/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include int pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle) { caddr_t cfgaddr; ddi_device_acc_attr_t attr; attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; /* Check for fault management capabilities */ if (DDI_FM_ACC_ERR_CAP(ddi_fm_capable(dip))) attr.devacc_attr_access = DDI_FLAGERR_ACC; return (ddi_regs_map_setup(dip, 0, &cfgaddr, 0, 0, &attr, handle)); } void pci_config_teardown(ddi_acc_handle_t *handle) { ddi_regs_map_free(handle); } /* * pci_ereport_setup, pci_ereport_teardown, pci_ereport_post: * Interfaces to be used by ereport capable PCI device drivers to setup, * teardown, and post generic PCI error reports. This is to guarantee a * consistant error report model for all PCI devices. Please see * PSARC/2004/391. */ typedef struct pci_erpt { caddr_t pci_cfg_addr; /* Config space address */ ddi_acc_handle_t pci_cfg_hdl; /* Config space access handle */ } pci_erpt_t; pci_fm_err_t pci_err_tbl[] = { PCI_DET_PERR, PCI_STAT_PERROR, NULL, PCI_MDPE, PCI_STAT_S_PERROR, PCI_TARG_MDPE, PCI_SIG_SERR, PCI_STAT_S_SYSERR, NULL, PCI_MA, PCI_STAT_R_MAST_AB, PCI_TARG_MA, PCI_REC_TA, PCI_STAT_R_TARG_AB, PCI_TARG_REC_TA, PCI_SIG_TA, PCI_STAT_S_TARG_AB, NULL, NULL, NULL, }; pci_fm_err_t pci_bdg_err_tbl[] = { PCI_DET_PERR, PCI_STAT_PERROR, NULL, PCI_MDPE, PCI_STAT_S_PERROR, NULL, PCI_REC_SERR, PCI_STAT_S_SYSERR, NULL, PCI_MA, PCI_STAT_R_MAST_AB, NULL, PCI_REC_TA, PCI_STAT_R_TARG_AB, NULL, PCI_SIG_TA, PCI_STAT_S_TARG_AB, NULL, NULL, NULL, }; void pci_ereport_setup(dev_info_t *dip) { struct dev_info *devi = DEVI(dip); struct i_ddi_fmhdl *fmhdl = devi->devi_fmhdl; pci_erpt_t *erpt_p; ddi_acc_hdl_t *hp; if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(dip))) { i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_SLEEP); return; } ASSERT(fmhdl); ASSERT(fmhdl->fh_bus_specific == NULL); if ((erpt_p = kmem_zalloc(sizeof (pci_erpt_t), KM_SLEEP)) == NULL) return; if (pci_config_setup(dip, &erpt_p->pci_cfg_hdl) == DDI_SUCCESS) { hp = impl_acc_hdl_get(erpt_p->pci_cfg_hdl); erpt_p->pci_cfg_addr = (caddr_t)hp->ah_addr; fmhdl->fh_bus_specific = (void *)erpt_p; } } void pci_ereport_teardown(dev_info_t *dip) { struct i_ddi_fmhdl *fmhdl = DEVI(dip)->devi_fmhdl; pci_erpt_t *erpt_p; if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(dip))) { i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_SLEEP); } ASSERT(fmhdl); erpt_p = (pci_erpt_t *)fmhdl->fh_bus_specific; if (erpt_p == NULL) return; pci_config_teardown(&erpt_p->pci_cfg_hdl); kmem_free(erpt_p, sizeof (pci_erpt_t)); fmhdl->fh_bus_specific = NULL; } void pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status) { struct i_ddi_fmhdl *fmhdl; pci_erpt_t *erpt_p; char buf[FM_MAX_CLASS]; uint16_t cfg_comm = 0xffff; uint16_t cfg_stat = 0xffff; int i; fmhdl = DEVI(dip)->devi_fmhdl; if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(dip))) { i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP); return; } ASSERT(fmhdl); derr->fme_ena = derr->fme_ena ? derr->fme_ena : fm_ena_generate(0, FM_ENA_FMT1); erpt_p = (pci_erpt_t *)fmhdl->fh_bus_specific; if (erpt_p == NULL) { i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP); return; } if ((cfg_stat = ddi_get16(erpt_p->pci_cfg_hdl, (uint16_t *)(erpt_p->pci_cfg_addr + PCI_CONF_STAT))) == 0xffff) { (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS, PCI_NR); ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, NULL); goto done; } if ((cfg_comm = ddi_get16(erpt_p->pci_cfg_hdl, (uint16_t *)(erpt_p->pci_cfg_addr + PCI_CONF_COMM))) == 0xffff) { (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS, PCI_NR); ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, NULL); goto