/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _SYS_CPUVAR_H #define _SYS_CPUVAR_H #include #include /* has cpu_stat_t definition */ #include #include #if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP) #include #endif #include #include #include #include #include #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL) && \ (defined(__i386) || defined(__amd64)) #include #endif #ifdef __cplusplus extern "C" { #endif struct squeue_set_s; #define CPU_CACHE_COHERENCE_SIZE 64 #define S_LOADAVG_SZ 11 #define S_MOVAVG_SZ 10 struct loadavg_s { int lg_cur; /* current loadavg entry */ unsigned int lg_len; /* number entries recorded */ hrtime_t lg_total; /* used to temporarily hold load totals */ hrtime_t lg_loads[S_LOADAVG_SZ]; /* table of recorded entries */ }; /* * For fast event tracing. */ struct ftrace_record; typedef struct ftrace_data { int ftd_state; /* ftrace flags */ kmutex_t ftd_unused; /* ftrace buffer lock, unused */ struct ftrace_record *ftd_cur; /* current record */ struct ftrace_record *ftd_first; /* first record */ struct ftrace_record *ftd_last; /* last record */ } ftrace_data_t; struct cyc_cpu; struct nvlist; /* * Per-CPU data. * * Be careful adding new members: if they are not the same in all modules (e.g. * change size depending on a #define), CTF uniquification can fail to work * properly. Furthermore, this is transitive in that it applies recursively to * all types pointed to by cpu_t. */ typedef struct cpu { processorid_t cpu_id; /* CPU number */ processorid_t cpu_seqid; /* sequential CPU id (0..ncpus-1) */ volatile cpu_flag_t cpu_flags; /* flags indicating CPU state */ struct cpu *cpu_self; /* pointer to itself */ kthread_t *cpu_thread; /* current thread */ kthread_t *cpu_idle_thread; /* idle thread for this CPU */ kthread_t *cpu_pause_thread; /* pause thread for this CPU */ klwp_id_t cpu_lwp; /* current lwp (if any) */ klwp_id_t cpu_fpowner; /* currently loaded fpu owner */ struct cpupart *cpu_part; /* partition with this CPU */ struct lgrp_ld *cpu_lpl; /* pointer to this cpu's load */ int cpu_cache_offset; /* see kmem.c for details */ /* * Links to other CPUs. It is safe to walk these lists if * one of the following is true: * - cpu_lock held * - preemption disabled via kpreempt_disable * - PIL >= DISP_LEVEL * - acting thread is an interrupt thread * - all other CPUs are paused */ struct cpu *cpu_next; /* next existing CPU */ struct cpu *cpu_prev; /* prev existing CPU */ struct cpu *cpu_next_onln; /* next online (enabled) CPU */ struct cpu *cpu_prev_onln; /* prev online (enabled) CPU */ struct cpu *cpu_next_part; /* next CPU in partition */ struct cpu *cpu_prev_part; /* prev CPU in partition */ struct cpu *cpu_next_lgrp; /* next CPU in latency group */ struct cpu *cpu_prev_lgrp; /* prev CPU in latency group */ struct cpu *cpu_next_lpl; /* next CPU in lgrp partition */ struct cpu *cpu_prev_lpl; struct cpu_pg *cpu_pg; /* cpu's processor groups */ void *cpu_reserved[4]; /* reserved for future use */ /* * Scheduling variables. */ disp_t *cpu_disp; /* dispatch queue data */ /* * Note that cpu_disp is set before the CPU is added to the system * and is never modified. Hence, no