn't allow us to have a devid */ if (vd->dk_geom.dkg_acyl < 2) { PR0("not enough alternate cylinder available for devid " "(acyl=%u)", vd->dk_geom.dkg_acyl); return (ENOSPC); } /* the devid is in on the track next to the last cylinder */ cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2; spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; head = vd->dk_geom.dkg_nhead - 1; *blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) + (head * vd->dk_geom.dkg_nsect) + 1; return (0); } /* * Return the checksum of a disk block containing an on-disk devid. */ static uint_t vd_dkdevid2cksum(struct dk_devid *dkdevid) { uint_t chksum, *ip; int i; chksum = 0; ip = (uint_t *)dkdevid; for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++) chksum ^= ip[i]; return (chksum); } /* * Function: * vd_file_read_devid * * Description: * Read the device id stored on a disk image. * * Parameters: * vd - disk on which the operation is performed. * devid - the return address of the device ID. * * Return Code: * 0 - success * EIO - I/O error while trying to access the disk image * EINVAL - no valid device id was found * ENOSPC - disk has no space to store a device id */ static int vd_file_read_devid(vd_t *vd, ddi_devid_t *devid) { struct dk_devid *dkdevid; size_t blk; uint_t chksum; int status, sz; if ((status = vd_file_get_devid_block(vd, &blk)) != 0) return (status); dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); /* get the devid */ if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) { PR0("error reading devid block at %lu", blk); status = EIO; goto done; } /* validate the revision */ if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { PR0("invalid devid found at block %lu (bad revision)", blk); status = EINVAL; goto done; } /* compute checksum */ chksum = vd_dkdevid2cksum(dkdevid); /* compare the checksums */ if (DKD_GETCHKSUM(dkdevid) != chksum) { PR0("invalid devid found at block %lu (bad checksum)", blk); status = EINVAL; goto done; } /* validate the device id */ if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { PR0("invalid devid found at block %lu", blk); status = EINVAL; goto done; } PR1("devid read at block %lu", blk); sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); *devid = kmem_alloc(sz, KM_SLEEP); bcopy(&dkdevid->dkd_devid, *devid, sz); done: kmem_free(dkdevid, DEV_BSIZE); return (status); } /* * Function: * vd_file_write_devid * * Description: * Write a device id into disk image. * * Parameters: * vd - disk on which the operation is performed. * devid - the device ID to store. * * Return Code: * 0 - success * EIO - I/O error while trying to access the disk image * ENOSPC - disk has no space to store a device id */ static int vd_file_write_devid(vd_t *vd, ddi_devid_t devid) { struct dk_devid *dkdevid; uint_t chksum; size_t blk; int status; if ((status = vd_file_get_devid_block(vd, &blk)) != 0) return (status); dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); /* set revision */ dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; /* copy devid */ bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid)); /* compute checksum */ chksum = vd_dkdevid2cksum(dkdevid); /* set checksum */ DKD_FORMCHKSUM(chksum, dkdevid); /* store the devid */ if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) { PR0("Error writing devid block at %lu", blk); status = EIO; } else { PR1("devid written at block %lu", blk); status = 0; } kmem_free(dkdevid, DEV_BSIZE); return (status); } /* * Function: * vd_scsi_rdwr * * Description: * Read or write to a SCSI disk using an absolute disk offset. * * Parameters: * vd - disk on which the operation is performed. * operation - operation to execute: read (VD_OP_BREAD) or * write (VD_OP_BWRITE). * data - buffer where data are read to or written from. * blk - starting block for the operation. * len - number of bytes to read or write. * * Return Code: * 0 - success * n != 0 - error. */ static int vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len) { struct uscsi_cmd ucmd; union scsi_cdb cdb; int nsectors, nblk; int max_sectors; int status, rval; ASSERT(!vd->file); max_sectors = vd->max_xfer_sz; nblk = (len / DEV_BSIZE); if (len % DEV_BSIZE != 0) return (EINVAL); /* * Build and execute the uscsi ioctl. We build a group0, group1 * or group4 command as necessary, since some targets * do not support group1 commands. */ while (nblk) { bzero(&ucmd, sizeof (ucmd)); bzero(&cdb, sizeof (cdb)); nsectors = (max_sectors < nblk) ? max_sectors : nblk; if (blk < (2 << 20) && nsectors <= 0xff) { FORMG0ADDR(&cdb, blk); FORMG0COUNT(&cdb, nsectors); ucmd.uscsi_cdblen = CDB_GROUP0; } else if (blk > 0xffffffff) { FORMG4LONGADDR(&cdb, blk); FORMG4COUNT(&cdb, nsectors); ucmd.uscsi_cdblen = CDB_GROUP4; cdb.scc_cmd |= SCMD_GROUP4; } else { FORMG1ADDR(&cdb, blk); FORMG1COUNT(&cdb, nsectors); ucmd.uscsi_cdblen = CDB_GROUP1; cdb.scc_cmd |= SCMD_GROUP1; } ucmd.uscsi_cdb = (caddr_t)&cdb; ucmd.uscsi_bufaddr = data; ucmd.uscsi_buflen = nsectors * DEV_BSIZE; ucmd.uscsi_timeout = vd_scsi_rdwr_timeout; /* * Set flags so that the command is isolated from normal * commands and no error message is printed. */ ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT; if (operation == VD_OP_BREAD) { cdb.scc_cmd |= SCMD_READ; ucmd.uscsi_flags |= USCSI_READ; } else { cdb.scc_cmd |= SCMD_WRITE; } status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE], USCSICMD, (intptr_t)&ucmd, (vd_open_flags | FKIOCTL), kcred, &rval); if (status == 0) status = ucmd.uscsi_status; if (status != 0) break; /* * Check if partial DMA breakup is required. If so, reduce * the request size by half and retry the last request. */ if (ucmd.uscsi_resid == ucmd.uscsi_buflen) { max_sectors >>= 1; if (max_sectors <= 0) { status = EIO; break; } continue; } if (ucmd.uscsi_resid != 0) { status = EIO; break; } blk += nsectors; nblk -= nsectors; data += nsectors * DEV_BSIZE; /* SECSIZE */ } return (status); } /* * Return Values * EINPROGRESS - operation was successfully started * EIO - encountered LDC (aka. task error) * 0 - operation completed successfully * * Side Effect * sets request->status = */ static int vd_start_bio(vd_task_t *task) { int rv, status = 0; vd_t *vd = task->vd; vd_dring_payload_t *request = task->request; struct buf *buf = &task->buf; uint8_t mtype; int slice; ASSERT(vd != NULL); ASSERT(request != NULL); slice = request->slice; ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices); ASSERT((request->operation == VD_OP_BREAD) || (request->operation == VD_OP_BWRITE)); if (request->nbytes == 0) { /* no service for trivial requests */ request->status = EINVAL; return (0); } PR1("%s %lu bytes at block %lu", (request->operation == VD_OP_BREAD) ? "Read" : "Write", request->nbytes, request->addr); bioinit(buf); buf->b_flags = B_BUSY; buf->b_bcount = request->nbytes; buf->b_lblkno = request->addr; buf->b_edev = (slice == VD_SLICE_NONE)? NODEV : vd->dev[slice]; mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP; /* Map memory exported by client */ status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies, mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R, &(buf->b_un.b_addr), NULL); if (status != 0) { PR0("ldc_mem_map() returned err %d ", status); biofini(buf); return (EIO); } status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount); if (status != 0) { (void) ldc_mem_unmap(task->mhdl); PR0("ldc_mem_acquire() returned err %d ", status); biofini(buf); return (EIO); } buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE; /* Start the block I/O */ if (vd->file) { rv = vd_file_rw(vd, slice, request->operation, buf->b_un.b_addr, request->addr, request->nbytes); if (rv < 0) { request->nbytes = 0; request->status = EIO; } else { request->nbytes = rv; request->status = 0; } } else { if (slice == VD_SLICE_NONE) { /* * This is not a disk image so it is a real disk. We * assume that the underlying device driver supports * USCSICMD ioctls. This is the case of all SCSI devices * (sd, ssd...). * * In the future if we have non-SCSI disks we would need * to invoke the appropriate function to do I/O using an * absolute disk offset (for example using DKIOCTL_RWCMD * for IDE disks). */ rv = vd_scsi_rdwr(vd, request->operation, buf->b_un.b_addr, request->addr, request->nbytes); if (rv != 0) { request->nbytes = 0; request->status = EIO; } else { request->status = 0; } } else { request->status = ldi_strategy(vd->ldi_handle[slice], buf); /* * This is to indicate to the caller that the request * needs to be finished by vd_complete_bio() by calling * biowait() there and waiting for that to return before * triggering the notification of the vDisk client. * * This is necessary when writing to real disks as * otherwise calls to ldi_strategy() would be serialized * behind the calls to biowait() and performance would * suffer. */ if (request->status == 0) return (EINPROGRESS); } } /* Clean up after error */ rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount); if (rv) { PR0("ldc_mem_release() returned err %d ", rv); status = EIO; } rv = ldc_mem_unmap(task->mhdl); if (rv) { PR0("ldc_mem_unmap() returned err %d ", rv); status = EIO; } biofini(buf); return (status); } /* * This function should only be called from vd_notify to ensure that requests * are responded to in the order that they are received. */ static int send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen) { int status; size_t nbytes; do { nbytes = msglen; status = ldc_write(ldc_handle, msg, &nbytes); if (status != EWOULDBLOCK) break; drv_usecwait(vds_ldc_delay); } while (status == EWOULDBLOCK); if (status != 0) { if (status != ECONNRESET) PR0("ldc_write() returned errno %d", status); return (status); } else if (nbytes != msglen) { PR0("ldc_write() performed only partial write"); return (EIO); } PR1("SENT %lu bytes", msglen); return (0); } static void vd_need_reset(vd_t *vd, boolean_t reset_ldc) { mutex_enter(&vd->lock); vd->reset_state = B_TRUE; vd->reset_ldc = reset_ldc; mutex_exit(&vd->lock); } /* * Reset the state of the connection with a client, if needed; reset the LDC * transport as well, if needed. This function should only be called from the * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur. */ static void vd_reset_if_needed(vd_t *vd) { int status = 0; mutex_enter(&vd->lock); if (!vd->reset_state) { ASSERT(!vd->reset_ldc); mutex_exit(&vd->lock); return; } mutex_exit(&vd->lock); PR0("Resetting connection state with %s", VD_CLIENT(vd)); /* * Let any asynchronous I/O complete before possibly pulling the rug * out from under it; defer checking vd->reset_ldc, as one of the * asynchronous tasks might set it */ ddi_taskq_wait(vd->completionq); if (vd->file) { status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred); if (status) { PR0("VOP_FSYNC returned errno %d", status); } } if ((vd->initialized & VD_DRING) && ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)) PR0("ldc_mem_dring_unmap() returned errno %d", status); vd_free_dring_task(vd); /* Free the staging buffer for msgs */ if (vd->vio_msgp != NULL) { kmem_free(vd->vio_msgp, vd->max_msglen); vd->vio_msgp = NULL; } /* Free the inband message buffer */ if (vd->inband_task.msg != NULL) { kmem_free(vd->inband_task.msg, vd->max_msglen); vd->inband_task.msg = NULL; } mutex_enter(&vd->lock); if (vd->reset_ldc) PR0("taking down LDC channel"); if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0)) PR0("ldc_down() returned errno %d", status); vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING); vd->state = VD_STATE_INIT; vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ /* Allocate the staging buffer */ vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); PR0("calling ldc_up\n"); (void) ldc_up(vd->ldc_handle); vd->reset_state = B_FALSE; vd->reset_ldc = B_FALSE; mutex_exit(&vd->lock); } static void vd_recv_msg(void *arg); static void vd_mark_in_reset(vd_t *vd) { int status; PR0("vd_mark_in_reset: marking vd in reset\n"); vd_need_reset(vd, B_FALSE); status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); if (status == DDI_FAILURE) { PR0("cannot schedule task to recv msg\n"); vd_need_reset(vd, B_TRUE); return; } } static int vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes) { boolean_t accepted; int status; vd_dring_entry_t *elem = VD_DRING_ELEM(idx); if (vd->reset_state) return (0); /* Acquire the element */ if (!vd->reset_state && (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { if (status == ECONNRESET) { vd_mark_in_reset(vd); return (0); } else { PR0("ldc_mem_dring_acquire() returned errno %d", status); return (status); } } /* Set the element's status and mark it done */ accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED); if (accepted) { elem->payload.nbytes = elem_nbytes; elem->payload.status = elem_status; elem->hdr.dstate = VIO_DESC_DONE; } else { /* Perhaps client timed out waiting for I/O... */ PR0("element %u no longer \"accepted\"", idx); VD_DUMP_DRING_ELEM(elem); } /* Release the element */ if (!vd->reset_state && (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { if (status == ECONNRESET) { vd_mark_in_reset(vd); return (0); } else { PR0("ldc_mem_dring_release() returned errno %d", status); return (status); } } return (accepted ? 0 : EINVAL); } /* * Return Values * 0 - operation completed successfully * EIO - encountered LDC / task error * * Side Effect * sets request->status = */ static int vd_complete_bio(vd_task_t *task) { int status = 0; int rv = 0; vd_t *vd = task->vd; vd_dring_payload_t *request = task->request; struct buf *buf = &task->buf; ASSERT(vd != NULL); ASSERT(request != NULL); ASSERT(task->msg != NULL); ASSERT(task->msglen >= sizeof (*task->msg)); ASSERT(!vd->file); ASSERT(request->slice != VD_SLICE_NONE); /* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */ request->status = biowait(buf); /* return back the number of bytes read/written */ request->nbytes = buf->b_bcount - buf->b_resid; /* Release the buffer */ if (!vd->reset_state) status = ldc_mem_release(task->mhdl, 0, buf->b_bcount); if (status) { PR0("ldc_mem_release() returned errno %d copying to " "client", status); if (status == ECONNRESET) { vd_mark_in_reset(vd); } rv = EIO; } /* Unmap the memory, even if in reset */ status = ldc_mem_unmap(task->mhdl); if (status) { PR0("ldc_mem_unmap() returned errno %d copying to client", status); if (status == ECONNRESET) { vd_mark_in_reset(vd); } rv = EIO; } biofini(buf); return (rv); } /* * Description: * This function is called by the two functions called by a taskq * [ vd_complete_notify() and vd_serial_notify()) ] to send the * message to the client. * * Parameters: * arg - opaque pointer to structure containing task to be completed * * Return Values * None */ static void vd_notify(vd_task_t *task) { int status; ASSERT(task != NULL); ASSERT(task->vd != NULL); if (task->vd->reset_state) return; /* * Send the "ack" or "nack" back to the client; if sending the message * via LDC fails, arrange to reset both the connection state and LDC * itself */ PR2("Sending %s", (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); status = send_msg(task->vd->ldc_handle, task->msg, task->msglen); switch (status) { case 0: break; case ECONNRESET: vd_mark_in_reset(task->vd); break; default: PR0("initiating full reset"); vd_need_reset(task->vd, B_TRUE); break; } DTRACE_PROBE1(task__end, vd_task_t *, task); } /* * Description: * Mark the Dring entry as Done and (if necessary) send an ACK/NACK to * the vDisk client * * Parameters: * task - structure containing the request sent from client * * Return Values * None */ static void vd_complete_notify(vd_task_t *task) { int status = 0; vd_t *vd = task->vd; vd_dring_payload_t *request = task->request; /* Update the dring element for a dring client */ if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) { status = vd_mark_elem_done(vd, task->index, request->status, request->nbytes); if (status == ECONNRESET) vd_mark_in_reset(vd); } /* * If a transport error occurred while marking the element done or * previously while executing the task, arrange to "nack" the message * when the final task in the descriptor element range completes */ if ((status != 0) || (task->status != 0)) task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK; /* * Only the final task for a range of elements will respond to and * free the message */ if (task->type == VD_NONFINAL_RANGE_TASK) { return; } vd_notify(task); } /* * Description: * This is the basic completion function called to handle inband data * requests and handshake messages. All it needs to do is trigger a * message to the client that the request is completed. * * Parameters: * arg - opaque pointer to structure containing task to be completed * * Return Values * None */ static void vd_serial_notify(void *arg) { vd_task_t *task = (vd_task_t *)arg; ASSERT(task != NULL); vd_notify(task); } static void vd_geom2dk_geom(void *vd_buf, void *ioctl_arg) { VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg); } static void vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg) { VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg); } static void dk_geom2vd_geom(void *ioctl_arg, void *vd_buf) { DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf); } static void vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf) { VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf); } static void vd_get_efi_in(void *vd_buf, void *ioctl_arg) { vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; dk_efi->dki_lba = vd_efi->lba; dk_efi->dki_length = vd_efi->length; dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP); } static void vd_get_efi_out(void *ioctl_arg, void *vd_buf) { int len; vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; len = vd_efi->length; DK_EFI2VD_EFI(dk_efi, vd_efi); kmem_free(dk_efi->dki_data, len); } static void vd_set_efi_in(void *vd_buf, void *ioctl_arg) { vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP); VD_EFI2DK_EFI(vd_efi, dk_efi); } static void vd_set_efi_out(void *ioctl_arg, void *vd_buf) { vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; kmem_free(dk_efi->dki_data, vd_efi->length); } static int vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc, vd_disk_label_t *label) { int status, rval; struct dk_gpt *efi; size_t efi_len; *label = VD_DISK_LABEL_UNK; status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc, (vd_open_flags | FKIOCTL), kcred, &rval); if (status == 0) { *label = VD_DISK_LABEL_VTOC; return (0); } else if (status != ENOTSUP) { PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status); return (status); } status = vds_efi_alloc_and_read(handle, &efi, &efi_len); if (status) { PR0("vds_efi_alloc_and_read returned error %d", status); return (status); } *label = VD_DISK_LABEL_EFI; vd_efi_to_vtoc(efi, vtoc); vd_efi_free(efi, efi_len); return (0); } static ushort_t vd_lbl2cksum(struct dk_label *label) { int count; ushort_t sum, *sp; count = (sizeof (struct dk_label)) / (sizeof (short)) - 1; sp = (ushort_t *)label; sum = 0; while (count--) { sum ^= *sp++; } return (sum); } /* * Handle ioctls to a disk slice. * * Return Values * 0 - Indicates that there are no errors in disk operations * ENOTSUP - Unknown disk label type or unsupported DKIO ioctl * EINVAL - Not enough room to copy the EFI label * */ static int vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg) { dk_efi_t *dk_ioc; switch (vd->vdisk_label) { /* ioctls for a slice from a disk with a VTOC label */ case VD_DISK_LABEL_VTOC: switch (cmd) { case DKIOCGGEOM: ASSERT(ioctl_arg != NULL); bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom)); return (0); case DKIOCGVTOC: ASSERT(ioctl_arg != NULL); bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc)); return (0); default: return (ENOTSUP); } /* ioctls for a slice from a disk with an EFI label */ case VD_DISK_LABEL_EFI: switch (cmd) { case DKIOCGETEFI: ASSERT(ioctl_arg != NULL); dk_ioc = (dk_efi_t *)ioctl_arg; if (dk_ioc->dki_length < vd->dk_efi.dki_length) return (EINVAL); bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data, vd->dk_efi.dki_length); return (0); default: return (ENOTSUP); } default: /* Unknown disk label type */ return (ENOTSUP); } } /* * Handle ioctls to a disk image (file-based). * * Return Values * 0 - Indicates that there are no errors * != 0 - Disk operation returned an error */ static int vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg) { struct dk_label label; struct dk_geom *geom; struct vtoc *vtoc; int i, rc; ASSERT(vd->file); ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); switch (cmd) { case DKIOCGGEOM: ASSERT(ioctl_arg != NULL); geom = (struct dk_geom *)ioctl_arg; if (VD_FILE_LABEL_READ(vd, &label) < 0) return (EIO); if (label.dkl_magic != DKL_MAGIC || label.dkl_cksum != vd_lbl2cksum(&label)) return (EINVAL); bzero(geom, sizeof (struct dk_geom)); geom->dkg_ncyl = label.dkl_ncyl; geom->dkg_acyl = label.dkl_acyl; geom->dkg_nhead = label.dkl_nhead; geom->dkg_nsect = label.dkl_nsect; geom->dkg_intrlv = label.dkl_intrlv; geom->dkg_apc = label.dkl_apc; geom->dkg_rpm = label.dkl_rpm; geom->dkg_pcyl = label.dkl_pcyl; geom->dkg_write_reinstruct = label.dkl_write_reinstruct; geom->dkg_read_reinstruct = label.dkl_read_reinstruct; return (0); case DKIOCGVTOC: ASSERT(ioctl_arg != NULL); vtoc = (struct vtoc *)ioctl_arg; if (VD_FILE_LABEL_READ(vd, &label) < 0) return (EIO); if (label.dkl_magic != DKL_MAGIC || label.dkl_cksum != vd_lbl2cksum(&label)) return (EINVAL); bzero(vtoc, sizeof (struct vtoc)); vtoc->v_sanity = label.dkl_vtoc.v_sanity; vtoc->v_version = label.dkl_vtoc.v_version; vtoc->v_sectorsz = DEV_BSIZE; vtoc->v_nparts = label.dkl_vtoc.v_nparts; for (i = 0; i < vtoc->v_nparts; i++) { vtoc->v_part[i].p_tag = label.dkl_vtoc.v_part[i].p_tag; vtoc->v_part[i].p_flag = label.dkl_vtoc.v_part[i].p_flag; vtoc->v_part[i].p_start = label.dkl_map[i].dkl_cylno * (label.dkl_nhead * label.dkl_nsect); vtoc->v_part[i].p_size = label.dkl_map[i].dkl_nblk; vtoc->timestamp[i] = label.dkl_vtoc.v_timestamp[i]; } /* * The bootinfo array can not be copied with bcopy() because * elements are of type long in vtoc (so 64-bit) and of type * int in dk_vtoc (so 32-bit). */ vtoc->v_bootinfo[0] = label.dkl_vtoc.v_bootinfo[0]; vtoc->v_bootinfo[1] = label.dkl_vtoc.v_bootinfo[1]; vtoc->v_bootinfo[2] = label.dkl_vtoc.v_bootinfo[2]; bcopy(label.dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII); bcopy(label.dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL); return (0); case DKIOCSGEOM: ASSERT(ioctl_arg != NULL); geom = (struct dk_geom *)ioctl_arg; if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0) return (EINVAL); /* * The current device geometry is not updated, just the driver * "notion" of it. The device geometry will be effectively * updated when a label is written to the device during a next * DKIOCSVTOC. */ bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom)); return (0); case DKIOCSVTOC: ASSERT(ioctl_arg != NULL); ASSERT(vd->dk_geom.dkg_nhead != 0 && vd->dk_geom.dkg_nsect != 0); vtoc = (struct vtoc *)ioctl_arg; if (vtoc->v_sanity != VTOC_SANE || vtoc->v_sectorsz != DEV_BSIZE || vtoc->v_nparts != V_NUMPAR) return (EINVAL); bzero(&label, sizeof (label)); label.dkl_ncyl = vd->dk_geom.dkg_ncyl; label.dkl_acyl = vd->dk_geom.dkg_acyl; label.dkl_pcyl = vd->dk_geom.dkg_pcyl; label.dkl_nhead = vd->dk_geom.dkg_nhead; label.dkl_nsect = vd->dk_geom.dkg_nsect; label.dkl_intrlv = vd->dk_geom.dkg_intrlv; label.dkl_apc = vd->dk_geom.dkg_apc; label.dkl_rpm = vd->dk_geom.dkg_rpm; label.dkl_write_reinstruct = vd->dk_geom.dkg_write_reinstruct; label.dkl_read_reinstruct = vd->dk_geom.dkg_read_reinstruct; label.dkl_vtoc.v_nparts = V_NUMPAR; label.dkl_vtoc.v_sanity = VTOC_SANE; label.dkl_vtoc.v_version = vtoc->v_version; for (i = 0; i < V_NUMPAR; i++) { label.dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i]; label.dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag; label.dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag; label.dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start / (label.dkl_nhead * label.dkl_nsect); label.dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size; } /* * The bootinfo array can not be copied with bcopy() because * elements are of type long in vtoc (so 64-bit) and of type * int in dk_vtoc (so 32-bit). */ label.dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0]; label.dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1]; label.dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2]; bcopy(vtoc->v_asciilabel, label.dkl_asciilabel, LEN_DKL_ASCII); bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume, LEN_DKL_VVOL); /* re-compute checksum */ label.dkl_magic = DKL_MAGIC; label.dkl_cksum = vd_lbl2cksum(&label); /* write label to the disk image */ if ((rc = vd_file_set_vtoc(vd, &label)) != 0) return (rc); /* update the cached vdisk VTOC */ bcopy(vtoc, &vd->vtoc, sizeof (vd->vtoc)); /* * The disk geometry may have changed, so we need to write * the devid (if there is one) so that it is stored at the * right location. */ if (vd->file_devid != NULL && vd_file_write_devid(vd, vd->file_devid) != 0) { PR0("Fail to write devid"); } return (0); default: return (ENOTSUP); } } /* * Description: * This is the function that processes the ioctl requests (farming it * out to functions that handle slices, files or whole disks) * * Return Values * 0 - ioctl operation completed successfully * != 0 - The LDC error value encountered * (propagated back up the call stack as a task error) * * Side Effect * sets request->status to the return value of the ioctl function. */ static int vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl) { int rval = 0, status = 0; size_t nbytes = request->nbytes; /* modifiable copy */ ASSERT(request->slice < vd->nslices); PR0("Performing %s", ioctl->operation_name); /* Get data from client and convert, if necessary */ if (ioctl->copyin != NULL) { ASSERT(nbytes != 0 && buf != NULL); PR1("Getting \"arg\" data from client"); if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, request->cookie, request->ncookies, LDC_COPY_IN)) != 0) { PR0("ldc_mem_copy() returned errno %d " "copying from client", status); return (status); } /* Convert client's data, if necessary */ if (ioctl->copyin == VD_IDENTITY) /* use client buffer */ ioctl->arg = buf; else /* convert client vdisk operation data to ioctl data */ (ioctl->copyin)(buf, (void *)ioctl->arg); } /* * Handle single-slice block devices internally; otherwise, have the * real driver perform the ioctl() */ if (vd->file) { request->status = vd_do_file_ioctl(vd, ioctl->cmd, (void *)ioctl->arg); } else if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) { request->status = vd_do_slice_ioctl(vd, ioctl->cmd, (void *)ioctl->arg); } else { request->status = ldi_ioctl(vd->ldi_handle[request->slice], ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL), kcred, &rval); #ifdef DEBUG if (rval != 0) { PR0("%s set rval = %d, which is not being returned to" " client", ioctl->cmd_name, rval); } #endif /* DEBUG */ } if (request->status != 0) { PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status); return (0); } /* Convert data and send to client, if necessary */ if (ioctl->copyout != NULL) { ASSERT(nbytes != 0 && buf != NULL); PR1("Sending \"arg\" data to client"); /* Convert ioctl data to vdisk operation data, if necessary */ if (ioctl->copyout != VD_IDENTITY) (ioctl->copyout)((void *)ioctl->arg, buf); if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { PR0("ldc_mem_copy() returned errno %d " "copying to client", status); return (status); } } return (status); } #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t)) /* * Description: * This generic function is called by the task queue to complete * the processing of the tasks. The specific completion function * is passed in as a field in the task pointer. * * Parameters: * arg - opaque pointer to structure containing task to be completed * * Return Values * None */ static void vd_complete(void *arg) { vd_task_t *task = (vd_task_t *)arg; ASSERT(task != NULL); ASSERT(task->status == EINPROGRESS); ASSERT(task->completef != NULL); task->status = task->completef(task); if (task->status) PR0("%s: Error %d completing task", __func__, task->status); /* Now notify the vDisk client */ vd_complete_notify(task); } static int vd_ioctl(vd_task_t *task) { int i, status; void *buf = NULL; struct dk_geom dk_geom = {0}; struct vtoc vtoc = {0}; struct dk_efi dk_efi = {0}; vd_t *vd = task->vd; vd_dring_payload_t *request = task->request; vd_ioctl_t ioctl[] = { /* Command (no-copy) operations */ {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0, DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE), NULL, NULL, NULL}, /* "Get" (copy-out) operations */ {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int), DKIOCGETWCE, STRINGIZE(DKIOCGETWCE), NULL, VD_IDENTITY, VD_IDENTITY}, {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM), RNDSIZE(vd_geom_t), DKIOCGGEOM, STRINGIZE(DKIOCGGEOM), &dk_geom, NULL, dk_geom2vd_geom}, {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t), DKIOCGVTOC, STRINGIZE(DKIOCGVTOC), &vtoc, NULL, vtoc2vd_vtoc}, {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t), DKIOCGETEFI, STRINGIZE(DKIOCGETEFI), &dk_efi, vd_get_efi_in, vd_get_efi_out}, /* "Set" (copy-in) operations */ {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int), DKIOCSETWCE, STRINGIZE(DKIOCSETWCE), NULL, VD_IDENTITY, VD_IDENTITY}, {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM), RNDSIZE(vd_geom_t), DKIOCSGEOM, STRINGIZE(DKIOCSGEOM), &dk_geom, vd_geom2dk_geom, NULL}, {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t), DKIOCSVTOC, STRINGIZE(DKIOCSVTOC), &vtoc, vd_vtoc2vtoc, NULL}, {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t), DKIOCSETEFI, STRINGIZE(DKIOCSETEFI), &dk_efi, vd_set_efi_in, vd_set_efi_out}, }; size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0])); ASSERT(vd != NULL); ASSERT(request != NULL); ASSERT(request->slice < vd->nslices); /* * Determine ioctl corresponding to caller's "operation" and * validate caller's "nbytes" */ for (i = 0; i < nioctls; i++) { if (request->operation == ioctl[i].operation) { /* LDC memory operations require 8-byte multiples */ ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0); if (request->operation == VD_OP_GET_EFI || request->operation == VD_OP_SET_EFI) { if (request->nbytes >= ioctl[i].nbytes) break; PR0("%s: Expected at least nbytes = %lu, " "got %lu", ioctl[i].operation_name, ioctl[i].nbytes, request->nbytes); return (EINVAL); } if (request->nbytes != ioctl[i].nbytes) { PR0("%s: Expected nbytes = %lu, got %lu", ioctl[i].operation_name, ioctl[i].nbytes, request->nbytes); return (EINVAL); } break; } } ASSERT(i < nioctls); /* because "operation" already validated */ if (request->nbytes) buf = kmem_zalloc(request->nbytes, KM_SLEEP); status = vd_do_ioctl(vd, request, buf, &ioctl[i]); if (request->nbytes) kmem_free(buf, request->nbytes); return (status); } static int vd_get_devid(vd_task_t *task) { vd_t *vd = task->vd; vd_dring_payload_t *request = task->request; vd_devid_t *vd_devid; impl_devid_t *devid; int status, bufid_len, devid_len, len, sz; int bufbytes; PR1("Get Device ID, nbytes=%ld", request->nbytes); if (vd->file) { if (vd->file_devid == NULL) { PR2("No Device ID"); request->status = ENOENT; return (0); } else { sz = ddi_devid_sizeof(vd->file_devid); devid = kmem_alloc(sz, KM_SLEEP); bcopy(vd->file_devid, devid, sz); } } else { if (ddi_lyr_get_devid(vd->dev[request->slice], (ddi_devid_t *)&devid) != DDI_SUCCESS) { PR2("No Device ID"); request->status = ENOENT; return (0); } } bufid_len = request->nbytes - sizeof (vd_devid_t) + 1; devid_len = DEVID_GETLEN(devid); /* * Save the buffer size here for use in deallocation. * The actual number of bytes copied is returned in * the 'nbytes' field of the request structure. */ bufbytes = request->nbytes; vd_devid = kmem_zalloc(bufbytes, KM_SLEEP); vd_devid->length = devid_len; vd_devid->type = DEVID_GETTYPE(devid); len = (devid_len > bufid_len)? bufid_len : devid_len; bcopy(devid->did_id, vd_devid->id, len); /* LDC memory operations require 8-byte multiples */ ASSERT(request->nbytes % sizeof (uint64_t) == 0); if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0, &request->nbytes, request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { PR0("ldc_mem_copy() returned errno %d copying to client", status); } PR1("post mem_copy: nbytes=%ld", request->nbytes); kmem_free(vd_devid, bufbytes); ddi_devid_free((ddi_devid_t)devid); return (status); } /* * Define the supported operations once the functions for performing them have * been defined */ static const vds_operation_t vds_operation[] = { #define X(_s) #_s, _s {X(VD_OP_BREAD), vd_start_bio, vd_complete_bio}, {X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio}, {X(VD_OP_FLUSH), vd_ioctl, NULL}, {X(VD_OP_GET_WCE), vd_ioctl, NULL}, {X(VD_OP_SET_WCE), vd_ioctl, NULL}, {X(VD_OP_GET_VTOC), vd_ioctl, NULL}, {X(VD_OP_SET_VTOC), vd_ioctl, NULL}, {X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL}, {X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL}, {X(VD_OP_GET_EFI), vd_ioctl, NULL}, {X(VD_OP_SET_EFI), vd_ioctl, NULL}, {X(VD_OP_GET_DEVID), vd_get_devid, NULL}, #undef X }; static const size_t vds_noperations = (sizeof (vds_operation))/(sizeof (vds_operation[0])); /* * Process a task specifying a client I/O request * * Parameters: * task - structure containing the request sent from client * * Return Value * 0 - success * ENOTSUP - Unknown/Unsupported VD_OP_XXX operation * EINVAL - Invalid disk slice * != 0 - some other non-zero return value from start function */ static int vd_do_process_task(vd_task_t *task) { int i; vd_t *vd = task->vd; vd_dring_payload_t *request = task->request; ASSERT(vd != NULL); ASSERT(request != NULL); /* Find the requested operation */ for (i = 0; i < vds_noperations; i++) { if (request->operation == vds_operation[i].operation) { /* all operations should have a start func */ ASSERT(vds_operation[i].start != NULL); task->completef = vds_operation[i].complete; break; } } if (i == vds_noperations) { PR0("Unsupported operation %u", request->operation); return (ENOTSUP); } /* Range-check slice */ if (request->slice >= vd->nslices && (vd->vdisk_type != VD_DISK_TYPE_DISK || request->slice != VD_SLICE_NONE)) { PR0("Invalid \"slice\" %u (max %u) for virtual disk", request->slice, (vd->nslices - 1)); return (EINVAL); } /* * Call the function pointer that starts the operation. */ return (vds_operation[i].start(task)); } /* * Description: * This function is called by both the in-band and descriptor ring * message processing functions paths to actually execute the task * requested by the vDisk client. It in turn calls its worker * function, vd_do_process_task(), to carry our the request. * * Any transport errors (e.g. LDC errors, vDisk protocol errors) are * saved in the 'status' field of the task and are propagated back * up the call stack to trigger a NACK * * Any request errors (e.g. ENOTTY from an ioctl) are saved in * the 'status' field of the request and result in an ACK being sent * by the completion handler. * * Parameters: * task - structure containing the request sent from client * * Return Value * 0 - successful synchronous request. * != 0 - transport error (e.g. LDC errors, vDisk protocol) * EINPROGRESS - task will be finished in a completion handler */ static int vd_process_task(vd_task_t *task) { vd_t *vd = task->vd; int status; DTRACE_PROBE1(task__start, vd_task_t *, task); task->status = vd_do_process_task(task); /* * If the task processing function returned EINPROGRESS indicating * that the task needs completing then schedule