done; } if (derr->fme_flag == DDI_FM_ERR_UNEXPECTED) { for (i = 0; pci_err_tbl[i].err_class != NULL; i++) { if (cfg_stat & pci_err_tbl[i].reg_bit) { /* * Generate an ereport for this error bit. */ (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS, pci_err_tbl[i].err_class); ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, PCI_CONFIG_STATUS, DATA_TYPE_UINT16, cfg_stat, PCI_CONFIG_COMMAND, DATA_TYPE_UINT16, cfg_comm, NULL); /* * Generate a corresponding ereport on behalf * of the target (the parent dip) of the * transaction. */ if (pci_err_tbl[i].terr_class != NULL && DDI_FM_EREPORT_CAP(ddi_fm_capable( (dev_info_t *)DEVI(dip)->devi_parent))) { (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS, pci_err_tbl[i].terr_class); ddi_fm_ereport_post((dev_info_t *) DEVI(dip)->devi_parent, buf, derr->fme_ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, NULL); } } } } /* * Clear error bits */ ddi_put16(erpt_p->pci_cfg_hdl, (uint16_t *)(erpt_p->pci_cfg_addr + PCI_CONF_STAT), (uint16_t)cfg_stat); done: if (status != NULL) *status = cfg_stat; } /* * Generic pci-pci bridge error report function */ void pci_bdg_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status) { struct i_ddi_fmhdl *fmhdl; pci_erpt_t *erpt_p; char buf[FM_MAX_CLASS]; uint16_t bdg_ctrl = 0xffff; uint16_t cfg_sec_stat = 0xffff; int i; if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(dip))) { i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP); return; } fmhdl = DEVI(dip)->devi_fmhdl; ASSERT(fmhdl); derr->fme_ena = derr->fme_ena ? derr->fme_ena : fm_ena_generate(0, FM_ENA_FMT1); erpt_p = (pci_erpt_t *)fmhdl->fh_bus_specific; if (erpt_p == NULL) { i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP); return; } if ((cfg_sec_stat = ddi_get16(erpt_p->pci_cfg_hdl, (uint16_t *)(erpt_p->pci_cfg_addr + PCI_BCNF_SEC_STATUS))) == 0xffff) { (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS, PCI_NR); ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, NULL); goto done; } if ((bdg_ctrl = ddi_get16(erpt_p->pci_cfg_hdl, (uint16_t *)(erpt_p->pci_cfg_addr + PCI_BCNF_BCNTRL))) == 0xffff) { (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS, PCI_NR); ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, NULL); goto done; } if (derr->fme_flag == DDI_FM_ERR_UNEXPECTED) { if (bdg_ctrl & PCI_BCNF_BCNTRL_DTO_STAT) { (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS, PCI_DTO); ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, PCI_SEC_CONFIG_STATUS, DATA_TYPE_UINT16, cfg_sec_stat, PCI_BCNTRL, DATA_TYPE_UINT16, bdg_ctrl, NULL); } for (i = 0; pci_bdg_err_tbl[i].err_class != NULL; i++) { if (cfg_sec_stat & pci_bdg_err_tbl[i].reg_bit) { (void) snprintf(buf, FM_MAX_CLASS, "%s.%s-%s", PCI_ERROR_SUBCLASS, PCI_SEC_ERROR_SUBCLASS, pci_bdg_err_tbl[i].err_class); ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0, PCI_SEC_CONFIG_STATUS, DATA_TYPE_UINT16, cfg_sec_stat, PCI_BCNTRL, DATA_TYPE_UINT16, bdg_ctrl, NULL); } } } /* * Clear error bits */ ddi_put16(erpt_p->pci_cfg_hdl, (uint16_t *) (erpt_p->pci_cfg_addr + PCI_BCNF_SEC_STATUS), (uint16_t)cfg_sec_stat); ddi_put16(erpt_p->pci_cfg_hdl, (uint16_t *) (erpt_p->pci_cfg_addr + PCI_BCNF_BCNTRL), (uint16_t)bdg_ctrl); done: if (status != NULL) *status = cfg_sec_stat; } /* * Generic pci-pci bridge error analysis function */ int pci_bdg_check_status(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t pci_cfg_stat, uint16_t pci_cfg_sec_stat) { int ret; int fatal = 0; int nonfatal = 0; int unknown = 0; if (derr->fme_flag == DDI_FM_ERR_POKE) { /* * special case for pokes - we only consider master abort * and target abort as nonfatal. Sserr with no master abort is * fatal, but