/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Big Theory Statement for the virtual memory allocator. * * For a more complete description of the main ideas, see: * * Jeff Bonwick and Jonathan Adams, * * Magazines and vmem: Extending the Slab Allocator to Many CPUs and * Arbitrary Resources. * * Proceedings of the 2001 Usenix Conference. * Available as http://www.usenix.org/event/usenix01/bonwick.html * * * 1. General Concepts * ------------------- * * 1.1 Overview * ------------ * We divide the kernel address space into a number of logically distinct * pieces, or *arenas*: text, data, heap, stack, and so on. Within these * arenas we often subdivide further; for example, we use heap addresses * not only for the kernel heap (kmem_alloc() space), but also for DVMA, * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip. * The kernel address space, therefore, is most accurately described as * a tree of arenas in which each node of the tree *imports* some subset * of its parent. The virtual memory allocator manages these arenas and * supports their natural hierarchical structure. * * 1.2 Arenas * ---------- * An arena is nothing more than a set of integers. These integers most * commonly represent virtual addresses, but in fact they can represent * anything at all. For example, we could use an arena containing the * integers minpid through maxpid to allocate process IDs. vmem_create() * and vmem_destroy() create and destroy vmem arenas. In order to * differentiate between arenas used for adresses and arenas used for * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create(). This * prevents identifier exhaustion from being diagnosed as general memory * failure. * * 1.3 Spans * --------- * We represent the integers in an arena as a collection of *spans*, or * contiguous ranges of integers. For example, the kernel heap consists * of just one span: [kernelheap, ekernelheap). Spans can be added to an * arena in two ways: explicitly, by vmem_add(), or implicitly, by * importing, as described in Section 1.5 below. * * 1.4 Segments * ------------ * Spans are subdivided into *segments*, each of which is either allocated * or free. A segment, like a span, is a contiguous range of integers. * Each allocated segment [addr, addr + size) represents exactly one * vmem_alloc(size) that returned addr. Free segments represent the space * between allocated segments. If two free segments are adjacent, we * coalesce them into one larger segment; that is, if segments [a, b) and * [b, c) are both free, we merge them into a single segment [a, c). * The segments within a span are linked together in increasing-address order * so we can easily determine whether coalescing is possible. * * Segments never cross span boundaries. When all segments within * an imported span become free, we return the span to its source. * * 1.5 Imported Memory * ------------------- * As mentioned in the overview, some arenas are logical subsets of * other arenas. For example, kmem_va_arena (a virtual address cache * that satisfies most kmem_slab_create() requests) is just a subset * of heap_arena (the kernel heap) that provides caching for the most * common slab sizes. When kmem_va_arena runs out of virtual memory, * it *imports* more from the heap; we say that heap_arena is the * *vmem source* for kmem_va_arena. vmem_create() allows you to * specify any existing vmem arena as the source for your new arena. * Topologically, since every arena is a child of at most one source, * the set of all arenas forms a collection of trees. * * 1.6 Constrained Allocations * --------------------------- * Some vmem clients are quite picky about the kind of address they want. * For example, the DVMA code may need an address that is at a particular * phase with respect to some alignment (to get good cache coloring), or * that lies within certain limits (the addressable range of a device), * or that doesn't cross some boundary (a DMA counter restriction) -- * or all of the above. vmem_xalloc() allows the client to specify any * or all of these constraints. * * 1.7 The Vmem Quantum * -------------------- * Every arena has a notion of 'quantum', specified at vmem_create() time, * that defines the arena's minimum unit of currency. Most commonly the * quantum is either 1 or PAGESIZE, but any power of 2 is legal. * All vmem allocations are guaranteed to be quantum-aligned. * * 1.8 Quantum Caching * ------------------- * A vmem arena may be so hot (frequently used) that the scalability of vmem * allocation is a significant concern. We address this by allowing the most * common allocation sizes to be serviced by the kernel memory allocator, * which provides low-latency per-cpu caching. The qcache_max argument to * vmem_create() specifies the largest allocation size to cache. * * 1.9 Relationship to Kernel Memory Allocator * ------------------------------------------- * Every kmem cache has a vmem arena as its slab supplier. The kernel memory * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs. * * * 2. Implementation * ----------------- * * 2.1 Segment lists and markers * ----------------------------- * The segment structure (vmem_seg_t) contains two doubly-linked lists. * * The arena list (vs_anext/vs_aprev) links all segments in the arena. * In addition to the allocated and free segments, the arena contains * special marker segments at span boundaries. Span markers simplify * coalescing and importing logic by making it easy to tell both when * we're at a span boundary (so we don't coalesce across it), and when * a span is completely free (its neighbors will both be span markers). * * Imported spans will have vs_import set. * * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type: * (1) for allocated segments, vs_knext is the hash chain linkage; * (2) for free segments, vs_knext is the freelist linkage; * (3) for span marker segments, vs_knext is the next span marker. * * 2.2 Allocation hashing * ---------------------- * We maintain a hash table of all allocated segments, hashed by address. * This allows vmem_free() to discover the target segment in constant time. * vmem_update() periodically resizes hash tables to keep