/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _SYS_DDI_IMPLDEFS_H #define _SYS_DDI_IMPLDEFS_H #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * The device id implementation has been switched to be based on properties. * For compatibility with di_devid libdevinfo interface the following * must be defined: */ #define DEVID_COMPATIBILITY ((ddi_devid_t)-1) /* * Definitions for node class. * DDI_NC_PROM: a node with a nodeid that may be used in a promif call. * DDI_NC_PSEUDO: a software created node with a software assigned nodeid. */ typedef enum { DDI_NC_PROM = 0, DDI_NC_PSEUDO } ddi_node_class_t; /* * dev_info: The main device information structure this is intended to be * opaque to drivers and drivers should use ddi functions to * access *all* driver accessible fields. * * devi_parent_data includes property lists (interrupts, registers, etc.) * devi_driver_data includes whatever the driver wants to place there. */ struct devinfo_audit; typedef struct devi_port { union { struct { uint32_t type; uint32_t pad; } port; uint64_t type64; } info; void *priv_p; } devi_port_t; typedef struct devi_bus_priv { devi_port_t port_up; devi_port_t port_down; } devi_bus_priv_t; struct dev_info { struct dev_info *devi_parent; /* my parent node in tree */ struct dev_info *devi_child; /* my child list head */ struct dev_info *devi_sibling; /* next element on my level */ char *devi_binding_name; /* name used to bind driver: */ /* shared storage, points to */ /* devi_node_name, devi_compat_names */ /* or devi_rebinding_name */ char *devi_addr; /* address part of name */ int devi_nodeid; /* device nodeid */ int devi_instance; /* device instance number */ struct dev_ops *devi_ops; /* driver operations */ void *devi_parent_data; /* parent private data */ void *devi_driver_data; /* driver private data */ ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */ ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */ struct ddi_minor_data *devi_minor; /* head of minor list */ struct dev_info *devi_next; /* Next instance of this device */ kmutex_t devi_lock; /* Protects per-devinfo data */ /* logical parents for busop primitives */ struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */ struct dev_info *devi_bus_dma_map; /* bus_dma_map parent */ struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */ struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */ struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */ struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */ struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */ struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */ struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */ struct dev_info *devi_bus_ctl; /* bus_ctl parent */ ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */ char *devi_node_name; /* The 'name' of the node */ char *devi_compat_names; /* A list of driver names */ size_t devi_compat_length; /* Size of compat_names */ int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *, uint_t *); int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *, ddi_dma_handle_t); char *devi_devid_str; /* registered device id */ /* * power management entries * components exist even if the device is not currently power managed */ struct pm_info *devi_pm_info; /* 0 => dev not power managed */ uint_t devi_pm_flags; /* pm flags */ int devi_pm_num_components; /* number of components */ size_t devi_pm_comp_size; /* size of devi_components */ struct pm_component *devi_pm_components; /* array of pm components */ struct dev_info *devi_pm_ppm; /* ppm attached to this one */ void *devi_pm_ppm_private; /* for use by ppm driver */ int devi_pm_dev_thresh; /* "device" threshold */ uint_t devi_pm_kidsupcnt; /* # of kids powered up */ struct pm_scan *devi_pm_scan; /* pm scan info */ uint_t devi_pm_noinvolpm; /* # of descendents no-invol */ uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */ kmutex_t devi_pm_lock; /* pm lock for state */ kmutex_t devi_pm_busy_lock; /* for component busy count */ uint_t devi_state; /* device/bus state flags */ /* see below for definitions */ kcondvar_t devi_cv; /* cv */ int