/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void setup_trap_table(void); extern int cpu_intrq_setup(struct cpu *); extern void cpu_intrq_register(struct cpu *); extern void contig_mem_init(void); extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t); extern void mach_dump_buffer_init(void); extern void mach_descrip_init(void); extern void mach_descrip_startup_fini(void); extern void mach_memscrub(void); extern void mach_fpras(void); extern void mach_cpu_halt_idle(void); extern void mach_hw_copy_limit(void); extern void load_mach_drivers(void); extern void load_tod_module(void); #pragma weak load_tod_module extern int ndata_alloc_mmfsa(struct memlist *ndata); #pragma weak ndata_alloc_mmfsa extern void cif_init(void); #pragma weak cif_init extern void parse_idprom(void); extern void add_vx_handler(char *, int, void (*)(cell_t *)); extern void mem_config_init(void); extern void memseg_remap_init(void); extern void mach_kpm_init(void); extern void pcf_init(); extern int size_pse_array(pgcnt_t, int); extern void pg_init(); /* * External Data: */ extern int vac_size; /* cache size in bytes */ extern uint_t vac_mask; /* VAC alignment consistency mask */ extern uint_t vac_colors; /* * Global Data Definitions: */ /* * XXX - Don't port this to new architectures * A 3rd party volume manager driver (vxdm) depends on the symbol romp. * 'romp' has no use with a prom with an IEEE 1275 client interface. * The driver doesn't use the value, but it depends on the symbol. */ void *romp; /* veritas driver won't load without romp 4154976 */ /* * Declare these as initialized data so we can patch them. */ pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ uint_t segmap_percent = 6; /* Size of segmap segment */ int use_cache = 1; /* cache not reliable (605 bugs) with MP */ int vac_copyback = 1; char *cache_mode = NULL; int use_mix = 1; int prom_debug = 0; caddr_t boot_tba; /* %tba at boot - used by kmdb */ uint_t tba_taken_over = 0; caddr_t s_text; /* start of kernel text segment */ caddr_t e_text; /* end of kernel text segment */ caddr_t s_data; /* start of kernel data segment */ caddr_t e_data; /* end of kernel data segment */ caddr_t modtext; /* beginning of module text */ size_t modtext_sz; /* size of module text */ caddr_t moddata; /* beginning of module data reserve */ caddr_t e_moddata; /* end of module data reserve */ /* * End of first block of contiguous kernel in 32-bit virtual address space */ caddr_t econtig32; /* end of first blk of contiguous kernel */ caddr_t ncbase; /* beginning of non-cached segment */ caddr_t ncend; /* end of non-cached segment */ size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ caddr_t nalloc_base; /* beginning of nucleus allocation */ caddr_t nalloc_end; /* end of nucleus allocatable memory */ caddr_t valloc_base; /* beginning of kvalloc segment */ caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */ caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */ int kmem64_szc; /* page size code */ uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */ uintptr_t shm_alignment; /* VAC address consistency modulus */ struct memlist *phys_install; /* Total installed physical memory */ struct memlist *phys_avail; /* Available (unreserved) physical memory */ struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ struct memlist *nopp_list; /* pages with no backing page structs */ struct memlist ndata; /* memlist of nucleus allocatable memory */ int memexp_flag; /* memory expansion card flag */ uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ pgcnt_t obp_pages; /* Physical pages used by OBP */ /* * VM data structures */ long page_hashsz; /* Size of page hash table (power of two) */ unsigned int page_hashsz_shift; /* log2(page_hashsz) */ struct page *pp_base; /* Base of system page struct array */ size_t pp_sz; /* Size in bytes of page struct array */ struct page **page_hash; /* Page hash table */ pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ int pse_shift; /* log2(pse_table_size) */ struct seg ktextseg; /* Segment used for kernel executable image */ struct seg kvalloc; /* Segment used for "valloc" mapping */ struct seg kpseg; /* Segment used for pageable kernel virt mem */ struct seg ktexthole; /* Segment used for nucleus text hole */ struct seg kmapseg; /* Segment used for generic kernel mappings */ struct seg kpmseg; /* Segment used for physical mapping */ struct seg kdebugseg; /* Segment used for the kernel debugger */ void *kpm_pp_base; /* Base of system kpm_page array */ size_t kpm_pp_sz; /* Size of system kpm_page array */ pgcnt_t kpm_npages; /* How many kpm pages are managed */ struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ int segzio_fromheap = 0; /* zio allocations occur from heap */ caddr_t segzio_base; /* Base address of segzio */ pgcnt_t segziosize = 0; /* size of zio segment in pages */ /* * A static DR page_t VA map is reserved that can map the page structures * for a domain's entire RA space. The pages that backs this space are * dynamically allocated and need not be physically contiguous. The DR * map size is derived from KPM size. */ int ppvm_enable = 0; /* Static virtual map for page structs */ page_t *ppvm_base; /* Base of page struct map */ pgcnt_t ppvm_size = 0; /* Size of page struct map */ /* * debugger pages (if allocated) */ struct vnode kdebugvp; /* * VA range available to the debugger */ const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; const size_t kdi_segdebugsize = SEGDEBUGSIZE; /* * Segment for relocated kernel structures in 64-bit large RAM kernels */ struct seg kmem64; struct memseg *memseg_free; struct vnode unused_pages_vp; /* * VM data structures allocated early during boot. */ size_t pagehash_sz; uint64_t memlist_sz; char tbr_wr_addr_inited = 0; caddr_t mpo_heap32_buf = NULL; size_t mpo_heap32_bufsz = 0; /* * Static Routines: */ static int ndata_alloc_memseg(struct memlist *, size_t); static void memlist_new(uint64_t, uint64_t, struct memlist **); static void memlist_add(uint64_t, uint64_t, struct memlist **, struct memlist **); static void kphysm_init(void); static void kvm_init(void); static void install_kmem64_tte(void); static void startup_init(void); static void startup_memlist(void); static void startup_modules(void); static void startup_bop_gone(void); static void startup_vm(void); static void startup_end(void); static void setup_cage_params(void); static void startup_create_io_node(void); static pgcnt_t npages; static struct memlist *memlist; void *memlist_end; static pgcnt_t bop_alloc_pages; static caddr_t hblk_base; uint_t hblk_alloc_dynamic = 0; uint_t hblk1_min = H1MIN; /* * Hooks for unsupported platforms and down-rev firmware */ int iam_positron(void); #pragma weak iam_positron static void do_prom_version_check(void); /* * After receiving a thermal interrupt, this is the number of seconds * to delay before shutting off the system, assuming * shutdown fails. Use /etc/system to change the delay if this isn't * large enough. */ int thermal_powerdown_delay = 1200; /* * Used to hold off page relocations into the cage until OBP has completed * its boot-time handoff of its resources to the kernel. */ int page_relocate_ready = 0; /* * Indicate if kmem64 allocation was done in small chunks */ int kmem64_smchunks = 0; /* * Enable some debugging messages concerning memory usage... */ #ifdef DEBUGGING_MEM static int debugging_mem; static void printmemlist(char *title, struct memlist *list) { if (!debugging_mem) return; printf("%s\n", title); while (list) { prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", (uint32_t)(list->ml_address >> 32), (uint32_t)list->ml_address, (uint32_t)(list->ml_size >> 32), (uint32_t)(list->ml_size)); list = list->ml_next; } } void printmemseg(struct memseg *memseg) { if (!debugging_mem) return; printf("memseg\n"); while (memseg) { prom_printf("\tpage = 0x%p, epage = 0x%p, " "pfn = 0x%x, epfn = 0x%x\n", memseg->pages, memseg->epages, memseg->pages_base, memseg->pages_end); memseg = memseg->next; } } #define debug_pause(str) halt((str)) #define MPRINTF(str) if (debugging_mem) prom_printf((str)) #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) #define MPRINTF3(str, a, b, c) \ if (debugging_mem) prom_printf((str), (a), (b), (c)) #else /* DEBUGGING_MEM */ #define MPRINTF(str) #define MPRINTF1(str, a) #define MPRINTF2(str, a, b) #define MPRINTF3(str, a, b, c) #endif /* DEBUGGING_MEM */ /* * * Kernel's Virtual Memory Layout. * /-----------------------\ * 0xFFFFFFFF.FFFFFFFF -| |- * | OBP's virtual page | * | tables | * 0xFFFFFFFC.00000000 -|-----------------------|- * : : * : : * -|-----------------------|- * | segzio | (base and size vary) * 0xFFFFFE00.00000000 -|-----------------------|- * | | Ultrasparc I/II support * | segkpm segment | up to 2TB of physical * | (64-bit kernel ONLY) | memory, VAC has 2 colors * | | * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment * : : * : : * 0xFFFFF810.00000000 -|-----------------------|- hole_end * | | ^ * | UltraSPARC I/II call | | * | bug requires an extra | | * | 4 GB of space between | | * | hole and used RAM | | * | | | * 0xFFFFF800.00000000 -|-----------------------|- | * | | | * | Virtual Address Hole | UltraSPARC * | on UltraSPARC I/II | I/II * ONLY * * | | | * 0x00000800.00000000 -|-----------------------|- | * | | | * | UltraSPARC I/II call | | * | bug requires an extra | | * | 4 GB of space between | | * | hole and used RAM | | * | | v * 0x000007FF.00000000 -|-----------------------|- hole_start ----- * : : ^ * : : | * |-----------------------| | * | | | * | ecache flush area | | * | (twice largest e$) | | * | | | * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ | * | overmapped area | alignend_end | * | (kmem64_alignsize | | * | boundary) | | * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | * | | | * | 64-bit kernel ONLY | | * | | | * | kmem64 segment | | * | | | * | (Relocated extra HME | Approximately * | block allocations, | 1 TB of virtual * | memnode freelists, | address space * | HME hash buckets, | | * | mml_table, kpmp_table,| | * | page_t array and | | * | hashblock pool to | | * | avoid hard-coded | | * | 32-bit vaddr | | * | limitations) | | * | | v * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) * | | * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) * | | * 0x00000300.00000000 -|-----------------------|- SYSBASE * : : * : : * -|-----------------------|- * | | * | segmap segment | SEGMAPSIZE (1/8th physmem, * | | 256G MAX) * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE * : : * : : * -|-----------------------|- * | | * | segkp | SEGKPSIZE (2GB) * | | * | | * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE * | | * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE * | | (SEGKPBASE - 0x400000) * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE * | | (MEMSCRUBBASE - NCARGS) * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE * | | (ARGSBASE - PPMAPSIZE) * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE * | | * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE * | | * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE * : : * : : * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR * | | * | OBP | * | | * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR * | kmdb | * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE * : : * : : * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 * | | * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = * | | ~64MB) * -|-----------------------| * | IVSIZE | * 0x00000000.70004000 -|-----------------------| * | panicbuf | * 0x00000000.70002000 -|-----------------------| * | PAGESIZE | * 0x00000000.70000000 -|-----------------------|- SYSBASE32 * | boot-time | * | temporary space | * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE * : : * : : * | | * |-----------------------|- econtig32 * | vm structures | * 0x00000000.01C00000 |-----------------------|- nalloc_end * | TSBs | * |-----------------------|- end/nalloc_base * | kernel data & bss | * 0x00000000.01800000 -|-----------------------| * : nucleus text hole : * 0x00000000.01400000 -|-----------------------| * : : * |-----------------------| * | module text | * |-----------------------|- e_text/modtext * | kernel text | * |-----------------------| * | trap table (48k) | * 0x00000000.01000000 -|-----------------------|- KERNELBASE * | reserved for trapstat |} TSTAT_TOTAL_SIZE * |-----------------------| * | | * | invalid | * | | * 0x00000000.00000000 _|_______________________| * * * * 32-bit User Virtual Memory Layout. * /-----------------------\ * | | * | invalid | * | | * 0xFFC00000 -|-----------------------|- USERLIMIT * | user stack | * : : * : : * : : * | user data | * -|-----------------------|- * | user text | * 0x00002000 -|-----------------------|- * | invalid | * 0x00000000 _|_______________________| * * * * 64-bit User Virtual Memory Layout. * /-----------------------\ * | | * | invalid | * | | * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT * | user stack | * : : * : : * : : * | user data | * -|-----------------------|- * | user text | * 0x00000000.01000000 -|-----------------------|- * | invalid | * 0x00000000.00000000 _|_______________________| */ extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); extern uint64_t ecache_flush_address(void); #pragma weak load_platform_modules #pragma weak plat_startup_memlist #pragma weak ecache_init_scrub_flush_area #pragma weak ecache_flush_address /* * By default the DR Cage is enabled for maximum OS * MPSS performance. Users needing to disable the cage mechanism * can set this variable to zero via /etc/system. * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) * will result in loss of DR functionality. * Platforms wishing to disable kernel Cage by default * should do so in their set_platform_defaults() routine. */ int kernel_cage_enable = 1; static void setup_cage_params(void) { void (*func)(void); func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); if (func != NULL) { (*func)(); return; } if (kernel_cage_enable == 0) { return; } kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256); if (kcage_on) { cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); } else { cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); } } /* * Machine-dependent startup code */ void startup(void) { startup_init(); if (&startup_platform) startup_platform(); startup_memlist(); startup_modules(); setup_cage_params(); startup_bop_gone(); startup_vm(); startup_end(); } struct regs sync_reg_buf; uint64_t sync_tt; void sync_handler(void) { struct panic_trap_info ti; int i; /* * Prevent trying to talk to the other CPUs since they are * sitting in the prom and won't reply. */ for (i = 0; i < NCPU; i++) { if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { cpu[i]->cpu_flags &= ~CPU_READY; cpu[i]->cpu_flags |= CPU_QUIESCED; CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); } } /* * We've managed to get here without going through the * normal panic code path. Try and save some useful * information. */ if (!panicstr && (curthread->t_panic_trap == NULL)) { ti.trap_type = sync_tt; ti.trap_regs = &sync_reg_buf; ti.trap_addr = NULL; ti.trap_mmu_fsr = 0x0; curthread->t_panic_trap = &ti; } /* * If we're re-entering the panic path, update the signature * block so that the SC knows we're in the second part of panic. */ if (panicstr) CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ panic("sync initiated"); } static void startup_init(void) { /* * We want to save the registers while we're still in OBP * so that we know they haven't been fiddled with since. * (In principle, OBP can't change them just because it * makes a callback, but we'd rather not depend on that * behavior.) */ char sync_str[] = "warning @ warning off : sync " "%%tl-c %%tstate h# %p x! " "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " "%%y h# %p l! %%tl-c %%tt h# %p x! " "sync ; warning !"; /* * 20 == num of %p substrings * 16 == max num of chars %p will expand to. */ char bp[sizeof (sync_str) + 16 * 20]; /* * Initialize ptl1 stack for the 1st CPU. */ ptl1_init_cpu(&cpu0); /* * Initialize the address map for cache consistent mappings * to random pages; must be done after vac_size is set. */ ppmapinit(); /* * Initialize the PROM callback handler. */ init_vx_handler(); /* * have prom call sync_callback() to handle the sync and * save some useful information which will be stored in the * core file later. */ (void) sprintf((char *)bp, sync_str, (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, (void *)&sync_reg_buf.r_y, (void *)&sync_tt); prom_interpret(bp, 0, 0, 0, 0, 0); add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); } size_t calc_pp_sz(pgcnt_t npages) { return (npages * sizeof (struct page)); } size_t calc_kpmpp_sz(pgcnt_t npages) { kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; kpm_pgsz = 1ull << kpm_pgshft; kpm_pgoff = kpm_pgsz - 1; kpmp2pshft = kpm_pgshft - PAGESHIFT; kpmpnpgs = 1 << kpmp2pshft; if (kpm_smallpages == 0) { /* * Avoid fragmentation problems in kphysm_init() * by allocating for all of physical memory */ kpm_npages = ptokpmpr(physinstalled); return (kpm_npages * sizeof (kpm_page_t)); } else { kpm_npages = npages; return (kpm_npages * sizeof (kpm_spage_t)); } } size_t calc_pagehash_sz(pgcnt_t npages) { /* LINTED */ ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page)))); /* * The page structure hash table size is a power of 2 * such that the average hash chain length is PAGE_HASHAVELEN. */ page_hashsz = npages / PAGE_HASHAVELEN; page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1), highbit(page_hashsz)); page_hashsz = 1 << page_hashsz_shift; return (page_hashsz * sizeof (struct page *)); } int testkmem64_smchunks = 0; int alloc_kmem64(caddr_t base, caddr_t end) { int i; caddr_t aligned_end = NULL; if (testkmem64_smchunks) return (1); /* * Make one large memory alloc after figuring out the 64-bit size. This * will enable use of the largest page size appropriate for the system * architecture. */ ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K)); ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc))); for (i = max_bootlp_tteszc; i >= TTE8K; i--) { size_t alloc_size, alignsize; #if !defined(C_OBP) unsigned long long pa; #endif /* !C_OBP */ if ((mmu_exported_pagesize_mask & (1 << i)) == 0) continue; alignsize = TTEBYTES(i); kmem64_szc = i; /* limit page size for small memory */ if (mmu_btop(alignsize) > (npages >> 2)) continue; aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize); alloc_size = aligned_end - base; #if !defined(C_OBP) if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) { if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) { kmem64_pabase = pa; kmem64_aligned_end = aligned_end; install_kmem64_tte(); break; } else { prom_free_phys(alloc_size, pa); } } #else /* !C_OBP */ if (prom_alloc(base, alloc_size, alignsize) == base) { kmem64_pabase = va_to_pa(kmem64_base); kmem64_aligned_end = aligned_end; break; } #endif /* !C_OBP */ if (i == TTE8K) { #ifdef sun4v /* return failure to try small allocations */ return (1); #else prom_panic("kmem64 allocation failure"); #endif } } ASSERT(aligned_end != NULL); return (0); } static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail; static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; #if !defined(C_OBP) /* * Install a temporary tte handler in OBP for kmem64 area. * * We map kmem64 area with large pages before the trap table is taken * over. Since OBP makes 8K mappings, it can create 8K tlb entries in * the same area. Duplicate tlb entries with different page sizes * cause unpredicatble behavior. To avoid this, we don't create * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to * OBP). Instead, we manage translations with a temporary va>tte-data * handler (kmem64-tte). This handler is replaced by unix-tte when * the trap table is taken over. * * The temporary handler knows the physical address of the kmem64 * area. It uses the prom's pgmap@ Forth word for other addresses. * * We have to use BOP_ALLOC() method for C-OBP platforms because * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti * sun4u