hash chains short. * * 2.3 Freelist management * ----------------------- * We maintain power-of-2 freelists for free segments, i.e. free segments * of size >= 2^n reside in vmp->vm_freelist[n]. To ensure constant-time * allocation, vmem_xalloc() looks not in the first freelist that *might* * satisfy the allocation, but in the first freelist that *definitely* * satisfies the allocation (unless VM_BESTFIT is specified, or all larger * freelists are empty). For example, a 1000-byte allocation will be * satisfied not from the 512..1023-byte freelist, whose members *might* * contains a 1000-byte segment, but from a 1024-byte or larger freelist, * the first member of which will *definitely* satisfy the allocation. * This ensures that vmem_xalloc() works in constant time. * * We maintain a bit map to determine quickly which freelists are non-empty. * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty. * * The different freelists are linked together into one large freelist, * with the freelist heads serving as markers. Freelist markers simplify * the maintenance of vm_freemap by making it easy to tell when we're taking * the last member of a freelist (both of its neighbors will be markers). * * 2.4 Vmem Locking * ---------------- * For simplicity, all arena state is protected by a per-arena lock. * For very hot arenas, use quantum caching for scalability. * * 2.5 Vmem Population * ------------------- * Any internal vmem routine that might need to allocate new segment * structures must prepare in advance by calling vmem_populate(), which * will preallocate enough vmem_seg_t's to get is through the entire * operation without dropping the arena lock. * * 2.6 Auditing * ------------ * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well. * Since virtual addresses cannot be scribbled on, there is no equivalent * in vmem to redzone checking, deadbeef, or other kmem debugging features. * Moreover, we do not audit frees because segment coalescing destroys the * association between an address and its segment structure. Auditing is * thus intended primarily to keep track of who's consuming the arena. * Debugging support could certainly be extended in the future if it proves * necessary, but we do so much live checking via the allocation hash table * that even non-DEBUG systems get quite a bit of sanity checking already. */ #include #include #include #include #include #include #include #include #include #include #include #define VMEM_INITIAL 10 /* early vmem arenas */ #define VMEM_SEG_INITIAL 200 /* early segments */ /* * Adding a new span to an arena requires two segment structures: one to * represent the span, and one to represent the free segment it contains. */ #define VMEM_SEGS_PER_SPAN_CREATE 2 /* * Allocating a piece of an existing segment requires 0-2 segment structures * depending on how much of the segment we're allocating. * * To allocate the entire segment, no new segment structures are needed; we * simply move the existing segment structure from the freelist to the * allocation hash table. * * To allocate a piece from the left or right end of the segment, we must * split the segment into two pieces (allocated part and remainder), so we * need one new segment structure to represent the remainder. * * To allocate from the middle of a segment, we need two new segment strucures * to represent the remainders on either side of the allocated part. */ #define VMEM_SEGS_PER_EXACT_ALLOC 0 #define VMEM_SEGS_PER_LEFT_ALLOC 1 #define VMEM_SEGS_PER_RIGHT_ALLOC 1 #define VMEM_SEGS_PER_MIDDLE_ALLOC 2 /* * vmem_populate() preallocates segment structures for vmem to do its work. * It must preallocate enough for the worst case, which is when we must import * a new span and then allocate from the middle of it. */ #define VMEM_SEGS_PER_ALLOC_MAX \ (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC) /* * The segment structures themselves are allocated from vmem_seg_arena, so * we have a recursion problem when vmem_seg_arena needs to populate itself. * We address this by working out the maximum number of segment structures * this act will require, and multiplying by the maximum number of threads * that we'll allow to do it simultaneously. * * The worst-case segment consumption to populate vmem_seg_arena is as * follows (depicted as a stack trace to indicate why events are occurring): * * (In order to lower the fragmentation in the heap_arena, we specify a * minimum import size for the vmem_metadata_arena which is the same size * as the kmem_va quantum cache allocations. This causes the worst-case * allocation from the vmem_metadata_arena to be 3 segments.) * * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc) * segkmem_alloc(vmem_metadata_arena) * vmem_alloc(vmem_metadata_arena) -> 3 segs (span create + left alloc) * vmem_alloc(heap_arena) -> 1 seg (left alloc) * page_create() * hat_memload() * kmem_cache_alloc() * kmem_slab_create() * vmem_alloc(hat_memload_arena) -> 2 segs (span create + exact alloc) * segkmem_alloc(heap_arena) * vmem_alloc(heap_arena) -> 1 seg (left alloc) * page_create() * hat_memload() -> (hat layer won't recurse further) * * The worst-case consumption for each arena is 3 segment structures. * Of course, a 3-seg reserve could easily be blown by multiple threads. * Therefore, we serialize all allocations from vmem_seg_arena (which is OK * because they're rare). We cannot allow a non-blocking allocation to get * tied up behind a blocking allocation, however, so we use separate locks * for VM_SLEEP and VM_NOSLEEP allocations. Similarly, VM_PUSHPAGE allocations * must not block behind ordinary VM_SLEEPs. In addition, if the system is * panicking then we must keep enough resources for panic_thread to do its * work. Thus we have at most four threads trying to allocate from * vmem_seg_arena, and each thread consumes at most three segment structures, * so we must maintain a 12-seg reserve. */ #define VMEM_POPULATE_RESERVE 12 /* * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures * so that it can satisfy the worst-case allocation *and* participate in * worst-case allocation from vmem_seg_arena. */ #define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX) static