/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * what is mblk_pull_len? * * If a streams message consists of many short messages, * a performance degradation occurs from copyout overhead. * To decrease the per mblk overhead, messages that are * likely to consist of many small mblks are pulled up into * one continuous chunk of memory. * * To avoid the processing overhead of examining every * mblk, a quick heuristic is used. If the first mblk in * the message is shorter than mblk_pull_len, it is likely * that the rest of the mblk will be short. * * This heuristic was decided upon after performance tests * indicated that anything more complex slowed down the main * code path. */ #define MBLK_PULL_LEN 64 uint32_t mblk_pull_len = MBLK_PULL_LEN; /* * The sgttyb_handling flag controls the handling of the old BSD * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: * * 0 - Emit no warnings at all and retain old, broken behavior. * 1 - Emit no warnings and silently handle new semantics. * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used * (once per system invocation). Handle with new semantics. * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is * made (so that offenders drop core and are easy to debug). * * The "new semantics" are that TIOCGETP returns B38400 for * sg_[io]speed if the corresponding value is over B38400, and that * TIOCSET[PN] accept B38400 in these cases to mean "retain current * bit rate." */ int sgttyb_handling = 1; static boolean_t sgttyb_complaint; /* don't push drcompat module by default on Style-2 streams */ static int push_drcompat = 0; /* * id value used to distinguish between different ioctl messages */ static uint32_t ioc_id; static void putback(struct stdata *, queue_t *, mblk_t *, int); static void strcleanall(struct vnode *); static int strwsrv(queue_t *); /* * qinit and module_info structures for stream head read and write queues */ struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, FIFOLOWAT }; struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; extern kmutex_t strresources; /* protects global resources */ extern kmutex_t muxifier; /* single-threads multiplexor creation */ kmutex_t sad_lock; /* protects sad drivers autopush */ static boolean_t msghasdata(mblk_t *bp); #define msgnodata(bp) (!msghasdata(bp)) /* * Stream head locking notes: * There are four monitors associated with the stream head: * 1. v_stream monitor: in stropen() and strclose() v_lock * is held while the association of vnode and stream * head is established or tested for. * 2. open/close/push/pop monitor: sd_lock is held while each * thread bids for exclusive access to this monitor * for opening or closing a stream. In addition, this * monitor is entered during pushes and pops. This * guarantees that during plumbing operations there * is only one thread trying to change the plumbing. * Any other threads present in the stream are only * using the plumbing. * 3. read/write monitor: in the case of read, a thread holds * sd_lock while trying to get data from the stream * head queue. if there is none to fulfill a read * request, it sets RSLEEP and calls cv_wait_sig() down * in strwaitq() to await the arrival of new data. * when new data arrives in strrput(), sd_lock is acquired * before testing for RSLEEP and calling cv_broadcast(). * the behavior of strwrite(), strwsrv(), and WSLEEP * mirror this. * 4. ioctl monitor: sd_lock is gotten to ensure that only one * thread is doing an ioctl at a time. */ static int push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, int anchor, cred_t *crp) { int error; fmodsw_impl_t *fp; if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; return (error); } if (stp->sd_pushcnt >= nstrpush) { return (EINVAL); } if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { stp->sd_flag |= STREOPENFAIL; return (EINVAL); } /* * push new module and call its open routine via qattach */ if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) return (error); /* * If flow control is on, don't break it - enable * first back queue with svc procedure */ if (_RD(stp->sd_wrq)->q_flag & QWANTW) { /* Note: no setqback here - use pri -1. */ backenable(_RD(stp->sd_wrq->q_next), -1); } /* * Check to see if caller wants a STREAMS anchor * put at this place in the stream, and add if so. */ mutex_enter(&stp->sd_lock); if (anchor == stp->sd_pushcnt) stp->sd_anchor = stp->sd_pushcnt; mutex_exit(&stp->sd_lock); return (0); } /* * Open a stream device. */ int stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) { struct stdata *stp; queue_t *qp; int s; dev_t dummydev; struct autopush *ap; int error = 0; ssize_t rmin, rmax; int cloneopen; queue_t *brq; major_t major; #ifdef C2_AUDIT if (audit_active) audit_stropen(vp, devp, flag, crp); #endif /* * If the stream already exists, wait for any open in progress * to complete, then call the open function of each module and * driver in the stream. Otherwise create the stream. */ TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); retry: mutex_enter(&vp->v_lock); if ((stp = vp->v_stream) != NULL) { /* * Waiting for stream to be created to device * due to another open. */ mutex_exit(&vp->v_lock); if (STRMATED(stp)) { struct stdata *strmatep = stp->sd_mate; STRLOCKMATES(stp); if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { if (flag & (FNDELAY|FNONBLOCK)) { error = EAGAIN; mutex_exit(&strmatep->sd_lock); goto ckreturn; } mutex_exit(&stp->sd_lock); if (!cv_wait_sig(&strmatep->sd_monitor, &strmatep->sd_lock)) { error = EINTR; mutex_exit(&strmatep->sd_lock); mutex_enter(&stp->sd_lock); goto ckreturn; } mutex_exit(&strmatep->sd_lock); goto retry; } if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { if (flag & (FNDELAY|FNONBLOCK)) { error = EAGAIN; mutex_exit(&strmatep->sd_lock); goto ckreturn; } mutex_exit(&strmatep->sd_lock); if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) { error = EINTR; goto ckreturn; } mutex_exit(&stp->sd_lock); goto retry; } if (stp->sd_flag & (STRDERR|STWRERR)) { error = EIO; mutex_exit(&strmatep->sd_lock); goto ckreturn; } stp->sd_flag |= STWOPEN; STRUNLOCKMATES(stp); } else { mutex_enter(&stp->sd_lock); if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { if (flag & (FNDELAY|FNONBLOCK)) { error = EAGAIN; goto ckreturn; } if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) { error = EINTR; goto ckreturn; } mutex_exit(&stp->sd_lock); goto retry; /* could be clone! */ } if (stp->sd_flag & (STRDERR|STWRERR)) { error = EIO; goto ckreturn; } stp->sd_flag |= STWOPEN; mutex_exit(&stp->sd_lock); } /* * Open all modules and devices down stream to notify * that another user is streaming. For modules, set the * last argument to MODOPEN and do not pass any open flags. * Ignore dummydev since this is not the first open. */ claimstr(stp->sd_wrq); qp = stp->sd_wrq; while (_SAMESTR(qp)) { qp = qp->q_next; if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) break; } releasestr(stp->sd_wrq); mutex_enter(&stp->sd_lock); stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); stp->sd_rerror = 0; stp->sd_werror = 0; ckreturn: cv_broadcast(&stp->sd_monitor); mutex_exit(&stp->sd_lock); return (error); } /* * This vnode isn't streaming. SPECFS already * checked for multiple vnodes pointing to the * same stream, so create a stream to the driver. */ qp = allocq(); stp = shalloc(qp); /* * Initialize stream head. shalloc() has given us * exclusive access, and we have the vnode locked; * we can do whatever we want with stp. */ stp->sd_flag = STWOPEN; stp->sd_siglist = NULL; stp->sd_pollist.ph_list = NULL; stp->sd_sigflags = 0; stp->sd_mark = NULL; stp->sd_closetime = STRTIMOUT; stp->sd_sidp = NULL; stp->sd_pgidp = NULL; stp->sd_vnode = vp; stp->sd_rerror = 0; stp->sd_werror = 0; stp->sd_wroff = 0; stp->sd_iocblk = NULL; stp->sd_pushcnt = 0; stp->sd_qn_minpsz = 0; stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ stp->sd_maxblk = INFPSZ; qp->q_ptr = _WR(qp)->q_ptr = stp; STREAM(qp) = STREAM(_WR(qp)) = stp; vp->v_stream = stp; mutex_exit(&vp->v_lock); if (vp->v_type == VFIFO) { stp->sd_flag |= OLDNDELAY; /* * This means, both for pipes and fifos * strwrite will send SIGPIPE if the other * end is closed. For putmsg it depends * on whether it is a XPG4_2 application * or not */ stp->sd_wput_opt = SW_SIGPIPE; /* setq might sleep in kmem_alloc - avoid holding locks. */ setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); set_qend(qp); stp->sd_strtab = (struct streamtab *)fifo_getinfo(); _WR(qp)->q_nfsrv = _WR(qp); qp->q_nfsrv = qp; /* * Wake up others that are waiting for stream to be created. */ mutex_enter(&stp->sd_lock); /* * nothing is be pushed