additional locking is needed * beyond what's necessary to access the cpu_t structure. */ char cpu_runrun; /* scheduling flag - set to preempt */ char cpu_kprunrun; /* force kernel preemption */ pri_t cpu_chosen_level; /* priority at which cpu */ /* was chosen for scheduling */ kthread_t *cpu_dispthread; /* thread selected for dispatch */ disp_lock_t cpu_thread_lock; /* dispatcher lock on current thread */ uint8_t cpu_disp_flags; /* flags used by dispatcher */ /* * The following field is updated when ever the cpu_dispthread * changes. Also in places, where the current thread(cpu_dispthread) * priority changes. This is used in disp_lowpri_cpu() */ pri_t cpu_dispatch_pri; /* priority of cpu_dispthread */ clock_t cpu_last_swtch; /* last time switched to new thread */ /* * Interrupt data. */ caddr_t cpu_intr_stack; /* interrupt stack */ kthread_t *cpu_intr_thread; /* interrupt thread list */ uint_t cpu_intr_actv; /* interrupt levels active (bitmask) */ int cpu_base_spl; /* priority for highest rupt active */ /* * Statistics. */ cpu_stats_t cpu_stats; /* per-CPU statistics */ struct kstat *cpu_info_kstat; /* kstat for cpu info */ uintptr_t cpu_profile_pc; /* kernel PC in profile interrupt */ uintptr_t cpu_profile_upc; /* user PC in profile interrupt */ uintptr_t cpu_profile_pil; /* PIL when profile interrupted */ ftrace_data_t cpu_ftrace; /* per cpu ftrace data */ clock_t cpu_deadman_lbolt; /* used by deadman() */ uint_t cpu_deadman_countdown; /* used by deadman() */ kmutex_t cpu_cpc_ctxlock; /* protects context for idle thread */ kcpc_ctx_t *cpu_cpc_ctx; /* performance counter context */ /* * Configuration information for the processor_info system call. */ processor_info_t cpu_type_info; /* config info */ time_t cpu_state_begin; /* when CPU entered current state */ char cpu_cpr_flags; /* CPR related info */ struct cyc_cpu *cpu_cyclic; /* per cpu cyclic subsystem data */ struct squeue_set_s *cpu_squeue_set; /* per cpu squeue set */ struct nvlist *cpu_props; /* pool-related properties */ krwlock_t cpu_ft_lock; /* DTrace: fasttrap lock */ uintptr_t cpu_dtrace_caller; /* DTrace: caller, if any */ hrtime_t cpu_dtrace_chillmark; /* DTrace: chill mark time */ hrtime_t cpu_dtrace_chilled; /* DTrace: total chill time */ volatile uint16_t cpu_mstate; /* cpu microstate */ volatile uint16_t cpu_mstate_gen; /* generation counter */ volatile hrtime_t cpu_mstate_start; /* cpu microstate start time */ volatile hrtime_t cpu_acct[NCMSTATES]; /* cpu microstate data */ hrtime_t cpu_intracct[NCMSTATES]; /* interrupt mstate data */ hrtime_t cpu_waitrq; /* cpu run-queue wait time */ struct loadavg_s cpu_loadavg; /* loadavg info for this cpu */ char *cpu_idstr; /* for printing and debugging */ char *cpu_brandstr; /* for printing */ /* * Sum of all device interrupt weights that are currently directed at * this cpu. Cleared at start of interrupt redistribution. */ int32_t cpu_intr_weight; void *cpu_vm_data; struct cpu_physid *cpu_physid; /* physical associations */ uint64_t cpu_curr_clock; /* current clock freq in Hz */ char *cpu_supp_freqs; /* supported freqs in Hz */ uintptr_t cpu_cpcprofile_pc; /* kernel PC in cpc