a taskq entry to * finish it now. * * Otherwise the task processing function returned either zero * indicating that the task was finished in the start function (and we * don't need to wait in a completion function) or the start function * returned an error - in both cases all that needs to happen is the * notification to the vDisk client higher up the call stack. * If the task was using a Descriptor Ring, we need to mark it as done * at this stage. */ if (task->status == EINPROGRESS) { /* Queue a task to complete the operation */ (void) ddi_taskq_dispatch(vd->completionq, vd_complete, task, DDI_SLEEP); } else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) { /* Update the dring element if it's a dring client */ status = vd_mark_elem_done(vd, task->index, task->request->status, task->request->nbytes); if (status == ECONNRESET) vd_mark_in_reset(vd); } return (task->status); } /* * Return true if the "type", "subtype", and "env" fields of the "tag" first * argument match the corresponding remaining arguments; otherwise, return false */ boolean_t vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env) { return ((tag->vio_msgtype == type) && (tag->vio_subtype == subtype) && (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE; } /* * Check whether the major/minor version specified in "ver_msg" is supported * by this server. */ static boolean_t vds_supported_version(vio_ver_msg_t *ver_msg) { for (int i = 0; i < vds_num_versions; i++) { ASSERT(vds_version[i].major > 0); ASSERT((i == 0) || (vds_version[i].major < vds_version[i-1].major)); /* * If the major versions match, adjust the minor version, if * necessary, down to the highest value supported by this * server and return true so this message will get "ack"ed; * the client should also support all minor versions lower * than the value it sent */ if (ver_msg->ver_major == vds_version[i].major) { if (ver_msg->ver_minor > vds_version[i].minor) { PR0("Adjusting minor version from %u to %u", ver_msg->ver_minor, vds_version[i].minor); ver_msg->ver_minor = vds_version[i].minor; } return (B_TRUE); } /* * If the message contains a higher major version number, set * the message's major/minor versions to the current values * and return false, so this message will get "nack"ed with * these values, and the client will potentially try again * with the same or a lower version */ if (ver_msg->ver_major > vds_version[i].major) { ver_msg->ver_major = vds_version[i].major; ver_msg->ver_minor = vds_version[i].minor; return (B_FALSE); } /* * Otherwise, the message's major version is less than the * current major version, so continue the loop to the next * (lower) supported version */ } /* * No common version was found; "ground" the version pair in the * message to terminate negotiation */ ver_msg->ver_major = 0; ver_msg->ver_minor = 0; return (B_FALSE); } /* * Process a version message from a client. vds expects to receive version * messages from clients seeking service, but never issues version messages * itself; therefore, vds can ACK or NACK client version messages, but does * not expect to receive version-message ACKs or NACKs (and will treat such * messages as invalid). */ static int vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) { vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg; ASSERT(msglen >= sizeof (msg->tag)); if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_VER_INFO)) { return (ENOMSG); /* not a version message */ } if (msglen != sizeof (*ver_msg)) { PR0("Expected %lu-byte version message; " "received %lu bytes", sizeof (*ver_msg), msglen); return (EBADMSG); } if (ver_msg->dev_class != VDEV_DISK) { PR0("Expected device class %u (disk); received %u", VDEV_DISK, ver_msg->dev_class); return (EBADMSG); } /* * We're talking to the expected kind of client; set our device class * for "ack/nack" back to the client */ ver_msg->dev_class = VDEV_DISK_SERVER; /* * Check whether the (valid) version message specifies a version * supported by this server. If the version is not supported, return * EBADMSG so the message will get "nack"ed; vds_supported_version() * will have updated the message with a supported version for the * client to consider */ if (!vds_supported_version(ver_msg)) return (EBADMSG); /* * A version has been agreed upon; use the client's SID for * communication on this channel now */ ASSERT(!(vd->initialized & VD_SID)); vd->sid = ver_msg->tag.vio_sid; vd->initialized |= VD_SID; /* * When multiple versions are supported, this function should store * the negotiated major and minor version values in the "vd" data * structure to govern further communication; in particular, note that * the client might have specified a lower minor version for the * agreed major version than specifed in the vds_version[] array. The * following assertions should help remind future maintainers to make * the appropriate changes to support multiple versions. */ ASSERT(vds_num_versions == 1); ASSERT(ver_msg->ver_major == vds_version[0].major); ASSERT(ver_msg->ver_minor == vds_version[0].minor); PR0("Using major version %u, minor version %u", ver_msg->ver_major, ver_msg->ver_minor); return (0); } static int vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) { vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg; int status, retry = 0; ASSERT(msglen >= sizeof (msg->tag)); if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_ATTR_INFO)) { PR0("Message is not an attribute message"); return (ENOMSG); } if (msglen != sizeof (*attr_msg)) { PR0("Expected %lu-byte attribute message; " "received %lu bytes", sizeof (*attr_msg), msglen); return (EBADMSG); } if (attr_msg->max_xfer_sz == 0) { PR0("Received maximum transfer size of 0 from client"); return (EBADMSG); } if ((attr_msg->xfer_mode != VIO_DESC_MODE) && (attr_msg->xfer_mode != VIO_DRING_MODE)) { PR0("Client requested unsupported transfer mode"); return (EBADMSG); } /* * check if the underlying disk is ready, if not try accessing * the device again. Open the vdisk device and extract info * about it, as this is needed to respond to the attr info msg */ if ((vd->initialized & VD_DISK_READY) == 0) { PR0("Retry setting up disk (%s)", vd->device_path); do { status = vd_setup_vd(vd); if (status != EAGAIN || ++retry > vds_dev_retries) break; /* incremental delay */ delay(drv_usectohz(vds_dev_delay)); /* if vdisk is no longer enabled - return error */ if (!vd_enabled(vd)) return (ENXIO); } while (status == EAGAIN); if (status) return (ENXIO); vd->initialized |= VD_DISK_READY; ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u", ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"), vd->nslices); } /* Success: valid message and transfer mode */ vd->xfer_mode = attr_msg->xfer_mode; if (vd->xfer_mode == VIO_DESC_MODE) { /* * The vd_dring_inband_msg_t contains one cookie; need room * for up to n-1 more cookies, where "n" is the number of full * pages plus possibly one partial page required to cover * "max_xfer_sz". Add room for one more cookie if * "max_xfer_sz" isn't an integral multiple of the page size. * Must first get the maximum transfer size in bytes. */ size_t max_xfer_bytes = attr_msg->vdisk_block_size ? attr_msg->vdisk_block_size*attr_msg->max_xfer_sz : attr_msg->max_xfer_sz; size_t max_inband_msglen = sizeof (vd_dring_inband_msg_t) + ((max_xfer_bytes/PAGESIZE + ((max_xfer_bytes % PAGESIZE) ? 1 : 0))* (sizeof (ldc_mem_cookie_t))); /* * Set the maximum expected message length to * accommodate in-band-descriptor messages with all * their cookies */ vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen); /* * Initialize the data structure for processing in-band I/O * request descriptors */ vd->inband_task.vd = vd; vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP); vd->inband_task.index = 0; vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */ } /* Return the device's block size and max transfer size to the client */ attr_msg->vdisk_block_size = DEV_BSIZE; attr_msg->max_xfer_sz = vd->max_xfer_sz; attr_msg->vdisk_size = vd->vdisk_size; attr_msg->vdisk_type = vd->vdisk_type; attr_msg->operations = vds_operations; PR0("%s", VD_CLIENT(vd)); ASSERT(vd->dring_task == NULL); return (0); } static int vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) { int status; size_t expected; ldc_mem_info_t dring_minfo; vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg; ASSERT(msglen >= sizeof (msg->tag)); if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_DRING_REG)) { PR0("Message is not a register-dring message"); return (ENOMSG); } if (msglen < sizeof (*reg_msg)) { PR0("Expected at least %lu-byte register-dring message; " "received %lu bytes", sizeof (*reg_msg), msglen); return (EBADMSG); } expected = sizeof (*reg_msg) + (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0])); if (msglen != expected) { PR0("Expected %lu-byte register-dring message; " "received %lu bytes", expected, msglen); return (EBADMSG); } if (vd->initialized & VD_DRING) { PR0("A dring was previously registered; only support one"); return (EBADMSG); } if (reg_msg->num_descriptors > INT32_MAX) { PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)", reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX)); return (EBADMSG); } if (reg_msg->ncookies != 1) { /* * In addition to fixing the assertion in the success case * below, supporting drings which require more than one * "cookie" requires increasing the value of vd->max_msglen * somewhere in the code path prior to receiving the message * which results in calling this function. Note that without * making this change, the larger message size required to * accommodate multiple cookies cannot be successfully * received, so this function will not even get called. * Gracefully accommodating more dring cookies might * reasonably demand exchanging an additional attribute or * making a minor protocol adjustment */ PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies); return (EBADMSG); } status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie, reg_msg->ncookies, reg_msg->num_descriptors, reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle); if (status != 0) { PR0("ldc_mem_dring_map() returned errno %d", status); return (status); } /* * To remove the need for this assertion, must call * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a * successful call to ldc_mem_dring_map() */ ASSERT(reg_msg->ncookies == 1); if ((status = ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) { PR0("ldc_mem_dring_info() returned errno %d", status); if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0) PR0("ldc_mem_dring_unmap() returned errno %d", status); return (status); } if (dring_minfo.vaddr == NULL) { PR0("Descriptor ring virtual address is NULL"); return (ENXIO); } /* Initialize for valid message and mapped dring */ PR1("descriptor size = %u, dring length = %u", vd->descriptor_size, vd->dring_len); vd->initialized |= VD_DRING; vd->dring_ident = 1; /* "There Can Be Only One" */ vd->dring = dring_minfo.vaddr; vd->descriptor_size = reg_msg->descriptor_size; vd->dring_len = reg_msg->num_descriptors; reg_msg->dring_ident = vd->dring_ident; /* * Allocate and initialize a "shadow" array of data structures for * tasks to process I/O requests in dring elements */ vd->dring_task = kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP); for (int i = 0; i < vd->dring_len; i++) { vd->dring_task[i].vd = vd; vd->dring_task[i].index = i; vd->dring_task[i].request = &VD_DRING_ELEM(i)->payload; status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->dring_task[i].mhdl)); if (status) { PR0("ldc_mem_alloc_handle() returned err %d ", status); return (ENXIO); } vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP); } return (0); } static int vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) { vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg; ASSERT(msglen >= sizeof (msg->tag)); if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_DRING_UNREG)) { PR0("Message is not an unregister-dring message"); return (ENOMSG); } if (msglen != sizeof (*unreg_msg)) { PR0("Expected %lu-byte unregister-dring message; " "received %lu bytes", sizeof (*unreg_msg), msglen); return (EBADMSG); } if (unreg_msg->dring_ident != vd->dring_ident) { PR0("Expected dring ident %lu; received %lu", vd->dring_ident, unreg_msg->dring_ident); return (EBADMSG); } return (0); } static int process_rdx_msg(vio_msg_t *msg, size_t msglen) { ASSERT(msglen >= sizeof (msg->tag)); if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) { PR0("Message is not an RDX message"); return (ENOMSG); } if (msglen != sizeof (vio_rdx_msg_t)) { PR0("Expected %lu-byte RDX message; received %lu bytes", sizeof (vio_rdx_msg_t), msglen); return (EBADMSG); } PR0("Valid RDX message"); return (0); } static int vd_check_seq_num(vd_t *vd, uint64_t seq_num) { if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) { PR0("Received seq_num %lu; expected %lu", seq_num, (vd->seq_num + 1)); PR0("initiating soft reset"); vd_need_reset(vd, B_FALSE); return (1); } vd->seq_num = seq_num; vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */ return (0); } /* * Return the expected size of an inband-descriptor message with all the * cookies it claims to include */ static size_t expected_inband_size(vd_dring_inband_msg_t *msg) { return ((sizeof (*msg)) + (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0]))); } /* * Process an in-band descriptor message: used with clients like OBP, with * which vds exchanges descriptors within VIO message payloads, rather than * operating on them within a descriptor ring */ static int vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) { size_t expected; vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg; ASSERT(msglen >= sizeof (msg->tag)); if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, VIO_DESC_DATA)) { PR1("Message is not an in-band-descriptor message"); return (ENOMSG); } if (msglen < sizeof (*desc_msg)) { PR0("Expected at least %lu-byte descriptor message; " "received %lu bytes", sizeof (*desc_msg), msglen); return (EBADMSG); } if (msglen != (expected = expected_inband_size(desc_msg))) { PR0("Expected %lu-byte descriptor message; " "received %lu bytes", expected, msglen); return (EBADMSG); } if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0) return (EBADMSG); /* * Valid message: Set up the in-band descriptor task and process the * request. Arrange to acknowledge the client's message, unless an * error processing the descriptor task results in setting * VIO_SUBTYPE_NACK */ PR1("Valid in-band-descriptor message"); msg->tag.vio_subtype = VIO_SUBTYPE_ACK; ASSERT(vd->inband_task.msg != NULL); bcopy(msg, vd->inband_task.msg, msglen); vd->inband_task.msglen = msglen; /* * The task request is now the payload of the message * that was just copied into the body of the task. */ desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg; vd->inband_task.request = &desc_msg->payload; return (vd_process_task(&vd->inband_task)); } static int vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx, vio_msg_t *msg, size_t msglen) { int status; boolean_t ready; vd_dring_entry_t *elem = VD_DRING_ELEM(idx); /* Accept the updated dring element */ if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { PR0("ldc_mem_dring_acquire() returned errno %d", status); return (status); } ready = (elem->hdr.dstate == VIO_DESC_READY); if (ready) { elem->hdr.dstate = VIO_DESC_ACCEPTED; } else { PR0("descriptor %u not ready", idx); VD_DUMP_DRING_ELEM(elem); } if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { PR0("ldc_mem_dring_release() returned errno %d", status); return (status); } if (!ready) return (EBUSY); /* Initialize a task and process the accepted element */ PR1("Processing dring element %u", idx); vd->dring_task[idx].type = type; /* duplicate msg buf for cookies etc. */ bcopy(msg, vd->dring_task[idx].msg, msglen); vd->dring_task[idx].msglen = msglen; return (vd_process_task(&vd->dring_task[idx])); } static int vd_process_element_range(vd_t *vd, int start, int end, vio_msg_t *msg, size_t msglen) { int i, n, nelem, status = 0; boolean_t inprogress = B_FALSE; vd_task_type_t type; ASSERT(start >= 0); ASSERT(end >= 0); /* * Arrange to acknowledge the client's message, unless an error * processing one of the dring elements results in setting * VIO_SUBTYPE_NACK */ msg->tag.vio_subtype = VIO_SUBTYPE_ACK; /* * Process the dring elements in the range */ nelem = ((end < start) ? end + vd->dring_len : end) - start + 1; for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) { ((vio_dring_msg_t *)msg)->end_idx = i; type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK; status = vd_process_element(vd, type, i, msg, msglen); if (status == EINPROGRESS) inprogress = B_TRUE; else if (status != 0) break; } /* * If some, but not all, operations of a multi-element range are in * progress, wait for other operations to complete before returning * (which will result in "ack" or "nack" of the message). Note that * all outstanding operations will need to complete, not just the ones * corresponding to the current range of dring elements; howevever, as * this situation is an error case, performance is less critical. */ if ((nelem > 1) && (status != EINPROGRESS) && inprogress) ddi_taskq_wait(vd->completionq); return (status); } static int vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) { vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg; ASSERT(msglen >= sizeof (msg->tag)); if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, VIO_DRING_DATA)) { PR1("Message is not a dring-data message"); return (ENOMSG); } if (msglen != sizeof (*dring_msg)) { PR0("Expected %lu-byte dring message; received %lu bytes", sizeof (*dring_msg), msglen); return (EBADMSG); } if (vd_check_seq_num(vd, dring_msg->seq_num) != 0) return (EBADMSG); if (dring_msg->dring_ident != vd->dring_ident) { PR0("Expected dring ident %lu; received ident %lu", vd->dring_ident, dring_msg->dring_ident); return (EBADMSG); } if (dring_msg->start_idx >= vd->dring_len) { PR0("\"start_idx\" = %u; must be less than %u", dring_msg->start_idx, vd->dring_len); return (EBADMSG); } if ((dring_msg->end_idx < 0) || (dring_msg->end_idx >= vd->dring_len)) { PR0("\"end_idx\" = %u; must be >= 0 and less than %u", dring_msg->end_idx, vd->dring_len); return (EBADMSG); } /* Valid message; process range of updated dring elements */ PR1("Processing descriptor range, start = %u, end = %u", dring_msg->start_idx, dring_msg->end_idx); return (vd_process_element_range(vd, dring_msg->start_idx, dring_msg->end_idx, msg, msglen)); } static int recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes) { int retry, status; size_t size = *nbytes; for (retry = 0, status = ETIMEDOUT; retry < vds_ldc_retries && status == ETIMEDOUT; retry++) { PR1("ldc_read() attempt %d", (retry + 1)); *nbytes = size; status = ldc_read(ldc_handle, msg, nbytes); } if (status) { PR0("ldc_read() returned errno %d", status); if (status != ECONNRESET) return (ENOMSG); return (status); } else if (*nbytes == 0) { PR1("ldc_read() returned 0 and no message read"); return (ENOMSG); } PR1("RCVD %lu-byte message", *nbytes); return (0); } static int vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) { int status; PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype, msg->tag.vio_subtype, msg->tag.vio_subtype_env); #ifdef DEBUG vd_decode_tag(msg); #endif /* * Validate session ID up front, since it applies to all messages * once set */ if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) { PR0("Expected SID %u, received %u", vd->sid, msg->tag.vio_sid); return (EBADMSG); } PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state)); /* * Process the received message based on connection state */ switch (vd->state) { case VD_STATE_INIT: /* expect version message */ if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0) return (status); /* Version negotiated, move to that state */ vd->state = VD_STATE_VER; return (0); case VD_STATE_VER: /* expect attribute message */ if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0) return (status); /* Attributes exchanged, move to that state */ vd->state = VD_STATE_ATTR; return (0); case VD_STATE_ATTR: switch (vd->xfer_mode) { case VIO_DESC_MODE: /* expect RDX message */ if ((status = process_rdx_msg(msg, msglen)) != 0) return (status); /* Ready to receive in-band descriptors */ vd->state = VD_STATE_DATA; return (0); case VIO_DRING_MODE: /* expect register-dring message */ if ((status = vd_process_dring_reg_msg(vd, msg, msglen)) != 0) return (status); /* One dring negotiated, move to that state */ vd->state = VD_STATE_DRING; return (0); default: ASSERT("Unsupported transfer mode"); PR0("Unsupported transfer mode"); return (ENOTSUP); } case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */ if ((status = process_rdx_msg(msg, msglen)) == 0) { /* Ready to receive data */ vd->state = VD_STATE_DATA; return (0); } else if (status != ENOMSG) { return (status); } /* * If another register-dring message is received, stay in * dring state in case the client sends RDX; although the * protocol allows multiple drings, this server does not * support using more than one */ if ((status = vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG) return (status); /* * Acknowledge an unregister-dring message, but reset the * connection anyway: Although the protocol allows * unregistering drings, this server cannot serve a vdisk * without its only dring */ status = vd_process_dring_unreg_msg(vd, msg, msglen); return ((status == 0) ? ENOTSUP : status); case VD_STATE_DATA: switch (vd->xfer_mode) { case VIO_DESC_MODE: /* expect in-band-descriptor message */ return (vd_process_desc_msg(vd, msg, msglen)); case VIO_DRING_MODE: /* expect dring-data or unreg-dring */ /* * Typically expect dring-data messages, so handle * them first */ if ((status = vd_process_dring_msg(vd, msg, msglen)) != ENOMSG) return (status); /* * Acknowledge an unregister-dring message, but reset * the connection anyway: Although the protocol * allows unregistering drings, this server cannot * serve a vdisk without its only dring */ status = vd_process_dring_unreg_msg(vd, msg, msglen); return ((status == 0) ? ENOTSUP : status); default: ASSERT("Unsupported transfer mode"); PR0("Unsupported transfer mode"); return (ENOTSUP); } default: ASSERT("Invalid client connection state"); PR0("Invalid client connection state"); return (ENOTSUP); } } static int vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) { int status; boolean_t reset_ldc = B_FALSE; vd_task_t task; /* * Check that the message is at least big enough for a "tag", so that * message processing can proceed based on tag-specified message type */ if (msglen < sizeof (vio_msg_tag_t)) { PR0("Received short (%lu-byte) message", msglen); /* Can't "nack" short message, so drop the big hammer */ PR0("initiating full reset"); vd_need_reset(vd, B_TRUE); return (EBADMSG); } /* * Process the message */ switch (status = vd_do_process_msg(vd, msg, msglen)) { case 0: /* "ack" valid, successfully-processed messages */ msg->tag.vio_subtype = VIO_SUBTYPE_ACK; break; case EINPROGRESS: /* The completion handler will "ack" or "nack" the message */ return (EINPROGRESS); case ENOMSG: PR0("Received unexpected message"); _NOTE(FALLTHROUGH); case EBADMSG: case ENOTSUP: /* "transport" error will cause NACK of invalid messages */ msg->tag.vio_subtype = VIO_SUBTYPE_NACK; break; default: /* "transport" error will cause NACK of invalid messages */ msg->tag.vio_subtype = VIO_SUBTYPE_NACK; /* An LDC error probably occurred, so try resetting it */ reset_ldc = B_TRUE; break; } PR1("\tResulting in state %d (%s)", vd->state, vd_decode_state(vd->state)); /* populate the task so we can dispatch it on the taskq */ task.vd = vd; task.msg = msg; task.msglen = msglen; /* * Queue a task to send the notification that the operation completed. * We need to ensure that requests are responded to in the correct * order and since the taskq is processed serially this ordering * is maintained. */ (void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify, &task, DDI_SLEEP); /* * To ensure handshake negotiations do not happen out of order, such * requests that come through this path should not be done in parallel * so we need to wait here until the response is sent to the client. */ ddi_taskq_wait(vd->completionq); /* Arrange to reset the connection for nack'ed or failed messages */ if ((status != 0) || reset_ldc) { PR0("initiating %s reset", (reset_ldc) ? "full" : "soft"); vd_need_reset(vd, reset_ldc); } return (status); } static boolean_t vd_enabled(vd_t *vd) { boolean_t enabled; mutex_enter(&vd->lock); enabled = vd->enabled; mutex_exit(&vd->lock); return (enabled); } static void vd_recv_msg(void *arg) { vd_t *vd = (vd_t *)arg; int rv = 0, status = 0; ASSERT(vd != NULL); PR2("New task to receive incoming message(s)"); while (vd_enabled(vd) && status == 0) { size_t msglen, msgsize; ldc_status_t lstatus; /* * Receive and process a message */ vd_reset_if_needed(vd); /* can change vd->max_msglen */ /* * check if channel is UP - else break out of loop */ status = ldc_status(vd->ldc_handle, &lstatus); if (lstatus != LDC_UP) { PR0("channel not up (status=%d), exiting recv loop\n", lstatus); break; } ASSERT(vd->max_msglen != 0); msgsize = vd->max_msglen; /* stable copy for alloc/free */ msglen = msgsize; /* actual len after recv_msg() */ status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen); switch (status) { case 0: rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp, msglen); /* check if max_msglen changed */ if (msgsize != vd->max_msglen) { PR0("max_msglen changed 0x%lx to 0x%lx bytes\n", msgsize, vd->max_msglen); kmem_free(vd->vio_msgp, msgsize); vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); } if (rv == EINPROGRESS) continue; break; case ENOMSG: break; case ECONNRESET: PR0("initiating soft reset (ECONNRESET)\n"); vd_need_reset(vd, B_FALSE); status = 0; break; default: /* Probably an LDC failure; arrange to reset it */ PR0("initiating full reset (status=0x%x)", status); vd_need_reset(vd, B_TRUE); break; } } PR2("Task finished"); } static uint_t vd_handle_ldc_events(uint64_t event, caddr_t arg) { vd_t *vd = (vd_t *)(void *)arg; int status; ASSERT(vd != NULL); if (!vd_enabled(vd)) return (LDC_SUCCESS); if (event & LDC_EVT_DOWN) { PR0("LDC_EVT_DOWN: LDC channel went down"); vd_need_reset(vd, B_TRUE); status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); if (status == DDI_FAILURE) { PR0("cannot schedule task to recv msg\n"); vd_need_reset(vd, B_TRUE); } } if (event & LDC_EVT_RESET) { PR0("LDC_EVT_RESET: LDC channel was reset"); if (vd->state != VD_STATE_INIT) { PR0("scheduling full reset"); vd_need_reset(vd, B_FALSE); status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); if (status == DDI_FAILURE) { PR0("cannot schedule task to recv msg\n"); vd_need_reset(vd, B_TRUE); } } else { PR0("channel already reset, ignoring...\n"); PR0("doing ldc up...\n"); (void) ldc_up(vd->ldc_handle); } return (LDC_SUCCESS); } if (event & LDC_EVT_UP) { PR0("EVT_UP: LDC is up\nResetting client connection state"); PR0("initiating soft reset"); vd_need_reset(vd, B_FALSE); status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); if (status == DDI_FAILURE) { PR0("cannot schedule task to recv msg\n"); vd_need_reset(vd, B_TRUE); return (LDC_SUCCESS); } } if (event & LDC_EVT_READ) { int status; PR1("New data available"); /* Queue a task to receive the new data */ status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); if (status == DDI_FAILURE) { PR0("cannot schedule task to recv msg\n"); vd_need_reset(vd, B_TRUE); } } return (LDC_SUCCESS); } static uint_t vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg) { _NOTE(ARGUNUSED(key, val)) (*((uint_t *)arg))++; return (MH_WALK_TERMINATE); } static int vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { uint_t vd_present = 0; minor_t instance; vds_t *vds; switch (cmd) { case DDI_DETACH: /* the real work happens below */ break; case DDI_SUSPEND: PR0("No action required for DDI_SUSPEND"); return (DDI_SUCCESS); default: PR0("Unrecognized \"cmd\""); return (DDI_FAILURE); } ASSERT(cmd == DDI_DETACH); instance = ddi_get_instance(dip); if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { PR0("Could not get state for instance %u", instance); ddi_soft_state_free(vds_state, instance); return (DDI_FAILURE); } /* Do no detach when serving any vdisks */ mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present); if (vd_present) { PR0("Not detaching because serving vdisks"); return (DDI_FAILURE); } PR0("Detaching"); if (vds->initialized & VDS_MDEG) { (void) mdeg_unregister(vds->mdeg); kmem_free(vds->ispecp->specp, sizeof (vds_prop_template)); kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t)); vds->ispecp = NULL; vds->mdeg = NULL; } if (vds->initialized & VDS_LDI) (void) ldi_ident_release(vds->ldi_ident); mod_hash_destroy_hash(vds->vd_table); ddi_soft_state_free(vds_state, instance); return (DDI_SUCCESS); } static boolean_t is_pseudo_device(dev_info_t *dip) { dev_info_t *parent, *root = ddi_root_node(); for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root); parent = ddi_get_parent(parent)) { if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0) return (B_TRUE); } return (B_FALSE); } static int vd_setup_full_disk(vd_t *vd) { int rval, status; major_t major = getmajor(vd->dev[0]); minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE; struct dk_minfo dk_minfo; /* * At this point, vdisk_size is set to the size of partition 2 but * this does not represent the size of the disk because partition 2 * may not cover the entire disk and its size does not include reserved * blocks. So we update vdisk_size to be the size of the entire disk. */ if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO, (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL), kcred, &rval)) != 0) { PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d", status); return (status); } vd->vdisk_size = dk_minfo.dki_capacity; /* Set full-disk parameters */ vd->vdisk_type = VD_DISK_TYPE_DISK; vd->nslices = (sizeof (vd->dev))/(sizeof (vd->dev[0])); /* Move dev number and LDI handle to entire-disk-slice array elements */ vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0]; vd->dev[0] = 0; vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0]; vd->ldi_handle[0] = NULL; /* Initialize device numbers for remaining slices and open them */ for (int slice = 0; slice < vd->nslices; slice++) { /* * Skip the entire-disk slice, as it's already open and its * device known */ if (slice == VD_ENTIRE_DISK_SLICE) continue; ASSERT(vd->dev[slice] == 0); ASSERT(vd->ldi_handle[slice] == NULL); /* * Construct the device number for the current slice */ vd->dev[slice] = makedevice(major, (minor + slice)); /* * Open all slices of the disk to serve them to the client. * Slices are opened exclusively to prevent other threads or * processes in the service domain from performing I/O to * slices being accessed by a client. Failure to open a slice * results in vds not serving this disk, as the client could * attempt (and should be able) to access any slice immediately. * Any slices successfully opened before a failure will get * closed by vds_destroy_vd() as a result of the error returned * by this function. * * We need to do the open with FNDELAY so that opening an empty * slice does not fail. */ PR0("Opening device major %u, minor %u = slice %u", major, minor, slice); if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, vd_open_flags | FNDELAY, kcred, &vd->ldi_handle[slice], vd->vds->ldi_ident)) != 0) { PRN("ldi_open_by_dev() returned errno %d " "for slice %u", status, slice); /* vds_destroy_vd() will close any open slices */ vd->ldi_handle[slice] = NULL; return (status); } } return (0); } static int vd_setup_partition_efi(vd_t *vd) { efi_gpt_t *gpt; efi_gpe_t *gpe; struct uuid uuid = EFI_RESERVED; uint32_t crc; int length; length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t); gpt = kmem_zalloc(length, KM_SLEEP); gpe = (efi_gpe_t *)(gpt + 1); gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE); gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t)); gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL); gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1); gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1); gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid); gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA; gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA; CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table); gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table); gpt->efi_gpt_HeaderCRC32 = LE_32(~crc); vd->dk_efi.dki_lba = 0; vd->dk_efi.dki_length = length; vd->dk_efi.dki_data = gpt; return (0); } static int vd_setup_file(vd_t *vd) { int i, rval, status; ushort_t sum; vattr_t vattr; dev_t dev; size_t size; char *file_path = vd->device_path; char dev_path[MAXPATHLEN + 1]; char prefix; ldi_handle_t lhandle; struct dk_cinfo dk_cinfo; struct dk_label label; /* make sure the file is valid */ if ((status = lookupname(file_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vd->file_vnode)) != 0) { PRN("Cannot lookup file(%s) errno %d", file_path, status); return (status); } if (vd->file_vnode->v_type != VREG) { PRN("Invalid file type (%s)\n", file_path); VN_RELE(vd->file_vnode); return (EBADF); } VN_RELE(vd->file_vnode); if ((status = vn_open(file_path, UIO_SYSSPACE, vd_open_flags | FOFFMAX, 0, &vd->file_vnode, 0, 0)) != 0) { PRN("vn_open(%s) = errno %d", file_path, status); return (status); } /* * We set vd->file now so that vds_destroy_vd will take care of * closing the file and releasing the vnode in case of an error. */ vd->file = B_TRUE; vd->pseudo = B_FALSE; vattr.va_mask = AT_SIZE; if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred)) != 0) { PRN("VOP_GETATTR(%s) = errno %d", file_path, status); return (EIO); } vd->file_size = vattr.va_size; /* size should be at least sizeof(dk_label) */ if (vd->file_size < sizeof (struct dk_label)) { PRN("Size of file has to be at least %ld bytes", sizeof (struct dk_label)); return (EIO); } if (vd->file_vnode->v_flag & VNOMAP) { PRN("File %s cannot be mapped", file_path); return (EIO); } /* read label from file */ if (VD_FILE_LABEL_READ(vd, &label) < 0) { PRN("Can't read label from %s", file_path); return (EIO); } /* label checksum */ sum = vd_lbl2cksum(&label); if (label.dkl_magic != DKL_MAGIC || label.dkl_cksum != sum) { PR0("%s has an invalid disk label " "(magic=%x cksum=%x (expect %x))", file_path, label.dkl_magic, label.dkl_cksum, sum); /* default label */ bzero(&label, sizeof (struct dk_label)); /* * We must have a resonable number of cylinders and sectors so * that newfs can run using default values. * * if (disk_size < 2MB) * phys_cylinders = disk_size / 100K * else * phys_cylinders = disk_size / 300K * * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders * alt_cylinders = (phys_cylinders > 2) ? 