master/target abort can come in on separate * instance, so return unknown and parent will determine if * nonfatal (if another child returned nonfatal - ie master * or target abort) or fatal otherwise */ if (pci_cfg_sec_stat & (PCI_STAT_R_TARG_AB | PCI_STAT_R_MAST_AB)) nonfatal++; if (pci_cfg_stat & PCI_STAT_S_SYSERR) unknown++; } else if (derr->fme_flag == DDI_FM_ERR_UNEXPECTED) { /* * Only sserr on primary bus is considered fatal. * In all other conditions, the bridge has been able to notify * the initiator of the error condition, so let the initiator * (be it the host for PIO or the leaf device for DMA) handle it */ if (pci_cfg_stat & PCI_STAT_S_SYSERR) fatal++; if (pci_cfg_stat & (PCI_STAT_PERROR | PCI_STAT_R_MAST_AB | PCI_STAT_S_PERROR | PCI_STAT_R_TARG_AB | PCI_STAT_S_TARG_AB)) nonfatal++; if (pci_cfg_sec_stat & (PCI_STAT_R_TARG_AB | PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB | PCI_STAT_S_PERROR | PCI_STAT_PERROR | PCI_STAT_S_TARG_AB)) nonfatal++; } /* * now check children below the bridge */ ret = ndi_fm_handler_dispatch(dip, NULL, derr); if (ret == DDI_FM_FATAL) fatal++; else if (ret == DDI_FM_NONFATAL) nonfatal++; else if (ret == DDI_FM_UNKNOWN) unknown++; return (fatal ? DDI_FM_FATAL : (nonfatal ? DDI_FM_NONFATAL : (unknown ? DDI_FM_UNKNOWN : DDI_FM_OK))); } #ifdef _LP64 uint8_t pci_config_get8(ddi_acc_handle_t handle, off_t offset) #else /* _ILP32 */ uint8_t pci_config_getb(ddi_acc_handle_t handle, off_t offset) #endif { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get8(handle, (uint8_t *)cfgaddr)); } #ifdef _LP64 uint16_t pci_config_get16(ddi_acc_handle_t handle, off_t offset) #else /* _ILP32 */ uint16_t pci_config_getw(ddi_acc_handle_t handle, off_t offset) #endif { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get16(handle, (uint16_t *)cfgaddr)); } #ifdef _LP64 uint32_t pci_config_get32(ddi_acc_handle_t handle, off_t offset) #else /* _ILP32 */ uint32_t pci_config_getl(ddi_acc_handle_t handle, off_t offset) #endif { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get32(handle, (uint32_t *)cfgaddr)); } #ifdef _LP64 uint64_t pci_config_get64(ddi_acc_handle_t handle, off_t offset) #else /* _ILP32 */ uint64_t pci_config_getll(ddi_acc_handle_t handle, off_t offset) #endif { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; return (ddi_get64(handle, (uint64_t *)cfgaddr)); } #ifdef _LP64 void pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value) #else /* _ILP32 */ void pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value) #endif { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put8(handle, (uint8_t *)cfgaddr, value); } #ifdef _LP64 void pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value) #else /* _ILP32 */ void pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value) #endif { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put16(handle, (uint16_t *)cfgaddr, value); } #ifdef _LP64 void pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value) #else /* _ILP32 */ void pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value) #endif { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put32(handle, (uint32_t *)cfgaddr, value); } #ifdef _LP64 void pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value) #else /* _ILP32 */ void pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value) #endif { caddr_t cfgaddr; ddi_acc_hdl_t *hp; hp = impl_acc_hdl_get(handle); cfgaddr = hp->ah_addr + offset; ddi_put64(handle, (uint64_t *)cfgaddr, value); } /*ARGSUSED*/ int pci_report_pmcap(dev_info_t *dip, int cap, void *arg) { return (DDI_SUCCESS); } /* * Note about saving and restoring config space. * PCI devices have only upto 256 bytes of config