on stream yet, so * optimized stream head packetsizes are just that * of the read queue */ stp->sd_qn_minpsz = qp->q_minpsz; stp->sd_qn_maxpsz = qp->q_maxpsz; stp->sd_flag &= ~STWOPEN; goto fifo_opendone; } /* setq might sleep in kmem_alloc - avoid holding locks. */ setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); set_qend(qp); /* * Open driver and create stream to it (via qattach). */ cloneopen = (getmajor(*devp) == clone_major); if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { mutex_enter(&vp->v_lock); vp->v_stream = NULL; mutex_exit(&vp->v_lock); mutex_enter(&stp->sd_lock); cv_broadcast(&stp->sd_monitor); mutex_exit(&stp->sd_lock); freeq(_RD(qp)); shfree(stp); return (error); } /* * Set sd_strtab after open in order to handle clonable drivers */ stp->sd_strtab = STREAMSTAB(getmajor(*devp)); /* * Historical note: dummydev used to be be prior to the initial * open (via qattach above), which made the value seen * inconsistent between an I_PUSH and an autopush of a module. */ dummydev = *devp; /* * For clone open of old style (Q not associated) network driver, * push DRMODNAME module to handle DL_ATTACH/DL_DETACH */ brq = _RD(_WR(qp)->q_next); major = getmajor(*devp); if (push_drcompat && cloneopen && NETWORK_DRV(major) && ((brq->q_flag & _QASSOCIATED) == 0)) { if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp) != 0) cmn_err(CE_WARN, "cannot push " DRMODNAME " streams module"); } /* * check for autopush */ mutex_enter(&sad_lock); ap = strphash(getemajor(*devp)); #define DEVT(ap) makedevice(ap->ap_major, ap->ap_minor) #define DEVLT(ap) makedevice(ap->ap_major, ap->ap_lastminor) while (ap) { if (ap->ap_major == (getemajor(*devp))) { if (ap->ap_type == SAP_ALL) break; else if ((ap->ap_type == SAP_ONE) && (getminor(DEVT(ap)) == getminor(*devp))) break; else if (ap->ap_type == SAP_RANGE && getminor(*devp) >= getminor(DEVT(ap)) && getminor(*devp) <= getminor(DEVLT(ap))) break; } ap = ap->ap_nextp; } if (ap == NULL) { mutex_exit(&sad_lock); goto opendone; } ap->ap_cnt++; mutex_exit(&sad_lock); for (s = 0; s < ap->ap_npush; s++) { error = push_mod(qp, &dummydev, stp, ap->ap_list[s], ap->ap_anchor, crp); if (error != 0) break; } mutex_enter(&sad_lock); if (--(ap->ap_cnt) <= 0) ap_free(ap); mutex_exit(&sad_lock); /* * let specfs know that open failed part way through */ if (error) { mutex_enter(&stp->sd_lock); stp->sd_flag |= STREOPENFAIL; mutex_exit(&stp->sd_lock); } opendone: /* * Wake up others that are waiting for stream to be created. */ mutex_enter(&stp->sd_lock); stp->sd_flag &= ~STWOPEN; /* * As a performance concern we are caching the values of * q_minpsz and q_maxpsz of the module below the stream * head in the stream head. */ mutex_enter(QLOCK(stp->sd_wrq->q_next)); rmin = stp->sd_wrq->q_next->q_minpsz; rmax = stp->sd_wrq->q_next->q_maxpsz; mutex_exit(QLOCK(stp->sd_wrq->q_next)); /* do this processing here as a performance concern */ if (strmsgsz != 0) { if (rmax == INFPSZ) rmax = strmsgsz; else rmax = MIN(strmsgsz, rmax); } mutex_enter(QLOCK(stp->sd_wrq)); stp->sd_qn_minpsz = rmin; stp->sd_qn_maxpsz = rmax; mutex_exit(QLOCK(stp->sd_wrq)); fifo_opendone: cv_broadcast(&stp->sd_monitor); mutex_exit(&stp->sd_lock); return (error); } static int strsink(queue_t *, mblk_t *); static struct qinit deadrend = { strsink, NULL, NULL, NULL, NULL, &strm_info, NULL }; static struct qinit deadwend = { NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL }; /* * Close a stream. * This is called from closef() on the last close of an open stream. * Strclean() will already have removed the siglist and pollist * information, so all that remains is to remove all multiplexor links * for the stream, pop all the modules (and the driver), and free the * stream structure. */ int strclose(struct vnode *vp, int flag, cred_t *crp) { struct stdata *stp; queue_t *qp; int rval; int freestp = 1; queue_t *rmq; #ifdef C2_AUDIT if (audit_active) audit_strclose(vp, flag, crp); #endif TRACE_1(TR_FAC_STREAMS_FR, TR_STRCLOSE, "strclose:%p", vp); ASSERT(vp->v_stream); stp = vp->v_stream; ASSERT(!