platforms. On sun4u we flush tlb after trap table is taken * over if we use large pages for kernel heap and kmem64. Since sun4u * prom (unlike sun4v) calls va>tte-data first for client address * translation prom's ttes for kmem64 can't get into TLB even if we * later switch to prom's trap table again. C-OBP uses 4M pages for * client mappings when possible so on all platforms we get the * benefit from large mappings for kmem64 area immediately during * boot. * * pseudo code: * if (context != 0) { * return false * } else if (miss_va in range[kmem64_base, kmem64_end)) { * tte = tte_template + * (((miss_va & pagemask) - kmem64_base)); * return tte, true * } else { * return pgmap@ result * } */ char kmem64_obp_str[] = "h# %lx constant kmem64-base " "h# %lx constant kmem64-end " "h# %lx constant kmem64-pagemask " "h# %lx constant kmem64-template " ": kmem64-tte ( addr cnum -- false | tte-data true ) " " if ( addr ) " " drop false exit then ( false ) " " dup kmem64-base kmem64-end within if ( addr ) " " kmem64-pagemask and ( addr' ) " " kmem64-base - ( addr' ) " " kmem64-template + ( tte ) " " true ( tte true ) " " else ( addr ) " " pgmap@ ( tte ) " " dup 0< if true else drop false then ( tte true | false ) " " then ( tte true | false ) " "; " "' kmem64-tte is va>tte-data " ; static void install_kmem64_tte() { char b[sizeof (kmem64_obp_str) + (4 * 16)]; tte_t tte; PRM_DEBUG(kmem64_pabase); PRM_DEBUG(kmem64_szc); sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT, PROC_DATA | HAT_NOSYNC, kmem64_szc); PRM_DEBUG(tte.ll); (void) sprintf(b, kmem64_obp_str, kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll); ASSERT(strlen(b) < sizeof (b)); prom_interpret(b, 0, 0, 0, 0, 0); } #endif /* !C_OBP */ /* * As OBP takes up some RAM when the system boots, pages will already be "lost" * to the system and reflected in npages by the time we see it. * * We only want to allocate kernel structures in the 64-bit virtual address * space on systems with enough RAM to make the overhead of keeping track of * an extra kernel memory segment worthwhile. * * Since OBP has already performed its memory allocations by this point, if we * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map * memory in the 64-bit virtual address space; otherwise keep allocations * contiguous with we've mapped so far in the 32-bit virtual address space. */ #define MINMOVE_RAM_MB ((size_t)1900) #define MB_TO_BYTES(mb) ((mb) * 1048576ul) #define BYTES_TO_MB(b) ((b) / 1048576ul) pgcnt_t tune_npages = (pgcnt_t) (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); #pragma weak page_set_colorequiv_arr_cpu extern void page_set_colorequiv_arr_cpu(void); extern void page_set_colorequiv_arr(void); static pgcnt_t ramdisk_npages; static struct memlist *old_phys_avail; kcage_dir_t kcage_startup_dir = KCAGE_DOWN; static void startup_memlist(void) { size_t hmehash_sz, pagelist_sz, tt_sz; size_t psetable_sz; caddr_t alloc_base; caddr_t memspace; struct memlist *cur; size_t syslimit = (size_t)SYSLIMIT; size_t sysbase = (size_t)SYSBASE; /* * Initialize enough of the system to allow kmem_alloc to work by * calling boot to allocate its memory until the time that * kvm_init is completed. The page structs are allocated after * rounding up end to the nearest page boundary; the memsegs are * initialized and the space they use comes from the kernel heap. * With appropriate initialization, they can be reallocated later * to a size appropriate for the machine's configuration. * * At this point, memory is allocated for things that will never * need to be freed, this used to be "valloced". This allows a * savings as the pages don't need page structures to describe * them because them will not be managed by the vm system. */ /* * We're loaded by boot with the following configuration (as * specified in the sun4u/conf/Mapfile): * * text: 4 MB chunk aligned on a 4MB boundary * data & bss: 4 MB chunk aligned on a 4MB boundary * * These two chunks will eventually be mapped by 2 locked 4MB * ttes and will represent the nucleus of the kernel. This gives * us some free space that is already allocated, some or all of * which is made available to kernel module text. * * The free space in the data-bss chunk is used for nucleus * allocatable data structures and we reserve it using the * nalloc_base and nalloc_end variables. This space is currently * being used for hat data structures required for tlb miss * handling operations. We align nalloc_base to a l2 cache * linesize because this is the line size the hardware uses to * maintain cache coherency. * 512K is carved out for module data. */ moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); e_moddata = moddata + MODDATA; nalloc_base = e_moddata; nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); valloc_base = nalloc_base; /* * Calculate the start of the data segment. */ if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data) prom_panic("nucleus data overflow"); PRM_DEBUG(moddata); PRM_DEBUG(nalloc_base); PRM_DEBUG(nalloc_end); /* * Remember any slop after e_text so we can give it to the modules. */ PRM_DEBUG(e_text); modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text) prom_panic("nucleus text overflow"); modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - modtext; PRM_DEBUG(modtext); PRM_DEBUG(modtext_sz); init_boot_memlists(); copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, &boot_physavail, &boot_physavail_len, &boot_virtavail, &boot_virtavail_len); /* * Remember what the physically available highest page is * so that dumpsys works properly, and find out how much * memory is installed. */ installed_top_size_memlist_array(boot_physinstalled, boot_physinstalled_len, &physmax, &physinstalled); PRM_DEBUG(physinstalled); PRM_DEBUG(physmax); /* Fill out memory nodes config structure */ startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); /* * npages is the maximum of available physical memory possible. * (ie. it will never be more than this) * * When we boot from a ramdisk, the ramdisk memory isn't free, so * using phys_avail will underestimate what will end up being freed. * A better initial guess is just total memory minus the kernel text */ npages = physinstalled - btop(MMU_PAGESIZE4M); /* * First allocate things that can go in the nucleus data page * (fault status, TSBs, dmv, CPUs) */ ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); if (ndata_alloc_tsbs(&ndata, npages) != 0) cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); if (ndata_alloc_dmv(&ndata) != 0) cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); if (ndata_alloc_page_mutexs(&ndata) != 0) cmn_err(CE_PANIC, "no more nucleus memory after page free lists alloc"); if (ndata_alloc_hat(&ndata) != 0) cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0) cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc"); /* * WARNING WARNING WARNING WARNING WARNING WARNING WARNING * * There are comments all over the SFMMU code warning of dire * consequences if the TSBs are moved out of 32-bit space. This * is largely because the asm code uses "sethi %hi(addr)"-type * instructions which will not provide the expected result if the * address is a 64-bit one. * * WARNING WARNING WARNING WARNING WARNING WARNING WARNING */ alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); PRM_DEBUG(alloc_base); alloc_base = sfmmu_ktsb_alloc(alloc_base); alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(alloc_base); /* * Allocate IOMMU TSB array. We do this here so that the physical * memory gets deducted from the PROM's physical memory list. */ alloc_base = iommu_tsb_init(alloc_base); alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(alloc_base); /* * Allow for an early allocation of physically contiguous memory. */ alloc_base = contig_mem_prealloc(alloc_base, npages); /* * Platforms like Starcat and OPL need special structures assigned in * 32-bit virtual address space because their probing routines execute * FCode, and FCode can't handle 64-bit virtual addresses... */ if (&plat_startup_memlist) { alloc_base = plat_startup_memlist(alloc_base); alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(alloc_base); } /* * Save off where the contiguous allocations to date have ended * in econtig32. */ econtig32 = alloc_base; PRM_DEBUG(econtig32); if (econtig32 > (caddr_t)KERNEL_LIMIT32) cmn_err(CE_PANIC, "econtig32 too big"); pp_sz = calc_pp_sz(npages); PRM_DEBUG(pp_sz); if (kpm_enable) { kpm_pp_sz = calc_kpmpp_sz(npages); PRM_DEBUG(kpm_pp_sz); } hmehash_sz = calc_hmehash_sz(npages); PRM_DEBUG(hmehash_sz); pagehash_sz = calc_pagehash_sz(npages); PRM_DEBUG(pagehash_sz); pagelist_sz = calc_free_pagelist_sz(); PRM_DEBUG(pagelist_sz); #ifdef TRAPTRACE tt_sz = calc_traptrace_sz(); PRM_DEBUG(tt_sz); #else tt_sz = 0; #endif /* TRAPTRACE */ /* * Place the array that protects pp->p_selock in the kmem64 wad. */ pse_shift = size_pse_array(npages, max_ncpus); PRM_DEBUG(pse_shift); pse_table_size = 1 << pse_shift; PRM_DEBUG(pse_table_size); psetable_sz = roundup( pse_table_size * sizeof (pad_mutex_t), ecache_alignsize); PRM_DEBUG(psetable_sz); /* * Now allocate the whole wad */ kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz + pagelist_sz + tt_sz + psetable_sz; kmem64_sz = roundup(kmem64_sz, PAGESIZE); kmem64_base = (caddr_t)syslimit; kmem64_end = kmem64_base + kmem64_sz; if (alloc_kmem64(kmem64_base, kmem64_end)) { /* * Attempt for kmem64 to allocate one big * contiguous chunk of memory failed. * We get here because we are sun4v. * We will proceed by breaking up * the allocation into two attempts. * First, we allocate kpm_pp_sz, hmehash_sz, * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as * one contiguous chunk. This is a much smaller * chunk and we should get it, if not we panic. * Note that hmehash and tt need to be physically * (in the real address sense) contiguous. * Next, we use bop_alloc_chunk() to * to allocate the page_t structures. * This will allow the page_t to be allocated * in multiple smaller chunks. * In doing so, the assumption that page_t is * physically contiguous no longer hold, this