space while PCI Express * devices can have upto 4k config space. In case of PCI Express device, * we save all 4k config space and restore it even if it doesn't make use * of all 4k. But some devices don't respond to reads to non-existent * registers within the config space. To avoid any panics, we use ddi_peek * to do the reads. A bit mask is used to indicate which words of the * config space are accessible. While restoring the config space, only those * readable words are restored. We do all this in 32 bit size words. */ #define INDEX_SHIFT 3 #define BITMASK 0x7 static uint32_t pci_save_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp); static void pci_restore_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t elements); static uint32_t pci_generic_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t nwords); static uint32_t pci_msi_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused); static uint32_t pci_pcix_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused); static uint32_t pci_pcie_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused); static void pci_fill_buf(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t nwords); static uint32_t cap_walk_and_save(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp, int xspace); static void pci_pmcap_check(ddi_acc_handle_t confhdl, uint32_t *regbuf, uint16_t pmcap_offset); /* * Table below specifies the number of registers to be saved for each PCI * capability. pci_generic_save saves the number of words specified in the * table. Any special considerations will be taken care by the capability * specific save function e.g. use pci_msi_save to save registers associated * with MSI capability. PCI_UNKNOWN_SIZE indicates that number of registers * to be saved is variable and will be determined by the specific save function. * Currently we save/restore all the registers associated with the capability * including read only registers. Regsiters are saved and restored in 32 bit * size words. */ static pci_cap_entry_t pci_cap_table[] = { {PCI_CAP_ID_PM, PCI_PMCAP_NDWORDS, pci_generic_save}, {PCI_CAP_ID_AGP, PCI_AGP_NDWORDS, pci_generic_save}, {PCI_CAP_ID_SLOT_ID, PCI_SLOTID_NDWORDS, pci_generic_save}, {PCI_CAP_ID_MSI_X, PCI_MSIX_NDWORDS, pci_generic_save}, {PCI_CAP_ID_MSI, PCI_CAP_SZUNKNOWN, pci_msi_save}, {PCI_CAP_ID_PCIX, PCI_CAP_SZUNKNOWN, pci_pcix_save}, {PCI_CAP_ID_PCI_E, PCI_CAP_SZUNKNOWN, pci_pcie_save}, /* * {PCI_CAP_ID_cPCI_CRC, 0, NULL}, * {PCI_CAP_ID_VPD, 0, NULL}, * {PCI_CAP_ID_cPCI_HS, 0, NULL}, * {PCI_CAP_ID_PCI_HOTPLUG, 0, NULL}, * {PCI_CAP_ID_AGP_8X, 0, NULL}, * {PCI_CAP_ID_SECURE_DEV, 0, NULL}, */ {PCI_CAP_NEXT_PTR_NULL, 0, NULL} }; /* * Save the configuration registers for cdip as a property * so that it persists after detach/uninitchild. */ int pci_save_config_regs(dev_info_t *dip) { ddi_acc_handle_t confhdl; pci_config_header_state_t *chsp; pci_cap_save_desc_t *pci_cap_descp; int ret; uint32_t i, ncaps, nwords; uint32_t *regbuf, *p; uint8_t *maskbuf; size_t maskbufsz, regbufsz, capbufsz; ddi_acc_hdl_t *hp; off_t offset = 0; uint8_t cap_ptr, cap_id; int pcie = 0; if (pci_config_setup(dip, &confhdl) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d can't get config handle", ddi_driver_name(dip), ddi_get_instance(dip)); return (DDI_FAILURE); } /* * Determine if it is a pci express device. If it is, save entire * 4k config space treating it as a array of 32 bit integers. * If it is not, do it in a usual PCI way. */ cap_ptr = pci_config_get8(confhdl, PCI_BCNF_CAP_PTR); /* * Walk the capabilities searching for pci express capability */ while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) { cap_id = pci_config_get8(confhdl, cap_ptr + PCI_CAP_ID); if (cap_id == PCI_CAP_ID_PCI_E) { pcie = 1; break; } cap_ptr = pci_config_get8(confhdl, cap_ptr + PCI_CAP_NEXT_PTR); } if (pcie) { /* PCI express device. Can have data in all 4k space */ regbuf = (uint32_t *)kmem_zalloc((size_t)PCIE_CONF_HDR_SIZE, KM_SLEEP); p = regbuf; /* * Allocate space for mask. * mask size is 128 bytes (4096 / 4 / 8 ) */ maskbufsz = (size_t)((PCIE_CONF_HDR_SIZE/ sizeof (uint32_t)) >> INDEX_SHIFT); maskbuf = (uint8_t *)kmem_zalloc(maskbufsz, KM_SLEEP); hp = impl_acc_hdl_get(confhdl); for (i = 0; i < (PCIE_CONF_HDR_SIZE / sizeof (uint32_t)); i++) { if (ddi_peek32(dip, (int32_t *)(hp->ah_addr + offset), (int32_t *)p) == DDI_SUCCESS) { /* it is readable register. set the bit */ maskbuf[i >> INDEX_SHIFT] |= (uint8_t)(1 << (i & BITMASK)); } p++; offset += sizeof (uint32_t); } if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK, (uchar_t *)maskbuf, maskbufsz)) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "couldn't create %s property while" "saving config space for %s@%d\n", SAVED_CONFIG_REGS_MASK, ddi_driver_name(dip), ddi_get_instance(dip)); } else if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS, (uchar_t *)regbuf, (size_t)PCIE_CONF_HDR_SIZE)) != DDI_PROP_SUCCESS) { (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK); cmn_err(CE_WARN, "%s%d can't update prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS); } kmem_free(maskbuf, (size_t)maskbufsz); kmem_free(regbuf, (size_t)PCIE_CONF_HDR_SIZE); } else { regbuf = (uint32_t *)kmem_zalloc((size_t)PCI_CONF_HDR_SIZE, KM_SLEEP); chsp = (pci_config_header_state_t *)regbuf; chsp->chs_command = pci_config_get16(confhdl, PCI_CONF_COMM); chsp->chs_header_type = pci_config_get8(confhdl, PCI_CONF_HEADER); if ((chsp->chs_header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) chsp->chs_bridge_control = pci_config_get16(confhdl, PCI_BCNF_BCNTRL); chsp->chs_cache_line_size = pci_config_get8(confhdl, PCI_CONF_CACHE_LINESZ); chsp->chs_latency_timer = pci_config_get8(confhdl, PCI_CONF_LATENCY_TIMER); if ((chsp->chs_header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) { chsp->chs_sec_latency_timer = pci_config_get8(confhdl, PCI_BCNF_LATENCY_TIMER); } chsp->chs_base0 = pci_config_get32(confhdl, PCI_CONF_BASE0); chsp->chs_base1 = pci_config_get32(confhdl, PCI_CONF_BASE1); chsp->chs_base2 = pci_config_get32(confhdl, PCI_CONF_BASE2); chsp->chs_base3 = pci_config_get32(confhdl, PCI_CONF_BASE3); chsp->chs_base4 = pci_config_get32(confhdl, PCI_CONF_BASE4); chsp->chs_base5 = pci_config_get32(confhdl, PCI_CONF_BASE5); /* * Allocate maximum space required for capability descriptions. * The maximum number of capabilties saved is the number of * capabilities listed in the pci_cap_table. */ ncaps = (sizeof (pci_cap_table) / sizeof (pci_cap_entry_t)); capbufsz = ncaps * sizeof (pci_cap_save_desc_t); pci_cap_descp = (pci_cap_save_desc_t *)kmem_zalloc( capbufsz, KM_SLEEP); p = (uint32_t *)((caddr_t)regbuf + sizeof (pci_config_header_state_t)); nwords = pci_save_caps(confhdl, p, pci_cap_descp, &ncaps); regbufsz = sizeof (pci_config_header_state_t) + nwords * sizeof (uint32_t); if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS, (uchar_t *)regbuf, regbufsz)) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d can't update prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS); } else if (ncaps) { ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_CAPINFO, (uchar_t *)pci_cap_descp, ncaps * sizeof (pci_cap_save_desc_t)); if (ret != DDI_PROP_SUCCESS) (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS); } kmem_free(regbuf, (size_t)PCI_CONF_HDR_SIZE); kmem_free(pci_cap_descp, capbufsz); } pci_config_teardown(&confhdl); if (ret != DDI_PROP_SUCCESS) return (DDI_FAILURE); return (DDI_SUCCESS); } /* * Saves registers associated with PCI capabilities. * Returns number of 32 bit words saved. * Number of capabilities saved is returned in ncapsp. */ static uint32_t pci_save_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp) { return (cap_walk_and_save(confhdl, regbuf, cap_descp, ncapsp, 0)); } static uint32_t cap_walk_and_save(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp, int xspace) { pci_cap_entry_t *pci_cap_entp; uint16_t cap_id, offset; uint32_t words_saved = 0, nwords = 0; uint16_t cap_ptr = PCI_CAP_NEXT_PTR_NULL; *ncapsp = 0; if (!xspace) cap_ptr = pci_config_get8(confhdl, PCI_BCNF_CAP_PTR); /* * Walk the capabilities */ while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) { cap_id = CAP_ID(confhdl, cap_ptr, xspace); /* Search for this cap id in our table */ if (!xspace) pci_cap_entp = pci_cap_table; while (pci_cap_entp->cap_id != PCI_CAP_NEXT_PTR_NULL && pci_cap_entp->cap_id != cap_id) pci_cap_entp++; offset = cap_ptr; cap_ptr = NEXT_CAP(confhdl, cap_ptr, xspace); /* * If this cap id is not found in the table, there is nothing * to save. */ if (pci_cap_entp->cap_id == PCI_CAP_NEXT_PTR_NULL) continue; if (pci_cap_entp->cap_save_func) { if ((nwords = pci_cap_entp->cap_save_func(confhdl, offset, regbuf, pci_cap_entp->cap_ndwords))) { cap_descp->cap_nregs = nwords; cap_descp->cap_offset = offset; cap_descp->cap_id = cap_id; regbuf += nwords; cap_descp++; words_saved += nwords; (*ncapsp)++; } } } return (words_saved); } static void pci_fill_buf(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t nwords) { int i; for (i = 0; i < nwords; i++) { *regbuf = pci_config_get32(confhdl, cap_ptr); regbuf++; cap_ptr += 4; } } static uint32_t pci_generic_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t nwords) { pci_fill_buf(confhdl, cap_ptr, regbuf, nwords); return (nwords); } /*ARGSUSED*/ static uint32_t pci_msi_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused) { uint32_t nwords = PCI_MSI_MIN_WORDS; uint16_t msi_ctrl; /* Figure out how many registers to be saved */ msi_ctrl = pci_config_get16(confhdl, cap_ptr + PCI_MSI_CTRL); /* If 64 bit address capable add one word */ if (msi_ctrl & PCI_MSI_64BIT_MASK) nwords++; /* If per vector masking capable, add two more words */ if (msi_ctrl & PCI_MSI_PVM_MASK) nwords += 2; pci_fill_buf(confhdl, cap_ptr, regbuf, nwords); return (nwords); } /*ARGSUSED*/ static uint32_t pci_pcix_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused) { uint32_t nwords = PCI_PCIX_MIN_WORDS; uint16_t pcix_command; /* Figure out how many registers to be saved */ pcix_command = pci_config_get16(confhdl, cap_ptr + PCI_PCIX_COMMAND); /* If it is version 1 or version 2, add 4 words */ if (((pcix_command & PCI_PCIX_VER_MASK) == PCI_PCIX_VER_1) || ((pcix_command & PCI_PCIX_VER_MASK) == PCI_PCIX_VER_2)) nwords += 4; pci_fill_buf(confhdl, cap_ptr, regbuf, nwords); return (nwords); } /*ARGSUSED*/ static uint32_t pci_pcie_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf, uint32_t notused) { return (0); } static void pci_pmcap_check(ddi_acc_handle_t confhdl, uint32_t *regbuf, uint16_t pmcap_offset) { uint16_t pmcsr; uint16_t pmcsr_offset = pmcap_offset + PCI_PMCSR; uint32_t *saved_pmcsrp = (uint32_t *)((caddr_t)regbuf + PCI_PMCSR); /* * Copy the power state bits from the PMCSR to our saved copy. * This is to make sure that we don't change the D state when * we restore config space of the device. */ pmcsr = pci_config_get16(confhdl, pmcsr_offset); (*saved_pmcsrp) &= ~PCI_PMCSR_STATE_MASK; (*saved_pmcsrp) |= (pmcsr & PCI_PMCSR_STATE_MASK); } static void