interrupt */ uintptr_t cpu_cpcprofile_upc; /* user PC in cpc interrupt */ /* * Interrupt load factor used by dispatcher & softcall */ hrtime_t cpu_intrlast; /* total interrupt time (nsec) */ int cpu_intrload; /* interrupt load factor (0-99%) */ uint_t cpu_rotor; /* for cheap pseudo-random numbers */ /* * New members must be added /before/ this member, as the CTF tools * rely on this being the last field before cpu_m, so they can * correctly calculate the offset when synthetically adding the cpu_m * member in objects that do not have it. This fixup is required for * uniquification to work correctly. */ uintptr_t cpu_m_pad; #if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP) struct machcpu cpu_m; /* per architecture info */ #endif } cpu_t; /* * The cpu_core structure consists of per-CPU state available in any context. * On some architectures, this may mean that the page(s) containing the * NCPU-sized array of cpu_core structures must be locked in the TLB -- it * is up to the platform to assure that this is performed properly. Note that * the structure is sized to avoid false sharing. */ #define CPUC_SIZE (sizeof (uint16_t) + sizeof (uint8_t) + \ sizeof (uintptr_t) + sizeof (kmutex_t)) #define CPUC_PADSIZE CPU_CACHE_COHERENCE_SIZE - CPUC_SIZE typedef struct cpu_core { uint16_t cpuc_dtrace_flags; /* DTrace flags */ uint8_t cpuc_dcpc_intr_state; /* DCPC provider intr state */ uint8_t cpuc_pad[CPUC_PADSIZE]; /* padding */ uintptr_t cpuc_dtrace_illval; /* DTrace illegal value */ kmutex_t cpuc_pid_lock; /* DTrace pid provider lock */ } cpu_core_t; #ifdef _KERNEL extern cpu_core_t cpu_core[]; #endif /* _KERNEL */ /* * CPU_ON_INTR() macro. Returns non-zero if currently on interrupt stack. * Note that this isn't a test for a high PIL. For example, cpu_intr_actv * does not get updated when we go through sys_trap from TL>0 at high PIL. * getpil() should be used instead to check for PIL levels. */ #define CPU_ON_INTR(cpup) ((cpup)->cpu_intr_actv >> (LOCK_LEVEL + 1)) /* * CPU_PSEUDO_RANDOM() returns a per CPU value that changes each time one * looks at it. It's meant as a cheap mechanism to be incorporated in routines * wanting to avoid biasing, but where true randomness isn't needed (just * something that changes). */ #define CPU_PSEUDO_RANDOM() (CPU->cpu_rotor++) #if defined(_KERNEL) || defined(_KMEMUSER) #define INTR_STACK_SIZE MAX(DEFAULTSTKSZ, PAGESIZE) /* MEMBERS PROTECTED BY "atomicity": cpu_flags */ /* * Flags in the CPU structure. * * These are protected by cpu_lock (except during creation). * * Offlined-CPUs have three stages of being offline: * * CPU_ENABLE indicates that the CPU is participating in I/O interrupts * that can be directed at a number of different CPUs. If CPU_ENABLE * is off, the CPU will not be given interrupts that can be sent elsewhere, * but will still get interrupts from devices associated with that CPU only, * and from other CPUs. * * CPU_OFFLINE indicates that the dispatcher should not allow any threads * other than interrupt threads to run on that CPU. A CPU will not have * CPU_OFFLINE set if there are any bound threads (besides interrupts). * * CPU_QUIESCED is set if