2 : 0; * data_cylinders = phys_cylinders - alt_cylinders * * sectors = disk_size / (phys_cylinders * blk_size) */ if (vd->file_size < (2 * 1024 * 1024)) label.dkl_pcyl = vd->file_size / (100 * 1024); else label.dkl_pcyl = vd->file_size / (300 * 1024); if (label.dkl_pcyl == 0) label.dkl_pcyl = 1; if (label.dkl_pcyl > 2) label.dkl_acyl = 2; else label.dkl_acyl = 0; label.dkl_nsect = vd->file_size / (DEV_BSIZE * label.dkl_pcyl); label.dkl_ncyl = label.dkl_pcyl - label.dkl_acyl; label.dkl_nhead = 1; label.dkl_write_reinstruct = 0; label.dkl_read_reinstruct = 0; label.dkl_rpm = 7200; label.dkl_apc = 0; label.dkl_intrlv = 0; label.dkl_magic = DKL_MAGIC; PR0("requested disk size: %ld bytes\n", vd->file_size); PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label.dkl_pcyl, label.dkl_nhead, label.dkl_nsect); PR0("provided disk size: %ld bytes\n", (uint64_t) (label.dkl_pcyl * label.dkl_nhead * label.dkl_nsect * DEV_BSIZE)); if (vd->file_size < (1ULL << 20)) { size = vd->file_size >> 10; prefix = 'K'; /* Kilobyte */ } else if (vd->file_size < (1ULL << 30)) { size = vd->file_size >> 20; prefix = 'M'; /* Megabyte */ } else if (vd->file_size < (1ULL << 40)) { size = vd->file_size >> 30; prefix = 'G'; /* Gigabyte */ } else { size = vd->file_size >> 40; prefix = 'T'; /* Terabyte */ } /* * We must have a correct label name otherwise format(1m) will * not recognized the disk as labeled. */ (void) snprintf(label.dkl_asciilabel, LEN_DKL_ASCII, "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d", size, prefix, label.dkl_ncyl, label.dkl_acyl, label.dkl_nhead, label.dkl_nsect); /* default VTOC */ label.dkl_vtoc.v_version = V_VERSION; label.dkl_vtoc.v_nparts = V_NUMPAR; label.dkl_vtoc.v_sanity = VTOC_SANE; label.dkl_vtoc.v_part[2].p_tag = V_BACKUP; label.dkl_map[2].dkl_cylno = 0; label.dkl_map[2].dkl_nblk = label.dkl_ncyl * label.dkl_nhead * label.dkl_nsect; label.dkl_map[0] = label.dkl_map[2]; label.dkl_map[0] = label.dkl_map[2]; label.dkl_cksum = vd_lbl2cksum(&label); /* write default label to file */ if ((rval = vd_file_set_vtoc(vd, &label)) != 0) { PRN("Can't write label to %s", file_path); return (rval); } } vd->nslices = label.dkl_vtoc.v_nparts; /* sector size = block size = DEV_BSIZE */ vd->vdisk_size = vd->file_size / DEV_BSIZE; vd->vdisk_type = VD_DISK_TYPE_DISK; vd->vdisk_label = VD_DISK_LABEL_VTOC; vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */ /* Get max_xfer_sz from the device where the file is */ dev = vd->file_vnode->v_vfsp->vfs_dev; dev_path[0] = NULL; if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) { PR0("underlying device = %s\n", dev_path); } if ((status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle, vd->vds->ldi_ident)) != 0) { PR0("ldi_open_by_dev() returned errno %d for device %s", status, dev_path); } else { if ((status = ldi_ioctl(lhandle, DKIOCINFO, (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred, &rval)) != 0) { PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s", status, dev_path); } else { /* * Store the device's max transfer size for * return to the client */ vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; } PR0("close the device %s", dev_path); (void) ldi_close(lhandle, FREAD, kcred); } PR0("using file %s, dev %s, max_xfer = %u blks", file_path, dev_path, vd->max_xfer_sz); vd->dk_geom.dkg_ncyl = label.dkl_ncyl; vd->dk_geom.dkg_acyl = label.dkl_acyl; vd->dk_geom.dkg_pcyl = label.dkl_pcyl; vd->dk_geom.dkg_nhead = label.dkl_nhead; vd->dk_geom.dkg_nsect = label.dkl_nsect; vd->dk_geom.dkg_intrlv = label.dkl_intrlv; vd->dk_geom.dkg_apc = label.dkl_apc; vd->dk_geom.dkg_rpm = label.dkl_rpm; vd->dk_geom.dkg_write_reinstruct = label.dkl_write_reinstruct; vd->dk_geom.dkg_read_reinstruct = label.dkl_read_reinstruct; vd->vtoc.v_sanity = label.dkl_vtoc.v_sanity; vd->vtoc.v_version = label.dkl_vtoc.v_version; vd->vtoc.v_sectorsz = DEV_BSIZE; vd->vtoc.v_nparts = label.dkl_vtoc.v_nparts; bcopy(label.dkl_vtoc.v_volume, vd->vtoc.v_volume, LEN_DKL_VVOL); bcopy(label.dkl_asciilabel, vd->vtoc.v_asciilabel, LEN_DKL_ASCII); for (i = 0; i < vd->nslices; i++) { vd->vtoc.timestamp[i] = label.dkl_vtoc.v_timestamp[i]; vd->vtoc.v_part[i].p_tag = label.dkl_vtoc.v_part[i].p_tag; vd->vtoc.v_part[i].p_flag = label.dkl_vtoc.v_part[i].p_flag; vd->vtoc.v_part[i].p_start = label.dkl_map[i].dkl_cylno * label.dkl_nhead * label.dkl_nsect; vd->vtoc.v_part[i].p_size = label.dkl_map[i].dkl_nblk; vd->ldi_handle[i] = NULL; vd->dev[i] = NULL; } /* Setup devid for the disk image */ status = vd_file_read_devid(vd, &vd->file_devid); if (status == 0) { /* a valid devid was found */ return (0); } if (status != EINVAL) { /* * There was an error while trying to read the devid. So this * disk image may have a devid but we are unable to read it. */ PR0("can not read devid for %s", file_path); vd->file_devid = NULL; return (0); } /* * No valid device id was found so we create one. Note that a failure * to create a device id is not fatal and does not prevent the disk * image from being attached. */ PR1("creating devid for %s", file_path); if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0, &vd->file_devid) != DDI_SUCCESS) { PR0("fail to create devid for %s", file_path); vd->file_devid = NULL; return (0); } /* write devid to the disk image */ if (vd_file_write_devid(vd, vd->file_devid) != 0) { PR0("fail to write devid for %s", file_path); ddi_devid_free(vd->file_devid); vd->file_devid = NULL; } return (0); } static int vd_setup_vd(vd_t *vd) { int rval, status; dev_info_t *dip; struct dk_cinfo dk_cinfo; char *device_path = vd->device_path; /* * We need to open with FNDELAY so that opening an empty partition * does not fail. */ if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY, kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) { PR0("ldi_open_by_name(%s) = errno %d", device_path, status); vd->ldi_handle[0] = NULL; /* this may not be a device try opening as a file */ if (status == ENXIO || status == ENODEV) status = vd_setup_file(vd); if (status) { PRN("Cannot use device/file (%s), errno=%d\n", device_path, status); if (status == ENXIO || status == ENODEV || status == ENOENT) { return (EAGAIN); } } return (status); } /* * nslices must be updated now so that vds_destroy_vd() will close * the slice we have just opened in case of an error. */ vd->nslices = 1; vd->file = B_FALSE; /* Get device number and size of backing device */ if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) { PRN("ldi_get_dev() returned errno %d for %s", status, device_path); return (status); } if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) { PRN("ldi_get_size() failed for %s", device_path); return (EIO); } vd->vdisk_size = lbtodb(vd->vdisk_size); /* convert to blocks */ /* Verify backing device supports dk_cinfo, dk_geom, and vtoc */ if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO, (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred, &rval)) != 0) { PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s", status, device_path); return (status); } if (dk_cinfo.dki_partition >= V_NUMPAR) { PRN("slice %u >= maximum slice %u for %s", dk_cinfo.dki_partition, V_NUMPAR, device_path); return (EIO); } status = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, &vd->vdisk_label); if (status != 0) { PRN("vd_read_vtoc returned errno %d for %s", status, device_path); return (status); } if (vd->vdisk_label == VD_DISK_LABEL_VTOC && (status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM, (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL), kcred, &rval)) != 0) { PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s", status, device_path); return (status); } /* Store the device's max transfer size for return to the client */ vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; /* Determine if backing device is a pseudo device */ if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]), dev_to_instance(vd->dev[0]), 0)) == NULL) { PRN("%s is no longer accessible", device_path); return (EIO); } vd->pseudo = is_pseudo_device(dip); ddi_release_devi(dip); if (vd->pseudo) { vd->vdisk_type = VD_DISK_TYPE_SLICE; vd->nslices = 1; return (0); /* ...and we're done */ } /* If slice is entire-disk slice, initialize for full disk */ if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE) return (vd_setup_full_disk(vd)); /* Otherwise, we have a non-entire slice of a device */ vd->vdisk_type = VD_DISK_TYPE_SLICE; vd->nslices = 1; if (vd->vdisk_label == VD_DISK_LABEL_EFI) { status = vd_setup_partition_efi(vd); return (status); } /* Initialize dk_geom structure for single-slice device */ if (vd->dk_geom.dkg_nsect == 0) { PRN("%s geometry claims 0 sectors per track", device_path); return (EIO); } if (vd->dk_geom.dkg_nhead == 0) { PRN("%s geometry claims 0 heads", device_path); return (EIO); } vd->dk_geom.dkg_ncyl = vd->vdisk_size/vd->dk_geom.dkg_nsect/vd->dk_geom.dkg_nhead; vd->dk_geom.dkg_acyl = 0; vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl; /* Initialize vtoc structure for single-slice device */ bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume, MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume))); bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part)); vd->vtoc.v_nparts = 1; vd->vtoc.v_part[0].p_tag = V_UNASSIGNED; vd->vtoc.v_part[0].p_flag = 0; vd->vtoc.v_part[0].p_start = 0; vd->vtoc.v_part[0].p_size = vd->vdisk_size; bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel, MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel))); return (0); } static int vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id, vd_t **vdp) { char tq_name[TASKQ_NAMELEN]; int status; ddi_iblock_cookie_t iblock = NULL; ldc_attr_t ldc_attr; vd_t *vd; ASSERT(vds != NULL); ASSERT(device_path != NULL); ASSERT(vdp != NULL); PR0("Adding vdisk for %s", device_path); if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) { PRN("No memory for virtual disk"); return (EAGAIN); } *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */ vd->vds = vds; (void) strncpy(vd->device_path, device_path, MAXPATHLEN); /* Open vdisk and initialize parameters */ if ((status = vd_setup_vd(vd)) == 0) { vd->initialized |= VD_DISK_READY; ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u", ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"), vd->nslices); } else { if (status != EAGAIN) return (status); } /* Initialize locking */ if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED, &iblock) != DDI_SUCCESS) { PRN("Could not get iblock cookie."); return (EIO); } mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock); vd->initialized |= VD_LOCKING; /* Create start and completion task queues for the vdisk */ (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id); PR1("tq_name = %s", tq_name); if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1, TASKQ_DEFAULTPRI, 0)) == NULL) { PRN("Could not create task queue"); return (EIO); } (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id); PR1("tq_name = %s", tq_name); if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1, TASKQ_DEFAULTPRI, 0)) == NULL) { PRN("Could not create task queue"); return (EIO); } vd->enabled = 1; /* before callback can dispatch to startq */ /* Bring up LDC */ ldc_attr.devclass = LDC_DEV_BLK_SVC; ldc_attr.instance = ddi_get_instance(vds->dip); ldc_attr.mode = LDC_MODE_UNRELIABLE; ldc_attr.mtu = VD_LDC_MTU; if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) { PRN("Could not initialize LDC channel %lu, " "init failed with error %d", ldc_id, status); return (status); } vd->initialized |= VD_LDC; if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events, (caddr_t)vd)) != 0) { PRN("Could not initialize LDC channel %lu," "reg_callback failed with error %d", ldc_id, status); return (status); } if ((status = ldc_open(vd->ldc_handle)) != 0) { PRN("Could not initialize LDC channel %lu," "open failed with error %d", ldc_id, status); return (status); } if ((status = ldc_up(vd->ldc_handle)) != 0) { PR0("ldc_up() returned errno %d", status); } /* Allocate the inband task memory handle */ status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl)); if (status) { PRN("Could not initialize LDC channel %lu," "alloc_handle failed with error %d", ldc_id, status); return (ENXIO); } /* Add the successfully-initialized vdisk to the server's table */ if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) { PRN("Error adding vdisk ID %lu to table", id); return (EIO); } /* Allocate the staging buffer */ vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); /* store initial state */ vd->state = VD_STATE_INIT; return (0); } static void vd_free_dring_task(vd_t *vdp) { if (vdp->dring_task != NULL) { ASSERT(vdp->dring_len != 0); /* Free all dring_task memory handles */ for (int i = 0; i < vdp->dring_len; i++) { (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl); kmem_free(vdp->dring_task[i].msg, vdp->max_msglen); vdp->dring_task[i].msg = NULL; } kmem_free(vdp->dring_task, (sizeof (*vdp->dring_task)) * vdp->dring_len); vdp->dring_task = NULL; } } /* * Destroy the state associated with a virtual disk */ static void vds_destroy_vd(void *arg) { vd_t *vd = (vd_t *)arg; int retry = 0, rv; if (vd == NULL) return; PR0("Destroying vdisk state"); if (vd->dk_efi.dki_data != NULL) kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length); /* Disable queuing requests for the vdisk */ if (vd->initialized & VD_LOCKING) { mutex_enter(&vd->lock); vd->enabled = 0; mutex_exit(&vd->lock); } /* Drain and destroy start queue (*before* destroying completionq) */ if (vd->startq != NULL) ddi_taskq_destroy(vd->startq); /* waits for queued tasks */ /* Drain and destroy completion queue (*before* shutting down LDC) */ if (vd->completionq != NULL) ddi_taskq_destroy(vd->completionq); /* waits for tasks */ vd_free_dring_task(vd); /* Free the inband task memory handle */ (void) ldc_mem_free_handle(vd->inband_task.mhdl); /* Shut down LDC */ if (vd->initialized & VD_LDC) { /* unmap the dring */ if (vd->initialized & VD_DRING) (void) ldc_mem_dring_unmap(vd->dring_handle); /* close LDC channel - retry on EAGAIN */ while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) { if (++retry > vds_ldc_retries) { PR0("Timed out closing channel"); break; } drv_usecwait(vds_ldc_delay); } if (rv == 0) { (void) ldc_unreg_callback(vd->ldc_handle); (void) ldc_fini(vd->ldc_handle); } else { /* * Closing the LDC channel has failed. Ideally we should * fail here but there is no Zeus level infrastructure * to handle this. The MD has already been changed and * we have to do the close. So we try to do as much * clean up as we can. */ (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE); while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN) drv_usecwait(vds_ldc_delay); } } /* Free the staging buffer for msgs */ if (vd->vio_msgp != NULL) { kmem_free(vd->vio_msgp, vd->max_msglen); vd->vio_msgp = NULL; } /* Free the inband message buffer */ if (vd->inband_task.msg != NULL) { kmem_free(vd->inband_task.msg, vd->max_msglen); vd->inband_task.msg = NULL; } if (vd->file) { /* Close file */ (void) VOP_CLOSE(vd->file_vnode, vd_open_flags, 1, 0, kcred); VN_RELE(vd->file_vnode); if (vd->file_devid != NULL) ddi_devid_free(vd->file_devid); } else { /* Close any open backing-device slices */ for (uint_t slice = 0; slice < vd->nslices; slice++) { if (vd->ldi_handle[slice] != NULL) { PR0("Closing slice %u", slice); (void) ldi_close(vd->ldi_handle[slice], vd_open_flags | FNDELAY, kcred); } } } /* Free lock */ if (vd->initialized & VD_LOCKING) mutex_destroy(&vd->lock); /* Finally, free the vdisk structure itself */ kmem_free(vd, sizeof (*vd)); } static int vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id) { int status; vd_t *vd = NULL; if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0) vds_destroy_vd(vd); return (status); } static int vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel, uint64_t *ldc_id) { int num_channels; /* Look for channel endpoint child(ren) of the vdisk MD node */ if ((num_channels = md_scan_dag(md, vd_node, md_find_name(md, VD_CHANNEL_ENDPOINT), md_find_name(md, "fwd"), channel)) <= 0) { PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT); return (-1); } /* Get the "id" value for the first channel endpoint node */ if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) { PRN("No \"%s\" property found for \"%s\" of vdisk", VD_ID_PROP, VD_CHANNEL_ENDPOINT); return (-1); } if (num_channels > 1) { PRN("Using ID of first of multiple channels for this vdisk"); } return (0); } static int vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id) { int num_nodes, status; size_t size; mde_cookie_t *channel; if ((num_nodes = md_node_count(md)) <= 0) { PRN("Invalid node count in Machine Description subtree"); return (-1); } size = num_nodes*(sizeof (*channel)); channel = kmem_zalloc(size, KM_SLEEP); status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id); kmem_free(channel, size); return (status); } static void vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) { char *device_path = NULL; uint64_t id = 0, ldc_id = 0; if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { PRN("Error getting vdisk \"%s\"", VD_ID_PROP); return; } PR0("Adding vdisk ID %lu", id); if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP, &device_path) != 0) { PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); return; } if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) { PRN("Error getting LDC ID for vdisk %lu", id); return; } if (vds_init_vd(vds, id, device_path, ldc_id) != 0) { PRN("Failed to add vdisk ID %lu", id); return; } } static void vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) { uint64_t id = 0; if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { PRN("Unable to get \"%s\" property from vdisk's MD node", VD_ID_PROP); return; } PR0("Removing vdisk ID %lu", id); if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) PRN("No vdisk entry found for vdisk ID %lu", id); } static void vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node, md_t *curr_md, mde_cookie_t curr_vd_node) { char *curr_dev, *prev_dev; uint64_t curr_id = 0, curr_ldc_id = 0; uint64_t prev_id = 0, prev_ldc_id = 0; size_t len; /* Validate that vdisk ID has not changed */ if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) { PRN("Error getting previous vdisk \"%s\" property", VD_ID_PROP); return; } if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) { PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP); return; } if (curr_id != prev_id) { PRN("Not changing vdisk: ID changed from %lu to %lu", prev_id, curr_id); return; } /* Validate that LDC ID has not changed */ if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) { PRN("Error getting LDC ID for vdisk %lu", prev_id); return; } if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) { PRN("Error getting LDC ID for vdisk %lu", curr_id); return; } if (curr_ldc_id != prev_ldc_id) { _NOTE(NOTREACHED); /* lint is confused */ PRN("Not changing vdisk: " "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id); return; } /* Determine whether device path has changed */ if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP, &prev_dev) != 0) { PRN("Error getting previous vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); return; } if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP, &curr_dev) != 0) { PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); return; } if (((len = strlen(curr_dev)) == strlen(prev_dev)) && (strncmp(curr_dev, prev_dev, len) == 0)) return; /* no relevant (supported) change */ PR0("Changing vdisk ID %lu", prev_id); /* Remove old state, which will close vdisk and reset */ if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0) PRN("No entry found for vdisk ID %lu", prev_id); /* Re-initialize vdisk with new state */ if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) { PRN("Failed to change vdisk ID %lu", curr_id); return; } } static int vds_process_md(void *arg, mdeg_result_t *md) { int i; vds_t *vds = arg; if (md == NULL) return (MDEG_FAILURE); ASSERT(vds != NULL); for (i = 0; i < md->removed.nelem; i++) vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]); for (i = 0; i < md->match_curr.nelem; i++) vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i], md->match_curr.mdp, md->match_curr.mdep[i]); for (i = 0; i < md->added.nelem; i++) vds_add_vd(vds, md->added.mdp, md->added.mdep[i]); return (MDEG_SUCCESS); } static int vds_do_attach(dev_info_t *dip) { int status, sz; int cfg_handle; minor_t instance = ddi_get_instance(dip); vds_t *vds; mdeg_prop_spec_t *pspecp; mdeg_node_spec_t *ispecp; /* * The "cfg-handle" property of a vds node in an MD contains the MD's * notion of "instance", or unique identifier, for that node; OBP * stores the value of the "cfg-handle" MD property as the value of * the "reg" property on the node in the device tree it builds from * the MD and passes to Solaris. Thus, we look up the devinfo node's * "reg" property value to uniquely identify this device instance when * registering with the MD event-generation framework. If the "reg" * property cannot be found, the device tree state is presumably so * broken that there is no point in continuing. */ if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, VD_REG_PROP)) { PRN("vds \"%s\" property does not exist", VD_REG_PROP); return (DDI_FAILURE); } /* Get the MD instance for later MDEG registration */ cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, VD_REG_PROP, -1); if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) { PRN("Could not allocate state for instance %u", instance); return (DDI_FAILURE); } if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { PRN("Could not get state for instance %u", instance); ddi_soft_state_free(vds_state, instance); return (DDI_FAILURE); } vds->dip = dip; vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS, vds_destroy_vd, sizeof (void *)); ASSERT(vds->vd_table != NULL); if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) { PRN("ldi_ident_from_dip() returned errno %d", status); return (DDI_FAILURE); } vds->initialized |= VDS_LDI; /* Register for MD updates */ sz = sizeof (vds_prop_template); pspecp = kmem_alloc(sz, KM_SLEEP); bcopy(vds_prop_template, pspecp, sz); VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle); /* initialize the complete prop spec structure */ ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP); ispecp->namep = "virtual-device"; ispecp->specp = pspecp; if (mdeg_register(ispecp, &vd_match, vds_process_md, vds, &vds->mdeg) != MDEG_SUCCESS) { PRN("Unable to register for MD updates"); kmem_free(ispecp, sizeof (mdeg_node_spec_t)); kmem_free(pspecp, sz); return (DDI_FAILURE); } vds->ispecp = ispecp; vds->initialized |= VDS_MDEG; /* Prevent auto-detaching so driver is available whenever MD changes */ if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) != DDI_PROP_SUCCESS) { PRN("failed to set \"%s\" property for instance %u", DDI_NO_AUTODETACH, instance); } ddi_report_dev(dip); return (DDI_SUCCESS); } static int vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { int status; switch (cmd) { case DDI_ATTACH: PR0("Attaching"); if ((status = vds_do_attach(dip)) != DDI_SUCCESS) (void) vds_detach(dip, DDI_DETACH); return (status); case DDI_RESUME: PR0("No action required for DDI_RESUME"); return (DDI_SUCCESS); default: return (DDI_FAILURE); } } static struct dev_ops vds_ops = { DEVO_REV, /* devo_rev */ 0, /* devo_refcnt */ ddi_no_info, /* devo_getinfo */ nulldev, /* devo_identify */ nulldev, /* devo_probe */ vds_attach, /* devo_attach */ vds_detach, /* devo_detach */ nodev, /* devo_reset */ NULL, /* devo_cb_ops */ NULL, /* devo_bus_ops */ nulldev /* devo_power */ }; static struct modldrv modldrv = { &mod_driverops, "virtual disk server", &vds_ops, }; static struct modlinkage modlinkage = { MODREV_1, &modldrv, NULL }; int _init(void) { int i, status; if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0) return (status); if ((status = mod_install(&modlinkage)) != 0) { ddi_soft_state_fini(&vds_state); return (status); } /* Fill in the bit-mask of server-supported operations */ for (i = 0; i < vds_noperations; i++) vds_operations |= 1 << (vds_operation[i].operation - 1); return (0); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } int _fini(void) { int status; if ((status = mod_remove(&modlinkage)) != 0) return (status); ddi_soft_state_fini(&vds_state); return (0); }