vmem_t vmem0[VMEM_INITIAL]; static vmem_t *vmem_populator[VMEM_INITIAL]; static uint32_t vmem_id; static uint32_t vmem_populators; static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL]; static vmem_seg_t *vmem_segfree; static kmutex_t vmem_list_lock; static kmutex_t vmem_segfree_lock; static kmutex_t vmem_sleep_lock; static kmutex_t vmem_nosleep_lock; static kmutex_t vmem_pushpage_lock; static kmutex_t vmem_panic_lock; static vmem_t *vmem_list; static vmem_t *vmem_metadata_arena; static vmem_t *vmem_seg_arena; static vmem_t *vmem_hash_arena; static vmem_t *vmem_vmem_arena; static long vmem_update_interval = 15; /* vmem_update() every 15 seconds */ uint32_t vmem_mtbf; /* mean time between failures [default: off] */ size_t vmem_seg_size = sizeof (vmem_seg_t); static vmem_kstat_t vmem_kstat_template = { { "mem_inuse", KSTAT_DATA_UINT64 }, { "mem_import", KSTAT_DATA_UINT64 }, { "mem_total", KSTAT_DATA_UINT64 }, { "vmem_source", KSTAT_DATA_UINT32 }, { "alloc", KSTAT_DATA_UINT64 }, { "free", KSTAT_DATA_UINT64 }, { "wait", KSTAT_DATA_UINT64 }, { "fail", KSTAT_DATA_UINT64 }, { "lookup", KSTAT_DATA_UINT64 }, { "search", KSTAT_DATA_UINT64 }, { "populate_wait", KSTAT_DATA_UINT64 }, { "populate_fail", KSTAT_DATA_UINT64 }, { "contains", KSTAT_DATA_UINT64 }, { "contains_search", KSTAT_DATA_UINT64 }, }; /* * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k'). */ #define VMEM_INSERT(vprev, vsp, type) \ { \ vmem_seg_t *vnext = (vprev)->vs_##type##next; \ (vsp)->vs_##type##next = (vnext); \ (vsp)->vs_##type##prev = (vprev); \ (vprev)->vs_##type##next = (vsp); \ (vnext)->vs_##type##prev = (vsp); \ } #define VMEM_DELETE(vsp, type) \ { \ vmem_seg_t *vprev = (vsp)->vs_##type##prev; \ vmem_seg_t *vnext = (vsp)->vs_##type##next; \ (vprev)->vs_##type##next = (vnext); \ (vnext)->vs_##type##prev = (vprev); \ } /* * Get a vmem_seg_t from the global segfree list. */ static vmem_seg_t * vmem_getseg_global(void) { vmem_seg_t *vsp; mutex_enter(&vmem_segfree_lock); if ((vsp = vmem_segfree) != NULL) vmem_segfree = vsp->vs_knext; mutex_exit(&vmem_segfree_lock); return (vsp); } /* * Put a vmem_seg_t on the global segfree list. */ static void vmem_putseg_global(vmem_seg_t *vsp) { mutex_enter(&vmem_segfree_lock); vsp->vs_knext = vmem_segfree; vmem_segfree = vsp; mutex_exit(&vmem_segfree_lock); } /* * Get a vmem_seg_t from vmp's segfree list. */ static vmem_seg_t * vmem_getseg(vmem_t *vmp) { vmem_seg_t *vsp; ASSERT(vmp->vm_nsegfree > 0); vsp = vmp->vm_segfree; vmp->vm_segfree = vsp->vs_knext; vmp->vm_nsegfree--; return (vsp); } /* * Put a vmem_seg_t on vmp's segfree list. */ static void vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp) { vsp->vs_knext = vmp->vm_segfree; vmp->vm_segfree = vsp; vmp->vm_nsegfree++; } /* * Add vsp to the appropriate freelist. */ static void vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp) { vmem_seg_t *vprev; ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1]; vsp->vs_type = VMEM_FREE; vmp->vm_freemap |= VS_SIZE(vprev); VMEM_INSERT(vprev, vsp, k); cv_broadcast(&vmp->vm_cv); } /* * Take vsp from the freelist. */ static void vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp) { ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); ASSERT(vsp->vs_type == VMEM_FREE); if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) { /* * The segments on both sides of 'vsp' are freelist heads, * so taking vsp leaves the freelist at vsp->vs_kprev empty. */ ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev)); vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev); } VMEM_DELETE(vsp, k); } /* * Add vsp to the allocated-segment hash table and update kstats. */ static void vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp) { vmem_seg_t **bucket; vsp->vs_type = VMEM_ALLOC; bucket = VMEM_HASH(vmp, vsp->vs_start); vsp->vs_knext = *bucket; *bucket = vsp; if (vmem_seg_size == sizeof (vmem_seg_t)) { vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack, VMEM_STACK_DEPTH); vsp->vs_thread = curthread; vsp->vs_timestamp = gethrtime(); } else { vsp->vs_depth = 0; } vmp->vm_kstat.vk_alloc.value.ui64++; vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp); } /* * Remove vsp from the allocated-segment hash table and update kstats. */ static vmem_seg_t * vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size) { vmem_seg_t *vsp, **prev_vspp; prev_vspp = VMEM_HASH(vmp, addr); while ((vsp = *prev_vspp) != NULL) { if (vsp->vs_start == addr) { *prev_vspp = vsp->vs_knext; break; } vmp->vm_kstat.vk_lookup.value.ui64++; prev_vspp = &vsp->vs_knext; } if (vsp == NULL) panic("vmem_hash_delete(%p, %lx, %lu): bad free", vmp, addr, size); if (VS_SIZE(vsp) != size) panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)", vmp, addr, size, VS_SIZE(vsp)); vmp->vm_kstat.vk_free.value.ui64++; vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size; return (vsp); } /* * Create a segment spanning the range [start, end) and add it to the arena. */ static vmem_seg_t * vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end) { vmem_seg_t *newseg = vmem_getseg(vmp); newseg->vs_start = start; newseg->vs_end = end; newseg->vs_type = 0; newseg->vs_import = 0; VMEM_INSERT(vprev, newseg, a); return (newseg); } /* * Remove segment vsp from the arena. */ static void vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp) { ASSERT(vsp->vs_type != VMEM_ROTOR); VMEM_DELETE(vsp, a); vmem_putseg(vmp, vsp); } /* * Add the span [vaddr, vaddr + size) to vmp and update kstats. */ static vmem_seg_t * vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import) { vmem_seg_t *newseg, *span; uintptr_t start = (uintptr_t)vaddr; uintptr_t end = start + size; ASSERT(MUTEX_HELD(&vmp->vm_lock)); if ((start | end) & (vmp->vm_quantum - 1)) panic("vmem_span_create(%p, %p, %lu): misaligned", vmp, vaddr, size); span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end); span->vs_type = VMEM_SPAN; span->vs_import = import; VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k); newseg = vmem_seg_create(vmp, span, start, end); vmem_freelist_insert(vmp, newseg); if (import) vmp->vm_kstat.vk_mem_import.value.ui64 += size; vmp->vm_kstat.vk_mem_total.value.ui64 += size; return (newseg); } /* * Remove span vsp from vmp and update kstats. */ static void vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp) { vmem_seg_t *span = vsp->vs_aprev; size_t size = VS_SIZE(vsp); ASSERT(MUTEX_HELD(&vmp->vm_lock)); ASSERT(span->vs_type == VMEM_SPAN); if (span->vs_import) vmp->vm_kstat.vk_mem_import.value.ui64 -= size; vmp->vm_kstat.vk_mem_total.value.ui64 -= size; VMEM_DELETE(span, k); vmem_seg_destroy(vmp, vsp); vmem_seg_destroy(vmp, span); } /* * Allocate the subrange [addr, addr + size) from segment vsp. * If there are leftovers on either side, place them on the freelist. * Returns a pointer to the segment representing [addr, addr + size). */ static vmem_seg_t * vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size) { uintptr_t vs_start = vsp->vs_start; uintptr_t vs_end = vsp->vs_end; size_t vs_size = vs_end - vs_start; size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); uintptr_t addr_end = addr + realsize; ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0); ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0); ASSERT(vsp->vs_type == VMEM_FREE); ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1); ASSERT(addr - 1 <= addr_end - 1); /* * If we're allocating from the start of the segment, and the * remainder will be on the same freelist, we can save quite * a bit of work. */ if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) { ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); vsp->vs_start = addr_end; vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size); vmem_hash_insert(vmp, vsp); return (vsp); } vmem_freelist_delete(vmp, vsp); if (vs_end != addr_end) vmem_freelist_insert(vmp, vmem_seg_create(vmp, vsp, addr_end, vs_end)); if (vs_start != addr) vmem_freelist_insert(vmp, vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr)); vsp->vs_start = addr; vsp->vs_end = addr + size; vmem_hash_insert(vmp, vsp); return (vsp); } /* * Returns 1 if we are populating, 0 otherwise. * Call it if we want to prevent recursion from HAT. */ int vmem_is_populator() { return (mutex_owner(&vmem_sleep_lock) == curthread || mutex_owner(&vmem_nosleep_lock) == curthread || mutex_owner(&vmem_pushpage_lock) == curthread || mutex_owner(&vmem_panic_lock) == curthread); } /* * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures. */ static int vmem_populate(vmem_t *vmp, int vmflag) { char *p; vmem_seg_t *vsp; ssize_t nseg; size_t size; kmutex_t *lp; int i; while (vmp->vm_nsegfree < VMEM_MINFREE && (vsp = vmem_getseg_global()) != NULL) vmem_putseg(vmp, vsp); if (vmp->vm_nsegfree >= VMEM_MINFREE) return (1); /* * If we're already populating, tap the reserve. */ if (vmem_is_populator()) { ASSERT(vmp->vm_cflags & VMC_POPULATOR); return (1); } mutex_exit(&vmp->vm_lock); if (panic_thread == curthread) lp = &vmem_panic_lock; else if (vmflag & VM_NOSLEEP) lp = &vmem_nosleep_lock; else if (vmflag & VM_PUSHPAGE) lp = &vmem_pushpage_lock; else lp = &vmem_sleep_lock; mutex_enter(lp); nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE; size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum); nseg = size / vmem_seg_size; /* * The following vmem_alloc() may need to populate vmem_seg_arena * and all the things it imports from. When doing so, it will tap * each arena's reserve to prevent recursion (see the block comment * above the definition of VMEM_POPULATE_RESERVE). */ p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS); if (p == NULL) { mutex_exit(lp); mutex_enter(&vmp->vm_lock); vmp->vm_kstat.vk_populate_fail.value.ui64++; return (0); } /* * Restock the arenas that may have been depleted during population. */ for (i = 0; i < vmem_populators; i++) { mutex_enter(&vmem_populator[i]->vm_lock); while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE) vmem_putseg(vmem_populator[i], (vmem_seg_t *)(p + --nseg * vmem_seg_size)); mutex_exit(&vmem_populator[i]->vm_lock); } mutex_exit(lp); mutex_enter(&vmp->vm_lock); /* * Now take our own segments. */ ASSERT(nseg >= VMEM_MINFREE); while (vmp->vm_nsegfree < VMEM_MINFREE) vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size)); /* * Give the remainder to charity. */ while (nseg > 0) vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size)); return (1); } /* * Advance a walker from its previous position to 'afterme'. * Note: may drop and reacquire vmp->vm_lock. */ static void vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme) { vmem_seg_t *vprev = walker->vs_aprev; vmem_seg_t *vnext = walker->vs_anext; vmem_seg_t *vsp = NULL; VMEM_DELETE(walker, a); if (afterme != NULL) VMEM_INSERT(afterme, walker, a); /* * The walker segment's presence may have prevented its neighbors * from coalescing. If so, coalesce them now. */ if (vprev->vs_type == VMEM_FREE) { if (vnext->vs_type == VMEM_FREE) { ASSERT(vprev->vs_end == vnext->vs_start); vmem_freelist_delete(vmp, vnext); vmem_freelist_delete(vmp, vprev); vprev->vs_end = vnext->vs_end; vmem_freelist_insert(vmp, vprev); vmem_seg_destroy(vmp, vnext); } vsp = vprev; } else if (vnext->vs_type == VMEM_FREE) { vsp = vnext; } /* * vsp could represent a complete imported span, * in which case we must return it to the source. */ if (vsp != NULL && vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL && vsp->vs_aprev->vs_type == VMEM_SPAN && vsp->vs_anext->vs_type == VMEM_SPAN) { void *vaddr = (void *)vsp->vs_start; size_t size = VS_SIZE(vsp); ASSERT(size == VS_SIZE(vsp->vs_aprev)); vmem_freelist_delete(vmp, vsp); vmem_span_destroy(vmp, vsp); mutex_exit(&vmp->vm_lock); vmp->vm_source_free(vmp->vm_source, vaddr, size); mutex_enter(&vmp->vm_lock); } } /* * VM_NEXTFIT allocations deliberately cycle through all virtual addresses * in an arena, so that we avoid reusing addresses for as long as possible. * This helps to catch used-after-freed bugs. It's also the perfect policy * for allocating things like process IDs, where we want to cycle through * all values in order. */ static void * vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag) { vmem_seg_t *vsp, *rotor; uintptr_t addr; size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); size_t vs_size; mutex_enter(&vmp->vm_lock); if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) { mutex_exit(&vmp->vm_lock); return (NULL); } /* * The common case is that the segment right after the rotor is free, * and large enough that extracting 'size' bytes won't change which * freelist it's on. In this case we can avoid a *lot* of work. * Instead of the normal vmem_seg_alloc(), we just advance the start * address of the victim segment. Instead of moving the rotor, we * create the new segment structure *behind the rotor*, which has * the same effect. And finally, we know we don't have to coalesce * the rotor's neighbors because the new segment lies between them. */ rotor = &vmp->vm_rotor; vsp = rotor->vs_anext; if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize && P2SAMEHIGHBIT(vs_size, vs_size - realsize)) { ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); addr = vsp->vs_start; vsp->vs_start = addr + realsize; vmem_hash_insert(vmp, vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size)); mutex_exit(&vmp->vm_lock); return ((void *)addr); } /* * Starting at the rotor, look for a segment large enough to * satisfy the allocation. */ for (;;) { vmp->vm_kstat.vk_search.value.ui64++; if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) break; vsp = vsp->vs_anext; if (vsp == rotor) { /* * We've come full circle. One possibility is that the * there's actually enough space, but the rotor itself * is preventing the allocation from succeeding because * it's sitting between two free segments. Therefore, * we advance the rotor and see if that liberates a * suitable segment. */ vmem_advance(vmp, rotor, rotor->vs_anext); vsp = rotor->vs_aprev; if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) break; /* * If there's a lower arena we can import from, or it's * a VM_NOSLEEP allocation, let vmem_xalloc() handle it. * Otherwise, wait until another thread frees something. */ if (vmp->vm_source_alloc != NULL || (vmflag & VM_NOSLEEP)) { mutex_exit(&vmp->vm_lock); return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0, NULL, NULL, vmflag & VM_KMFLAGS)); } vmp->vm_kstat.vk_wait.value.ui64++; cv_wait(&vmp->vm_cv, &vmp->vm_lock); vsp = rotor->vs_anext; } } /* * We found a segment. Extract enough space to satisfy the allocation. */ addr = vsp->vs_start; vsp = vmem_seg_alloc(vmp, vsp, addr, size); ASSERT(vsp->vs_type == VMEM_ALLOC && vsp->vs_start == addr && vsp->vs_end == addr + size); /* * Advance the rotor to right after the newly-allocated segment. * That's where the next VM_NEXTFIT allocation will begin searching. */ vmem_advance(vmp, rotor, vsp); mutex_exit(&vmp->vm_lock); return ((void *)addr); } /* * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its * freelist. If size is not a power-of-2, it can return a false-negative. * * Used to decide if a newly imported span is superfluous after re-acquiring * the arena lock. */ static int vmem_canalloc(vmem_t *vmp, size_t size) { int hb; int flist = 0; ASSERT(MUTEX_HELD(&vmp->vm_lock)); if ((size & (size - 1)) == 0) flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); else if ((hb = highbit(size)) < VMEM_FREELISTS) flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); return (flist); } /* * Allocate size bytes at offset phase from an align boundary such that the * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr) * that does not straddle a nocross-aligned boundary. */ void * vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase, size_t nocross, void *minaddr, void *maxaddr, int vmflag) { vmem_seg_t *vsp; vmem_seg_t *vbest = NULL; uintptr_t addr, taddr, start, end; uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum; void *vaddr, *xvaddr = NULL; size_t xsize; int hb, flist, resv; uint32_t mtbf; if ((align | phase | nocross) & (vmp->vm_quantum - 1)) panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " "parameters not vm_quantum aligned", (void *)vmp, size, align_arg, phase, nocross, minaddr, maxaddr, vmflag); if (nocross != 0 && (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " "overconstrained allocation", (void *)vmp, size, align_arg, phase, nocross, minaddr, maxaddr, vmflag); if (phase >= align || (align & (align - 1)) != 0 || (nocross & (nocross - 1)) != 0) panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " "parameters inconsistent or invalid", (void *)vmp, size, align_arg, phase, nocross, minaddr, maxaddr, vmflag); if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) return (NULL); mutex_enter(&vmp->vm_lock); for (;;) { if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) break; do_alloc: /* * highbit() returns the highest bit + 1, which is exactly * what we want: we want to search the first freelist whose * members are *definitely* large enough to satisfy our * allocation. However, there are certain cases in which we * want to look at the next-smallest freelist (which *might* * be able to satisfy the allocation): * * (1) The size is exactly a power of 2, in which case * the smaller freelist is always big enough; * * (2) All other freelists are empty; * * (3) We're in the highest possible freelist, which is * always empty (e.g. the 4GB freelist on 32-bit systems); * * (4) We're doing a best-fit or first-fit allocation. */ if ((size & (size - 1)) == 0) { flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); } else { hb = highbit(size); if ((vmp->vm_freemap >> hb) == 0 || hb == VMEM_FREELISTS || (vmflag & (VM_BESTFIT | VM_FIRSTFIT))) hb--; flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); } for (vbest = NULL, vsp = (flist == 0) ? NULL : vmp->vm_freelist[flist - 1].vs_knext; vsp != NULL; vsp = vsp->vs_knext) { vmp->vm_kstat.vk_search.value.ui64++; if (vsp->vs_start == 0) { /* * We're moving up to a larger freelist, * so if we've already found a candidate, * the fit can't possibly get any better. */ if (vbest != NULL) break; /* * Find the next non-empty freelist. */ flist = lowbit(P2ALIGN(vmp->vm_freemap, VS_SIZE(vsp))); if (flist-- == 0) break; vsp = (vmem_seg_t *)&vmp->vm_freelist[flist]; ASSERT(vsp->vs_knext->vs_type == VMEM_FREE); continue; } if (vsp->vs_end - 1 < (uintptr_t)minaddr) continue; if (vsp->vs_start > (uintptr_t)maxaddr - 1) continue; start = MAX(vsp->vs_start, (uintptr_t)minaddr); end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1; taddr = P2PHASEUP(start, align, phase); if (P2CROSS(taddr, taddr + size - 1, nocross)) taddr += P2ROUNDUP(P2NPHASE(taddr, nocross), align); if ((taddr - start) + size > end - start || (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest))) continue; vbest = vsp; addr = taddr; if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size) break; } if (vbest != NULL) break; ASSERT(xvaddr == NULL); if (size == 0) panic("vmem_xalloc(): size == 0"); if (vmp->vm_source_alloc != NULL && nocross == 0 && minaddr == NULL && maxaddr == NULL) { size_t aneeded, asize; size_t aquantum = MAX(vmp->vm_quantum, vmp->vm_source->vm_quantum); size_t aphase = phase; if ((align > aquantum) && !