/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CHEETAHPLUS_ERRATUM_25 #include #endif /* CHEETAHPLUS_ERRATUM_25 */ /* * Note that 'Cheetah PRM' refers to: * SPARC V9 JPS1 Implementation Supplement: Sun UltraSPARC-III */ /* * Setup trap handlers. */ void cpu_init_trap(void) { CH_SET_TRAP(tt_pil15, ch_pil15_interrupt_instr); CH_SET_TRAP(tt0_fecc, fecc_err_instr); CH_SET_TRAP(tt1_fecc, fecc_err_tl1_instr); CH_SET_TRAP(tt1_swtrap0, fecc_err_tl1_cont_instr); } static int getintprop(pnode_t node, char *name, int deflt) { int value; switch (prom_getproplen(node, name)) { case sizeof (int): (void) prom_getprop(node, name, (caddr_t)&value); break; default: value = deflt; break; } return (value); } /* * Set the magic constants of the implementation. */ /*ARGSUSED*/ void cpu_fiximp(pnode_t dnode) { int i, a; static struct { char *name; int *var; int defval; } prop[] = { "dcache-size", &dcache_size, CH_DCACHE_SIZE, "dcache-line-size", &dcache_linesize, CH_DCACHE_LSIZE, "icache-size", &icache_size, CH_ICACHE_SIZE, "icache-line-size", &icache_linesize, CH_ICACHE_LSIZE, "ecache-size", &ecache_size, CH_ECACHE_MAX_SIZE, "ecache-line-size", &ecache_alignsize, CH_ECACHE_MAX_LSIZE, "ecache-associativity", &ecache_associativity, CH_ECACHE_NWAY }; for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++) *prop[i].var = getintprop(dnode, prop[i].name, prop[i].defval); ecache_setsize = ecache_size / ecache_associativity; vac_size = CH_VAC_SIZE; vac_mask = MMU_PAGEMASK & (vac_size - 1); i = 0; a = vac_size; while (a >>= 1) ++i; vac_shift = i; shm_alignment = vac_size; vac = 1; /* * Cheetah's large page support has problems with large numbers of * large pages, so just disable large pages out-of-the-box. * Note that the other defaults are set in sun4u/vm/mach_vm_dep.c. */ max_uheap_lpsize = MMU_PAGESIZE; max_ustack_lpsize = MMU_PAGESIZE; max_privmap_lpsize = MMU_PAGESIZE; max_utext_lpsize = MMU_PAGESIZE; max_shm_lpsize = MMU_PAGESIZE; max_bootlp_tteszc = TTE8K; } void send_mondo_set(cpuset_t set) { int lo, busy, nack, shipped = 0; uint16_t i, cpuids[IDSR_BN_SETS]; uint64_t idsr, nackmask = 0, busymask, curnack, curbusy; uint64_t starttick, endtick, tick, lasttick; #if (NCPU > IDSR_BN_SETS) int index = 0; int ncpuids = 0; #endif #ifdef CHEETAHPLUS_ERRATUM_25 int recovered = 0; int cpuid; #endif ASSERT(!CPUSET_ISNULL(set)); starttick = lasttick = gettick(); #if (NCPU <= IDSR_BN_SETS) for (i = 0; i < NCPU; i++) if (CPU_IN_SET(set, i)) { shipit(i, shipped); nackmask |= IDSR_NACK_BIT(shipped); cpuids[shipped++] = i; CPUSET_DEL(set, i); if (CPUSET_ISNULL(set)) break; } CPU_STATS_ADDQ(CPU, sys, xcalls, shipped); #else for (i = 0; i < NCPU; i++) if (CPU_IN_SET(set, i)) { ncpuids++; /* * Ship only to the first (IDSR_BN_SETS) CPUs. If we * find we have shipped to more than (IDSR_BN_SETS) * CPUs, set "index" to the highest numbered CPU in * the set so we can ship to other CPUs a bit later on. */ if (shipped < IDSR_BN_SETS) { shipit(i, shipped); nackmask |= IDSR_NACK_BIT(shipped); cpuids[shipped++] = i; CPUSET_DEL(set, i); if (CPUSET_ISNULL(set)) break; } else index = (int)i; } CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids); #endif busymask = IDSR_NACK_TO_BUSY(nackmask); busy = nack = 0; endtick = starttick + xc_tick_limit; for (;;) { idsr = getidsr(); #if (NCPU <= IDSR_BN_SETS) if (idsr == 0) break; #else if (idsr == 0 && shipped == ncpuids) break; #endif tick = gettick(); /* * If there is a big jump between the current tick * count and lasttick, we have probably hit a break * point. Adjust endtick accordingly to avoid panic. */ if (tick > (lasttick + xc_tick_jump_limit)) endtick += (tick - lasttick); lasttick = tick; if (tick > endtick) { if (panic_quiesce) return; #ifdef CHEETAHPLUS_ERRATUM_25 cpuid = -1; for (i = 0; i < IDSR_BN_SETS; i++) { if (idsr & (IDSR_NACK_BIT(i) | IDSR_BUSY_BIT(i))) { cpuid = cpuids[i]; break; } } if (cheetah_sendmondo_recover && cpuid != -1 && recovered == 0) { if (mondo_recover(cpuid, i)) { /* * We claimed the whole memory or * full scan is disabled. */ recovered++; } tick = gettick(); endtick = tick + xc_tick_limit; lasttick = tick; /* * Recheck idsr */ continue; } else #endif /* CHEETAHPLUS_ERRATUM_25 */ { cmn_err(CE_CONT, "send mondo timeout " "[%d NACK %d BUSY]\nIDSR 0x%" "" PRIx64 " cpuids:", nack, busy, idsr); for (i = 0; i < IDSR_BN_SETS; i++) { if (idsr & (IDSR_NACK_BIT(i) | IDSR_BUSY_BIT(i))) { cmn_err(CE_CONT, " 0x%x", cpuids[i]); } } cmn_err(CE_CONT, "\n"); cmn_err(CE_PANIC, "send_mondo_set: timeout"); } } curnack = idsr & nackmask; curbusy = idsr & busymask; #if (NCPU > IDSR_BN_SETS) if (shipped < ncpuids) { uint64_t cpus_left; uint16_t next = (uint16_t)index; cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) & busymask; if (cpus_left) { do { /* * Sequence through and ship to the * remainder of the CPUs in the system * (e.g. other than the first * (IDSR_BN_SETS)) in reverse order. */ lo = lowbit(cpus_left) - 1; i = IDSR_BUSY_IDX(lo); shipit(next, i); shipped++; cpuids[i] = next; /* * If we've processed all the CPUs, * exit the loop now and save * instructions. */ if (shipped == ncpuids) break; for ((index = ((int)next - 1)); index >= 0; index--) if (CPU_IN_SET(set, index)) { next = (uint16_t)index; break; } cpus_left &= ~(1ull << lo); } while (cpus_left); #ifdef CHEETAHPLUS_ERRATUM_25 /* * Clear recovered because we are sending to * a new set of targets. */ recovered = 0; #endif continue; } } #endif if (curbusy) { busy++; continue; } #ifdef SEND_MONDO_STATS { int n = gettick() - starttick; if (n < 8192) x_nack_stimes[n >> 7]++; } #endif while (gettick() < (tick + sys_clock_mhz)) ; do { lo = lowbit(curnack) - 1; i = IDSR_NACK_IDX(lo); shipit(cpuids[i], i); curnack &= ~(1ull << lo); } while (curnack); nack++; busy = 0; } #ifdef SEND_MONDO_STATS { int n = gettick() - starttick; if (n < 8192) x_set_stimes[n >> 7]++; else x_set_ltimes[(n >> 13) & 0xf]++; } x_set_cpus[shipped]++; #endif } /* * Handles error logging for implementation specific error types. */ /*ARGSUSED*/ int cpu_impl_async_log_err(void *flt, errorq_elem_t *eqep) { /* There aren't any error types which are specific to cheetah only */ return (CH_ASYNC_LOG_UNKNOWN); } /* * Figure out