is ok * for sun4v but not for sun4u. */ size_t tmp_size; caddr_t tmp_base; pp_sz = roundup(pp_sz, PAGESIZE); /* * Allocate kpm_pp_sz, hmehash_sz, * pagehash_sz, pagelist_sz, tt_sz & psetable_sz */ tmp_base = kmem64_base + pp_sz; tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz + pagelist_sz + tt_sz + psetable_sz, PAGESIZE); if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0) prom_panic("kmem64 prom_alloc contig failed"); PRM_DEBUG(tmp_base); PRM_DEBUG(tmp_size); /* * Allocate the page_ts */ if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0) prom_panic("kmem64 bop_alloc_chunk page_t failed"); PRM_DEBUG(kmem64_base); PRM_DEBUG(pp_sz); kmem64_aligned_end = kmem64_base + pp_sz + tmp_size; ASSERT(kmem64_aligned_end >= kmem64_end); kmem64_smchunks = 1; } else { /* * We need to adjust pp_sz for the normal * case where kmem64 can allocate one large chunk */ if (kpm_smallpages == 0) { npages -= kmem64_sz / (PAGESIZE + sizeof (struct page)); } else { npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) + sizeof (kpm_spage_t)); } pp_sz = npages * sizeof (struct page); } if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase)) cmn_err(CE_PANIC, "not enough kmem64 space"); PRM_DEBUG(kmem64_base); PRM_DEBUG(kmem64_end); PRM_DEBUG(kmem64_aligned_end); /* * ... and divy it up */ alloc_base = kmem64_base; pp_base = (page_t *)alloc_base; alloc_base += pp_sz; alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(pp_base); PRM_DEBUG(npages); if (kpm_enable) { kpm_pp_base = alloc_base; if (kpm_smallpages == 0) { /* kpm_npages based on physinstalled, don't reset */ kpm_pp_sz = kpm_npages * sizeof (kpm_page_t); } else { kpm_npages = ptokpmpr(npages); kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t); } alloc_base += kpm_pp_sz; alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(kpm_pp_base); } alloc_base = alloc_hmehash(alloc_base); alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(alloc_base); page_hash = (page_t **)alloc_base; alloc_base += pagehash_sz; alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(page_hash); alloc_base = alloc_page_freelists(alloc_base); alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(alloc_base); #ifdef TRAPTRACE ttrace_buf = alloc_base; alloc_base += tt_sz; alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(alloc_base); #endif /* TRAPTRACE */ pse_mutex = (pad_mutex_t *)alloc_base; alloc_base += psetable_sz; alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); PRM_DEBUG(alloc_base); /* * Note that if we use small chunk allocations for * kmem64, we need to ensure kmem64_end is the same as * kmem64_aligned_end to prevent subsequent logic from * trying to reuse the overmapping. * Otherwise we adjust kmem64_end to what we really allocated. */ if (kmem64_smchunks) { kmem64_end = kmem64_aligned_end; } else { kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE); } kmem64_sz = kmem64_end - kmem64_base; if (&ecache_init_scrub_flush_area) { alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end); ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase)); } /* * If physmem is patched to be non-zero, use it instead of * the monitor value unless physmem is larger than the total * amount of memory on hand. */ if (physmem == 0 || physmem > npages) physmem = npages; /* * root_is_ramdisk is set via /etc/system when the ramdisk miniroot * is mounted as root. This memory is held down by OBP and unlike * the stub boot_archive is never released. * * In order to get things sized correctly on lower memory * machines (where the memory used by the ramdisk represents * a significant portion of memory), physmem is adjusted. * * This is done by subtracting the ramdisk_size which is set * to the size of the ramdisk (in Kb) in /etc/system at the * time the miniroot archive is constructed. */ if (root_is_ramdisk == B_TRUE) { ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE; physmem -= ramdisk_npages; } if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0)) cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc"); /* * Allocate space for the interrupt vector table. */ memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE); if (memspace != (caddr_t)intr_vec_table) prom_panic("interrupt vector table allocation failure"); /* * Between now and when we finish copying in the memory lists, * allocations happen so the space gets fragmented and the * lists longer. Leave enough space for lists twice as * long as we have now; then roundup to a pagesize. */ memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() + prom_phys_avail_len() + prom_virt_avail_len()); memlist_sz *= 2; memlist_sz = roundup(memlist_sz, PAGESIZE); memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize); if (memspace == NULL) cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc"); memlist = (struct memlist *)memspace; memlist_end = (char *)memspace + memlist_sz; PRM_DEBUG(memlist); PRM_DEBUG(memlist_end); PRM_DEBUG(sysbase); PRM_DEBUG(syslimit); kernelheap_init((void *)sysbase, (void *)syslimit, (caddr_t)sysbase + PAGESIZE, NULL, NULL); /* * Take the most current snapshot we can by calling mem-update. */ copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, &boot_physavail, &boot_physavail_len, &boot_virtavail, &boot_virtavail_len); /* * Remove the space used by prom_alloc from the kernel heap * plus the area actually used by the OBP (if any) * ignoring virtual addresses in virt_avail, above syslimit. */ virt_avail = memlist; copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) { uint64_t range_base, range_size; if ((range_base = cur->ml_address + cur->ml_size) < (uint64_t)sysbase) continue; if (range_base >= (uint64_t)syslimit) break; /* * Limit the range to end at syslimit. */ range_size = MIN(cur->ml_next->ml_address, (uint64_t)syslimit) - range_base; (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, 0, 0, (void *)range_base, (void *)(range_base + range_size), VM_NOSLEEP | VM_BESTFIT | VM_PANIC); } phys_avail = memlist; copy_memlist(boot_physavail, boot_physavail_len, &memlist); /* * Add any extra memory at the end of the ndata region if there's at * least a page to add. There might be a few more pages available in * the middle of the ndata region, but for now they are ignored. */ nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end); if (nalloc_base == NULL) nalloc_base = nalloc_end; ndata_remain_sz = nalloc_end - nalloc_base; /* * Copy physinstalled list into kernel space. */ phys_install = memlist; copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); /* * Create list of physical addrs we don't need pp's for: * kernel text 4M page * kernel data 4M page - ndata_remain_sz * kmem64 pages * * NB if adding any pages here, make sure no kpm page * overlaps can occur (see ASSERTs in kphysm_memsegs) */ nopp_list = memlist; memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist); memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz, &memlist, &nopp_list); /* Don't add to nopp_list if kmem64 was allocated in smchunks */ if (!kmem64_smchunks) memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list); if ((caddr_t)memlist > (memspace + memlist_sz)) prom_panic("memlist overflow"); /* * Size the pcf array based on the number of cpus in the box at * boot time. */ pcf_init(); /* * Initialize the page structures from the memory lists. */ kphysm_init(); availrmem_initial = availrmem = freemem; PRM_DEBUG(availrmem); /* * Some of the locks depend on page_hashsz being set! * kmem_init() depends on this; so, keep it here. */ page_lock_init(); /* * Initialize kernel memory allocator. */ kmem_init(); /* * Factor in colorequiv to check additional 'equivalent' bins */ if (&page_set_colorequiv_arr_cpu != NULL) page_set_colorequiv_arr_cpu(); else page_set_colorequiv_arr(); /* * Initialize bp_mapin(). */ bp_init(shm_alignment, HAT_STRICTORDER); /* * Reserve space for MPO mblock structs from the 32-bit heap. */ if (mpo_heap32_bufsz > (size_t)0) { (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz, PAGESIZE, 0, 0, mpo_heap32_buf, mpo_heap32_buf + mpo_heap32_bufsz, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); } mem_config_init(); } static void startup_modules(void) { int nhblk1, nhblk8; size_t nhblksz; pgcnt_t pages_per_hblk; size_t hme8blk_sz, hme1blk_sz; /* * Let the platforms have a chance to change default * values before reading system file. */ if (&set_platform_defaults) set_platform_defaults(); /* * Calculate default settings of system parameters based upon * maxusers, yet allow to be overridden via the /etc/system file. */ param_calc(0); mod_setup(); /* * If this is a positron, complain and halt. */ if (&iam_positron && iam_positron()) { cmn_err(CE_WARN, "This hardware platform is not supported" " by this release of Solaris.\n"); #ifdef DEBUG prom_enter_mon(); /* Type 'go' to resume */ cmn_err(CE_WARN, "Booting an unsupported platform.\n"); cmn_err(CE_WARN, "Booting with down-rev firmware.