(vmp->vm_cflags & VMC_XALIGN)) { aphase = (P2PHASE(phase, aquantum) != 0) ? align - vmp->vm_quantum : align - aquantum; ASSERT(aphase >= phase); } aneeded = MAX(size + aphase, vmp->vm_min_import); asize = P2ROUNDUP(aneeded, aquantum); /* * Determine how many segment structures we'll consume. * The calculation must be precise because if we're * here on behalf of vmem_populate(), we are taking * segments from a very limited reserve. */ if (size == asize && !(vmp->vm_cflags & VMC_XALLOC)) resv = VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_EXACT_ALLOC; else if (phase == 0 && align <= vmp->vm_source->vm_quantum) resv = VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_LEFT_ALLOC; else resv = VMEM_SEGS_PER_ALLOC_MAX; ASSERT(vmp->vm_nsegfree >= resv); vmp->vm_nsegfree -= resv; /* reserve our segs */ mutex_exit(&vmp->vm_lock); if (vmp->vm_cflags & VMC_XALLOC) { size_t oasize = asize; vaddr = ((vmem_ximport_t *) vmp->vm_source_alloc)(vmp->vm_source, &asize, align, vmflag & VM_KMFLAGS); ASSERT(asize >= oasize); ASSERT(P2PHASE(asize, vmp->vm_source->vm_quantum) == 0); ASSERT(!(vmp->vm_cflags & VMC_XALIGN) || IS_P2ALIGNED(vaddr, align)); } else { vaddr = vmp->vm_source_alloc(vmp->vm_source, asize, vmflag & VM_KMFLAGS); } mutex_enter(&vmp->vm_lock); vmp->vm_nsegfree += resv; /* claim reservation */ aneeded = size + align - vmp->vm_quantum; aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum); if (vaddr != NULL) { /* * Since we dropped the vmem lock while * calling the import function, other * threads could have imported space * and made our import unnecessary. In * order to save space, we return * excess imports immediately. */ if (asize > aneeded && vmp->vm_source_free != NULL && vmem_canalloc(vmp, aneeded)) { ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC); xvaddr = vaddr; xsize = asize; goto do_alloc; } vbest = vmem_span_create(vmp, vaddr, asize, 1); addr = P2PHASEUP(vbest->vs_start, align, phase); break; } else if (vmem_canalloc(vmp, aneeded)) { /* * Our import failed, but another thread * added sufficient free memory to the arena * to satisfy our request. Go back and * grab it. */ ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC); goto do_alloc; } } /* * If the requestor chooses to fail the allocation attempt * rather than reap wait and retry - get out of the loop. */ if (vmflag & VM_ABORT) break; mutex_exit(&vmp->vm_lock); if (vmp->vm_cflags & VMC_IDENTIFIER) kmem_reap_idspace(); else kmem_reap(); mutex_enter(&vmp->vm_lock); if (vmflag & VM_NOSLEEP) break; vmp->vm_kstat.vk_wait.value.ui64++; cv_wait(&vmp->vm_cv, &vmp->vm_lock); } if (vbest != NULL) { ASSERT(vbest->vs_type == VMEM_FREE); ASSERT(vbest->vs_knext != vbest); (void) vmem_seg_alloc(vmp, vbest, addr, size); mutex_exit(&vmp->vm_lock); if (xvaddr) vmp->vm_source_free(vmp->vm_source, xvaddr, xsize); ASSERT(P2PHASE(addr, align) == phase); ASSERT(!P2CROSS(addr, addr + size - 1, nocross)); ASSERT(addr >= (uintptr_t)minaddr); ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1); return ((void *)addr); } vmp->vm_kstat.vk_fail.value.ui64++; mutex_exit(&vmp->vm_lock); if (vmflag & VM_PANIC) panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " "cannot satisfy mandatory allocation", (void *)vmp, size, align_arg, phase, nocross, minaddr, maxaddr, vmflag); ASSERT(xvaddr == NULL); return (NULL); } /* * Free the segment [vaddr, vaddr + size), where vaddr was a constrained * allocation. vmem_xalloc() and vmem_xfree() must always be paired because * both routines bypass the quantum caches. */ void vmem_xfree(vmem_t *vmp, void *vaddr, size_t size) { vmem_seg_t *vsp, *vnext, *vprev; mutex_enter(&vmp->vm_lock); vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size); vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum); /* * Attempt to coalesce with the next segment. */ vnext = vsp->vs_anext; if (vnext->vs_type == VMEM_FREE) { ASSERT(vsp->vs_end == vnext->vs_start); vmem_freelist_delete(vmp, vnext); vsp->vs_end = vnext->vs_end; vmem_seg_destroy(vmp, vnext); } /* * Attempt to coalesce with the previous segment. */ vprev = vsp->vs_aprev; if (vprev->vs_type == VMEM_FREE) { ASSERT(vprev->vs_end == vsp->vs_start); vmem_freelist_delete(vmp, vprev); vprev->vs_end = vsp->vs_end; vmem_seg_destroy(vmp, vsp); vsp = vprev; } /* * If the entire span is free, return it to the source. */ if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL && vsp->vs_aprev->vs_type == VMEM_SPAN && vsp->vs_anext->vs_type == VMEM_SPAN) { vaddr = (void *)vsp->vs_start; size = VS_SIZE(vsp); ASSERT(size == VS_SIZE(vsp->vs_aprev)); vmem_span_destroy(vmp, vsp); mutex_exit(&vmp->vm_lock); vmp->vm_source_free(vmp->vm_source, vaddr, size); } else { vmem_freelist_insert(vmp, vsp); mutex_exit(&vmp->vm_lock); } } /* * Allocate size bytes from arena vmp. Returns the allocated address * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP, * and may also specify best-fit, first-fit, or next-fit allocation policy * instead of the default instant-fit policy. VM_SLEEP allocations are * guaranteed to succeed. */ void * vmem_alloc(vmem_t *vmp, size_t size, int vmflag) { vmem_seg_t *vsp; uintptr_t addr; int hb; int flist = 0; uint32_t mtbf; if (size - 1 < vmp->vm_qcache_max) return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift], vmflag & VM_KMFLAGS)); if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) return (NULL); if (vmflag & VM_NEXTFIT) return (vmem_nextfit_alloc(vmp, size, vmflag)); if (vmflag & (VM_BESTFIT | VM_FIRSTFIT)) return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0, NULL, NULL, vmflag)); /* * Unconstrained instant-fit allocation from the segment list. */ mutex_enter(&vmp->vm_lock); if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) { if ((size & (size - 1)) == 0) flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); else if ((hb = highbit(size)) < VMEM_FREELISTS) flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); } if (flist-- == 0) { mutex_exit(&vmp->vm_lock); return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0, NULL, NULL, vmflag)); } ASSERT(size <= (1UL << flist)); vsp = vmp->vm_freelist[flist].vs_knext; addr = vsp->vs_start; (void) vmem_seg_alloc(vmp, vsp, addr, size); mutex_exit(&vmp->vm_lock); return ((void *)addr); } /* * Free the segment [vaddr, vaddr + size). */ void vmem_free(vmem_t *vmp, void *vaddr, size_t size) { if (size - 1 < vmp->vm_qcache_max) kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift], vaddr); else vmem_xfree(vmp, vaddr, size); } /* * Determine whether arena vmp contains the segment [vaddr, vaddr + size). */ int vmem_contains(vmem_t *vmp, void *vaddr, size_t size) { uintptr_t start = (uintptr_t)vaddr; uintptr_t end = start + size; vmem_seg_t *vsp; vmem_seg_t *seg0 = &vmp->vm_seg0; mutex_enter(&vmp->vm_lock); vmp->vm_kstat.vk_contains.value.ui64++; for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) { vmp->vm_kstat.vk_contains_search.value.ui64++; ASSERT(vsp->vs_type == VMEM_SPAN); if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1) break; } mutex_exit(&vmp->vm_lock); return (vsp != seg0); } /* * Add the span [vaddr, vaddr + size) to arena vmp. */ void * vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag) { if (vaddr == NULL || size == 0) panic("vmem_add(%p, %p, %lu): bad arguments", vmp, vaddr, size); ASSERT(!vmem_contains(vmp, vaddr, size)); mutex_enter(&vmp->vm_lock); if (vmem_populate(vmp, vmflag)) (void) vmem_span_create(vmp, vaddr, size, 0); else vaddr = NULL; mutex_exit(&vmp->vm_lock); return (vaddr); } /* * Walk the vmp arena, applying func to each segment matching typemask. * If VMEM_REENTRANT is specified, the arena lock is dropped across each * call to func(); otherwise, it is held for the duration of vmem_walk() * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks * are *not* necessarily consistent, so they may only be used when a hint * is adequate. */ void vmem_walk(vmem_t *vmp, int typemask, void (*func)(void *, void *, size_t), void *arg) { vmem_seg_t *vsp; vmem_seg_t *seg0 = &vmp->vm_seg0; vmem_seg_t walker; if (typemask & VMEM_WALKER) return; bzero(&walker, sizeof (walker)); walker.vs_type = VMEM_WALKER; mutex_enter(&vmp->vm_lock); VMEM_INSERT(seg0, &walker, a); for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) { if (vsp->vs_type & typemask) { void *start = (void *)vsp->vs_start; size_t size = VS_SIZE(vsp); if (typemask & VMEM_REENTRANT) { vmem_advance(vmp, &walker, vsp); mutex_exit(&vmp->vm_lock); func(arg, start, size); mutex_enter(&vmp->vm_lock); vsp = &walker; } else { func(arg, start, size); } } } vmem_advance(vmp, &walker, NULL); mutex_exit(&vmp->vm_lock); } /* * Return the total amount of memory whose type matches typemask. Thus: * * typemask VMEM_ALLOC yields total memory allocated (in use). * typemask VMEM_FREE yields total memory free (available). * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size. */ size_t vmem_size(vmem_t *vmp, int typemask) { uint64_t size = 0; if (typemask & VMEM_ALLOC) size += vmp->vm_kstat.vk_mem_inuse.value.ui64; if (typemask & VMEM_FREE) size += vmp->vm_kstat.vk_mem_total.value.ui64 - vmp->vm_kstat.vk_mem_inuse.value.ui64; return ((size_t)size); } /* * Create an arena called name whose initial span is [base, base + size). * The arena's natural unit of currency is quantum, so vmem_alloc() * guarantees quantum-aligned results. The arena may import new spans * by invoking afunc() on source, and may return those spans by invoking * ffunc() on source. To make small allocations fast and scalable, * the arena offers high-performance caching for each integer multiple * of quantum up to qcache_max. */ static vmem_t * vmem_create_common(const char *name, void *base, size_t size, size_t quantum, void *(*afunc)(vmem_t *, size_t, int), void (*ffunc)(vmem_t *, void *, size_t), vmem_t *source, size_t qcache_max, int vmflag) { int i; size_t nqcache; vmem_t *vmp, *cur, **vmpp; vmem_seg_t *vsp; vmem_freelist_t *vfp; uint32_t id = atomic_add_32_nv(&vmem_id, 1); if (vmem_vmem_arena != NULL) { vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t), vmflag & VM_KMFLAGS); } else { ASSERT(id <= VMEM_INITIAL); vmp = &vmem0[id - 1]; } /* An identifier arena must inherit from another identifier arena */ ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) == (vmflag & VMC_IDENTIFIER))); if (vmp == NULL) return (NULL); bzero(vmp, sizeof (vmem_t)); (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name); mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL); vmp->vm_cflags = vmflag; vmflag &= VM_KMFLAGS; vmp->vm_quantum = quantum; vmp->vm_qshift = highbit(quantum) - 1; nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX); for (i = 0; i <= VMEM_FREELISTS; i++) { vfp = &vmp->vm_freelist[i]; vfp->vs_end = 1UL << i; vfp->vs_knext = (vmem_seg_t *)(vfp + 1); vfp->vs_kprev = (vmem_seg_t *)(vfp - 1); } vmp->vm_freelist[0].vs_kprev = NULL; vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL; vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0; vmp->vm_hash_table = vmp->vm_hash0; vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1; vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); vsp = &vmp->vm_seg0; vsp->vs_anext = vsp; vsp->vs_aprev = vsp; vsp->vs_knext = vsp; vsp->vs_kprev = vsp; vsp->vs_type = VMEM_SPAN; vsp = &vmp->vm_rotor; vsp->vs_type = VMEM_ROTOR; VMEM_INSERT(&vmp->vm_seg0, vsp, a); bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t)); vmp->vm_id = id; if (source != NULL) vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id; vmp->vm_source = source; vmp->vm_source_alloc = afunc; vmp->vm_source_free = ffunc; /* * Some arenas (like vmem_metadata and kmem_metadata) cannot * use quantum caching to lower fragmentation. Instead, we * increase their imports, giving a similar effect. */ if (vmp->vm_cflags & VMC_NO_QCACHE) { vmp->vm_min_import = VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift); nqcache = 0; } if (nqcache != 0) { ASSERT(!