/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Various routines to handle identification * and classification of x86 processors. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Pass 0 of cpuid feature analysis happens in locore. It contains special code * to recognize Cyrix processors that are not cpuid-compliant, and to deal with * them accordingly. For most modern processors, feature detection occurs here * in pass 1. * * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup() * for the boot CPU and does the basic analysis that the early kernel needs. * x86_feature is set based on the return value of cpuid_pass1() of the boot * CPU. * * Pass 1 includes: * * o Determining vendor/model/family/stepping and setting x86_type and * x86_vendor accordingly. * o Processing the feature flags returned by the cpuid instruction while * applying any workarounds or tricks for the specific processor. * o Mapping the feature flags into Solaris feature bits (X86_*). * o Processing extended feature flags if supported by the processor, * again while applying specific processor knowledge. * o Determining the CMT characteristics of the system. * * Pass 1 is done on non-boot CPUs during their initialization and the results * are used only as a meager attempt at ensuring that all processors within the * system support the same features. * * Pass 2 of cpuid feature analysis happens just at the beginning * of startup(). It just copies in and corrects the remainder * of the cpuid data we depend on: standard cpuid functions that we didn't * need for pass1 feature analysis, and extended cpuid functions beyond the * simple feature processing done in pass1. * * Pass 3 of cpuid analysis is invoked after basic kernel services; in * particular kernel memory allocation has been made available. It creates a * readable brand string based on the data collected in the first two passes. * * Pass 4 of cpuid analysis is invoked after post_startup() when all * the support infrastructure for various hardware features has been * initialized. It determines which processor features will be reported * to userland via the aux vector. * * All passes are executed on all CPUs, but only the boot CPU determines what * features the kernel will use. * * Much of the worst junk in this file is for the support of processors * that didn't really implement the cpuid instruction properly. * * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon, * the pass numbers. Accordingly, changes to the pass code may require changes * to the accessor code. */ uint_t x86_feature = 0; uint_t x86_vendor = X86_VENDOR_IntelClone; uint_t x86_type = X86_TYPE_OTHER; ulong_t cr4_value; uint_t pentiumpro_bug4046376; uint_t pentiumpro_bug4064495; uint_t enable486; /* * This set of strings are for processors rumored to support the cpuid * instruction, and is used by locore.s to figure out how to set x86_vendor */ const char CyrixInstead[] = "CyrixInstead"; struct cpuidr { uint32_t cp_eax; uint32_t cp_ebx; uint32_t cp_ecx; uint32_t cp_edx; }; /* * These constants determine how many of the elements of the * cpuid we cache in the cpuid_info data structure; the * remaining elements are accessible via the cpuid instruction. */ #define NMAX_CPI_STD 6 /* eax = 0 .. 5 */ #define NMAX_CPI_EXTD 9 /* eax = 0x80000000 .. 0x80000008 */ struct cpuid_info { uint_t cpi_pass; /* last pass completed */ /* * standard function information */ uint_t cpi_maxeax; /* fn 0: %eax */ char cpi_vendorstr[13]; /* fn 0: %ebx:%ecx:%edx */ uint_t cpi_vendor; /* enum of cpi_vendorstr */ uint_t cpi_family; /* fn 1: extended family */ uint_t cpi_model; /* fn 1: extended model */ uint_t cpi_step; /* fn 1: stepping */ chipid_t cpi_chipid; /* fn 1: %ebx: chip # on ht cpus */ uint_t cpi_brandid; /* fn 1: %ebx: brand ID */ int cpi_clogid; /* fn 1: %ebx: thread # */ uint_t cpi_ncpu_per_chip; uint8_t cpi_cacheinfo[16]; /* fn 2: intel-style cache desc */ uint_t cpi_ncache; /* fn 2: number of elements */ struct cpuidr cpi_std[NMAX_CPI_STD]; /* 0 .. 5 */ /* * extended function information */ uint_t cpi_xmaxeax; /* fn 0x80000000: %eax */ char cpi_brandstr[49]; /* fn 0x8000000[234] */ uint8_t cpi_pabits; /* fn 0x80000006: %eax */ uint8_t cpi_vabits; /* fn 0x80000006: %eax */ struct cpuidr cpi_extd[NMAX_CPI_EXTD]; /* 0x80000000 .. 0x80000008 */ /* * supported feature information */ uint32_t cpi_support[4]; #define STD_EDX_FEATURES 0 #define AMD_EDX_FEATURES 1 #define TM_EDX_FEATURES 2 #define STD_ECX_FEATURES 3 }; static struct cpuid_info cpuid_info0; /* * These bit fields are defined by the Intel Application Note AP-485 * "Intel Processor Identification and the CPUID Instruction" */ #define CPI_FAMILY_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 27, 20) #define CPI_MODEL_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 19, 16) #define CPI_TYPE(cpi) BITX((cpi)->cpi_std[1].cp_eax, 13, 12) #define CPI_FAMILY(cpi) BITX((cpi)->cpi_std[1].cp_eax, 11, 8) #define CPI_STEP(cpi) BITX((cpi)->cpi_std[1].cp_eax, 3, 0) #define CPI_MODEL(cpi) BITX((cpi)->cpi_std[1].cp_eax, 7, 4) #define CPI_FEATURES_EDX(cpi) ((cpi)->cpi_std[1].cp_edx) #define CPI_FEATURES_ECX(cpi) ((cpi)->cpi_std[1].cp_ecx) #define CPI_FEATURES_XTD_EDX(cpi) ((cpi)->cpi_extd[1].cp_edx) #define CPI_FEATURES_XTD_ECX(cpi) ((cpi)->cpi_extd[1].cp_ecx) #define CPI_BRANDID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 7, 0) #define CPI_CHUNKS(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 15, 7) #define CPI_CPU_COUNT(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 23, 16) #define CPI_APIC_ID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 31, 24) #define CPI_MAXEAX_MAX 0x100 /* sanity control */ #define CPI_XMAXEAX_MAX 0x80000100 /* * Some undocumented ways of patching the results of the cpuid * instruction to permit running Solaris 10 on future cpus that * we don't currently support. Could be set to non-zero values * via settings in eeprom. */ uint32_t cpuid_feature_ecx_include; uint32_t cpuid_feature_ecx_exclude; uint32_t cpuid_feature_edx_include; uint32_t cpuid_feature_edx_exclude; uint_t cpuid_pass1(cpu_t *cpu) { uint32_t mask_ecx, mask_edx; uint_t feature = X86_CPUID; struct cpuid_info *cpi; struct cpuidr *cp; int xcpuid; /* * By convention, cpu0 is the boot cpu, which is called * before memory allocation is available. Other cpus are * initialized when memory becomes available. */ if (cpu->cpu_id == 0) cpu->cpu_m.mcpu_cpi = cpi = &cpuid_info0; else cpu->cpu_m.mcpu_cpi = cpi = kmem_zalloc(sizeof (*cpi), KM_SLEEP); cp = &cpi->cpi_std[0]; cp->cp_eax = __cpuid_insn(0, &cp->cp_ebx, &cp->cp_ecx, &cp->cp_edx); cpi->cpi_maxeax = cp->cp_eax; { uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr; *iptr++ = cp->cp_ebx; *iptr++ = cp->cp_edx; *iptr++ = cp->cp_ecx; *(char *)&cpi->cpi_vendorstr[12] = '\0'; } /* * Map the vendor string to a type code */ if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0) cpi->cpi_vendor = X86_VENDOR_Intel; else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0) cpi->cpi_vendor = X86_VENDOR_AMD; else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0) cpi->cpi_vendor = X86_VENDOR_TM; else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0) /* * CyrixInstead is a variable used by the Cyrix detection code * in locore. */ cpi->cpi_vendor = X86_VENDOR_Cyrix; else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0) cpi->cpi_vendor = X86_VENDOR_UMC; else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0) cpi->cpi_vendor = X86_VENDOR_NexGen; else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0) cpi->cpi_vendor = X86_VENDOR_Centaur; else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0) cpi->cpi_vendor = X86_VENDOR_Rise; else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0) cpi->cpi_vendor = X86_VENDOR_SiS; else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0) cpi->cpi_vendor = X86_VENDOR_NSC; else cpi->cpi_vendor = X86_VENDOR_IntelClone; x86_vendor = cpi->cpi_vendor; /* for compatibility */ /* * Limit the range in case of weird hardware */ if (cpi->cpi_maxeax > CPI_MAXEAX_MAX) cpi->cpi_maxeax = CPI_MAXEAX_MAX; if (cpi->cpi_maxeax < 1) goto pass1_done; cp = &cpi->cpi_std[1]; cp->cp_eax = __cpuid_insn(1, &cp->cp_ebx, &cp->cp_ecx, &cp->cp_edx); /* * Extract identifying constants for easy access. */ cpi->cpi_model = CPI_MODEL(cpi); cpi->cpi_family = CPI_FAMILY(cpi); if (cpi->cpi_family == 0xf) { cpi->cpi_family += CPI_FAMILY_XTD(cpi); cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; } cpi->cpi_step = CPI_STEP(cpi); cpi->cpi_brandid = CPI_BRANDID(cpi); /* * *default* assumptions: * - believe %edx feature word * - ignore %ecx feature word * - 32-bit virtual and physical addressing */ mask_edx = 0xffffffff; mask_ecx = 0; cpi->cpi_pabits = cpi->cpi_vabits = 32; switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: if (cpi->cpi_family == 5) x86_type = X86_TYPE_P5; else if (cpi->cpi_family == 6) { x86_type = X86_TYPE_P6; pentiumpro_bug4046376 = 1; pentiumpro_bug4064495 = 1; /* * Clear the SEP bit when it was set erroneously */ if (cpi->cpi_model < 3 && cpi->cpi_step < 3) cp->cp_edx &= ~CPUID_INTC_EDX_SEP; } else if (cpi->cpi_family == 0xf) { x86_type = X86_TYPE_P4; /* * We don't currently depend on any of the %ecx * features until Prescott, so we'll only check * this from P4 onwards. We might want to revisit * that idea later. */ mask_ecx = 0xffffffff; } else if (cpi->cpi_family > 0xf) mask_ecx = 0xffffffff; break; case X86_VENDOR_IntelClone: default: break; case X86_VENDOR_AMD: #if defined(OPTERON_ERRATUM_108) if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) { cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0; cpi->cpi_model = 0xc; } else #endif if (cpi->cpi_family == 5) { /* * AMD K5 and K6 * * These CPUs have an incomplete implementation * of MCA/MCE which we mask away. */ mask_edx = CPUID_INTC_EDX_DE | CPUID_INTC_EDX_PSE | CPUID_INTC_EDX_TSC | CPUID_INTC_EDX_MSR | CPUID_INTC_EDX_CX8 | CPUID_INTC_EDX_PGE; if (cpi->cpi_model == 0) { /* * Model 0 uses the wrong (APIC) bit * to indicate PGE. Fix it here. */ if (cp->cp_edx & 0x200) { cp->cp_edx &= ~0x200; cp->cp_edx |= CPUID_INTC_EDX_PGE; } } else if (cpi->cpi_model >= 6) mask_edx |= CPUID_INTC_EDX_MMX; } else if (cpi->cpi_family >= 0xf) { /* SSE3 and CX16, at least, are valid; enable all */ mask_ecx = 0xffffffff; } break; case X86_VENDOR_TM: /* * workaround the NT workaround in CMS 4.1 */ if (cpi->cpi_family == 5 && cpi->cpi_model == 4 && (cpi->cpi_step == 2 || cpi->cpi_step == 3)) cp->cp_edx |= CPUID_INTC_EDX_CX8; break; case X86_VENDOR_Centaur: /* * workaround the NT workarounds again */ if (cpi->cpi_family == 6) cp->cp_edx |= CPUID_INTC_EDX_CX8; break; case X86_VENDOR_Cyrix: /* * We rely heavily on the probing in locore * to actually figure out what parts, if any, * of the Cyrix cpuid instruction to believe. */ switch (x86_type) { case X86_TYPE_CYRIX_486: mask_edx = 0; break; case X86_TYPE_CYRIX_6x86: mask_edx = 0; break; case X86_TYPE_CYRIX_6x86L: mask_edx = CPUID_INTC_EDX_DE | CPUID_INTC_EDX_CX8; break; case X86_TYPE_CYRIX_6x86MX: mask_edx = CPUID_INTC_EDX_DE | CPUID_INTC_EDX_MSR | CPUID_INTC_EDX_CX8 | CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_CMOV | CPUID_INTC_EDX_MMX; break; case X86_TYPE_CYRIX_GXm: mask_edx = CPUID_INTC_EDX_MSR | CPUID_INTC_EDX_CX8 | CPUID_INTC_EDX_CMOV | CPUID_INTC_EDX_MMX; break; case X86_TYPE_CYRIX_MediaGX: break; case X86_TYPE_CYRIX_MII: case X86_TYPE_VIA_CYRIX_III: mask_edx = CPUID_INTC_EDX_DE | CPUID_INTC_EDX_TSC | CPUID_INTC_EDX_MSR | CPUID_INTC_EDX_CX8 | CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_CMOV | CPUID_INTC_EDX_MMX; break; default: break; } break; } /* * Now we've figured out the masks that determine * which bits we choose to believe, apply the masks * to the feature words, then map the kernel's view * of these feature words into its feature word. */ cp->cp_edx &= mask_edx; cp->cp_ecx &= mask_ecx; /* * fold in fix ups */ cp->cp_edx |= cpuid_feature_edx_include; cp->cp_edx &= ~cpuid_feature_edx_exclude; cp->cp_ecx |= cpuid_feature_ecx_include; cp->cp_ecx &= ~cpuid_feature_ecx_exclude; if (cp->cp_edx & CPUID_INTC_EDX_PSE) feature |= X86_LARGEPAGE; if (cp->cp_edx & CPUID_INTC_EDX_TSC) feature |= X86_TSC; if (cp->cp_edx & CPUID_INTC_EDX_MSR) feature |= X86_MSR; if (cp->cp_edx & CPUID_INTC_EDX_MTRR) feature |= X86_MTRR; if (cp->cp_edx & CPUID_INTC_EDX_PGE) feature |= X86_PGE; if (cp->cp_edx & CPUID_INTC_EDX_CMOV) feature |= X86_CMOV; if (cp->cp_edx & CPUID_INTC_EDX_MMX) feature |= X86_MMX; if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 && (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0) feature |= X86_MCA; if (cp->cp_edx & CPUID_INTC_EDX_PAE) feature |= X86_PAE; if (cp->cp_edx & CPUID_INTC_EDX_CX8) feature |= X86_CX8; /* * Once this bit was thought questionable, but it looks like it's * back, as of Application Note 485 March 2005 (24161829.pdf) */ if (cp->cp_ecx & CPUID_INTC_ECX_CX16) feature |= X86_CX16; if (cp->cp_edx & CPUID_INTC_EDX_PAT) feature |= X86_PAT; if (cp->cp_edx & CPUID_INTC_EDX_SEP) feature |= X86_SEP; if (cp->cp_edx & CPUID_INTC_EDX_FXSR) { /* * In our implementation, fxsave/fxrstor * are prerequisites before we'll even * try and do SSE things. */ if (cp->cp_edx & CPUID_INTC_EDX_SSE) feature |= X86_SSE; if (cp->cp_edx & CPUID_INTC_EDX_SSE2) feature |= X86_SSE2; if (cp->cp_ecx & CPUID_INTC_ECX_SSE3) feature |= X86_SSE3; } if (cp->cp_edx & CPUID_INTC_EDX_DE) cr4_value |= CR4_DE; if (feature & X86_PAE) cpi->cpi_pabits = 36; /* * Hyperthreading configuration is slightly tricky on Intel * and pure clones, and even trickier on AMD. * * (AMD chose to set the HTT bit on their CMP processors, * even though they're not actually hyperthreaded. Thus it * takes a bit more work to figure out what's really going * on ... see the handling of the HTvalid bit below) */ if (cp->cp_edx & CPUID_INTC_EDX_HTT) { cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi); if (cpi->cpi_ncpu_per_chip > 1) feature |= X86_HTT; } /* * Work on the "extended" feature information, doing * some basic initialization for cpuid_pass2() */ xcpuid = 0; switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: if (cpi->cpi_family >= 0xf) xcpuid++; break; case X86_VENDOR_AMD: if (cpi->cpi_family > 5 || (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) xcpuid++; break; case X86_VENDOR_Cyrix: /* * Only these Cyrix CPUs are -known- to support * extended cpuid operations. */ if (x86_type == X86_TYPE_VIA_CYRIX_III || x86_type == X86_TYPE_CYRIX_GXm) xcpuid++; break; case X86_VENDOR_Centaur: case X86_VENDOR_TM: default: xcpuid++; break; } if (xcpuid) { cp = &cpi->cpi_extd[0]; cpi->cpi_xmaxeax = cp->cp_eax = __cpuid_insn(0x80000000, &cp->cp_ebx, &cp->cp_ecx, &cp->cp_edx); } if (cpi->cpi_xmaxeax & 0x80000000) { if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX) cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX; switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: case X86_VENDOR_AMD: if (cpi->cpi_xmaxeax < 0x80000001) break; cp = &cpi->cpi_extd[1]; cp->cp_eax = __cpuid_insn(0x80000001, &cp->cp_ebx, &cp->cp_ecx, &cp->cp_edx); if (cpi->cpi_vendor == X86_VENDOR_AMD && cpi->cpi_family == 5 && cpi->cpi_model == 6 && cpi->cpi_step == 6) { /* * K6 model 6 uses bit 10 to indicate SYSC * Later models use bit 11. Fix it here. */ if (cp->cp_edx & 0x400) { cp->cp_edx &= ~0x400; cp->cp_edx |= CPUID_AMD_EDX_SYSC; } } /* * Compute the additions to the kernel's feature word. */ if (cp->cp_edx & CPUID_AMD_EDX_NX) feature |= X86_NX; /* * Unless both the HTT bit is set, and the * HTvalid bit is set, then we're not actually * HyperThreaded at all.. */ if (cpi->cpi_vendor == X86_VENDOR_AMD && (feature & X86_HTT) == X86_HTT && (cp->cp_ecx & CPUID_AMD_ECX_HTvalid) == 0) feature &= ~X86_HTT; #if defined(_LP64) /* * It's really tricky to support syscall/sysret in * the i386 kernel; we rely on sysenter/sysexit * instead. In the amd64 kernel, things are -way- * better. */ if (cp->cp_edx & CPUID_AMD_EDX_SYSC) feature |= X86_ASYSC; /* * While we're thinking about system calls, note * that AMD processors don't support sysenter * in long mode at all, so don't try to program them. */ if (x86_vendor == X86_VENDOR_AMD) feature &= ~X86_SEP; #endif break; default: break; } switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: case X86_VENDOR_AMD: if (cpi->cpi_xmaxeax < 0x80000008) break; cp = &cpi->cpi_extd[8]; cp->cp_eax = __cpuid_insn(0x80000008, &cp->cp_ebx, &cp->cp_ecx, &cp->cp_edx); /* * Virtual and physical address limits from * cpuid override previously guessed values. */ cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0); cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8); /* * This -might- be a CMP processor? */ if (cpi->cpi_vendor == X86_VENDOR_AMD) { cpi->cpi_ncpu_per_chip = 1 + BITX(cp->cp_ecx, 7, 0); if (cpi->cpi_ncpu_per_chip > 1) feature |= X86_CMP; } break; default: break; } } if ((feature & (X86_HTT | X86_CMP)) == 0) { cpi->cpi_chipid = -1; cpi->cpi_clogid = 0; } else if (cpi->cpi_ncpu_per_chip > 1) { uint_t i, cid_shift, apic_id; for (i = 1, cid_shift = 0; i < cpi->cpi_ncpu_per_chip; i <<= 1) cid_shift++; apic_id = CPI_APIC_ID(cpi); cpi->cpi_chipid = apic_id >> cid_shift; cpi->cpi_clogid = apic_id & ((1 << cid_shift) - 1); } pass1_done: cpi->cpi_pass = 1; return (feature); } /* * Make copies of the cpuid table entries we depend on, in * part for ease of parsing now, in part so that we have only * one place to correct any of it, in part for ease of * later export to userland, and in part so we can look at * this stuff in a crash dump. */ /*ARGSUSED*/ void cpuid_pass2(cpu_t *cpu) { uint_t n, nmax; int i; struct cpuidr *cp; uint8_t *dp; uint32_t *iptr; struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; ASSERT(cpi->cpi_pass == 1); if (cpi->cpi_maxeax < 1) goto pass2_done; if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD) nmax = NMAX_CPI_STD; /* * (We already handled n == 0 and n == 1 in pass 1) */ for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) { cp->cp_eax = __cpuid_insn(n, &cp->cp_ebx, &cp->cp_ecx, &cp->cp_edx); switch (n) { case 2: /* * "the lower 8 bits of the %eax register * contain a value that identifies the number * of times the cpuid [instruction] has to be * executed to obtain a complete image of the * processor's caching systems." * * How *do* they make this stuff up? */ cpi->cpi_ncache = sizeof (*cp) * BITX(cp->cp_eax, 7, 0); if (cpi->cpi_ncache == 0) break; cpi->cpi_ncache--; /* skip count byte */ /* * Well, for now, rather than attempt to implement * this slightly dubious algorithm, we just look * at the first 15 .. */ if (cpi->cpi_ncache > (sizeof (*cp) - 1)) cpi->cpi_ncache = sizeof (*cp) - 1; dp = cpi->cpi_cacheinfo; if (BITX(cp->cp_eax, 31, 31) == 0) { uint8_t *p = (void *)&cp->cp_eax; for (i = 1; i < 3; i++) if (p[i] != 0) *dp++ = p[i]; } if (BITX(cp->cp_ebx, 31, 31) == 0) { uint8_t *p = (void *)&cp->cp_ebx; for (i = 0; i < 4; i++) if (p[i] != 0) *dp++ = p[i]; } if (BITX(cp->cp_ecx, 31, 31) == 0) { uint8_t *p = (void *)&cp->cp_ecx; for (i = 0; i < 4; i++) if (p[i] != 0) *dp++ = p[i]; } if (BITX(cp->cp_edx, 31, 31) == 0) { uint8_t *p = (void *)&cp->cp_edx; for (i = 0; i < 4; i++) if (p[i] != 0) *dp++ = p[i]; } break; case 3: /* Processor serial number, if PSN supported */ case 4: /* Deterministic cache parameters */ case 5: /* Monitor/Mwait parameters */ default: break; } } if ((cpi->cpi_xmaxeax & 0x80000000) == 0) goto pass2_done; if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD) nmax = NMAX_CPI_EXTD; /* * Copy the extended properties, fixing them as we go. * (We already handled n == 0 and n == 1 in pass 1) */ iptr = (void *)cpi->cpi_brandstr; for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) { cp->cp_eax = __cpuid_insn(n + 0x80000000, &cp->cp_ebx, &cp->cp_ecx, &cp->cp_edx); switch (n) { case 2: case 3: case 4: /* * Extract the brand string */ *iptr++ = cp->cp_eax; *iptr++ = cp->cp_ebx; *iptr++ = cp->cp_ecx; *iptr++ = cp->cp_edx; break; case 5: switch (cpi->cpi_vendor) { case X86_VENDOR_AMD: /* * The Athlon and Duron were the first * parts to report the sizes of the * TLB for large pages. Before then, * we don't trust the data. */ if (cpi->cpi_family < 6 || (cpi->cpi_family == 6 && cpi->cpi_model < 1)) cp->cp_eax = 0; break; default: break; } break; case 6: switch (cpi->cpi_vendor) { case X86_VENDOR_AMD: /* * The Athlon and Duron were the first * AMD parts with L2 TLB's. * Before then, don't trust the data. */ if (cpi->cpi_family < 6 || cpi->cpi_family == 6 && cpi->cpi_model < 1) cp->cp_eax = cp->cp_ebx = 0; /* * AMD Duron rev A0 reports L2 * cache size incorrectly as 1K * when it is really 64K */ if (cpi->cpi_family == 6 && cpi->cpi_model == 3 && cpi->cpi_step == 0) { cp->cp_ecx &= 0xffff; cp->cp_ecx |= 0x400000; } break; case X86_VENDOR_Cyrix: /* VIA C3 */ /* * VIA C3 processors are a bit messed * up w.r.t. encoding cache sizes in %ecx */ if (cpi->cpi_family != 6) break; /* * model 7 and 8 were incorrectly encoded * * xxx is model 8 really broken? */ if (cpi->cpi_model == 7 || cpi->cpi_model == 8) cp->cp_ecx = BITX(cp->cp_ecx, 31, 24) << 16 | BITX(cp->cp_ecx, 23, 16) << 12 | BITX(cp->cp_ecx, 15, 8) << 8 | BITX(cp->cp_ecx, 7, 0); /* * model 9 stepping 1 has wrong associativity */ if (cpi->cpi_model == 9 && cpi->cpi_step == 1) cp->cp_ecx |= 8 << 12; break; case X86_VENDOR_Intel: /* * Extended L2 Cache features function. * First appeared on Prescott. */ default: break; } break; default: break; } } pass2_done: cpi->cpi_pass = 2; } static const char * intel_cpubrand(const struct cpuid_info *cpi) { int i; if ((x86_feature & X86_CPUID) == 0 || cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) return ("i486"); switch (cpi->cpi_family) { case 5: return ("Intel Pentium(r)"); case 6: switch (cpi->cpi_model) { uint_t celeron, xeon; const struct cpuidr *cp; case 0: case 1: case 2: return ("Intel Pentium(r) Pro"); case 3: case 4: return ("Intel Pentium(r) II"); case 6: return ("Intel Celeron(r)"); case 5: case 7: celeron = xeon = 0; cp = &cpi->cpi_std[2]; /* cache info */ for (i = 1; i < 3; i++) { uint_t tmp; tmp = (cp->cp_eax >> (8 * i)) & 0xff; if (tmp == 0x40) celeron++; if (tmp >= 0x44 && tmp <= 0x45) xeon++; } for (i = 0; i < 2; i++) { uint_t tmp; tmp = (cp->cp_ebx >> (8 * i)) & 0xff; if (tmp == 0x40) celeron++; else if (tmp >= 0x44 && tmp <= 0x45) xeon++; } for (i = 0; i < 4; i++) { uint_t tmp; tmp = (cp->cp_ecx >> (8 * i)) & 0xff; if (tmp == 0x40) celeron++; else if (tmp >= 0x44 && tmp <= 0x45) xeon++; } for (i = 0; i < 4; i++) { uint_t tmp; tmp = (cp->cp_edx >> (8 * i)) & 0xff; if (tmp == 0x40) celeron++; else if (tmp >= 0x44 && tmp <= 0x45) xeon++; } if (celeron) return ("Intel Celeron(r)"); if (xeon) return (cpi->cpi_model == 5 ? "Intel Pentium(r) II Xeon(tm)" : "Intel Pentium(r) III