p_offline was able to completely turn idle the * CPU and it will not have to run interrupt threads. In this case it'll * stay in the idle loop until CPU_QUIESCED is turned off. * * CPU_FROZEN is used only by CPR to mark CPUs that have been successfully * suspended (in the suspend path), or have yet to be resumed (in the resume * case). * * On some platforms CPUs can be individually powered off. * The following flags are set for powered off CPUs: CPU_QUIESCED, * CPU_OFFLINE, and CPU_POWEROFF. The following flags are cleared: * CPU_RUNNING, CPU_READY, CPU_EXISTS, and CPU_ENABLE. */ #define CPU_RUNNING 0x001 /* CPU running */ #define CPU_READY 0x002 /* CPU ready for cross-calls */ #define CPU_QUIESCED 0x004 /* CPU will stay in idle */ #define CPU_EXISTS 0x008 /* CPU is configured */ #define CPU_ENABLE 0x010 /* CPU enabled for interrupts */ #define CPU_OFFLINE 0x020 /* CPU offline via p_online */ #define CPU_POWEROFF 0x040 /* CPU is powered off */ #define CPU_FROZEN 0x080 /* CPU is frozen via CPR suspend */ #define CPU_SPARE 0x100 /* CPU offline available for use */ #define CPU_FAULTED 0x200 /* CPU offline diagnosed faulty */ #define FMT_CPU_FLAGS \ "\20\12fault\11spare\10frozen" \ "\7poweroff\6offline\5enable\4exist\3quiesced\2ready\1run" #define CPU_ACTIVE(cpu) (((cpu)->cpu_flags & CPU_OFFLINE) == 0) /* * Flags for cpu_offline(), cpu_faulted(), and cpu_spare(). */ #define CPU_FORCED 0x0001 /* Force CPU offline */ /* * DTrace flags. */ #define CPU_DTRACE_NOFAULT 0x0001 /* Don't fault */ #define CPU_DTRACE_DROP 0x0002 /* Drop this ECB */ #define CPU_DTRACE_BADADDR 0x0004 /* DTrace fault: bad address */ #define CPU_DTRACE_BADALIGN 0x0008 /* DTrace fault: bad alignment */ #define CPU_DTRACE_DIVZERO 0x0010 /* DTrace fault: divide by zero */ #define CPU_DTRACE_ILLOP 0x0020 /* DTrace fault: illegal operation */ #define CPU_DTRACE_NOSCRATCH 0x0040 /* DTrace fault: out of scratch */ #define CPU_DTRACE_KPRIV 0x0080 /* DTrace fault: bad kernel access */ #define CPU_DTRACE_UPRIV 0x0100 /* DTrace fault: bad user access */ #define CPU_DTRACE_TUPOFLOW 0x0200 /* DTrace fault: tuple stack overflow */ #if defined(__sparc) #define CPU_DTRACE_FAKERESTORE 0x0400 /* pid provider hint to getreg */ #endif #define CPU_DTRACE_ENTRY 0x0800 /* pid provider hint to ustack() */ #define CPU_DTRACE_BADSTACK 0x1000 /* DTrace fault: bad stack */ #define CPU_DTRACE_FAULT (CPU_DTRACE_BADADDR | CPU_DTRACE_BADALIGN | \ CPU_DTRACE_DIVZERO | CPU_DTRACE_ILLOP | \ CPU_DTRACE_NOSCRATCH | CPU_DTRACE_KPRIV | \ CPU_DTRACE_UPRIV | CPU_DTRACE_TUPOFLOW | \ CPU_DTRACE_BADSTACK) #define CPU_DTRACE_ERROR (CPU_DTRACE_FAULT | CPU_DTRACE_DROP) /* * Dispatcher flags * These flags must be changed only by the current CPU. */ #define CPU_DISP_DONTSTEAL 0x01 /* CPU undergoing context swtch */ #define CPU_DISP_HALTED 0x02 /* CPU halted waiting for interrupt */ #endif /* _KERNEL || _KMEMUSER */ #if (defined(_KERNEL) || defined(_KMEMUSER)) && defined(_MACHDEP) /* * Macros for manipulating sets of CPUs as a bitmap. Note that this * bitmap may vary in size depending on the maximum CPU id a specific * platform supports. This may be different than the number of CPUs * the platform supports, since CPU ids can be sparse. We define two * sets of macros; one for platforms where the maximum CPU id is less * than the number of bits in a single word (32 in a 32-bit kernel, * 64 in a 64-bit kernel), and one for platforms that require bitmaps * of more than one word. */ #define CPUSET_WORDS BT_BITOUL(NCPU) #define CPUSET_NOTINSET ((uint_t)-1) #if CPUSET_WORDS > 1 typedef struct cpuset { ulong_t cpub[CPUSET_WORDS]; } cpuset_t; /* * Private functions for manipulating cpusets that do not fit in a * single word. These should not be used directly; instead the * CPUSET_* macros should be used so the code will be portable * across different definitions of NCPU. */ extern void cpuset_all(cpuset_t *); extern void cpuset_all_but(cpuset_t *, uint_t); extern int cpuset_isnull(cpuset_t *); extern int cpuset_cmp(cpuset_t *, cpuset_t *); extern void cpuset_only(cpuset_t *, uint_t); extern uint_t cpuset_find(cpuset_t *); extern void cpuset_bounds(cpuset_t *, uint_t *, uint_t *); #define CPUSET_ALL(set) cpuset_all(&(set)) #define CPUSET_ALL_BUT(set, cpu) cpuset_all_but(&(set), cpu) #define CPUSET_ONLY(set, cpu) cpuset_only(&(set), cpu) #define CPU_IN_SET(set, cpu) BT_TEST((set).cpub, cpu) #define CPUSET_ADD(set, cpu) BT_SET((set).cpub, cpu) #define CPUSET_DEL(set, cpu) BT_CLEAR((set).cpub, cpu) #define CPUSET_ISNULL(set) cpuset_isnull(&(set)) #define CPUSET_ISEQUAL(set1, set2) cpuset_cmp(&(set1), &(set2)) /* * Find one CPU in the cpuset. * Sets "cpu" to the id of the found CPU, or CPUSET_NOTINSET if no cpu * could be found. (i.e. empty set) */ #define CPUSET_FIND(set, cpu) { \ cpu = cpuset_find(&(set)); \ } /* * Determine the smallest and largest CPU id in the set. Returns * CPUSET_NOTINSET in smallest and largest when set is empty. */ #define CPUSET_BOUNDS(set, smallest, largest) { \ cpuset_bounds(&(set), &(smallest), &(largest)); \ } /* * Atomic cpuset operations * These are safe to use for concurrent cpuset manipulations. * "xdel" and "xadd" are exclusive operations, that set "result" to "0" * if the add or del was successful, or "-1" if not successful. * (e.g. attempting to add a cpu to a cpuset that's already there, or * deleting a cpu that's not in the cpuset) */ #define CPUSET_ATOMIC_DEL(set, cpu) BT_ATOMIC_CLEAR((set).cpub, (cpu)) #define CPUSET_ATOMIC_ADD(set, cpu) BT_ATOMIC_SET((set).cpub, (cpu)) #define CPUSET_ATOMIC_XADD(set, cpu, result) \ BT_ATOMIC_SET_EXCL((set).cpub, cpu, result) #define CPUSET_ATOMIC_XDEL(set, cpu, result) \ BT_ATOMIC_CLEAR_EXCL((set).cpub, cpu, result) #define CPUSET_OR(set1, set2) { \ int _i; \ for (_i = 0; _i < CPUSET_WORDS; _i++) \ (set1).cpub[_i] |= (set2).cpub[_i]; \ } #define CPUSET_XOR(set1, set2) { \ int _i; \ for (_i = 0; _i < CPUSET_WORDS; _i++) \ (set1).cpub[_i] ^= (set2).cpub[_i]; \ } #define CPUSET_AND(set1, set2) { \ int _i; \ for (_i = 0; _i < CPUSET_WORDS; _i++) \ (set1).cpub[_i] &= (set2).cpub[_i]; \ } #define CPUSET_ZERO(set) { \ int _i; \ for (_i = 0; _i < CPUSET_WORDS; _i++) \ (set).cpub[_i] = 0; \ } #elif CPUSET_WORDS == 1 typedef ulong_t cpuset_t; /* a set of CPUs */ #define CPUSET(cpu) (1UL << (cpu)) #define