devi_ref; /* reference count */ dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */ ddi_node_class_t devi_node_class; /* Node class */ int devi_node_attributes; /* Node attributes: See below */ char *devi_device_class; /* * New mpxio kernel hooks entries */ int devi_mdi_component; /* mpxio component type */ void *devi_mdi_client; /* mpxio client information */ void *devi_mdi_xhci; /* vhci/phci info */ ddi_prop_list_t *devi_global_prop_list; /* driver global properties */ major_t devi_major; /* driver major number */ ddi_node_state_t devi_node_state; /* state of node */ uint_t devi_flags; /* configuration flags */ int devi_circular; /* for recursive operations */ void *devi_busy_thread; /* thread operating on node */ void *devi_taskq; /* hotplug taskq */ /* device driver statistical and audit info */ struct devinfo_audit *devi_audit; /* last state change */ /* * FMA support for resource caches and error handlers */ struct i_ddi_fmhdl *devi_fmhdl; uint_t devi_cpr_flags; /* For interrupt support */ devinfo_intr_t *devi_intr_p; void *devi_nex_pm; /* nexus PM private */ char *devi_addr_buf; /* buffer for devi_addr */ char *devi_rebinding_name; /* binding_name of rebind */ /* For device contracts that have this dip's minor node as resource */ kmutex_t devi_ct_lock; /* contract lock */ kcondvar_t devi_ct_cv; /* contract cv */ int devi_ct_count; /* # of outstanding responses */ int devi_ct_neg; /* neg. occurred on dip */ list_t devi_ct; /* owned by bus framework */ devi_bus_priv_t devi_bus; /* bus private data */ /* Declarations of the pure dynamic properties to snapshot */ struct i_ddi_prop_dyn *devi_prop_dyn_driver; /* prop_op */ struct i_ddi_prop_dyn *devi_prop_dyn_parent; /* bus_prop_op */ }; #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type)) /* * NB: The 'name' field, for compatibility with old code (both existing * device drivers and userland code), is now defined as the name used * to bind the node to a device driver, and not the device node name. * If the device node name does not define a binding to a device driver, * and the framework uses a different algorithm to create the binding to * the driver, the node name and binding name will be different. * * Note that this implies that the node name plus instance number does * NOT create a unique driver id; only the binding name plus instance * number creates a unique driver id. * * New code should not use 'devi_name'; use 'devi_binding_name' or * 'devi_node_name' and/or the routines that access those fields. */ #define devi_name devi_binding_name /* * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept * around to allow legacy drivers to to compile. */ #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL) #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL) #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops) /* * The device state flags (devi_state) contains information regarding * the state of the device (Online/Offline/Down). For bus nexus * devices, the device state also contains state information regarding * the state of the bus represented by this nexus node. * * Device state information is stored in bits [0-7], bus state in bits * [8-15]. * * NOTE: all devi_state updates should be protected by devi_lock. */ #define DEVI_DEVICE_OFFLINE 0x00000001 #define DEVI_DEVICE_DOWN 0x00000002 #define DEVI_DEVICE_DEGRADED 0x00000004 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */ #define DEVI_BUS_QUIESCED 0x00000100 #define DEVI_BUS_DOWN 0x00000200 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */ #define DEVI_S_ATTACHING 0x00010000 #define DEVI_S_DETACHING 0x00020000 #define DEVI_S_ONLINING 0x00040000 #define DEVI_S_OFFLINING 0x00080000 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */ #define DEVI_S_UNBOUND 0x00200000 #define DEVI_S_REPORT 0x08000000 /* report status change */ #define DEVI_S_EVADD 0x10000000 /* state of devfs event */ #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */ #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */ /* * Device state macros. * o All SET/CLR/DONE users must protect context with