if Ecache is direct-mapped (Cheetah or Cheetah+ with Ecache * control ECCR_ASSOC bit off or 2-way (Cheetah+ with ECCR_ASSOC on). * We need to do this on the fly because we may have mixed Cheetah+'s with * both direct and 2-way Ecaches. */ int cpu_ecache_nway(void) { return (CH_ECACHE_NWAY); } /* * Note that these are entered into the table: Fatal Errors (PERR, IERR, * ISAP, EMU) first, orphaned UCU/UCC, AFAR Overwrite policy, finally IVU, IVC. * Afar overwrite policy is: * UCU,UCC > UE,EDU,WDU,CPU > CE,EDC,EMC,WDC,CPC > TO,BERR */ ecc_type_to_info_t ecc_type_to_info[] = { /* Fatal Errors */ C_AFSR_PERR, "PERR ", ECC_ALL_TRAPS, CPU_FATAL, "PERR Fatal", FM_EREPORT_PAYLOAD_SYSTEM2, FM_EREPORT_CPU_USIII_PERR, C_AFSR_IERR, "IERR ", ECC_ALL_TRAPS, CPU_FATAL, "IERR Fatal", FM_EREPORT_PAYLOAD_SYSTEM2, FM_EREPORT_CPU_USIII_IERR, C_AFSR_ISAP, "ISAP ", ECC_ALL_TRAPS, CPU_FATAL, "ISAP Fatal", FM_EREPORT_PAYLOAD_SYSTEM1, FM_EREPORT_CPU_USIII_ISAP, C_AFSR_EMU, "EMU ", ECC_ASYNC_TRAPS, CPU_FATAL, "EMU Fatal", FM_EREPORT_PAYLOAD_MEMORY, FM_EREPORT_CPU_USIII_EMU, /* Orphaned UCC/UCU Errors */ C_AFSR_UCU, "OUCU ", ECC_ORPH_TRAPS, CPU_ORPH, "Orphaned UCU", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_UCU, C_AFSR_UCC, "OUCC ", ECC_ORPH_TRAPS, CPU_ORPH, "Orphaned UCC", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_UCC, /* UCU, UCC */ C_AFSR_UCU, "UCU ", ECC_F_TRAP, CPU_UE_ECACHE, "UCU", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_UCU, C_AFSR_UCC, "UCC ", ECC_F_TRAP, CPU_CE_ECACHE, "UCC", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_UCC, /* UE, EDU:ST, EDU:BLD, WDU, CPU */ C_AFSR_UE, "UE ", ECC_ASYNC_TRAPS, CPU_UE, "Uncorrectable system bus (UE)", FM_EREPORT_PAYLOAD_MEMORY, FM_EREPORT_CPU_USIII_UE, C_AFSR_EDU, "EDU ", ECC_C_TRAP, CPU_UE_ECACHE_RETIRE, "EDU:ST", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_EDUST, C_AFSR_EDU, "EDU ", ECC_D_TRAP, CPU_UE_ECACHE_RETIRE, "EDU:BLD", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_EDUBL, C_AFSR_WDU, "WDU ", ECC_C_TRAP, CPU_UE_ECACHE_RETIRE, "WDU", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_WDU, C_AFSR_CPU, "CPU ", ECC_C_TRAP, CPU_UE_ECACHE, "CPU", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_CPU, /* CE, EDC, EMC, WDC, CPC */ C_AFSR_CE, "CE ", ECC_C_TRAP, CPU_CE, "Corrected system bus (CE)", FM_EREPORT_PAYLOAD_MEMORY, FM_EREPORT_CPU_USIII_CE, C_AFSR_EDC, "EDC ", ECC_C_TRAP, CPU_CE_ECACHE, "EDC", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_EDC, C_AFSR_EMC, "EMC ", ECC_C_TRAP, CPU_EMC, "EMC", FM_EREPORT_PAYLOAD_MEMORY, FM_EREPORT_CPU_USIII_EMC, C_AFSR_WDC, "WDC ", ECC_C_TRAP, CPU_CE_ECACHE, "WDC", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_WDC, C_AFSR_CPC, "CPC ", ECC_C_TRAP, CPU_CE_ECACHE, "CPC", FM_EREPORT_PAYLOAD_L2_DATA, FM_EREPORT_CPU_USIII_CPC, /* TO, BERR */ C_AFSR_TO, "TO ", ECC_ASYNC_TRAPS, CPU_TO, "Timeout (TO)", FM_EREPORT_PAYLOAD_IO, FM_EREPORT_CPU_USIII_TO, C_AFSR_BERR, "BERR ", ECC_ASYNC_TRAPS, CPU_BERR, "Bus Error (BERR)", FM_EREPORT_PAYLOAD_IO, FM_EREPORT_CPU_USIII_BERR, /* IVU, IVC */ C_AFSR_IVU, "IVU ", ECC_C_TRAP, CPU_IV, "IVU", FM_EREPORT_PAYLOAD_SYSTEM1, FM_EREPORT_CPU_USIII_IVU, C_AFSR_IVC, "IVC ", ECC_C_TRAP, CPU_IV, "IVC", FM_EREPORT_PAYLOAD_SYSTEM1, FM_EREPORT_CPU_USIII_IVC, 0, NULL, 0, 0, NULL, FM_EREPORT_PAYLOAD_UNKNOWN, FM_EREPORT_CPU_USIII_UNKNOWN, }; /* * Prioritized list of Error bits for AFAR overwrite. * See Cheetah PRM P.6.1 * Class 4: UCC, UCU * Class 3: UE, EDU, EMU, WDU, CPU * Class 2: CE, EDC, EMC, WDC, CPC * Class 1: TO, BERR */ uint64_t afar_overwrite[] = { C_AFSR_UCC | C_AFSR_UCU, C_AFSR_UE | C_AFSR_EDU | C_AFSR_EMU | C_AFSR_WDU | C_AFSR_CPU, C_AFSR_CE | C_AFSR_EDC | C_AFSR_EMC | C_AFSR_WDC | C_AFSR_CPC, C_AFSR_TO | C_AFSR_BERR, 0 }; /* * Prioritized list of Error bits for ESYND overwrite. * See Cheetah PRM P.6.2 * Class 2: UE, IVU, EDU, WDU, UCU, CPU * Class 1: CE, IVC, EDC, WDC, UCC, CPC */ uint64_t esynd_overwrite[] = { C_AFSR_UE | C_AFSR_IVU | C_AFSR_EDU | C_AFSR_WDU | C_AFSR_UCU | C_AFSR_CPU, C_AFSR_CE | C_AFSR_IVC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_UCC | C_AFSR_CPC, 0 }; /* * Prioritized list of Error bits for MSYND overwrite. * See Cheetah PRM P.6.3 * Class 2: EMU * Class 1: EMC */ uint64_t msynd_overwrite[] = { C_AFSR_EMU, C_AFSR_EMC, 0 }; /* * change cpu speed bits -- new speed will be normal-speed/divisor. * * The Jalapeno memory controllers are required to drain outstanding * memory transactions within 32 JBus clocks in order to be ready * to enter Estar mode. In some corner cases however, that time * fell short. * * A safe software solution is to force MCU to act like in Estar mode, * then delay 1us (in ppm code) prior to assert J_CHNG_L signal. * To reverse the effect, upon exiting Estar, software restores the * MCU to its original state. */ /* ARGSUSED1 */ void cpu_change_speed(uint64_t divisor, uint64_t arg2) { bus_config_eclk_t *bceclk; uint64_t reg; processor_info_t *pi = &(CPU->cpu_type_info); for (bceclk = bus_config_eclk; bceclk->divisor; bceclk++) { if (bceclk->divisor != divisor) continue; reg = get_safari_config(); reg &= ~SAFARI_CONFIG_ECLK_MASK; reg |= bceclk->mask; set_safari_config(reg); CPU->cpu_m.divisor = (uchar_t)divisor; pi->pi_curr_clock = (((uint64_t)pi->pi_clock * 1000000) / divisor); return; } /* * We will reach here only if OBP and kernel don't agree on * the speeds supported by the CPU. */ cmn_err(CE_WARN, "cpu_change_speed: bad divisor %" PRIu64, divisor); } /* * Cpu private initialization. This includes allocating the cpu_private * data structure, initializing it, and initializing the scrubber for this * cpu. This function calls cpu_init_ecache_scrub_dr to init the scrubber. * We use kmem_cache_create for the cheetah private data structure because * it needs to be allocated on a PAGESIZE (8192) byte boundary. */ void cpu_init_private(struct cpu *cp) { cheetah_private_t *chprp; int i; ASSERT(CPU_PRIVATE(cp) == NULL); /* LINTED: E_TRUE_LOGICAL_EXPR */ ASSERT((offsetof(cheetah_private_t, chpr_tl1_err_data) + sizeof (ch_err_tl1_data_t) * CH_ERR_TL1_TLMAX) <= PAGESIZE); /* * Running with a Cheetah+, Jaguar, or Panther on a Cheetah CPU * machine is not a supported configuration. Attempting