CPUSET_ALL(set) ((void)((set) = ~0UL)) #define CPUSET_ALL_BUT(set, cpu) ((void)((set) = ~CPUSET(cpu))) #define CPUSET_ONLY(set, cpu) ((void)((set) = CPUSET(cpu))) #define CPU_IN_SET(set, cpu) ((set) & CPUSET(cpu)) #define CPUSET_ADD(set, cpu) ((void)((set) |= CPUSET(cpu))) #define CPUSET_DEL(set, cpu) ((void)((set) &= ~CPUSET(cpu))) #define CPUSET_ISNULL(set) ((set) == 0) #define CPUSET_ISEQUAL(set1, set2) ((set1) == (set2)) #define CPUSET_OR(set1, set2) ((void)((set1) |= (set2))) #define CPUSET_XOR(set1, set2) ((void)((set1) ^= (set2))) #define CPUSET_AND(set1, set2) ((void)((set1) &= (set2))) #define CPUSET_ZERO(set) ((void)((set) = 0)) #define CPUSET_FIND(set, cpu) { \ cpu = (uint_t)(lowbit(set) - 1); \ } #define CPUSET_BOUNDS(set, smallest, largest) { \ smallest = (uint_t)(lowbit(set) - 1); \ largest = (uint_t)(highbit(set) - 1); \ } #define CPUSET_ATOMIC_DEL(set, cpu) atomic_and_long(&(set), ~CPUSET(cpu)) #define CPUSET_ATOMIC_ADD(set, cpu) atomic_or_long(&(set), CPUSET(cpu)) #define CPUSET_ATOMIC_XADD(set, cpu, result) \ { result = atomic_set_long_excl(&(set), (cpu)); } #define CPUSET_ATOMIC_XDEL(set, cpu, result) \ { result = atomic_clear_long_excl(&(set), (cpu)); } #else /* CPUSET_WORDS <= 0 */ #error NCPU is undefined or invalid #endif /* CPUSET_WORDS */ extern cpuset_t cpu_seqid_inuse; #endif /* (_KERNEL || _KMEMUSER) && _MACHDEP */ #define CPU_CPR_OFFLINE 0x0 #define CPU_CPR_ONLINE 0x1 #define CPU_CPR_IS_OFFLINE(cpu) (((cpu)->cpu_cpr_flags & CPU_CPR_ONLINE) == 0) #define CPU_CPR_IS_ONLINE(cpu) ((cpu)->cpu_cpr_flags & CPU_CPR_ONLINE) #define CPU_SET_CPR_FLAGS(cpu, flag) ((cpu)->cpu_cpr_flags |= flag) #if defined(_KERNEL) || defined(_KMEMUSER) extern struct cpu *cpu[]; /* indexed by CPU number */ extern struct cpu **cpu_seq; /* indexed by sequential CPU id */ extern cpu_t *cpu_list; /* list of CPUs */ extern cpu_t *cpu_active; /* list of active CPUs */ extern int ncpus; /* number of CPUs present */ extern int ncpus_online; /* number of CPUs not quiesced */ extern int max_ncpus; /* max present before ncpus is known */ extern int boot_max_ncpus; /* like max_ncpus but for real */ extern int boot_ncpus; /* # cpus present @ boot */ extern processorid_t max_cpuid; /* maximum CPU number */ extern struct cpu *cpu_inmotion; /* offline or partition move target */ extern cpu_t *clock_cpu_list; #if defined(__i386) || defined(__amd64) extern struct cpu *curcpup(void); #define CPU (curcpup()) /* Pointer to current CPU */ #else #define CPU (curthread->t_cpu) /* Pointer to current CPU */ #endif /* * CPU_CURRENT indicates to thread_affinity_set to use CPU->cpu_id * as the target and to grab cpu_lock instead of requiring the caller * to grab it. */ #define CPU_CURRENT -3 /* * Per-CPU statistics * * cpu_stats_t contains numerous system and VM-related statistics, in the form * of gauges or monotonically-increasing event occurrence counts. */ #define CPU_STATS_ENTER_K() kpreempt_disable() #define CPU_STATS_EXIT_K() kpreempt_enable() #define CPU_STATS_ADD_K(class, stat, amount) \ { kpreempt_disable(); /* keep from switching CPUs */\ CPU_STATS_ADDQ(CPU, class, stat, amount); \ kpreempt_enable(); \ } #define