(vmflag & VM_NOSLEEP)); vmp->vm_qcache_max = nqcache << vmp->vm_qshift; for (i = 0; i < nqcache; i++) { char buf[VMEM_NAMELEN + 21]; (void) sprintf(buf, "%s_%lu", vmp->vm_name, (i + 1) * quantum); vmp->vm_qcache[i] = kmem_cache_create(buf, (i + 1) * quantum, quantum, NULL, NULL, NULL, NULL, vmp, KMC_QCACHE | KMC_NOTOUCH); } } if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name, "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) { vmp->vm_ksp->ks_data = &vmp->vm_kstat; kstat_install(vmp->vm_ksp); } mutex_enter(&vmem_list_lock); vmpp = &vmem_list; while ((cur = *vmpp) != NULL) vmpp = &cur->vm_next; *vmpp = vmp; mutex_exit(&vmem_list_lock); if (vmp->vm_cflags & VMC_POPULATOR) { ASSERT(vmem_populators < VMEM_INITIAL); vmem_populator[atomic_add_32_nv(&vmem_populators, 1) - 1] = vmp; mutex_enter(&vmp->vm_lock); (void) vmem_populate(vmp, vmflag | VM_PANIC); mutex_exit(&vmp->vm_lock); } if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) { vmem_destroy(vmp); return (NULL); } return (vmp); } vmem_t * vmem_xcreate(const char *name, void *base, size_t size, size_t quantum, vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source, size_t qcache_max, int vmflag) { ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC))); vmflag &= ~(VMC_POPULATOR | VMC_XALLOC); return (vmem_create_common(name, base, size, quantum, (vmem_alloc_t *)afunc, ffunc, source, qcache_max, vmflag | VMC_XALLOC)); } vmem_t * vmem_create(const char *name, void *base, size_t size, size_t quantum, vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source, size_t qcache_max, int vmflag) { ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN))); vmflag &= ~(VMC_XALLOC | VMC_XALIGN); return (vmem_create_common(name, base, size, quantum, afunc, ffunc, source, qcache_max, vmflag)); } /* * Destroy arena vmp. */ void vmem_destroy(vmem_t *vmp) { vmem_t *cur, **vmpp; vmem_seg_t *seg0 = &vmp->vm_seg0; vmem_seg_t *vsp; size_t leaked; int i; mutex_enter(&vmem_list_lock); vmpp = &vmem_list; while ((cur = *vmpp) != vmp) vmpp = &cur->vm_next; *vmpp = vmp->vm_next; mutex_exit(&vmem_list_lock); for (i = 0; i < VMEM_NQCACHE_MAX; i++) if (vmp->vm_qcache[i]) kmem_cache_destroy(vmp->vm_qcache[i]); leaked = vmem_size(vmp, VMEM_ALLOC); if (leaked != 0) cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s", vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ? "identifiers" : "bytes"); if (vmp->vm_hash_table != vmp->vm_hash0) vmem_free(vmem_hash_arena, vmp->vm_hash_table, (vmp->vm_hash_mask + 1) * sizeof (void *)); /* * Give back the segment structures for anything that's left in the * arena, e.g. the primary spans and their free segments. */ VMEM_DELETE(&vmp->vm_rotor, a); for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) vmem_putseg_global(vsp); while (vmp->vm_nsegfree > 0) vmem_putseg_global(vmem_getseg(vmp)); kstat_delete(vmp->vm_ksp); mutex_destroy(&vmp->vm_lock); cv_destroy(&vmp->vm_cv); vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t)); } /* * Resize vmp's hash table to keep the average lookup depth near 1.0. */ static void vmem_hash_rescale(vmem_t *vmp) { vmem_seg_t **old_table, **new_table, *vsp; size_t old_size, new_size, h, nseg; nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 - vmp->vm_kstat.vk_free.value.ui64); new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2)); old_size = vmp->vm_hash_mask + 1; if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) return; new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *), VM_NOSLEEP); if (new_table == NULL) return; bzero(new_table, new_size * sizeof (void *)); mutex_enter(&vmp->vm_lock); old_size = vmp->vm_hash_mask + 1; old_table = vmp->vm_hash_table; vmp->vm_hash_mask = new_size - 1; vmp->vm_hash_table = new_table; vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); for (h = 0; h < old_size; h++) { vsp = old_table[h]; while (vsp != NULL) { uintptr_t addr = vsp->vs_start; vmem_seg_t *next_vsp = vsp->vs_knext; vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr); vsp->vs_knext = *hash_bucket; *hash_bucket = vsp; vsp = next_vsp; } } mutex_exit(&vmp->vm_lock); if (old_table != vmp->vm_hash0) vmem_free(vmem_hash_arena, old_table, old_size * sizeof (void *)); } /* * Perform periodic maintenance on all vmem arenas. */ void vmem_update(void *dummy) { vmem_t *vmp; mutex_enter(&vmem_list_lock); for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) { /* * If threads are waiting for resources, wake them up * periodically so they can issue another kmem_reap() * to reclaim resources cached by the slab allocator. */ cv_broadcast(&vmp->vm_cv); /* * Rescale the hash table to keep the hash chains short. */ vmem_hash_rescale(vmp); } mutex_exit(&vmem_list_lock); (void) timeout(vmem_update, dummy, vmem_update_interval * hz); } /* * Prepare vmem for use. */ vmem_t * vmem_init(const char *heap_name, void *heap_start, size_t heap_size, size_t heap_quantum, void *(*heap_alloc)(vmem_t *, size_t, int), void (*heap_free)(vmem_t *, void *, size_t)) { uint32_t id; int nseg = VMEM_SEG_INITIAL; vmem_t *heap; while (--nseg >= 0) vmem_putseg_global(&vmem_seg0[nseg]); heap = vmem_create(heap_name, heap_start, heap_size, heap_quantum, NULL, NULL, NULL, 0, VM_SLEEP | VMC_POPULATOR); vmem_metadata_arena = vmem_create("vmem_metadata", NULL, 0, heap_quantum, vmem_alloc, vmem_free, heap, 8 * heap_quantum, VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE); vmem_seg_arena = vmem_create("vmem_seg", NULL, 0, heap_quantum, heap_alloc, heap_free, vmem_metadata_arena, 0, VM_SLEEP | VMC_POPULATOR); vmem_hash_arena = vmem_create("vmem_hash", NULL, 0, 8, heap_alloc, heap_free, vmem_metadata_arena, 0, VM_SLEEP); vmem_vmem_arena = vmem_create("vmem_vmem", vmem0, sizeof (vmem0), 1, heap_alloc, heap_free, vmem_metadata_arena, 0, VM_SLEEP); for (id = 0; id < vmem_id; id++) (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t), 1, 0, 0, &vmem0[id], &vmem0[id + 1], VM_NOSLEEP | VM_BESTFIT | VM_PANIC); return (heap); }