devi_lock. * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT. * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE. * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED. */ #define DEVI_IS_DEVICE_OFFLINE(dip) \ ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE) #define DEVI_SET_DEVICE_ONLINE(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ mutex_exit(&DEVI(dip)->devi_lock); \ e_ddi_undegrade_finalize(dip); \ mutex_enter(&DEVI(dip)->devi_lock); \ } \ /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \ DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \ DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \ } #define DEVI_SET_DEVICE_OFFLINE(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \ } #define DEVI_IS_DEVICE_DOWN(dip) \ ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN) #define DEVI_SET_DEVICE_DOWN(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \ } #define DEVI_IS_DEVICE_DEGRADED(dip) \ ((DEVI(dip)->devi_state & \ (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED) #define DEVI_SET_DEVICE_DEGRADED(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ mutex_exit(&DEVI(dip)->devi_lock); \ e_ddi_degrade_finalize(dip); \ mutex_enter(&DEVI(dip)->devi_lock); \ DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \ } #define DEVI_SET_DEVICE_UP(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ mutex_exit(&DEVI(dip)->devi_lock); \ e_ddi_undegrade_finalize(dip); \ mutex_enter(&DEVI(dip)->devi_lock); \ } \ DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \ DEVI(dip)->devi_state |= DEVI_S_REPORT; \ } /* Device removal and insertion */ #define DEVI_IS_DEVICE_REMOVED(dip) \ ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED) #define DEVI_SET_DEVICE_REMOVED(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED; \ } #define DEVI_SET_DEVICE_REINSERTED(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \ } /* Bus state change macros */ #define DEVI_IS_BUS_QUIESCED(dip) \ ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED) #define DEVI_SET_BUS_ACTIVE(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \ DEVI(dip)->devi_state |= DEVI_S_REPORT; \ } #define DEVI_SET_BUS_QUIESCE(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \ } #define DEVI_IS_BUS_DOWN(dip) \ ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN) #define DEVI_SET_BUS_UP(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \ DEVI(dip)->devi_state |= DEVI_S_REPORT; \ } #define DEVI_SET_BUS_DOWN(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \ } /* Status change report needed */ #define DEVI_NEED_REPORT(dip) \ ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT) #define DEVI_SET_REPORT(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= DEVI_S_REPORT; \ } #define DEVI_REPORT_DONE(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \ } /* Do an NDI_CONFIG for its children */ #define DEVI_NEED_NDI_CONFIG(dip) \ ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG) #define DEVI_SET_NDI_CONFIG(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \ } #define DEVI_CLR_NDI_CONFIG(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \ } /* Attaching or detaching state */ #define DEVI_IS_ATTACHING(dip) \ ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING) #define DEVI_SET_ATTACHING(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \ } #define DEVI_CLR_ATTACHING(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \ } #define DEVI_IS_DETACHING(dip) \ ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING) #define DEVI_SET_DETACHING(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= DEVI_S_DETACHING; \ } #define DEVI_CLR_DETACHING(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \ } /* Onlining or offlining state */ #define DEVI_IS_ONLINING(dip) \ ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING) #define DEVI_SET_ONLINING(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= DEVI_S_ONLINING; \ } #define DEVI_CLR_ONLINING(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \ } #define DEVI_IS_OFFLINING(dip) \ ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING) #define DEVI_SET_OFFLINING(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \ } #define DEVI_CLR_OFFLINING(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \ } #define DEVI_IS_IN_RECONFIG(dip) \ (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING)) /* Busy invoking a dacf task against this node */ #define DEVI_IS_INVOKING_DACF(dip) \ ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF) #define DEVI_SET_INVOKING_DACF(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \ } #define DEVI_CLR_INVOKING_DACF(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \ } /* Events for add/remove */ #define DEVI_EVADD(dip) \ ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD) #define DEVI_SET_EVADD(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \ DEVI(dip)->devi_state |= DEVI_S_EVADD; \ } #define DEVI_EVREMOVE(dip) \ ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE) #define DEVI_SET_EVREMOVE(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \ DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \ } #define DEVI_SET_EVUNINIT(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \ } /* Need to call the devo_reset entry point for this device at shutdown */ #define DEVI_NEED_RESET(dip) \ ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET) #define DEVI_SET_NEED_RESET(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \ } #define DEVI_CLR_NEED_RESET(dip) { \ ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \ } /* * devi_flags bits * * NOTE: all devi_state updates should be protected by devi_lock. */ #define DEVI_BUSY 0x00000001 /* busy configuring children */ #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */ #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */ #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */ #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */ #define DEVI_REGISTERED_DEVID 0x00000020 /* device registered a devid */ #define DEVI_PHCI_SIGNALS_VHCI 0x00000040 /* pHCI ndi_devi_exit signals vHCI */ #define DEVI_REBIND 0x00000080 /* post initchild driver rebind */ #define DEVI_RETIRED 0x00000100 /* device is retired */ #define DEVI_RETIRING 0x00000200 /* being evaluated for retire */ #define DEVI_R_CONSTRAINT 0x00000400 /* constraints have been applied */ #define DEVI_R_BLOCKED 0x00000800 /* constraints block retire */ #define DEVI_CT_NOP 0x00001000 /* NOP contract event occurred */ #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY) #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \ ((DEVI(dip))->devi_busy_thread == curthread)) char *i_ddi_devi_class(dev_info_t *); int i_ddi_set_devi_class(dev_info_t *, char *, int); /* * This structure represents one piece of bus space occupied by a given * device. It is used in an array for devices with multiple address windows. */ struct regspec { uint_t regspec_bustype; /* cookie for bus type it's on */ uint_t regspec_addr; /* address of reg relative to bus */ uint_t regspec_size; /* size of this register set */ }; /* * This structure represents one piece of nexus bus space. * It is used in an array for nexi with multiple bus spaces * to define the childs offsets in the parents bus space. */ struct rangespec { uint_t rng_cbustype; /* Child's address, hi order */ uint_t rng_coffset; /* Child's address, lo order */ uint_t rng_bustype; /* Parent's address, hi order */ uint_t rng_offset; /* Parent's address, lo order */ uint_t rng_size; /* size of space for this entry */ }; #ifdef _KERNEL typedef enum { DDI_PRE = 0, DDI_POST = 1 } ddi_pre_post_t; /* * This structure represents notification of a child attach event * These could both be the same if attach/detach commands were in the * same name space. * Note that the target dip is passed as an arg already. */ struct attachspec { ddi_attach_cmd_t cmd; /* type of event */ ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ dev_info_t *pdip; /* parent of attaching node */ int result; /* result of attach op (post command only) */ }; /* * This structure represents notification of a child detach event * Note that the target dip is passed as an arg already. */ struct detachspec { ddi_detach_cmd_t cmd; /* type of event */ ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ dev_info_t *pdip; /* parent of detaching node */ int result; /* result