CPU_STATS_ADDQ(cp, class, stat, amount) { \ extern void __dtrace_probe___cpu_##class##info_##stat(uint_t, \ uint64_t *, cpu_t *); \ uint64_t *stataddr = &((cp)->cpu_stats.class.stat); \ __dtrace_probe___cpu_##class##info_##stat((amount), \ stataddr, cp); \ *(stataddr) += (amount); \ } #define CPU_STATS(cp, stat) \ ((cp)->cpu_stats.stat) #endif /* _KERNEL || _KMEMUSER */ /* * CPU support routines. */ #if defined(_KERNEL) && defined(__STDC__) /* not for genassym.c */ struct zone; void cpu_list_init(cpu_t *); void cpu_add_unit(cpu_t *); void cpu_del_unit(int cpuid); void cpu_add_active(cpu_t *); void cpu_kstat_init(cpu_t *); void cpu_visibility_add(cpu_t *, struct zone *); void cpu_visibility_remove(cpu_t *, struct zone *); void cpu_visibility_configure(cpu_t *, struct zone *); void cpu_visibility_unconfigure(cpu_t *, struct zone *); void cpu_visibility_online(cpu_t *, struct zone *); void cpu_visibility_offline(cpu_t *, struct zone *); void cpu_create_intrstat(cpu_t *); void cpu_delete_intrstat(cpu_t *); int cpu_kstat_intrstat_update(kstat_t *, int); void cpu_intr_swtch_enter(kthread_t *); void cpu_intr_swtch_exit(kthread_t *); void mbox_lock_init(void); /* initialize cross-call locks */ void mbox_init(int cpun); /* initialize cross-calls */ void poke_cpu(int cpun); /* interrupt another CPU (to preempt) */ /* * values for safe_list. Pause state that CPUs are in. */ #define PAUSE_IDLE 0 /* normal state */ #define PAUSE_READY 1 /* paused thread ready to spl */ #define PAUSE_WAIT 2 /* paused thread is spl-ed high */ #define PAUSE_DIE 3 /* tell pause thread to leave */ #define PAUSE_DEAD 4 /* pause thread has left */ void mach_cpu_pause(volatile char *); void pause_cpus(cpu_t *off_cp); void start_cpus(void); int cpus_paused(void); void cpu_pause_init(void); cpu_t *cpu_get(processorid_t cpun); /* get the CPU struct associated */ int cpu_online(cpu_t *cp); /* take cpu online */ int cpu_offline(cpu_t *cp, int flags); /* take cpu offline */ int cpu_spare(cpu_t *cp, int flags); /* take cpu to spare */ int cpu_faulted(cpu_t *cp, int flags); /* take cpu to faulted */ int cpu_poweron(cpu_t *cp); /* take powered-off cpu to offline */ int cpu_poweroff(cpu_t *cp); /* take offline cpu to powered-off */ cpu_t *cpu_intr_next(cpu_t *cp); /* get next online CPU taking intrs */ int cpu_intr_count(cpu_t *cp); /* count # of CPUs handling intrs */ int cpu_intr_on(cpu_t *cp); /* CPU taking I/O interrupts? */ void cpu_intr_enable(cpu_t *cp); /* enable I/O interrupts */ int cpu_intr_disable(cpu_t *cp); /* disable I/O interrupts */ void cpu_intr_alloc(cpu_t *cp, int n); /* allocate interrupt threads */ /* * Routines for checking CPU states. */ int cpu_is_online(cpu_t *); /* check if CPU is online */ int cpu_is_nointr(cpu_t *); /* check if CPU can service intrs */ int cpu_is_active(cpu_t *); /* check if CPU can run threads */ int cpu_is_offline(cpu_t *); /* check if CPU is offline */ int cpu_is_poweredoff(cpu_t *); /* check if CPU is powered off */ int cpu_flagged_online(cpu_flag_t); /* flags show CPU is online */ int cpu_flagged_nointr(cpu_flag_t); /* flags show CPU not handling intrs */ int cpu_flagged_active(cpu_flag_t); /* flags show CPU