Xeon(tm)"); return (cpi->cpi_model == 5 ? "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" : "Intel Pentium(r) III or Pentium(r) III Xeon(tm)"); default: break; } default: break; } if (cpi->cpi_family <= 0xf && cpi->cpi_model <= 0xf && cpi->cpi_brandid != 0) { static const struct { uint_t bt_bid; const char *bt_str; } brand_tbl[] = { { 0x1, "Intel(r) Celeron(r)" }, { 0x2, "Intel(r) Pentium(r) III" }, { 0x3, "Intel(r) Pentium(r) III Xeon(tm)" }, { 0x4, "Intel(r) Pentium(r) III" }, { 0x6, "Mobile Intel(r) Pentium(r) III" }, { 0x7, "Mobile Intel(r) Celeron(r)" }, { 0x8, "Intel(r) Pentium(r) 4" }, { 0x9, "Intel(r) Pentium(r) 4" }, { 0xa, "Intel(r) Celeron(r)" }, { 0xb, "Intel(r) Xeon(tm)" }, { 0xc, "Intel(r) Xeon(tm) MP" }, { 0xe, "Mobile Intel(r) Pentium(r) 4" }, { 0xf, "Mobile Intel(r) Celeron(r)" } }; uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]); uint_t sgn; sgn = (cpi->cpi_family << 8) | (cpi->cpi_model << 4) | cpi->cpi_step; for (i = 0; i < btblmax; i++) if (brand_tbl[i].bt_bid == cpi->cpi_brandid) break; if (i < btblmax) { if (sgn == 0x6b1 && cpi->cpi_brandid == 3) return ("Intel(r) Celeron(r)"); if (sgn < 0xf13 && cpi->cpi_brandid == 0xb) return ("Intel(r) Xeon(tm) MP"); if (sgn < 0xf13 && cpi->cpi_brandid == 0xe) return ("Intel(r) Xeon(tm)"); return (brand_tbl[i].bt_str); } } return (NULL); } static const char * amd_cpubrand(const struct cpuid_info *cpi) { if ((x86_feature & X86_CPUID) == 0 || cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) return ("i486 compatible"); switch (cpi->cpi_family) { case 5: switch (cpi->cpi_model) { case 0: case 1: case 2: case 3: case 4: case 5: return ("AMD-K5(r)"); case 6: case 7: return ("AMD-K6(r)"); case 8: return ("AMD-K6(r)-2"); case 9: return ("AMD-K6(r)-III"); default: return ("AMD (family 5)"); } case 6: switch (cpi->cpi_model) { case 1: return ("AMD-K7(tm)"); case 0: case 2: case 4: return ("AMD Athlon(tm)"); case 3: case 7: return ("AMD Duron(tm)"); case 6: case 8: case 10: /* * Use the L2 cache size to distinguish */ return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ? "AMD Athlon(tm)" : "AMD Duron(tm)"); default: return ("AMD (family 6)"); } default: break; } if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 && cpi->cpi_brandid != 0) { switch (BITX(cpi->cpi_brandid, 7, 5)) { case 3: return ("AMD Opteron(tm) UP 1xx"); case 4: return ("AMD Opteron(tm) DP 2xx"); case 5: return ("AMD Opteron(tm) MP 8xx"); default: return ("AMD Opteron(tm)"); } } return (NULL); } static const char * cyrix_cpubrand(struct cpuid_info *cpi, uint_t type) { if ((x86_feature & X86_CPUID) == 0 || cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 || type == X86_TYPE_CYRIX_486) return ("i486 compatible"); switch (type) { case X86_TYPE_CYRIX_6x86: return ("Cyrix 6x86"); case X86_TYPE_CYRIX_6x86L: return ("Cyrix 6x86L"); case X86_TYPE_CYRIX_6x86MX: return ("Cyrix 6x86MX"); case X86_TYPE_CYRIX_GXm: return ("Cyrix GXm"); case X86_TYPE_CYRIX_MediaGX: return ("Cyrix MediaGX"); case X86_TYPE_CYRIX_MII: return ("Cyrix M2"); case X86_TYPE_VIA_CYRIX_III: return ("VIA Cyrix M3"); default: /* * Have another wild guess .. */ if (cpi->cpi_family == 4 && cpi->cpi_model == 9) return ("Cyrix 5x86"); else if (cpi->cpi_family == 5) { switch (cpi->cpi_model) { case 2: return ("Cyrix 6x86"); /* Cyrix M1 */ case 4: return ("Cyrix MediaGX"); default: break; } } else if (cpi->cpi_family == 6) { switch (cpi->cpi_model) { case 0: return ("Cyrix 6x86MX"); /* Cyrix M2? */ case 5: case 6: case 7: case 8: case 9: return ("VIA C3"); default: break; } } break; } return (NULL); } /* * This only gets called in the case that the CPU extended * feature brand string (0x80000002, 0x80000003, 0x80000004) * aren't available, or contain null bytes for some reason. */ static void fabricate_brandstr(struct cpuid_info *cpi) { const char *brand = NULL; switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: brand = intel_cpubrand(cpi); break; case X86_VENDOR_AMD: brand = amd_cpubrand(cpi); break; case X86_VENDOR_Cyrix: brand = cyrix_cpubrand(cpi, x86_type); break; case X86_VENDOR_NexGen: if (cpi->cpi_family == 5 && cpi->cpi_model == 0) brand = "NexGen Nx586"; break; case X86_VENDOR_Centaur: if (cpi->cpi_family == 5) switch (cpi->cpi_model) { case 4: brand = "Centaur C6"; break; case 8: brand = "Centaur C2"; break; case 9: brand = "Centaur C3"; break; default: break; } break; case X86_VENDOR_Rise: if (cpi->cpi_family == 5 && (cpi->cpi_model == 0 || cpi->cpi_model == 2)) brand = "Rise mP6"; break; case X86_VENDOR_SiS: if (cpi->cpi_family == 5 && cpi->cpi_model == 0) brand = "SiS 55x"; break; case X86_VENDOR_TM: if (cpi->cpi_family == 5 && cpi->cpi_model == 4) brand = "Transmeta Crusoe TM3x00 or TM5x00"; break; case X86_VENDOR_NSC: case X86_VENDOR_UMC: default: break; } if (brand) { (void) strcpy((char *)cpi->cpi_brandstr, brand); return; } /* * If all else fails ... */ (void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr), "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family, cpi->cpi_model, cpi->cpi_step); } /* * This routine is called just after kernel memory allocation * becomes available on cpu0, and as part of mp_startup() on * the other cpus. * * Fixup the brand string. */ /*ARGSUSED*/ void cpuid_pass3(cpu_t *cpu) { struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; ASSERT(cpi->cpi_pass == 2); if ((cpi->cpi_xmaxeax & 0x80000000) == 0) { fabricate_brandstr(cpi); goto pass3_done; } /* * If we successfully extracted a brand string from the cpuid * instruction, clean it up by removing leading spaces and * similar junk. */ if (cpi->cpi_brandstr[0]) { size_t maxlen = sizeof (cpi->cpi_brandstr); char *src, *dst; dst = src = (char *)cpi->cpi_brandstr; src[maxlen - 1] = '\0'; /* * strip leading spaces */ while (*src == ' ') src++; /* * Remove any 'Genuine' or "Authentic" prefixes */ if (strncmp(src, "Genuine ", 8) == 0) src += 8; if (strncmp(src, "Authentic ", 10) == 0) src += 10; /* * Now do an in-place copy. * Map (R) to (r) and (TM) to (tm). * The era of teletypes is long gone, and there's * -really- no need to shout. */ while (*src != '\0') { if (src[0] == '(') { if (strncmp(src + 1, "R)", 2) == 0) { (void) strncpy(dst, "(r)", 3); src += 3; dst += 3; continue; } if (strncmp(src + 1, "TM)", 3) == 0) { (void) strncpy(dst, "(tm)", 4); src += 4; dst += 4; continue; } } *dst++ = *src++; } *dst = '\0'; /* * Finally, remove any trailing spaces */ while (--dst > cpi->cpi_brandstr) if (*dst == ' ') *dst = '\0'; else break; } else fabricate_brandstr(cpi); pass3_done: cpi->cpi_pass = 3; } /* * This routine is called out of bind_hwcap() much later in the life * of the kernel (post_startup()). The job of this routine is to resolve * the hardware feature support and kernel support for those features into * what we're actually going to tell applications via the aux vector. */ uint_t cpuid_pass4(cpu_t *cpu) { struct cpuid_info *cpi; uint_t hwcap_flags = 0; if (cpu == NULL) cpu = CPU; cpi = cpu->cpu_m.mcpu_cpi; ASSERT(cpi->cpi_pass == 3); if (cpi->cpi_maxeax >= 1) { uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES]; uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES]; *edx = CPI_FEATURES_EDX(cpi); *ecx = CPI_FEATURES_ECX(cpi); /* * [these require explicit kernel support] */ if ((x86_feature & X86_SEP) == 0) *edx &= ~CPUID_INTC_EDX_SEP; if ((x86_feature & X86_SSE) == 0) *edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE); if ((x86_feature & X86_SSE2) == 0) *edx &= ~CPUID_INTC_EDX_SSE2; if ((x86_feature & X86_HTT) == 0) *edx &= ~CPUID_INTC_EDX_HTT; if ((x86_feature & X86_SSE3) == 0) *ecx &= ~CPUID_INTC_ECX_SSE3; /* * [no explicit support required beyond x87 fp context] */ if (!fpu_exists) *edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX); /* * Now map the supported feature vector to things that we * think userland will care about. */ if (*edx & CPUID_INTC_EDX_SEP) hwcap_flags |= AV_386_SEP; if (*edx & CPUID_INTC_EDX_SSE) hwcap_flags |= AV_386_FXSR | AV_386_SSE; if (*edx & CPUID_INTC_EDX_SSE2) hwcap_flags |= AV_386_SSE2; if (*ecx & CPUID_INTC_ECX_SSE3) hwcap_flags |= AV_386_SSE3; if (*edx & CPUID_INTC_EDX_FPU) hwcap_flags |= AV_386_FPU; if (*edx & CPUID_INTC_EDX_MMX) hwcap_flags |= AV_386_MMX; if (*edx & CPUID_INTC_EDX_TSC) hwcap_flags |= AV_386_TSC; if (*edx & CPUID_INTC_EDX_CX8) hwcap_flags |= AV_386_CX8; if (*edx & CPUID_INTC_EDX_CMOV) hwcap_flags |= AV_386_CMOV; if (*ecx & CPUID_INTC_ECX_MON) hwcap_flags |= AV_386_MON; #if defined(CPUID_INTC_ECX_CX16) if (*ecx & CPUID_INTC_ECX_CX16) hwcap_flags |= AV_386_CX16; #endif } if (cpuid_is_ht(cpu)) hwcap_flags |= AV_386_PAUSE; if (cpi->cpi_xmaxeax < 0x80000001) goto pass4_done; switch (cpi->cpi_vendor) { uint32_t junk, *edx; case X86_VENDOR_Intel: /* sigh */ case X86_VENDOR_AMD: edx = &cpi->cpi_support[AMD_EDX_FEATURES]; *edx = CPI_FEATURES_XTD_EDX(cpi); /* * [no explicit support required beyond * x87 fp context and exception handlers] */ if (!fpu_exists) *edx &= ~(CPUID_AMD_EDX_MMXamd | CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx); if ((x86_feature & X86_ASYSC) == 0) *edx &= ~CPUID_AMD_EDX_SYSC; if ((x86_feature & X86_NX) == 0) *edx &= ~CPUID_AMD_EDX_NX; #if !defined(_LP64) *edx &= ~CPUID_AMD_EDX_LM; #endif /* * Now map the supported feature vector to * things that we think userland will care about. */ if (*edx & CPUID_AMD_EDX_SYSC) hwcap_flags |= AV_386_AMD_SYSC; if (*edx & CPUID_AMD_EDX_MMXamd) hwcap_flags |= AV_386_AMD_MMX; if (*edx & CPUID_AMD_EDX_3DNow) hwcap_flags |= AV_386_AMD_3DNow; if (*edx & CPUID_AMD_EDX_3DNowx) hwcap_flags |= AV_386_AMD_3DNowx; break; case X86_VENDOR_TM: edx = &cpi->cpi_support[TM_EDX_FEATURES]; (void) __cpuid_insn(0x80860001, &junk, &junk, edx); break; default: break; } pass4_done: cpi->cpi_pass = 4; return (hwcap_flags); } /* * Simulate the cpuid instruction using the data we previously * captured about this CPU. We try our best to return the truth * about the hardware, independently of kernel support. */ uint32_t cpuid_insn(cpu_t *cpu, uint32_t eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { struct cpuid_info *cpi; struct cpuidr *cp; if (cpu == NULL) cpu = CPU; cpi = cpu->cpu_m.mcpu_cpi; ASSERT(cpuid_checkpass(cpu, 3)); /* * CPUID data is cached in two separate places: cpi_std for standard * CPUID functions, and cpi_extd for extended CPUID functions. */ if (eax <= cpi->cpi_maxeax && eax < NMAX_CPI_STD) cp = &cpi->cpi_std[eax]; else if (eax >= 0x80000000 && eax <= cpi->cpi_xmaxeax && eax < 0x80000000 + NMAX_CPI_EXTD) cp = &cpi->cpi_extd[eax - 0x80000000]; else /* * The caller is asking for data from an input parameter which * the kernel has not cached. In this case we go fetch from * the hardware and return the data directly to the user. */ return (__cpuid_insn(eax, ebx, ecx, edx)); *ebx = cp->cp_ebx; *ecx = cp->cp_ecx; *edx = cp->cp_edx; return (cp->cp_eax); } int cpuid_checkpass(cpu_t *cpu, int pass) { return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL && cpu->cpu_m.mcpu_cpi->cpi_pass >= pass); } int cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n) { ASSERT(cpuid_checkpass(cpu, 3)); return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr)); } int cpuid_is_ht(cpu_t *cpu) { if (cpu == NULL) cpu = CPU; ASSERT(cpuid_checkpass(cpu, 1)); return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0); } /* * AMD and Intel both implement the 64-bit variant of the syscall * instruction (syscallq), so if there's -any- support for syscall, * cpuid currently says "yes, we support this". * * However, Intel decided to -not- implement the 32-bit variant of the * syscall instruction, so we provide a predicate to allow our caller * to test that subtlety here. */ /*ARGSUSED*/ int cpuid_syscall32_insn(cpu_t *cpu) { ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1)); if (x86_feature & X86_ASYSC) return (x86_vendor != X86_VENDOR_Intel); return (0); } int cpuid_getidstr(cpu_t *cpu, char *s, size_t n) { struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; static const char fmt[] = "x86 (%s family %d model %d step %d clock %d MHz)"; static const char fmt_ht[] = "x86 (chipid 0x%x %s family %d model %d step %d clock %d MHz)"; ASSERT(cpuid_checkpass(cpu, 1)); if (cpuid_is_ht(cpu)) return (snprintf(s, n, fmt_ht, cpi->cpi_chipid, cpi->cpi_vendorstr, cpi->cpi_family, cpi->cpi_model, cpi->cpi_step, cpu->cpu_type_info.pi_clock)); return (snprintf(s, n, fmt, cpi->cpi_vendorstr, cpi->cpi_family, cpi->cpi_model, cpi->cpi_step, cpu->cpu_type_info.pi_clock)); } const char * cpuid_getvendorstr(cpu_t *cpu) { ASSERT(cpuid_checkpass(cpu, 1)); return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr); } uint_t cpuid_getvendor(cpu_t *cpu) { ASSERT(cpuid_checkpass(cpu, 1)); return (cpu->cpu_m.mcpu_cpi->cpi_vendor); } uint_t cpuid_getfamily(cpu_t *cpu) { ASSERT(cpuid_checkpass(cpu, 1)); return (cpu->cpu_m.mcpu_cpi->cpi_family); } uint_t cpuid_getmodel(cpu_t *cpu) { ASSERT(cpuid_checkpass(cpu, 1)); return (cpu->cpu_m.mcpu_cpi->cpi_model); } uint_t cpuid_get_ncpu_per_chip(cpu_t *cpu) { ASSERT(cpuid_checkpass(cpu, 1)); return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip); } uint_t cpuid_getstep(cpu_t *cpu) { ASSERT(cpuid_checkpass(cpu, 1)); return (cpu->cpu_m.mcpu_cpi->cpi_step); } chipid_t chip_plat_get_chipid(cpu_t *cpu) { ASSERT(cpuid_checkpass(cpu, 1)); if (cpuid_is_ht(cpu)) return (cpu->cpu_m.mcpu_cpi->cpi_chipid); return (cpu->cpu_id); } int chip_plat_get_clogid(cpu_t *cpu) { ASSERT(cpuid_checkpass(cpu, 1)); return (cpu->cpu_m.mcpu_cpi->cpi_clogid); } void cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits) { struct cpuid_info *cpi; if (cpu == NULL) cpu = CPU; cpi = cpu->cpu_m.mcpu_cpi; ASSERT(cpuid_checkpass(cpu, 1)); if (pabits) *pabits = cpi->cpi_pabits; if (vabits) *vabits = cpi->cpi_vabits; } /* * Returns the number of data TLB entries for a corresponding * pagesize. If it can't be computed, or isn't known, the * routine returns zero. If you ask about an architecturally * impossible pagesize, the routine will panic (so that the * hat implementor knows that things are inconsistent.) */ uint_t cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize) { struct cpuid_info *cpi; uint_t dtlb_nent = 0; if (cpu == NULL) cpu = CPU; cpi = cpu->cpu_m.mcpu_cpi; ASSERT(cpuid_checkpass(cpu, 1)); /* * Check the L2 TLB info */ if (cpi->cpi_xmaxeax >= 0x80000006) { struct cpuidr *cp = &cpi->cpi_extd[6]; switch (pagesize) { case 4 * 1024: /* * All zero in the top 16 bits of the register * indicates a unified TLB. Size is in low 16 bits. */ if ((cp->cp_ebx & 0xffff0000) == 0) dtlb_nent = cp->cp_ebx & 0x0000ffff; else dtlb_nent = BITX(cp->cp_ebx, 27, 16); break; case 2 * 1024 * 1024: if ((cp->cp_eax & 0xffff0000) == 0) dtlb_nent = cp->cp_eax & 0x0000ffff; else dtlb_nent = BITX(cp->cp_eax, 27, 16); break; default: panic("unknown L2 pagesize"); /*NOTREACHED*/ } } if (dtlb_nent != 0) return (dtlb_nent); /* * No L2 TLB support for this size, try L1. */ if (cpi->cpi_xmaxeax >= 0x80000005) { struct cpuidr *cp = &cpi->cpi_extd[5]; switch (pagesize) { case 4 * 1024: dtlb_nent = BITX(cp->cp_ebx, 23, 16); break; case 2 * 1024 * 1024: dtlb_nent = BITX(cp->cp_eax, 23, 16); break; default: panic("unknown L1 d-TLB pagesize"); /*NOTREACHED*/ } } return (dtlb_nent); } /* * Return 0 if the erratum is not present or not applicable, positive * if it is, and negative if the status of the erratum is unknown. * * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm) * Processors" #25759, Rev 3.57, August 2005 */ int cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum) { struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; uint_t eax, edx, junk; if (cpi->cpi_vendor != X86_VENDOR_AMD) return (0); eax = cpi->cpi_std[1].cp_eax; #define SH_B0(eax) (eax == 0xf40 || eax == 0xf50) #define SH_B3(eax) (eax == 0xf51) #define B(eax) (SH_B0(eax) | SH_B3(eax)) #define SH_C0(eax) (eax == 0xf48 || eax == 0xf58) #define SH_CG(eax) (eax == 0xf4a || eax == 0xf5a || eax == 0xf7a) #define DH_CG(eax) (eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0) #define CH_CG(eax) (eax == 0xf82 || eax == 0xfb2) #define CG(eax) (SH_CG(eax) | DH_CG(eax) | CH_CG(eax)) #define SH_D0(eax) (eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70) #define DH_D0(eax) (eax == 0x10fc0 || eax == 0x10ff0) #define CH_D0(eax) (eax == 0x10f80 || eax == 0x10fb0) #define D0(eax) (SH_D0(eax) | DH_D0(eax) | CH_D0(eax)) #define SH_E0(eax) (eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70) #define JH_E1(eax) (eax == 0x20f10) /* JH8_E0 had 0x20f30 */ #define DH_E3(eax) (eax == 0x20fc0 || eax == 0x20ff0) #define SH_E4(eax) (eax == 0x20f51 || eax == 0x20f71) #define BH_E4(eax) (eax == 0x20fb1) #define SH_E5(eax) (eax == 0x20f42) #define DH_E6(eax) (eax == 0x20ff2 || eax == 0x20fc2) #define JH_E6(eax) (eax == 0x20f12 || eax == 0x20f32) #define EX(eax) (SH_E0(eax) | JH_E1(eax) | DH_E3(eax) | SH_E4(eax) | \ BH_E4(eax) | SH_E5(eax) | DH_E6(eax) | JH_E6(eax)) switch (erratum) { case 1: return (1); case 51: /* what does the asterisk mean? */ return (B(eax) || SH_C0(eax) || CG(eax)); case 52: return (B(eax)); case 57: return (1); case 58: return (B(eax)); case 60: return (1); case 61: case 62: case 63: case 64: case 65: case 66: case 68: case 69: case 70: case 71: return (B(eax)); case 72: return (SH_B0(eax)); case 74: return (B(eax)); case 75: return (1); case 76: return (B(eax)); case 77: return (1); case 78: return (B(eax) || SH_C0(eax)); case 79: return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); case 80: case 81: case 82: return (B(eax)); case 83: return (B(eax) || SH_C0(eax) || CG(eax)); case 85: return (1); case 86: return (SH_C0(eax) || CG(eax)); case 88: #if !defined(__amd64) return (0); #else return (B(eax) || SH_C0(eax)); #endif case 89: return (1); case 90: return (B(eax) || SH_C0(eax) || CG(eax)); case 91: case 92: return (B(eax) || SH_C0(eax)); case 93: return (SH_C0(eax)); case 94: return (B(eax) || SH_C0(eax) || CG(eax)); case 95: #if !defined(__amd64) return (0); #else return (B(eax) || SH_C0(eax)); #endif case 96: return (B(eax) || SH_C0(eax) || CG(eax)); case 97: case 98: return (SH_C0(eax) || CG(eax)); case 99: return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); case 100: return (B(eax) || SH_C0(eax)); case 101: case 103: return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); case 104: return (SH_C0(eax) || CG(eax) || D0(eax)); case 105: case 106: case 107: return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); case 108: return (DH_CG(eax)); case 109: return (SH_C0(eax) || CG(eax) || D0(eax)); case 110: return (D0(eax) || EX(eax)); case 111: return (CG(eax)); case 112: return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); case 113: return (eax == 0x20fc0); case 114: return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); case 115: return (SH_E0(eax) || JH_E1(eax)); case 116: return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); case 117: return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); case 118: return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) || JH_E6(eax)); case 121: return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); case 122: return (SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); case 123: return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax)); case 131: return (1); case 6336786: /* * Test for AdvPowerMgmtInfo.TscPStateInvariant * if this is a K8 family processor */ if (CPI_FAMILY(cpi) == 0xf) { (void) __cpuid_insn(0x80000007, &junk, &junk, &edx); return (!(edx & 0x100)); } return (0); default: return (-1); } } static const char assoc_str[] = "associativity"; static const char line_str[] = "line-size"; static const char size_str[] = "size"; static void add_cache_prop(dev_info_t *devi, const char *label, const char *type, uint32_t val) { char buf[128]; /* * ndi_prop_update_int() is used because it is desirable for * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set. */ if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf)) (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val); } /* * Intel-style cache/tlb description * * Standard cpuid level 2 gives a randomly ordered * selection of tags that index into a table that describes * cache and tlb properties. */ static const char l1_icache_str[] = "l1-icache"; static const char l1_dcache_str[] = "l1-dcache"; static const char l2_cache_str[] = "l2-cache"; static const char itlb4k_str[] = "itlb-4K"; static const char dtlb4k_str[] = "dtlb-4K"; static const char itlb4M_str[] = "itlb-4M"; static const char dtlb4M_str[] = "dtlb-4M"; static const char itlb424_str[] = "itlb-4K-2M-4M"; static const char dtlb44_str[] = "dtlb-4K-4M"; static const char sl1_dcache_str[] = "sectored-l1-dcache"; static const char sl2_cache_str[] = "sectored-l2-cache"; static const char itrace_str[] = "itrace-cache"; static const char sl3_cache_str[] = "sectored-l3-cache"; static const struct cachetab { uint8_t ct_code; uint8_t ct_assoc; uint16_t ct_line_size; size_t ct_size; const char *ct_label; } intel_ctab[] = { /* maintain descending order! */ { 0xb3, 4, 0, 128, dtlb4k_str }, { 0xb0, 4, 0, 128, itlb4k_str }, { 0x87, 8, 64, 1024*1024, l2_cache_str}, { 0x86, 4, 64, 512*1024, l2_cache_str}, { 0x85, 8, 32, 2*1024*1024, l2_cache_str}, { 0x84, 8, 32, 1024*1024, l2_cache_str}, { 0x83, 8, 32, 512*1024, l2_cache_str}, { 0x82, 8, 32, 256*1024, l2_cache_str}, { 0x81, 8, 32, 128*1024, l2_cache_str}, /* suspect! */ { 0x7f, 2, 64, 512*1024, l2_cache_str}, { 0x7d, 8, 64, 2*1024*1024, sl2_cache_str}, { 0x7c, 8, 64, 1024*1024, sl2_cache_str}, { 0x7b, 8, 64, 512*1024, sl2_cache_str}, { 0x7a, 8, 64, 256*1024, sl2_cache_str}, { 0x79, 8, 64, 128*1024, sl2_cache_str}, { 0x78, 8, 64, 1024*1024, l2_cache_str}, { 0x72, 8, 0, 32*1024, itrace_str}, { 0x71, 8, 0, 16*1024, itrace_str}, { 0x70, 8, 0, 12*1024, itrace_str}, { 0x68, 4, 64, 32*1024, sl1_dcache_str}, { 0x67, 4, 64, 16*1024, sl1_dcache_str}, { 0x66, 4, 64, 8*1024, sl1_dcache_str}, { 0x60, 8, 64, 16*1024, sl1_dcache_str}, { 0x5d, 0, 0, 256, dtlb44_str}, { 0x5c, 0, 0, 128, dtlb44_str}, { 0x5b, 0, 0, 64, dtlb44_str}, { 0x52, 0, 0, 256, itlb424_str}, { 0x51, 0, 0, 128, itlb424_str}, { 0x50, 0, 0, 64, itlb424_str}, { 0x45, 4, 32, 2*1024*1024, l2_cache_str}, { 0x44, 4, 32, 1024*1024, l2_cache_str}, { 0x43, 4, 32, 512*1024, l2_cache_str}, { 0x42, 4, 32, 256*1024, l2_cache_str}, { 0x41, 4, 32, 128*1024, l2_cache_str}, { 0x3c, 4, 64, 256*1024, sl2_cache_str}, { 0x3b, 2, 64, 128*1024, sl2_cache_str}, { 0x39, 4, 64, 128*1024, sl2_cache_str}, { 0x30, 8, 64, 32*1024, l1_icache_str}, { 0x2c, 8, 64, 32*1024, l1_dcache_str}, { 0x29, 8, 64, 4096*1024, sl3_cache_str}, { 0x25, 8, 64, 2048*1024, sl3_cache_str}, { 0x23, 8, 64, 1024*1024, sl3_cache_str}, { 0x22, 4, 64, 512*1024, sl3_cache_str}, { 0x0c, 4, 32, 16*1024, l1_dcache_str}, { 0x0a, 