of detach op (post command only) */ }; #endif /* _KERNEL */ typedef enum { DDM_MINOR = 0, DDM_ALIAS, DDM_DEFAULT, DDM_INTERNAL_PATH } ddi_minor_type; /* implementation flags for driver specified device access control */ #define DM_NO_FSPERM 0x1 struct devplcy; struct ddi_minor { char *name; /* name of node */ dev_t dev; /* device number */ int spec_type; /* block or char */ int flags; /* access flags */ char *node_type; /* block, byte, serial, network */ struct devplcy *node_priv; /* privilege for this minor */ mode_t priv_mode; /* default apparent privilege mode */ }; /* * devi_node_attributes contains node attributes private to the * ddi implementation. As a consumer, do not use these bit definitions * directly, use the ndi functions that check for the existence of the * specific node attributes. * * DDI_PERSISTENT indicates a 'persistent' node; one that is not * automatically freed by the framework if the driver is unloaded * or the driver fails to attach to this node. * * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned * by the framework and should be auto-freed if the node is removed. * * DDI_VHCI_NODE indicates that the node type is VHCI. This flag * must be set by ndi_devi_config_vhci() routine only. */ #define DDI_PERSISTENT 0x01 #define DDI_AUTO_ASSIGNED_NODEID 0x02 #define DDI_VHCI_NODE 0x04 #define DEVI_VHCI_NODE(dip) \ (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE) /* * The ddi_minor_data structure gets filled in by ddi_create_minor_node. * It then gets attached to the devinfo node as a property. */ struct ddi_minor_data { struct ddi_minor_data *next; /* next one in the chain */ dev_info_t *dip; /* pointer to devinfo node */ ddi_minor_type type; /* Following data type */ struct ddi_minor d_minor; /* Actual minor node data */ }; #define ddm_name d_minor.name #define ddm_dev d_minor.dev #define ddm_flags d_minor.flags #define ddm_spec_type d_minor.spec_type #define ddm_node_type d_minor.node_type #define ddm_node_priv d_minor.node_priv #define ddm_priv_mode d_minor.priv_mode /* * parent private data structure contains register, interrupt, property * and range information. */ struct ddi_parent_private_data { int par_nreg; /* number of regs */ struct regspec *par_reg; /* array of regs */ int par_nintr; /* number of interrupts */ struct intrspec *par_intr; /* array of possible interrupts */ int par_nrng; /* number of ranges */ struct rangespec *par_rng; /* array of ranges */ }; #define DEVI_PD(d) \ ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data) #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg) #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr) #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng) #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)]) #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)]) #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)]) /* * This data structure is entirely private to the soft state allocator. */ struct i_ddi_soft_state { void **array; /* the array of pointers */ kmutex_t lock; /* serialize access to this struct */ size_t size; /* how many bytes per state struct */ size_t n_items; /* how many structs herein */ struct i_ddi_soft_state *next; /* 'dirty' elements */ }; /* * Solaris DDI DMA implementation structure and function definitions. * * Note: no callers of DDI functions must depend upon data structures * declared below. They are not guaranteed to remain constant. */ /* * Implementation DMA mapping structure. * * The publicly visible ddi_dma_req structure is filled * in by a caller that wishes to map a memory object * for DMA. Internal to this implementation of the public * DDI DMA functions this request structure is put together * with bus nexus specific functions that have additional * information and constraints as to how to go about doing * the requested mapping function * * In this implementation, some of the information from the * original requester is retained throughout the lifetime * of the I/O mapping being active. */ /* * This is the implementation specific description * of how we've mapped an object for DMA. */ #if defined(__sparc) typedef struct ddi_dma_impl { /* * DMA mapping information */ ulong_t dmai_mapping; /* mapping cookie */ /* * Size of the current mapping, in bytes. * * Note that this is distinct from the size of the object being mapped * for DVMA. We might have only a portion of the object mapped at any * given point in time. */ uint_t dmai_size; /* * Offset, in bytes, into object that is currently mapped. */ off_t dmai_offset; /* * Information gathered from the original DMA mapping * request and saved for the lifetime of the mapping. */ uint_t dmai_minxfer; uint_t dmai_burstsizes; uint_t dmai_ndvmapages; uint_t dmai_pool; /* cached DVMA space */ uint_t dmai_rflags; /* requester's flags + ours */ uint_t dmai_inuse; /* active handle? */ uint_t dmai_nwin; uint_t dmai_winsize; caddr_t dmai_nexus_private; void *dmai_iopte; uint_t *dmai_sbi; void *dmai_minfo; /* random mapping information */ dev_info_t *dmai_rdip; /* original requester's dev_info_t */ ddi_dma_obj_t dmai_object; /* requester's object */ ddi_dma_attr_t dmai_attr; /* DMA attributes */ ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */ int (*dmai_fault_check)(struct ddi_dma_impl *handle); void (*dmai_fault_notify)(struct ddi_dma_impl *handle); int dmai_fault; ndi_err_t dmai_error; } ddi_dma_impl_t; #elif defined(__x86) /* * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex * implementation specific state is in dmai_private. */ typedef struct ddi_dma_impl { ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */ void *dmai_private; /* * Information gathered from the original dma mapping * request and saved for the lifetime of the mapping. */ uint_t dmai_minxfer; uint_t dmai_burstsizes; uint_t dmai_rflags; /* requester's flags + ours */ int dmai_nwin; dev_info_t *dmai_rdip; /* original requester's dev_info_t */ ddi_dma_attr_t dmai_attr; /* DMA attributes */ int (*dmai_fault_check)(struct ddi_dma_impl *handle); void (*dmai_fault_notify)(struct ddi_dma_impl *handle); int dmai_fault; ndi_err_t dmai_error; } ddi_dma_impl_t; #else #error "struct ddi_dma_impl not defined for this architecture" #endif /* defined(__sparc) */ /* * For now DMA segments share state with the DMA handle */ typedef ddi_dma_impl_t ddi_dma_seg_impl_t; /* * These flags use reserved bits from the dma request flags. * * A note about the DMP_NOSYNC flags: the root nexus will * set these as it sees best. If an intermediate nexus * actually needs these operations, then during the unwind * from the call to ddi_dma_bind, the nexus driver *must* * clear the appropriate flag(s). This is because, as an * optimization, ddi_dma_sync(9F) looks at these flags before * deciding to spend the time going back up the tree. */ #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ #define DMP_DDIFLAGS (_DMCM1|_DMCM2) #define DMP_SHADOW 0x20 #define DMP_LKIOPB 0x40 #define DMP_LKSYSV 0x80 #define DMP_IOCACHE 0x100 #define DMP_USEHAT 0x200 #define DMP_PHYSADDR 0x400 #define DMP_INVALID 0x800 #define DMP_NOLIMIT 0x1000 #define DMP_VMEREQ 0x10000000 #define DMP_BYPASSNEXUS 0x20000000 #define DMP_NODEVSYNC 0x40000000 #define DMP_NOCPUSYNC 0x80000000 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC) /* * In order to complete a device to device mapping that * has percolated as high as an IU nexus (gone that high * because the DMA request is a VADDR type), we define * structure to use with the DDI_CTLOPS_DMAPMAPC request * that re-traverses the request tree to finish the * DMA 'mapping' for a device. */ struct dma_phys_mapc { struct ddi_dma_req *dma_req; /* original request */ ddi_dma_impl_t *mp; /* current handle, or none */ int nptes; /* number of ptes */ void *ptes; /* ptes already read */ }; #define MAXCALLBACK 20 /* * Callback definitions */ struct ddi_callback { struct ddi_callback *c_nfree; struct ddi_callback *c_nlist; int (*c_call)(); int c_count; caddr_t c_arg; size_t c_size; }; /* * Pure dynamic property declaration. A pure dynamic property is a property * for which a driver's prop_op(9E) implementation will return a value on * demand, but the property name does not exist on a property list (global, * driver, system, or hardware) - the person asking for the value must know * the name and