\n"); #else /* DEBUG */ halt(0); #endif /* DEBUG */ } /* * If we are running firmware that isn't 64-bit ready * then complain and halt. */ do_prom_version_check(); /* * Initialize system parameters */ param_init(); /* * maxmem is the amount of physical memory we're playing with. */ maxmem = physmem; /* Set segkp limits. */ ncbase = kdi_segdebugbase; ncend = kdi_segdebugbase; /* * Initialize the hat layer. */ hat_init(); /* * Initialize segment management stuff. */ seg_init(); /* * Create the va>tte handler, so the prom can understand * kernel translations. The handler is installed later, just * as we are about to take over the trap table from the prom. */ create_va_to_tte(); /* * Load the forthdebugger (optional) */ forthdebug_init(); /* * Create OBP node for console input callbacks * if it is needed. */ startup_create_io_node(); if (modloadonly("fs", "specfs") == -1) halt("Can't load specfs"); if (modloadonly("fs", "devfs") == -1) halt("Can't load devfs"); if (modloadonly("fs", "procfs") == -1) halt("Can't load procfs"); if (modloadonly("misc", "swapgeneric") == -1) halt("Can't load swapgeneric"); (void) modloadonly("sys", "lbl_edition"); dispinit(); /* * Infer meanings to the members of the idprom buffer. */ parse_idprom(); /* Read cluster configuration data. */ clconf_init(); setup_ddi(); /* * Lets take this opportunity to load the root device. */ if (loadrootmodules() != 0) debug_enter("Can't load the root filesystem"); /* * Load tod driver module for the tod part found on this system. * Recompute the cpu frequency/delays based on tod as tod part * tends to keep time more accurately. */ if (&load_tod_module) load_tod_module(); /* * Allow platforms to load modules which might * be needed after bootops are gone. */ if (&load_platform_modules) load_platform_modules(); setcpudelay(); copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, &boot_physavail, &boot_physavail_len, &boot_virtavail, &boot_virtavail_len); /* * Calculation and allocation of hmeblks needed to remap * the memory allocated by PROM till now. * Overestimate the number of hblk1 elements by assuming * worst case of TTE64K mappings. * sfmmu_hblk_alloc will panic if this calculation is wrong. */ bop_alloc_pages = btopr(kmem64_end - kmem64_base); pages_per_hblk = btop(HMEBLK_SPAN(TTE64K)); bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min; bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); /* sfmmu_init_nucleus_hblks expects properly aligned data structures */ hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); bop_alloc_pages += btopr(nhblk1 * hme1blk_sz); pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); nhblk8 = 0; while (bop_alloc_pages > 1) { bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); nhblk8 += bop_alloc_pages /= pages_per_hblk; bop_alloc_pages *= hme8blk_sz; bop_alloc_pages = btopr(bop_alloc_pages); } nhblk8 += 2; /* * Since hblk8's can hold up to 64k of mappings aligned on a 64k * boundary, the number of hblk8's needed to map the entries in the * boot_virtavail list needs to be adjusted to take this into * consideration. Thus, we need to add additional hblk8's since it * is possible that an hblk8 will not have all 8 slots used due to * alignment constraints. Since there were boot_virtavail_len entries * in that list, we need to add that many hblk8's to the number * already calculated to make sure we don't underestimate. */ nhblk8 += boot_virtavail_len; nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; /* Allocate in pagesize chunks */ nhblksz = roundup(nhblksz, MMU_PAGESIZE); hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); } static void startup_bop_gone(void) { /* * Destroy the MD initialized at startup * The startup initializes the MD framework * using prom and BOP alloc free it now. */ mach_descrip_startup_fini(); /* * We're done with prom allocations. */ bop_fini(); copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, &boot_physavail, &boot_physavail_len, &boot_virtavail, &boot_virtavail_len); /* * setup physically contiguous area twice as large as the ecache. * this is used while doing displacement flush of ecaches */ if (&ecache_flush_address) { ecache_flushaddr = ecache_flush_address(); if (ecache_flushaddr == (uint64_t)-1) { cmn_err(CE_PANIC, "startup: no memory to set ecache_flushaddr"); } } /* * Virtual available next. */ ASSERT(virt_avail != NULL); memlist_free_list(virt_avail); virt_avail = memlist; copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); } /* * startup_fixup_physavail - called from mach_sfmmu.c after the final * allocations have been performed. We can't call it in startup_bop_gone * since later operations can cause obp to allocate more memory. */ void startup_fixup_physavail(void) { struct memlist *cur; size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end; PRM_DEBUG(kmem64_overmap_size); /* * take the most current snapshot we can by calling mem-update */ copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, &boot_physavail, &boot_physavail_len, &boot_virtavail, &boot_virtavail_len); /* * Copy phys_avail list, again. * Both the kernel/boot and the prom have been allocating * from the original list we copied earlier. */ cur = memlist; copy_memlist(boot_physavail, boot_physavail_len, &memlist); /* * Add any unused kmem64 memory from overmapped page * (Note: va_to_pa does not work for kmem64_end) */ if (kmem64_overmap_size) { memlist_add(kmem64_pabase + (kmem64_end - kmem64_base), kmem64_overmap_size, &memlist, &cur); } /* * Add any extra memory after e_data we added to the phys_avail list * back to the old list. */ if (ndata_remain_sz >= MMU_PAGESIZE) memlist_add(va_to_pa(nalloc_base), (uint64_t)ndata_remain_sz, &memlist, &cur); /* * There isn't any bounds checking on the memlist area * so ensure it hasn't overgrown. */ if ((caddr_t)memlist > (caddr_t)memlist_end) cmn_err(CE_PANIC, "startup: memlist size exceeded"); /* * The kernel removes the pages that were allocated for it from * the freelist, but we now have to find any -extra- pages that * the prom has allocated for it's own book-keeping, and remove * them from the freelist too. sigh. */ sync_memlists(phys_avail, cur); ASSERT(phys_avail != NULL); old_phys_avail = phys_avail; phys_avail = cur; } void update_kcage_ranges(uint64_t addr, uint64_t len) { pfn_t base = btop(addr); pgcnt_t num = btop(len); int rv; rv = kcage_range_add(base, num, kcage_startup_dir); if (rv == ENOMEM) { cmn_err(CE_WARN, "%ld megabytes not available to kernel cage", (len == 0 ? 0 : BYTES_TO_MB(len))); } else if (rv != 0) { /* catch this in debug kernels */ ASSERT(0); cmn_err(CE_WARN, "unexpected kcage_range_add" " return value %d", rv); } } static void startup_vm(void) { size_t i; struct segmap_crargs a; struct segkpm_crargs b; uint64_t avmem; caddr_t va; pgcnt_t max_phys_segkp; int mnode; extern int use_brk_lpg, use_stk_lpg; /* * get prom's mappings, create hments for them and switch * to the kernel context. */ hat_kern_setup(); /* * Take over trap table */ setup_trap_table(); /* * Install the va>tte handler, so that the prom can handle * misses and understand the kernel table layout in case * we need call into the prom. */ install_va_to_tte(); /* * Set a flag to indicate that the tba has been taken over. */ tba_taken_over = 1; /* initialize MMU primary context register */ mmu_init_kcontext(); /* * The boot cpu can now take interrupts, x-calls, x-traps */ CPUSET_ADD(cpu_ready_set, CPU->cpu_id); CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); /* * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. */ tbr_wr_addr_inited = 1; /* * Initialize VM system, and map kernel address space. */ kvm_init(); ASSERT(old_phys_avail != NULL && phys_avail != NULL); if (kernel_cage_enable) { diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges); } memlist_free_list(old_phys_avail); /* * If the following is true, someone has patched * phsymem to be less than the number of pages that * the system actually has. Remove pages until system * memory is limited to the requested amount. Since we * have allocated page structures for all pages, we * correct the amount of memory we want to remove * by the size of the memory used to hold page structures * for the non-used pages. */ if (physmem + ramdisk_npages < npages) { pgcnt_t diff, off; struct page *pp; struct seg kseg; cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); off = 0; diff = npages - (physmem + ramdisk_npages); diff -= mmu_btopr(diff * sizeof (struct page)); kseg.s_as = &kas; while (diff--) { pp = page_create_va(&unused_pages_vp, (offset_t)off, MMU_PAGESIZE, PG_WAIT | PG_EXCL, &kseg, (caddr_t)off); if (pp == NULL) cmn_err(CE_PANIC, "limited physmem too much!"); page_io_unlock(pp); page_downgrade(pp); availrmem--; off += MMU_PAGESIZE; } } /* * When printing memory, show the total as physmem less * that stolen by a debugger. */ cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", (ulong_t)(physinstalled) << (PAGESHIFT - 10), (ulong_t)(physinstalled) << (PAGESHIFT - 12)); avmem = (uint64_t)freemem << PAGESHIFT; cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); /* * For small memory systems disable automatic large pages. */ if (physmem < privm_lpg_min_physmem) { use_brk_lpg = 0; use_stk_lpg = 0; } /* * Perform platform specific freelist processing */ if (&plat_freelist_process) { for (mnode = 0; mnode < max_mem_nodes; mnode++) if (mem_node_config[mnode].exists) plat_freelist_process(mnode); } /* * Initialize the segkp segment type. We position it * after the configured tables and buffers (whose end * is given by econtig) and before V_WKBASE_ADDR. * Also in this area is segkmap (size SEGMAPSIZE). */ /* XXX - cache alignment? */ va = (caddr_t)SEGKPBASE; ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); max_phys_segkp = (physmem * 2); if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { segkpsize = btop(SEGKPDEFSIZE); cmn_err(CE_WARN, "Illegal value for segkpsize. " "segkpsize has been reset to %ld pages", segkpsize); } i = ptob(MIN(segkpsize, max_phys_segkp)); rw_enter(&kas.a_lock, RW_WRITER); if (seg_attach(&kas, va, i, segkp) < 0) cmn_err(CE_PANIC, "startup: cannot attach segkp"); if (segkp_create(segkp) != 0) cmn_err(CE_PANIC, "startup: segkp_create failed"); rw_exit(&kas.a_lock); /* * kpm segment */ segmap_kpm = kpm_enable && segmap_kpm && PAGESIZE == MAXBSIZE; if (kpm_enable) { rw_enter(&kas.a_lock, RW_WRITER); /* * The segkpm virtual range range is larger than the * actual physical memory size and also covers gaps in * the physical address range for the following reasons: * . keep conversion between segkpm and physical addresses * simple, cheap and unambiguous. * . avoid extension/shrink of the the segkpm in case of DR. * . avoid complexity for handling of virtual addressed * caches, segkpm and the regular mapping scheme must be * kept in sync wrt. the virtual color of mapped pages. * Any accesses to virtual segkpm ranges not backed by * physical memory will fall through the memseg pfn hash * and will be handled in segkpm_fault. * Additional kpm_size spaces needed for vac alias prevention. */ if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, segkpm) < 0) cmn_err(CE_PANIC, "cannot attach segkpm"); b.prot = PROT_READ | PROT_WRITE; b.nvcolors = shm_alignment >> MMU_PAGESHIFT; if (segkpm_create(segkpm, (caddr_t)&b) != 0) panic("segkpm_create segkpm"); rw_exit(&kas.a_lock); mach_kpm_init(); } va = kpm_vbase + (kpm_size * vac_colors); if (!segzio_fromheap) { size_t size; size_t physmem_b = mmu_ptob(physmem); /* size is in bytes, segziosize is in pages */ if (segziosize == 0) { size = physmem_b; } else { size = mmu_ptob(segziosize); } if (size < SEGZIOMINSIZE) { size = SEGZIOMINSIZE; } else if (size > SEGZIOMAXSIZE) { size = SEGZIOMAXSIZE; /* * On 64-bit x86, we only have 2TB of KVA. This exists * for parity with x86. * * SEGZIOMAXSIZE is capped at 512gb so that segzio * doesn't consume all of KVA. However, if we have a * system that has more thant 512gb of physical memory, * we can actually consume about half of the difference * between 512gb and the rest of the available physical * memory. */ if (physmem_b > SEGZIOMAXSIZE) { size += (physmem_b - SEGZIOMAXSIZE) / 2; } } segziosize = mmu_btop(roundup(size, MMU_PAGESIZE)); /* put the base of the ZIO segment after the kpm segment */ segzio_base = va; va += mmu_ptob(segziosize); PRM_DEBUG(segziosize); PRM_DEBUG(segzio_base); /* * On some platforms, kvm_init is called after the kpm * sizes have been determined. On SPARC, kvm_init is called * before, so we have to attach the kzioseg after kvm is * initialized, otherwise we'll try to allocate from the boot * area since the kernel heap hasn't yet been configured. */ rw_enter(&kas.a_lock, RW_WRITER); (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), &kzioseg); (void) segkmem_zio_create(&kzioseg); /* create zio area covering new segment */ segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); rw_exit(&kas.a_lock); } if (ppvm_enable) { caddr_t ppvm_max; /* * ppvm refers to the static VA space used to map * the page_t's for dynamically added memory. * * ppvm_base should not cross a potential VA hole. * * ppvm_size should be large enough to map the * page_t's needed to manage all of KPM range. */ ppvm_size = roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t), MMU_PAGESIZE); ppvm_max = (caddr_t)(0ull - ppvm_size); ppvm_base = (page_t *)va; if ((caddr_t)ppvm_base <= hole_end) { cmn_err(CE_WARN, "Memory DR disabled: invalid DR map base: 0x%p\n", (void *)ppvm_base); ppvm_enable = 0; } else if ((caddr_t)ppvm_base > ppvm_max) { uint64_t diff = (caddr_t)ppvm_base - ppvm_max; cmn_err(CE_WARN, "Memory DR disabled: insufficient DR map size:" " 0x%lx (needed 0x%lx)\n", ppvm_size - diff, ppvm_size); ppvm_enable = 0; } PRM_DEBUG(ppvm_size); PRM_DEBUG(ppvm_base); } /* * Now create generic mapping segment. This mapping * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total * virtual address is greater than the amount of free * memory that is available, then we trim back the * segment size to that amount */ va = (caddr_t)SEGMAPBASE; /* * 1201049: segkmap base address must be MAXBSIZE aligned */ ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); /* * Set size of segmap to percentage of freemem at boot, * but stay within the allowable range * Note we take percentage before converting from pages * to bytes to avoid an overflow on 32-bit kernels. */ i = mmu_ptob((freemem * segmap_percent) / 100); if (i < MINMAPSIZE) i = MINMAPSIZE; if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ rw_enter(&kas.a_lock, RW_WRITER); if (seg_attach(&kas, va, i, segkmap) < 0) cmn_err(CE_PANIC, "cannot attach segkmap"); a.prot = PROT_READ | PROT_WRITE; a.shmsize = shm_alignment; a.nfreelist = 0; /* use segmap driver defaults */ if (segmap_create(segkmap, (caddr_t)&a) != 0) panic("segmap_create segkmap"); rw_exit(&kas.a_lock); segdev_init(); } static void startup_end(void) { if ((caddr_t)memlist > (caddr_t)memlist_end) panic("memlist overflow 2"); memlist_free_block((caddr_t)memlist, ((caddr_t)memlist_end - (caddr_t)memlist)); memlist = NULL; /* enable page_relocation since OBP is now done */ page_relocate_ready = 1; /* * Perform tasks that get done after most of the VM * initialization has been done but before the clock * and other devices get started. */ kern_setup1(); /* * Perform CPC initialization for this CPU. */ kcpc_hw_init(); /* * Intialize the VM arenas for allocating physically * contiguus memory chunk for interrupt queues snd * allocate/register boot cpu's queues, if any and * allocate dump buffer for sun4v systems to store * extra crash information during crash dump */ contig_mem_init(); mach_descrip_init(); if (cpu_intrq_setup(CPU)) { cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id); } cpu_intrq_register(CPU); mach_htraptrace_setup(CPU->cpu_id); mach_htraptrace_configure(CPU->cpu_id); mach_dump_buffer_init(); /* * Initialize interrupt related stuff */ cpu_intr_alloc(CPU, NINTR_THREADS); (void) splzs(); /* allow hi clock ints but not zs */ /* * Initialize errors. */ error_init(); /* * Note that we may have already used kernel bcopy before this * point - but if you really care about this, adb the use_hw_* * variables to 0 before rebooting. */ mach_hw_copy_limit(); /* * Install the "real" preemption guards before DDI services * are available. */ (void) prom_set_preprom(kern_preprom); (void) prom_set_postprom(kern_postprom); CPU->cpu_m.mutex_ready = 1; /* * Initialize segnf (kernel support for non-faulting loads). */ segnf_init(); /* * Configure the root devinfo node. */ configure(); /* set up devices */ mach_cpu_halt_idle(); } void post_startup(void) { #ifdef PTL1_PANIC_DEBUG extern void init_ptl1_thread(void); #endif /* PTL1_PANIC_DEBUG */ extern void abort_sequence_init(void); /* * Set the system wide, processor-specific flags to be passed * to userland via the aux vector for performance hints and * instruction set extensions. */ bind_hwcap(); /* * Startup memory scrubber (if any) */ mach_memscrub(); /* * Allocate soft interrupt to handle abort sequence. */ abort_sequence_init(); /* * Configure the rest of the system. * Perform forceloading tasks for /etc/system. */ (void) mod_sysctl(SYS_FORCELOAD, NULL); /* * ON4.0: Force /proc module in until clock interrupt handle fixed * ON4.0: This must be fixed or restated in /etc/systems. */ (void) modload("fs", "procfs"); /* load machine class specific drivers */ load_mach_drivers(); /* load platform specific drivers */ if (&load_platform_drivers) load_platform_drivers(); /* load vis simulation module, if we are running w/fpu off */ if (!fpu_exists) { if (modload("misc", "vis") == -1) halt("Can't load vis"); } mach_fpras(); maxmem = freemem; pg_init(); #ifdef PTL1_PANIC_DEBUG init_ptl1_thread(); #endif /* PTL1_PANIC_DEBUG */ } #ifdef PTL1_PANIC_DEBUG int ptl1_panic_test = 0; int ptl1_panic_xc_one_test = 0; int ptl1_panic_xc_all_test = 0; int ptl1_panic_xt_one_test = 0; int ptl1_panic_xt_all_test = 0; kthread_id_t ptl1_thread_p = NULL; kcondvar_t ptl1_cv; kmutex_t ptl1_mutex; int ptl1_recurse_count_threshold = 0x40; int ptl1_recurse_trap_threshold = 0x3d; extern void ptl1_recurse(int, int); extern void ptl1_panic_xt(int, int); /* * Called once per second by timeout() to wake up * the ptl1_panic thread to see if it should cause * a trap to the ptl1_panic() code. */ /* ARGSUSED */ static void ptl1_wakeup(void *arg) { mutex_enter(&ptl1_mutex); cv_signal(&ptl1_cv); mutex_exit(&ptl1_mutex); } /* * ptl1_panic cross call function: * Needed because xc_one() and xc_some() can pass * 64 bit args but ptl1_recurse() expects ints. */ static void ptl1_panic_xc(void) { ptl1_recurse(ptl1_recurse_count_threshold, ptl1_recurse_trap_threshold); } /* * The ptl1 thread waits for a global flag to be set * and uses the recurse thresholds to set the stack depth * to cause a ptl1_panic() directly via a call to ptl1_recurse * or indirectly via the cross call and cross trap functions. * * This is useful testing stack overflows and normal * ptl1_panic() states with a know stack frame. * * ptl1_recurse() is an asm function in ptl1_panic.s that * sets the {In, Local, Out, and Global} registers to a * know state on the stack and just prior to causing a * test ptl1_panic trap. */ static void ptl1_thread(void) { mutex_enter(&ptl1_mutex); while (ptl1_thread_p) { cpuset_t other_cpus; int cpu_id; int my_cpu_id; int target_cpu_id; int target_found; if (ptl1_panic_test) { ptl1_recurse(ptl1_recurse_count_threshold, ptl1_recurse_trap_threshold); } /* * Find potential targets for x-call and x-trap, * if any exist while preempt is disabled we * start a ptl1_panic if requested via a * globals. */ kpreempt_disable(); my_cpu_id = CPU->cpu_id; other_cpus = cpu_ready_set; CPUSET_DEL(other_cpus, CPU->cpu_id); target_found = 0; if (!CPUSET_ISNULL(other_cpus)) { /* * Pick the first one */ for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { if (cpu_id == my_cpu_id) continue; if (CPU_XCALL_READY(cpu_id)) { target_cpu_id = cpu_id; target_found = 1; break; } } ASSERT(target_found); if (ptl1_panic_xc_one_test) { xc_one(target_cpu_id, (xcfunc_t *)ptl1_panic_xc, 0, 0); } if (ptl1_panic_xc_all_test) { xc_some(other_cpus, (xcfunc_t *)ptl1_panic_xc, 0, 0); } if (ptl1_panic_xt_one_test) { xt_one(target_cpu_id, (xcfunc_t *)ptl1_panic_xt, 0, 0); } if (ptl1_panic_xt_all_test) { xt_some(other_cpus, (xcfunc_t *)ptl1_panic_xt, 0, 0); } } kpreempt_enable(); (void) timeout(ptl1_wakeup, NULL, hz); (void) cv_wait(&ptl1_cv, &ptl1_mutex); } mutex_exit(&ptl1_mutex); } /* * Called during early startup to create the ptl1_thread */ void init_ptl1_thread(void) { ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, &p0, TS_RUN, 0); } #endif /* PTL1_PANIC_DEBUG */ static void memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp) { struct memlist *new; new = *memlistp; new->ml_address = start; new->ml_size = len; *memlistp = new + 1; } /* * Add to a memory list. * start = start of new memory segment * len = length of new memory segment in bytes * memlistp = pointer to array of available memory segment structures * curmemlistp = memory list to which to add segment. */ static void memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, struct memlist **curmemlistp) { struct memlist *new = *memlistp; memlist_new(start, len, memlistp); memlist_insert(new, curmemlistp); } static