to do so * may result in unpredictable failures (e.g. running Cheetah+ * CPUs with Cheetah E$ disp flush) so don't allow it. * * This is just defensive code since this configuration mismatch * should have been caught prior to OS execution. */ if (!IS_CHEETAH(cpunodes[cp->cpu_id].implementation)) { cmn_err(CE_PANIC, "CPU%d: UltraSPARC-III+/IV/IV+ not" " supported on UltraSPARC-III code\n", cp->cpu_id); } /* * If the ch_private_cache has not been created, create it. */ if (ch_private_cache == NULL) { ch_private_cache = kmem_cache_create("ch_private_cache", sizeof (cheetah_private_t), PAGESIZE, NULL, NULL, NULL, NULL, static_arena, 0); } chprp = CPU_PRIVATE(cp) = kmem_cache_alloc(ch_private_cache, KM_SLEEP); bzero(chprp, sizeof (cheetah_private_t)); chprp->chpr_fecctl0_logout.clo_data.chd_afar = LOGOUT_INVALID; chprp->chpr_cecc_logout.clo_data.chd_afar = LOGOUT_INVALID; chprp->chpr_async_logout.clo_data.chd_afar = LOGOUT_INVALID; for (i = 0; i < CH_ERR_TL1_TLMAX; i++) chprp->chpr_tl1_err_data[i].ch_err_tl1_logout.clo_data.chd_afar = LOGOUT_INVALID; chprp->chpr_icache_size = CH_ICACHE_SIZE; chprp->chpr_icache_linesize = CH_ICACHE_LSIZE; cpu_init_ecache_scrub_dr(cp); chprp->chpr_ec_set_size = cpunodes[cp->cpu_id].ecache_size / cpu_ecache_nway(); adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size); ch_err_tl1_paddrs[cp->cpu_id] = va_to_pa(chprp); ASSERT(ch_err_tl1_paddrs[cp->cpu_id] != -1); } /* * Clear the error state registers for this CPU. * For Cheetah, just clear the AFSR */ void set_cpu_error_state(ch_cpu_errors_t *cpu_error_regs) { set_asyncflt(cpu_error_regs->afsr & ~C_AFSR_FATAL_ERRS); } /* * For Cheetah, the error recovery code uses an alternate flush area in the * TL>0 fast ECC handler. ecache_tl1_flushaddr is the physical address of * this exclusive displacement flush area. */ uint64_t ecache_tl1_flushaddr = (uint64_t)-1; /* physaddr for E$ flushing */ /* * Allocate and initialize the exclusive displacement flush area. * Called twice. The first time allocates virtual address. The second * call looks up the physical address. */ caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base) { static caddr_t ecache_tl1_virtaddr; if (alloc_base != NULL) { /* * Need to allocate an exclusive flush area that is twice the * largest supported E$ size, physically contiguous, and * aligned on twice the largest E$ size boundary. */ unsigned size = 2 * CH_ECACHE_8M_SIZE; caddr_t va = (caddr_t)roundup((uintptr_t)alloc_base, size); ecache_tl1_virtaddr = va; alloc_base = va + size; } else { /* * Get the physical address of the exclusive flush area. */ ASSERT(ecache_tl1_virtaddr != NULL); ecache_tl1_flushaddr = va_to_pa(ecache_tl1_virtaddr); ASSERT(ecache_tl1_flushaddr != ((uint64_t)-1)); } return (alloc_base); } /* * Update cpu_offline_set so the scrubber knows which cpus are offline */ /*ARGSUSED*/ int cpu_scrub_cpu_setup(cpu_setup_t what, int cpuid, void *arg) { switch (what) { case CPU_ON: case CPU_INIT: CPUSET_DEL(cpu_offline_set, cpuid); break; case CPU_OFF: CPUSET_ADD(cpu_offline_set, cpuid); break; default: break; } return (0); }