scheduling threads */ int cpu_flagged_offline(cpu_flag_t); /* flags show CPU is offline */ int cpu_flagged_poweredoff(cpu_flag_t); /* flags show CPU is powered off */ /* * The processor_info(2) state of a CPU is a simplified representation suitable * for use by an application program. Kernel subsystems should utilize the * internal per-CPU state as given by the cpu_flags member of the cpu structure, * as this information may include platform- or architecture-specific state * critical to a subsystem's disposition of a particular CPU. */ void cpu_set_state(cpu_t *); /* record/timestamp current state */ int cpu_get_state(cpu_t *); /* get current cpu state */ const char *cpu_get_state_str(cpu_t *); /* get current cpu state as string */ void cpu_set_curr_clock(uint64_t); /* indicate the current CPU's freq */ void cpu_set_supp_freqs(cpu_t *, const char *); /* set the CPU supported */ /* frequencies */ int cpu_configure(int); int cpu_unconfigure(int); void cpu_destroy_bound_threads(cpu_t *cp); extern int cpu_bind_thread(kthread_t *tp, processorid_t bind, processorid_t *obind, int *error); extern int cpu_unbind(processorid_t cpu_id, boolean_t force); extern void thread_affinity_set(kthread_t *t, int cpu_id); extern void thread_affinity_clear(kthread_t *t); extern void affinity_set(int cpu_id); extern void affinity_clear(void); extern void init_cpu_mstate(struct cpu *, int); extern void term_cpu_mstate(struct cpu *); extern void new_cpu_mstate(int, hrtime_t); extern void get_cpu_mstate(struct cpu *, hrtime_t *); extern void thread_nomigrate(void); extern void thread_allowmigrate(void); extern void weakbinding_stop(void); extern void weakbinding_start(void); /* * The following routines affect the CPUs participation in interrupt processing, * if that is applicable on the architecture. This only affects interrupts * which aren't directed at the processor (not cross calls). * * cpu_disable_intr returns non-zero if interrupts were previously enabled. */ int cpu_disable_intr(struct cpu *cp); /* stop issuing interrupts to cpu */ void cpu_enable_intr(struct cpu *cp); /* start issuing interrupts to cpu */ /* * The mutex cpu_lock protects cpu_flags for all CPUs, as well as the ncpus * and ncpus_online counts. */ extern kmutex_t cpu_lock; /* lock protecting CPU data */ typedef enum { CPU_INIT, CPU_CONFIG, CPU_UNCONFIG, CPU_ON, CPU_OFF, CPU_CPUPART_IN, CPU_CPUPART_OUT, CPU_SETUP } cpu_setup_t; typedef int cpu_setup_func_t(cpu_setup_t, int, void *); /* * Routines used to register interest in cpu's being added to or removed * from the system. */ extern void register_cpu_setup_func(cpu_setup_func_t *, void *); extern void unregister_cpu_setup_func(cpu_setup_func_t *, void *); extern void cpu_state_change_notify(int, cpu_setup_t); /* * Create various strings that describe the given CPU for the * processor_info system call and configuration-related kstats. */ #define CPU_IDSTRLEN 100 extern void init_cpu_info(struct cpu *); extern void populate_idstr(struct cpu *); extern void cpu_vm_data_init(struct cpu *); extern void cpu_vm_data_destroy(struct cpu *); #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _SYS_CPUVAR_H */