pci_restore_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf, pci_cap_save_desc_t *cap_descp, uint32_t elements) { int i, j; uint16_t offset; for (i = 0; i < (elements / sizeof (pci_cap_save_desc_t)); i++) { offset = cap_descp->cap_offset; if (cap_descp->cap_id == PCI_CAP_ID_PM) pci_pmcap_check(confhdl, regbuf, offset); for (j = 0; j < cap_descp->cap_nregs; j++) { pci_config_put32(confhdl, offset, *regbuf); regbuf++; offset += 4; } cap_descp++; } } /* * Restore config_regs from a single devinfo node. */ int pci_restore_config_regs(dev_info_t *dip) { ddi_acc_handle_t confhdl; pci_config_header_state_t *chs_p; pci_cap_save_desc_t *cap_descp; uint32_t elements, i; uint8_t *maskbuf; uint32_t *regbuf, *p; off_t offset = 0; if (pci_config_setup(dip, &confhdl) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d can't get config handle", ddi_driver_name(dip), ddi_get_instance(dip)); return (DDI_FAILURE); } if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS_MASK, (uchar_t **)&maskbuf, &elements) == DDI_PROP_SUCCESS) { if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS, (uchar_t **)®buf, &elements) != DDI_PROP_SUCCESS) { goto restoreconfig_err; } ASSERT(elements == PCIE_CONF_HDR_SIZE); /* pcie device and has 4k config space saved */ p = regbuf; for (i = 0; i < PCIE_CONF_HDR_SIZE / sizeof (uint32_t); i++) { /* If the word is readable then restore it */ if (maskbuf[i >> INDEX_SHIFT] & (uint8_t)(1 << (i & BITMASK))) pci_config_put32(confhdl, offset, *p); p++; offset += sizeof (uint32_t); } ddi_prop_free(regbuf); ddi_prop_free(maskbuf); if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d can't remove prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS_MASK); } } else { if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS, (uchar_t **)®buf, &elements) != DDI_PROP_SUCCESS) { pci_config_teardown(&confhdl); return (DDI_FAILURE); } chs_p = (pci_config_header_state_t *)regbuf; pci_config_put16(confhdl, PCI_CONF_COMM, chs_p->chs_command); if ((chs_p->chs_header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) { pci_config_put16(confhdl, PCI_BCNF_BCNTRL, chs_p->chs_bridge_control); } pci_config_put8(confhdl, PCI_CONF_CACHE_LINESZ, chs_p->chs_cache_line_size); pci_config_put8(confhdl, PCI_CONF_LATENCY_TIMER, chs_p->chs_latency_timer); if ((chs_p->chs_header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) pci_config_put8(confhdl, PCI_BCNF_LATENCY_TIMER, chs_p->chs_sec_latency_timer); pci_config_put32(confhdl, PCI_CONF_BASE0, chs_p->chs_base0); pci_config_put32(confhdl, PCI_CONF_BASE1, chs_p->chs_base1); pci_config_put32(confhdl, PCI_CONF_BASE2, chs_p->chs_base2); pci_config_put32(confhdl, PCI_CONF_BASE3, chs_p->chs_base3); pci_config_put32(confhdl, PCI_CONF_BASE4, chs_p->chs_base4); pci_config_put32(confhdl, PCI_CONF_BASE5, chs_p->chs_base5); if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS_CAPINFO, (uchar_t **)&cap_descp, &elements) == DDI_PROP_SUCCESS) { /* * PCI capability related regsiters are saved. * Restore them based on the description. */ p = (uint32_t *)((caddr_t)regbuf + sizeof (pci_config_header_state_t)); pci_restore_caps(confhdl, p, cap_descp, elements); ddi_prop_free(cap_descp); } ddi_prop_free(regbuf); } /* * Make sure registers are flushed */ (void) pci_config_get32(confhdl, PCI_CONF_BASE5); if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d can't remove prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS); } pci_config_teardown(&confhdl); return (DDI_SUCCESS); restoreconfig_err: ddi_prop_free(maskbuf); if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d can't remove prop %s", ddi_driver_name(dip), ddi_get_instance(dip), SAVED_CONFIG_REGS_MASK); } pci_config_teardown(&confhdl); return (DDI_FAILURE); }