int ndata_alloc_memseg(struct memlist *ndata, size_t avail) { int nseg; size_t memseg_sz; struct memseg *msp; /* * The memseg list is for the chunks of physical memory that * will be managed by the vm system. The number calculated is * a guess as boot may fragment it more when memory allocations * are made before kphysm_init(). */ memseg_sz = (avail + 10) * sizeof (struct memseg); memseg_sz = roundup(memseg_sz, PAGESIZE); nseg = memseg_sz / sizeof (struct memseg); msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize); if (msp == NULL) return (1); PRM_DEBUG(memseg_free); while (nseg--) { msp->next = memseg_free; memseg_free = msp; msp++; } return (0); } /* * In the case of architectures that support dynamic addition of * memory at run-time there are two cases where memsegs need to * be initialized and added to the memseg list. * 1) memsegs that are constructed at startup. * 2) memsegs that are constructed at run-time on * hot-plug capable architectures. * This code was originally part of the function kphysm_init(). */ static void memseg_list_add(struct memseg *memsegp) { struct memseg **prev_memsegp; pgcnt_t num; /* insert in memseg list, decreasing number of pages order */ num = MSEG_NPAGES(memsegp); for (prev_memsegp = &memsegs; *prev_memsegp; prev_memsegp = &((*prev_memsegp)->next)) { if (num > MSEG_NPAGES(*prev_memsegp)) break; } memsegp->next = *prev_memsegp; *prev_memsegp = memsegp; if (kpm_enable) { memsegp->nextpa = (memsegp->next) ? va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; if (prev_memsegp != &memsegs) { struct memseg *msp; msp = (struct memseg *)((caddr_t)prev_memsegp - offsetof(struct memseg, next)); msp->nextpa = va_to_pa(memsegp); } else { memsegspa = va_to_pa(memsegs); } } } /* * PSM add_physmem_cb(). US-II and newer processors have some * flavor of the prefetch capability implemented. We exploit * this capability for optimum performance. */ #define PREFETCH_BYTES 64 void add_physmem_cb(page_t *pp, pfn_t pnum) { extern void prefetch_page_w(void *); pp->p_pagenum = pnum; /* * Prefetch one more page_t into E$. To prevent future * mishaps with the sizeof(page_t) changing on us, we * catch this on debug kernels if we can't bring in the * entire hpage with 2 PREFETCH_BYTES reads. See * also, sun4u/cpu/cpu_module.c */ /*LINTED*/ ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); prefetch_page_w((char *)pp); } /* * Find memseg with given pfn */ static struct memseg * memseg_find(pfn_t base, pfn_t *next) { struct memseg *seg; if (next != NULL) *next = LONG_MAX; for (seg = memsegs; seg != NULL; seg = seg->next) { if (base >= seg->pages_base && base < seg->pages_end) return (seg); if (next != NULL && seg->pages_base > base && seg->pages_base < *next) *next = seg->pages_base; } return (NULL); } /* * Put page allocated by OBP on prom_ppages */ static void kphysm_erase(uint64_t addr, uint64_t len) { struct page *pp; struct memseg *seg; pfn_t base = btop(addr), next; pgcnt_t num = btop(len); while (num != 0) { pgcnt_t off, left; seg = memseg_find(base, &next); if (seg == NULL) { if (next == LONG_MAX) break; left = MIN(next - base, num); base += left, num -= left; continue; } off = base - seg->pages_base; pp = seg->pages + off; left = num - MIN(num, (seg->pages_end - seg->pages_base) - off); while (num != left) { /* * init it, lock it, and hashin on prom_pages vp. * * Mark it as NONRELOC to let DR know the page * is locked long term, otherwise DR hangs when * trying to remove those pages. * * XXX vnode offsets on the prom_ppages vnode * are page numbers (gack) for >32 bit * physical memory machines. */ PP_SETNORELOC(pp); add_physmem_cb(pp, base); if (page_trylock(pp, SE_EXCL) == 0) cmn_err(CE_PANIC, "prom page locked"); (void) page_hashin(pp, &promvp, (offset_t)base, NULL); (void) page_pp_lock(pp, 0, 1); pp++, base++, num--; } } } static page_t *ppnext; static pgcnt_t ppleft; static void *kpm_ppnext; static pgcnt_t kpm_ppleft; /* * Create a memseg */ static void kphysm_memseg(uint64_t addr, uint64_t len) { pfn_t base = btop(addr); pgcnt_t num = btop(len); struct memseg *seg; seg = memseg_free; memseg_free = seg->next; ASSERT(seg != NULL); seg->pages = ppnext; seg->epages = ppnext + num; seg->pages_base = base; seg->pages_end = base + num; ppnext += num; ppleft -= num; if (kpm_enable) { pgcnt_t kpnum = ptokpmpr(num); if (kpnum > kpm_ppleft) panic("kphysm_memseg: kpm_pp overflow"); seg->pagespa = va_to_pa(seg->pages); seg->epagespa = va_to_pa(seg->epages); seg->kpm_pbase = kpmptop(ptokpmp(base)); seg->kpm_nkpmpgs = kpnum; /* * In the kpm_smallpage case, the kpm array * is 1-1 wrt the page array */ if (kpm_smallpages) { kpm_spage_t *kpm_pp = kpm_ppnext; kpm_ppnext = kpm_pp + kpnum; seg->kpm_spages = kpm_pp; seg->kpm_pagespa = va_to_pa(seg->kpm_spages); } else { kpm_page_t *kpm_pp = kpm_ppnext; kpm_ppnext = kpm_pp + kpnum; seg->kpm_pages = kpm_pp; seg->kpm_pagespa = va_to_pa(seg->kpm_pages); /* ASSERT no kpm overlaps */ ASSERT( memseg_find(base - pmodkpmp(base), NULL) == NULL); ASSERT(memseg_find( roundup(base + num, kpmpnpgs) - 1, NULL) == NULL); } kpm_ppleft -= kpnum; } memseg_list_add(seg); } /* * Add range to free list */ void kphysm_add(uint64_t addr, uint64_t len, int reclaim) { struct page *pp; struct memseg *seg; pfn_t base = btop(addr); pgcnt_t num = btop(len); seg = memseg_find(base, NULL); ASSERT(seg != NULL); pp = seg->pages + (base - seg->pages_base); if (reclaim) { struct page *rpp = pp; struct page *lpp = pp + num; /* * page should be locked on prom_ppages * unhash and unlock it */ while (rpp < lpp) { ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp); ASSERT(PP_ISNORELOC(rpp)); PP_CLRNORELOC(rpp); page_pp_unlock(rpp, 0, 1); page_hashout(rpp, NULL); page_unlock(rpp); rpp++; } } /* * add_physmem() initializes the PSM part of the page * struct by calling the PSM back with add_physmem_cb(). * In addition it coalesces pages into larger pages as * it initializes them. */ add_physmem(pp, num, base); } /* * kphysm_init() tackles the problem of initializing physical memory. */ static void kphysm_init(void) { struct memlist *pmem; ASSERT(page_hash != NULL && page_hashsz != 0); ppnext = pp_base; ppleft = npages; kpm_ppnext = kpm_pp_base; kpm_ppleft = kpm_npages; /* * installed pages not on nopp_memlist go in memseg list */ diff_memlists(phys_install, nopp_list, kphysm_memseg); /* * Free the avail list */ for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next) kphysm_add(pmem->ml_address, pmem->ml_size, 0); /* * Erase pages that aren't available */ diff_memlists(phys_install, phys_avail, kphysm_erase); build_pfn_hash(); } /* * Kernel VM initialization. * Assumptions about kernel address space ordering: * (1) gap (user space) * (2) kernel text * (3) kernel data/bss * (4) gap * (5) kernel data structures * (6) gap * (7) debugger (optional) * (8) monitor * (9) gap (possibly null) * (10) dvma * (11) devices */ static void kvm_init(void) { /* * Put the kernel segments in kernel address space. */ rw_enter(&kas.a_lock, RW_WRITER); as_avlinit(&kas); (void) seg_attach(&kas, (caddr_t)KERNELBASE, (size_t)(e_moddata - KERNELBASE), &ktextseg); (void) segkmem_create(&ktextseg); (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), (size_t)(MMU_PAGESIZE4M), &ktexthole); (void) segkmem_create(&ktexthole); (void) seg_attach(&kas, (caddr_t)valloc_base, (size_t)(econtig32 - valloc_base), &kvalloc); (void) segkmem_create(&kvalloc); if (kmem64_base) { (void) seg_attach(&kas, (caddr_t)kmem64_base, (size_t)(kmem64_end - kmem64_base), &kmem64); (void) segkmem_create(&kmem64); } /* * We're about to map out /boot. This is the beginning of the * system resource management transition. We can no longer * call into /boot for I/O or memory allocations. */ (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); (void) segkmem_create(&kvseg); hblk_alloc_dynamic = 1; /* * we need to preallocate pages for DR operations before enabling large * page kernel heap because of memseg_remap_init() hat_unload() hack. */ memseg_remap_init(); /* at this point we are ready to use large page heap */ segkmem_heap_lp_init(); (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, &kvseg32); (void) segkmem_create(&kvseg32); /* * Create a segment for the debugger. */ (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); (void) segkmem_create(&kdebugseg); rw_exit(&kas.a_lock); } char obp_tte_str[] = "h# %x constant MMU_PAGESHIFT " "h# %x constant TTE8K " "h# %x constant SFHME_SIZE " "h# %x constant SFHME_TTE " "h# %x constant HMEBLK_TAG " "h# %x constant HMEBLK_NEXT " "h# %x constant HMEBLK_MISC " "h# %x constant HMEBLK_HME1 " "h# %x constant NHMENTS " "h# %x constant HBLK_SZMASK " "h# %x constant HBLK_RANGE_SHIFT " "h# %x constant HMEBP_HBLK " "h# %x constant HMEBLK_ENDPA " "h# %x constant HMEBUCKET_SIZE " "h# %x constant HTAG_SFMMUPSZ " "h# %x constant HTAG_BSPAGE_SHIFT " "h# %x constant HTAG_REHASH_SHIFT " "h# %x constant SFMMU_INVALID_SHMERID " "h# %x constant mmu_hashcnt " "h# %p constant uhme_hash " "h# %p constant khme_hash " "h# %x constant UHMEHASH_SZ " "h# %x constant KHMEHASH_SZ " "h# %p constant KCONTEXT " "h# %p constant KHATID " "h# %x constant ASI_MEM " ": PHYS-X@ ( phys -- data ) " " ASI_MEM spacex@ " "; " ": PHYS-W@ ( phys -- data ) " " ASI_MEM spacew@ " "; " ": PHYS-L@ ( phys -- data ) " " ASI_MEM spaceL@ " "; " ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " " 3 * MMU_PAGESHIFT + " "; " ": TTE_IS_VALID ( ttep -- flag ) " " PHYS-X@ 0< " "; " ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " " dup TTE8K = if " " drop HBLK_RANGE_SHIFT " " else " " TTE_PAGE_SHIFT " " then " "; " ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " " tuck >> swap MMU_PAGESHIFT - << " "; " ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " " >> over xor swap ( hash sfmmup ) " " KHATID <> if ( hash ) " " UHMEHASH_SZ and ( bucket ) " " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " " else ( hash ) " " KHMEHASH_SZ and ( bucket ) " " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " " then ( hmebp ) " "; " ": HME_HASH_TABLE_SEARCH " " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) " " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " " true ( sfmmup hmeblkp true ) ( r: hblktag ) " " else " " hmeblk_next + phys-x@ false " " ( sfmmup hmeblkp false ) ( r: hblktag ) " " then " " else " " hmeblk_next + phys-x@ false " " ( sfmmup hmeblkp false ) ( r: hblktag ) " " then " " else " " drop 0 true " " then " " until r> drop " "; " ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )" " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )" " SFMMU_INVALID_SHMERID or nip ( hblktag ) " "; " ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " " TTE8K = if ( hmeblkp addr ) " " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " " else ( hmeblkp addr ) " " drop 0 ( hmeblkp 0 ) " " then ( hmeblkp hme-index ) " " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " " SFHME_TTE + ( ttep ) " "; " ": unix-tte ( addr cnum -- false | tte-data true ) " " KCONTEXT = if ( addr ) " " KHATID ( addr khatid ) " " else ( addr ) " " drop false exit ( false ) " " then " " ( addr khatid ) " " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " " 2dup swap i HME_HASH_SHIFT " "( addr sfmmup sfmmup addr hmeshift ) " " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " " over i 4 pick " "( addr sfmmup hmebp sfmmup rehash addr ) " " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " " HME_HASH_TABLE_SEARCH " "( addr sfmmup { null | hmeblkp } ) " " ?dup if ( addr sfmmup hmeblkp ) " " nip swap HBLK_TO_TTEP ( ttep ) " " dup TTE_IS_VALID if ( valid-ttep ) " " PHYS-X@ true ( tte-data true ) " " else ( invalid-tte ) " " drop false ( false ) " " then ( false | tte-data true ) " " unloop exit ( false | tte-data true ) " " then ( addr sfmmup ) " " loop ( addr sfmmup ) " " 2drop false ( false ) " "; " ; void create_va_to_tte(void) { char *bp; extern int khmehash_num, uhmehash_num; extern struct hmehash_bucket *khme_hash, *uhme_hash; #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); /* * Teach obp how to parse our sw ttes. */ (void) sprintf(bp, obp_tte_str, MMU_PAGESHIFT, TTE8K, sizeof (struct sf_hment), OFFSET(struct sf_hment, hme_tte), OFFSET(struct hme_blk, hblk_tag), OFFSET(struct hme_blk, hblk_nextpa), OFFSET(struct hme_blk, hblk_misc), OFFSET(struct hme_blk, hblk_hme), NHMENTS, HBLK_SZMASK, HBLK_RANGE_SHIFT, OFFSET(struct hmehash_bucket, hmeh_nextpa), HMEBLK_ENDPA, sizeof (struct hmehash_bucket), HTAG_SFMMUPSZ, HTAG_BSPAGE_SHIFT, HTAG_REHASH_SHIFT, SFMMU_INVALID_SHMERID, mmu_hashcnt, (caddr_t)va_to_pa((caddr_t)uhme_hash), (caddr_t)va_to_pa((caddr_t)khme_hash), UHMEHASH_SZ, KHMEHASH_SZ, KCONTEXT, KHATID, ASI_MEM); prom_interpret(bp, 0, 0, 0, 0, 0); kobj_free(bp, MMU_PAGESIZE); } void install_va_to_tte(void) { /* * advise prom that he can use unix-tte */ prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); } /* * Here we add "device-type=console" for /os-io node, for currently * our kernel console output only supports displaying text and * performing cursor-positioning operations (through kernel framebuffer * driver) and it doesn't support other functionalities required for a * standard "display" device as specified in 1275 spec. The main missing * interface defined by the 1275 spec is "draw-logo". * also see the comments above prom_stdout_is_framebuffer(). */ static char *create_node = "\" /\" find-device " "new-device " "\" os-io\" device-name " "\" "OBP_DISPLAY_CONSOLE"\" device-type " ": cb-r/w ( adr,len method$ -- #read/#written ) " " 2>r swap 2 2r> ['] $callback catch if " " 2drop 3drop 0 " " then " "; " ": read ( adr,len -- #read ) " " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " " ( retN ... ret1 N ) " " ?dup if " " swap >r 1- 0 ?do drop loop r> " " else " " -2 " " then " "; " ": write ( adr,len -- #written ) " " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " " ( retN ... ret1 N ) " " ?dup if " " swap >r 1- 0 ?do drop loop r> " " else " " 0 " " then " "; " ": poll-tty ( -- ) ; " ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " ": cb-give/take ( $method -- ) " " 0 -rot ['] $callback catch ?dup if " " >r 2drop 2drop r> throw " " else " " 0 ?do drop loop " " then " "; " ": give ( -- ) \" exit-input\" cb-give/take ; " ": take ( -- ) \" enter-input\" cb-give/take ; " ": open ( -- ok? ) true ; " ": close ( -- ) ; " "finish-device " "device-end "; /* * Create the OBP input/output node (FCode serial driver). * It is needed for both USB console keyboard and for * the kernel terminal emulator. It is too early to check for a * kernel console compatible framebuffer now, so we create this * so that we're ready if we need to enable kernel terminal emulation. * * When the USB software takes over the input device at the time * consconfig runs, OBP's stdin is redirected to this node. * Whenever the FORTH user interface is used after this switch, * the node will call back into the kernel for console input. * If a serial device such as ttya or a UART with a Type 5 keyboard * attached is used, OBP takes over the serial device when the system * goes to the debugger after the system is booted. This sharing * of the relatively simple serial device is difficult but possible. * Sharing the USB host controller is impossible due its complexity. * * Similarly to USB keyboard input redirection, after consconfig_dacf * configures a kernel console framebuffer as the standard output * device, OBP's stdout is switched to to vector through the * /os-io node into the kernel terminal emulator. */ static void startup_create_io_node(void) { prom_interpret(create_node, 0, 0, 0, 0, 0); } static void do_prom_version_check(void) { int i; pnode_t node; char buf[64]; static char drev[] = "Down-rev firmware detected%s\n" "\tPlease upgrade to the following minimum version:\n" "\t\t%s\n"; i = prom_version_check(buf, sizeof (buf), &node); if (i == PROM_VER64_OK) return; if (i == PROM_VER64_UPGRADE) { cmn_err(CE_WARN, drev, "", buf); #ifdef DEBUG prom_enter_mon(); /* Type 'go' to continue */ cmn_err(CE_WARN, "Booting with down-rev firmware\n"); return; #else halt(0); #endif } /* * The other possibility is that this is a server running * good firmware, but down-rev firmware was detected on at * least one other cpu board. We just complain if we see * that. */ cmn_err(CE_WARN, drev, " on one or more CPU boards", buf); } /* * Must be defined in platform dependent code. */ extern caddr_t modtext; extern size_t modtext_sz; extern caddr_t moddata; #define HEAPTEXT_ARENA(addr) \ ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) #define HEAPTEXT_OVERSIZED(addr) \ ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) #define HEAPTEXT_IN_NUCLEUSDATA(addr) \ (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \ ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M)) vmem_t *texthole_source[HEAPTEXT_NARENAS]; vmem_t *texthole_arena[HEAPTEXT_NARENAS]; kmutex_t texthole_lock; char kern_bootargs[OBP_MAXPATHLEN]; char kern_bootfile[OBP_MAXPATHLEN]; void kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) { uintptr_t addr, limit; addr = HEAPTEXT_BASE; limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; /* * Before we initialize the text_arena, we want to punch holes in the * underlying heaptext_arena. This guarantees that for any text * address we can find a text hole less than HEAPTEXT_MAPPED away. */ for (; addr + HEAPTEXT_UNMAPPED <= limit; addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), VM_NOSLEEP | VM_BESTFIT | VM_PANIC); } /* * Allocate one page at the oversize to break up the text region * from the oversized region. */ (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, (void *)limit, (void *)(limit + PAGESIZE), VM_NOSLEEP | VM_BESTFIT | VM_PANIC); *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL, modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); *data_arena = vmem_create("module_data", moddata, MODDATA, 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); } caddr_t kobj_text_alloc(vmem_t *arena, size_t size) { caddr_t rval, better; /* * First, try a sleeping allocation. */ rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) return (rval); /* * We didn't get the area that we wanted. We're going to try to do an * allocation with explicit constraints. */ better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), VM_NOSLEEP | VM_BESTFIT); if (better != NULL) { /* * That worked. Free our first attempt and return. */ vmem_free(arena, rval, size); return (better); } /* * That didn't work; we'll have to return our first attempt. */ return (rval); } caddr_t kobj_texthole_alloc(caddr_t addr, size_t size) { int arena = HEAPTEXT_ARENA(addr); char c[30]; uintptr_t base; if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) { /* * If this is an oversized allocation or it is allocated in * the nucleus data page, there is no text hole available for * it; return NULL. */ return (NULL); } mutex_enter(&texthole_lock); if (texthole_arena[arena] == NULL) { ASSERT(texthole_source[arena] == NULL); if (arena == 0) { texthole_source[0] = vmem_create("module_text_holesrc", (void *)(KERNELBASE + MMU_PAGESIZE4M), MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); } else { base = HEAPTEXT_BASE + (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED); (void) snprintf(c, sizeof (c), "heaptext_holesrc_%d", arena); texthole_source[arena] = vmem_create(c, (void *)base, HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); } (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena); texthole_arena[arena] = vmem_create(c, NULL, 0, sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free, texthole_source[arena], 0, VM_SLEEP); } mutex_exit(&texthole_lock); ASSERT(texthole_arena[arena] != NULL); ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); return (vmem_alloc(texthole_arena[arena], size, VM_BESTFIT | VM_NOSLEEP)); } void kobj_texthole_free(caddr_t addr, size_t size) { int arena = HEAPTEXT_ARENA(addr); ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); ASSERT(texthole_arena[arena] != NULL); vmem_free(texthole_arena[arena], addr, size); } void release_bootstrap(void) { if (&cif_init) cif_init(); }