type information. * * For a pure dynamic property to show up in a di_init() devinfo shapshot, the * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism * allows a driver to define an array of the name/type information of its * dynamic properties. When a driver declares its dynamic properties in a * i_ddi_prop_dyn_t array, and registers that array using * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information * to represent the properties in a snapshot - calling the driver's * prop_op(9E) to obtain values. * * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value. * * A pure dynamic property name associated with a minor_node/dev_t should be * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate. The * driver's prop_op(9E) entry point will be called for all * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver * where not all minor_node/dev_t combinations support the same named * properties, it is the responsibility of the prop_op(9E) implementation to * sort out what combinations are appropriate. * * A pure dynamic property of a devinfo node should be defined with a * dp_spec_type of 0. * * NB: Public DDI property interfaces no longer support pure dynamic * properties, but they are still still used. A prime example is the cmlb * implementation of size(9P) properties. Using pure dynamic properties * reduces the space required to maintain per-partition information. Since * there are no public interfaces to create pure dynamic properties, * the i_ddi_prop_dyn_t mechanism should remain private. */ typedef struct i_ddi_prop_dyn { char *dp_name; /* name of dynamic property */ int dp_type; /* DDI_PROP_TYPE_ of property */ int dp_spec_type; /* 0, S_IFCHR, S_IFBLK */ } i_ddi_prop_dyn_t; void i_ddi_prop_dyn_driver_set(dev_info_t *, i_ddi_prop_dyn_t *); i_ddi_prop_dyn_t *i_ddi_prop_dyn_driver_get(dev_info_t *); void i_ddi_prop_dyn_parent_set(dev_info_t *, i_ddi_prop_dyn_t *); i_ddi_prop_dyn_t *i_ddi_prop_dyn_parent_get(dev_info_t *); void i_ddi_prop_dyn_cache_invalidate(dev_info_t *, i_ddi_prop_dyn_t *); /* * Device id - Internal definition. */ #define DEVID_MAGIC_MSB 0x69 #define DEVID_MAGIC_LSB 0x64 #define DEVID_REV_MSB 0x00 #define DEVID_REV_LSB 0x01 #define DEVID_HINT_SIZE 4 typedef struct impl_devid { uchar_t did_magic_hi; /* device id magic # (msb) */ uchar_t did_magic_lo; /* device id magic # (lsb) */ uchar_t did_rev_hi; /* device id revision # (msb) */ uchar_t did_rev_lo; /* device id revision # (lsb) */ uchar_t did_type_hi; /* device id type (msb) */ uchar_t did_type_lo; /* device id type (lsb) */ uchar_t did_len_hi; /* length of devid data (msb) */ uchar_t did_len_lo; /* length of devid data (lsb) */ char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */ char did_id[1]; /* start of device id data */ } impl_devid_t; #define DEVID_GETTYPE(devid) ((ushort_t) \ (((devid)->did_type_hi << NBBY) + \ (devid)->did_type_lo)) #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \ (devid)->did_type_lo = lobyte((type)); #define DEVID_GETLEN(devid) ((ushort_t) \ (((devid)->did_len_hi << NBBY) + \ (devid)->did_len_lo)) #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \ (devid)->did_len_lo = lobyte((len)); /* * Per PSARC/1995/352, a binary devid contains fields for , * , , , , and the itself. * This proposal would encode the binary devid into a string consisting * of ",@" as indicated below * ( is rederived from the length of the string * representation of the ): * * ->"id" * * ->"%d" // "0" -> type of DEVID_NONE "id0" * // NOTE: PSARC/1995/352 is "1". * // NOTE: support limited to 10 revisions * // in current implementation * * ->"%s" // "sd"/"ssd" * // NOTE: driver names limited to 4 * // characters for "1" * * ->'w' | // DEVID_SCSI3_WWN * 'W' | // DEVID_SCSI3_WWN * 't' | // DEVID_SCSI3_VPD_T10 * 'T' | // DEVID_SCSI3_VPD_T10 * 'x' | // DEVID_SCSI3_VPD_EUI * 'X' | // DEVID_SCSI3_VPD_EUI * 'n' | // DEVID_SCSI3_VPD_NAA * 'N' | // DEVID_SCSI3_VPD_NAA * 's' | // DEVID_SCSI_SERIAL * 'S' | // DEVID_SCSI_SERIAL * 'f' | // DEVID_FAB * 'F' | // DEVID_FAB * 'e' | // DEVID_ENCAP * 'E' | // DEVID_ENCAP * 'a' | // DEVID_ATA_SERIAL * 'A' | // DEVID_ATA_SERIAL * 'u' | // unknown * 'U' // unknown * // NOTE: lower case -> * // upper case -> * // NOTE: this covers all types currently * // defined for 1. * // NOTE: a can be added * // without changing the . * * -> | // is upper case * // is lower case * * // only if all bytes of binary field * // are in the set: * // [A-Z][a-z][0-9]+-.