2, 32, 8*1024, l1_dcache_str}, { 0x08, 4, 32, 16*1024, l1_icache_str}, { 0x06, 4, 32, 8*1024, l1_icache_str}, { 0x04, 4, 0, 8, dtlb4M_str}, { 0x03, 4, 0, 64, dtlb4k_str}, { 0x02, 4, 0, 2, itlb4M_str}, { 0x01, 4, 0, 32, itlb4k_str}, { 0 } }; static const struct cachetab cyrix_ctab[] = { { 0x70, 4, 0, 32, "tlb-4K" }, { 0x80, 4, 16, 16*1024, "l1-cache" }, { 0 } }; /* * Search a cache table for a matching entry */ static const struct cachetab * find_cacheent(const struct cachetab *ct, uint_t code) { if (code != 0) { for (; ct->ct_code != 0; ct++) if (ct->ct_code <= code) break; if (ct->ct_code == code) return (ct); } return (NULL); } /* * Walk the cacheinfo descriptor, applying 'func' to every valid element * The walk is terminated if the walker returns non-zero. */ static void intel_walk_cacheinfo(struct cpuid_info *cpi, void *arg, int (*func)(void *, const struct cachetab *)) { const struct cachetab *ct; uint8_t *dp; int i; if ((dp = cpi->cpi_cacheinfo) == NULL) return; for (i = 0; i < cpi->cpi_ncache; i++, dp++) if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { if (func(arg, ct) != 0) break; } } /* * (Like the Intel one, except for Cyrix CPUs) */ static void cyrix_walk_cacheinfo(struct cpuid_info *cpi, void *arg, int (*func)(void *, const struct cachetab *)) { const struct cachetab *ct; uint8_t *dp; int i; if ((dp = cpi->cpi_cacheinfo) == NULL) return; for (i = 0; i < cpi->cpi_ncache; i++, dp++) { /* * Search Cyrix-specific descriptor table first .. */ if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) { if (func(arg, ct) != 0) break; continue; } /* * .. else fall back to the Intel one */ if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { if (func(arg, ct) != 0) break; continue; } } } /* * A cacheinfo walker that adds associativity, line-size, and size properties * to the devinfo node it is passed as an argument. */ static int add_cacheent_props(void *arg, const struct cachetab *ct) { dev_info_t *devi = arg; add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc); if (ct->ct_line_size != 0) add_cache_prop(devi, ct->ct_label, line_str, ct->ct_line_size); add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size); return (0); } static const char fully_assoc[] = "fully-associative?"; /* * AMD style cache/tlb description * * Extended functions 5 and 6 directly describe properties of * tlbs and various cache levels. */ static void add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc) { switch (assoc) { case 0: /* reserved; ignore */ break; default: add_cache_prop(devi, label, assoc_str, assoc); break; case 0xff: add_cache_prop(devi, label, fully_assoc, 1); break; } } static void add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) { if (size == 0) return; add_cache_prop(devi, label, size_str, size); add_amd_assoc(devi, label, assoc); } static void add_amd_cache(dev_info_t *devi, const char *label, uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) { if (size == 0 || line_size == 0) return; add_amd_assoc(devi, label, assoc); /* * Most AMD parts have a sectored cache. Multiple cache lines are * associated with each tag. A sector consists of all cache lines * associated with a tag. For example, the AMD K6-III has a sector * size of 2 cache lines per tag. */ if (lines_per_tag != 0) add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); add_cache_prop(devi, label, line_str, line_size); add_cache_prop(devi, label, size_str, size * 1024); } static void add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc) { switch (assoc) { case 0: /* off */ break; case 1: case 2: case 4: add_cache_prop(devi, label, assoc_str, assoc); break; case 6: add_cache_prop(devi, label, assoc_str, 8); break; case 8: add_cache_prop(devi, label, assoc_str, 16); break; case 0xf: add_cache_prop(devi, label, fully_assoc, 1); break; default: /* reserved; ignore */ break; } } static void add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) { if (size == 0 || assoc == 0) return; add_amd_l2_assoc(devi, label, assoc); add_cache_prop(devi, label, size_str, size); } static void add_amd_l2_cache(dev_info_t *devi, const char *label, uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) { if (size == 0 || assoc == 0 || line_size == 0) return; add_amd_l2_assoc(devi, label, assoc); if (lines_per_tag != 0) add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); add_cache_prop(devi, label, line_str, line_size); add_cache_prop(devi, label, size_str, size * 1024); } static void amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi) { struct cpuidr *cp; if (cpi->cpi_xmaxeax < 0x80000005) return; cp = &cpi->cpi_extd[5]; /* * 4M/2M L1 TLB configuration * * We report the size for 2M pages because AMD uses two * TLB entries for one 4M page. */ add_amd_tlb(devi, "dtlb-2M", BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16)); add_amd_tlb(devi, "itlb-2M", BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0)); /* * 4K L1 TLB configuration */ switch (cpi->cpi_vendor) { uint_t nentries; case X86_VENDOR_TM: if (cpi->cpi_family >= 5) { /* * Crusoe processors have 256 TLB entries, but * cpuid data format constrains them to only * reporting 255 of them. */ if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255) nentries = 256; /* * Crusoe processors also have a unified TLB */ add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24), nentries); break; } /*FALLTHROUGH*/ default: add_amd_tlb(devi, itlb4k_str, BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16)); add_amd_tlb(devi, dtlb4k_str, BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0)); break; } /* * data L1 cache configuration */ add_amd_cache(devi, l1_dcache_str, BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16), BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0)); /* * code L1 cache configuration */ add_amd_cache(devi, l1_icache_str, BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16), BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0)); if (cpi->cpi_xmaxeax < 0x80000006) return; cp = &cpi->cpi_extd[6]; /* Check for a unified L2 TLB for large pages */ if (BITX(cp->cp_eax, 31, 16) == 0) add_amd_l2_tlb(devi, "l2-tlb-2M", BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); else { add_amd_l2_tlb(devi, "l2-dtlb-2M", BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); add_amd_l2_tlb(devi, "l2-itlb-2M", BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); } /* Check for a unified L2 TLB for 4K pages */ if (BITX(cp->cp_ebx, 31, 16) == 0) { add_amd_l2_tlb(devi, "l2-tlb-4K", BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); } else { add_amd_l2_tlb(devi, "l2-dtlb-4K", BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); add_amd_l2_tlb(devi, "l2-itlb-4K", BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); } add_amd_l2_cache(devi, l2_cache_str, BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12), BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0)); } /* * There are two basic ways that the x86 world describes it cache * and tlb architecture - Intel's way and AMD's way. * * Return which flavor of cache architecture we should use */ static int x86_which_cacheinfo(struct cpuid_info *cpi) { switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: if (cpi->cpi_maxeax >= 2) return (X86_VENDOR_Intel); break; case X86_VENDOR_AMD: /* * The K5 model 1 was the first part from AMD that reported * cache sizes via extended cpuid functions. */ if (cpi->cpi_family > 5 || (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) return (X86_VENDOR_AMD); break; case X86_VENDOR_TM: if (cpi->cpi_family >= 5) return (X86_VENDOR_AMD); /*FALLTHROUGH*/ default: /* * If they have extended CPU data for 0x80000005 * then we assume they have AMD-format cache * information. * * If not, and the vendor happens to be Cyrix, * then try our-Cyrix specific handler. * * If we're not Cyrix, then assume we're using Intel's * table-driven format instead. */ if (cpi->cpi_xmaxeax >= 0x80000005) return (X86_VENDOR_AMD); else if (cpi->cpi_vendor == X86_VENDOR_Cyrix) return (X86_VENDOR_Cyrix); else if (cpi->cpi_maxeax >= 2) return (X86_VENDOR_Intel); break; } return (-1); } /* * create a node for the given cpu under the prom root node. * Also, create a cpu node in the device tree. */ static dev_info_t *cpu_nex_devi = NULL; static kmutex_t cpu_node_lock; /* * Called from post_startup() and mp_startup() */ void add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi) { dev_info_t *cpu_devi; int create; mutex_enter(&cpu_node_lock); /* * create a nexus node for all cpus identified as 'cpu_id' under * the root node. */ if (cpu_nex_devi == NULL) { if (ndi_devi_alloc(ddi_root_node(), "cpus", (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) { mutex_exit(&cpu_node_lock); return; } (void) ndi_devi_online(cpu_nex_devi, 0); } /* * create a child node for cpu identified as 'cpu_id' */ cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, cpu_id); if (cpu_devi == NULL) { mutex_exit(&cpu_node_lock); return; } /* device_type */ (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, "device_type", "cpu"); /* reg */ (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "reg", cpu_id); /* cpu-mhz, and clock-frequency */ if (cpu_freq > 0) { long long mul; (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "cpu-mhz", cpu_freq); if ((mul = cpu_freq * 1000000LL) <= INT_MAX) (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "clock-frequency", (int)mul); } (void) ndi_devi_online(cpu_devi, 0); if ((x86_feature & X86_CPUID) == 0) { mutex_exit(&cpu_node_lock); return; } /* vendor-id */ (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, "vendor-id", cpi->cpi_vendorstr); if (cpi->cpi_maxeax == 0) { mutex_exit(&cpu_node_lock); return; } /* * family, model, and step */ (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "family", CPI_FAMILY(cpi)); (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "cpu-model", CPI_MODEL(cpi)); (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "stepping-id", CPI_STEP(cpi)); /* type */ switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: create = 1; break; default: create = 0; break; } if (create) (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "type", CPI_TYPE(cpi)); /* ext-family */ switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: case X86_VENDOR_AMD: create = cpi->cpi_family >= 0xf; break; default: create = 0; break; } if (create) (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "ext-family", CPI_FAMILY_XTD(cpi)); /* ext-model */ switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: case X86_VENDOR_AMD: create = CPI_MODEL(cpi) == 0xf; break; default: create = 0; break; } if (create) (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "ext-model", CPI_MODEL_XTD(cpi)); /* generation */ switch (cpi->cpi_vendor) { case X86_VENDOR_AMD: /* * AMD K5 model 1 was the first part to support this */ create = cpi->cpi_xmaxeax >= 0x80000001; break; default: create = 0; break; } if (create) (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8)); /* brand-id */ switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: /* * brand id first appeared on Pentium III Xeon model 8, * and Celeron model 8 processors and Opteron */ create = cpi->cpi_family > 6 || (cpi->cpi_family == 6 && cpi->cpi_model >= 8); break; case X86_VENDOR_AMD: create = cpi->cpi_family >= 0xf; break; default: create = 0; break; } if (create && cpi->cpi_brandid != 0) { (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "brand-id", cpi->cpi_brandid); } /* chunks, and apic-id */ switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: case X86_VENDOR_AMD: /* * first available on Pentium IV and Opteron (K8) */ create = cpi->cpi_family >= 0xf; break; default: create = 0; break; } if (create) { (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "chunks", CPI_CHUNKS(cpi)); (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "apic-id", CPI_APIC_ID(cpi)); if (cpi->cpi_chipid >= 0) (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "chip#", cpi->cpi_chipid); } /* cpuid-features */ (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "cpuid-features", CPI_FEATURES_EDX(cpi)); /* cpuid-features-ecx */ switch (cpi->cpi_vendor) { case X86_VENDOR_Intel: create = cpi->cpi_family >= 0xf; break; default: create = 0; break; } if (create) (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "cpuid-features-ecx", CPI_FEATURES_ECX(cpi)); /* ext-cpuid-features */ switch (cpi->cpi_vendor) { case X86_VENDOR_AMD: case X86_VENDOR_Cyrix: case X86_VENDOR_TM: case X86_VENDOR_Centaur: /* * The extended cpuid features are not relevant on * Intel but are available from the AMD K5 model 1 * and most Cyrix GXm and later. */ create = cpi->cpi_xmaxeax >= 0x80000001; break; default: create = 0; break; } if (create) (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi)); /* * Brand String first appeared in Intel Pentium IV, AMD K5 * model 1, and Cyrix GXm. On earlier models we try and * simulate something similar .. so this string should always * same -something- about the processor, however lame. */ (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, "brand-string", cpi->cpi_brandstr); /* * Finally, cache and tlb information */ switch (x86_which_cacheinfo(cpi)) { case X86_VENDOR_Intel: intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); break; case X86_VENDOR_Cyrix: cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); break; case X86_VENDOR_AMD: amd_cache_info(cpi, cpu_devi); break; default: break; } mutex_exit(&cpu_node_lock); } struct l2info { int *l2i_csz; int *l2i_lsz; int *l2i_assoc; int l2i_ret; }; /* * A cacheinfo walker that fetches the size, line-size and associativity * of the L2 cache */ static int intel_l2cinfo(void *arg, const struct cachetab *ct) { struct l2info *l2i = arg; int *ip; if (ct->ct_label != l2_cache_str && ct->ct_label != sl2_cache_str) return (0); /* not an L2 -- keep walking */ if ((ip = l2i->l2i_csz) != NULL) *ip = ct->ct_size; if ((ip = l2i->l2i_lsz) != NULL) *ip = ct->ct_line_size; if ((ip = l2i->l2i_assoc) != NULL) *ip = ct->ct_assoc; l2i->l2i_ret = ct->ct_size; return (1); /* was an L2 -- terminate walk */ } static void amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i) { struct cpuidr *cp; uint_t size, assoc; int *ip; if (cpi->cpi_xmaxeax < 0x80000006) return; cp = &cpi->cpi_extd[6]; if ((assoc = BITX(cp->cp_ecx, 15, 12)) != 0 && (size = BITX(cp->cp_ecx, 31, 16)) != 0) { uint_t cachesz = size * 1024; if ((ip = l2i->l2i_csz) != NULL) *ip = cachesz; if ((ip = l2i->l2i_lsz) != NULL) *ip = BITX(cp->cp_ecx, 7, 0); if ((ip = l2i->l2i_assoc) != NULL) *ip = assoc; l2i->l2i_ret = cachesz; } } int getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc) { struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; struct l2info __l2info, *l2i = &__l2info; l2i->l2i_csz = csz; l2i->l2i_lsz = lsz; l2i->l2i_assoc = assoc; l2i->l2i_ret = -1; switch (x86_which_cacheinfo(cpi)) { case X86_VENDOR_Intel: intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo); break; case X86_VENDOR_Cyrix: cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo); break; case X86_VENDOR_AMD: amd_l2cacheinfo(cpi, l2i); break; default: break; } return (l2i->l2i_ret); }