= and space and 0x00 * // the encoded form is: * // [A-Z][a-z][0-9]+-.= and _ and ~ * // NOTE: ' ' <=> '_', 0x00 <=> '~' * // these sets are chosen to avoid shell * // and conflicts with DDI node names. * * // if not ; each byte of binary * // maps a to 2 digit ascii hex * // representation in the string. * * This encoding provides a meaningful correlation between the /devices * path and the devid string where possible. * * Fibre: * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw * id1,ssd@w20000020370bb488:c,raw * * Copper: * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c * id1,sd@SIBM_____1XY210__________:c */ /* determine if a byte of an id meets ASCII representation requirements */ #define DEVID_IDBYTE_ISASCII(b) ( \ (((b) >= 'a') && ((b) <= 'z')) || \ (((b) >= 'A') && ((b) <= 'Z')) || \ (((b) >= '0') && ((b) <= '9')) || \ (b == '+') || (b == '-') || (b == '.') || (b == '=') || \ (b == ' ') || (b == 0x00)) /* set type to lower case to indicate that the did_id field is ascii */ #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */ /* determine from type if did_id field is binary or ascii */ #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z')) /* convert type field from binary to ascii */ #define DEVID_TYPE_BINTOASCII(b) ( \ ((b) == DEVID_SCSI3_WWN) ? 'w' : \ ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \ ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \ ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \ ((b) == DEVID_SCSI_SERIAL) ? 's' : \ ((b) == DEVID_FAB) ? 'f' : \ ((b) == DEVID_ENCAP) ? 'e' : \ ((b) == DEVID_ATA_SERIAL) ? 'a' : \ 'u') /* unknown */ /* convert type field from ascii to binary */ #define DEVID_TYPE_ASCIITOBIN(c) ( \ (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \ (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \ (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \ (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \ (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \ (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \ (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \ (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \ DEVID_MAXTYPE +1) /* unknown */ /* determine if the type should be forced to hex encoding (non-ascii) */ #define DEVID_TYPE_BIN_FORCEHEX(b) ( \ ((b) == DEVID_SCSI3_WWN) || \ ((b) == DEVID_SCSI3_VPD_EUI) || \ ((b) == DEVID_SCSI3_VPD_NAA) || \ ((b) == DEVID_FAB)) /* determine if the type is from a scsi3 vpd */ #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \ ((b) == DEVID_SCSI3_VPD_T10) || \ ((b) == DEVID_SCSI3_VPD_EUI) || \ ((b) == DEVID_SCSI3_VPD_NAA)) /* convert rev field from binary to ascii (only supports 10 revs) */ #define DEVID_REV_BINTOASCII(b) (b + '0') /* convert rev field from ascii to binary (only supports 10 revs) */ #define DEVID_REV_ASCIITOBIN(c) (c - '0') /* name of devid property */ #define DEVID_PROP_NAME "devid" /* * prop_name used by pci_{save,restore}_config_regs() */ #define SAVED_CONFIG_REGS "pci-config-regs" #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask" #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info" typedef struct pci_config_header_state { uint16_t chs_command; uint8_t chs_cache_line_size; uint8_t chs_latency_timer; uint8_t chs_header_type; uint8_t chs_sec_latency_timer; uint8_t chs_bridge_control; uint32_t chs_base0; uint32_t chs_base1; uint32_t chs_base2; uint32_t chs_base3; uint32_t chs_base4; uint32_t chs_base5; } pci_config_header_state_t; #ifdef _KERNEL typedef struct pci_cap_save_desc { uint16_t cap_offset; uint16_t cap_id; uint32_t cap_nregs; } pci_cap_save_desc_t; typedef struct pci_cap_entry { uint16_t cap_id; uint32_t cap_ndwords; uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t ndwords); } pci_cap_entry_t; #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _SYS_DDI_IMPLDEFS_H */