(stp->sd_flag & STPLEX)); qp = stp->sd_wrq; /* * Needed so that strpoll will return non-zero for this fd. * Note that with POLLNOERR STRHUP does still cause POLLHUP. */ mutex_enter(&stp->sd_lock); stp->sd_flag |= STRHUP; mutex_exit(&stp->sd_lock); /* * Since we call pollwakeup in close() now, the poll list should * be empty in most cases. The only exception is the layered devices * (e.g. the console drivers with redirection modules pushed on top * of it). */ if (stp->sd_pollist.ph_list != NULL) { pollwakeup(&stp->sd_pollist, POLLERR); pollhead_clean(&stp->sd_pollist); } ASSERT(stp->sd_pollist.ph_list == NULL); ASSERT(stp->sd_sidp == NULL); ASSERT(stp->sd_pgidp == NULL); /* * If the registered process or process group did not have an * open instance of this stream then strclean would not be * called. Thus at the time of closing all remaining siglist entries * are removed. */ if (stp->sd_siglist != NULL) strcleanall(vp); ASSERT(stp->sd_siglist == NULL); ASSERT(stp->sd_sigflags == 0); if (STRMATED(stp)) { struct stdata *strmatep = stp->sd_mate; int waited = 1; STRLOCKMATES(stp); while (waited) { waited = 0; while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { mutex_exit(&strmatep->sd_lock); cv_wait(&stp->sd_monitor, &stp->sd_lock); mutex_exit(&stp->sd_lock); STRLOCKMATES(stp); waited = 1; } while (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { mutex_exit(&stp->sd_lock); cv_wait(&strmatep->sd_monitor, &strmatep->sd_lock); mutex_exit(&strmatep->sd_lock); STRLOCKMATES(stp); waited = 1; } } stp->sd_flag |= STRCLOSE; STRUNLOCKMATES(stp); } else { mutex_enter(&stp->sd_lock); stp->sd_flag |= STRCLOSE; mutex_exit(&stp->sd_lock); } ASSERT(qp->q_first == NULL); /* No more delayed write */ /* Check if an I_LINK was ever done on this stream */ if (stp->sd_flag & STRHASLINKS) { (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval); } while (_SAMESTR(qp)) { /* * Holding sd_lock prevents q_next from changing in * this stream. */ mutex_enter(&stp->sd_lock); if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { /* * sleep until awakened by strwsrv() or timeout */ for (;;) { mutex_enter(QLOCK(qp->q_next)); if (!(qp->q_next->q_mblkcnt)) { mutex_exit(QLOCK(qp->q_next)); break; } stp->sd_flag |= WSLEEP; /* ensure strwsrv gets enabled */ qp->q_next->q_flag |= QWANTW; mutex_exit(QLOCK(qp->q_next)); /* get out if we timed out or recv'd a signal */ if (str_cv_wait(&qp->q_wait, &stp->sd_lock, stp->sd_closetime, 0) <= 0) { break; } } stp->sd_flag &= ~WSLEEP; } mutex_exit(&stp->sd_lock); rmq = qp->q_next; if (rmq->q_flag & QISDRV) { ASSERT(!_SAMESTR(rmq)); wait_sq_svc(_RD(qp)->q_syncq); } qdetach(_RD(rmq), 1, flag, crp, B_FALSE); } /* Prevent qenable from re-enabling the stream head queue */ disable_svc(_RD(qp)); /* * Wait until service procedure of each queue is * run, if QINSERVICE is set. */ wait_svc(_RD(qp)); /* * Now, flush both queues. */ flushq(_RD(qp), FLUSHALL); flushq(qp, FLUSHALL); /* * If the write queue of the stream head is pointing to a * read queue, we have a twisted stream. If the read queue * is alive, convert the stream head queues into a dead end. * If the read queue is dead, free the dead pair. */ if (qp->q_next && !_SAMESTR(qp)) { if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ flushq(qp->q_next, FLUSHALL); /* ensure no message */ shfree(qp->q_next->q_stream); freeq(qp->q_next); freeq(_RD(qp)); } else if (qp->q_next == _RD(qp)) { /* fifo */ freeq(_RD(qp)); } else { /* pipe */ freestp = 0; /* * The q_info pointers are never accessed when * SQLOCK is held. */ ASSERT(qp->q_syncq == _RD(qp)->q_syncq); mutex_enter(SQLOCK(qp->q_syncq)); qp->q_qinfo = &deadwend; _RD(qp)->q_qinfo = &deadrend; mutex_exit(SQLOCK(qp->q_syncq)); } } else { freeq(_RD(qp)); /* free stream head queue pair */ } mutex_enter(&vp->v_lock); if (stp->sd_iocblk) { if (stp->sd_iocblk != (mblk_t *)-1) { freemsg(stp->sd_iocblk); } stp->sd_iocblk = NULL; } stp->sd_vnode = NULL; vp->v_stream = NULL; mutex_exit(&vp->v_lock); mutex_enter(&stp->sd_lock); stp->sd_flag &= ~STRCLOSE; cv_broadcast(&stp->sd_monitor); mutex_exit(&stp->sd_lock); if (freestp) shfree(stp); return (0); } static int strsink(queue_t *q, mblk_t *bp) { struct copyresp *resp; switch (bp->b_datap->db_type) { case M_FLUSH: if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { *bp->b_rptr &= ~FLUSHR; bp->b_flag |= MSGNOLOOP; /* * Protect against the driver passing up * messages after it has done a qprocsoff. */ if (_OTHERQ(q)->q_next == NULL) freemsg(bp); else qreply(q, bp); } else { freemsg(bp); } break; case M_COPYIN: case M_COPYOUT: if (bp->b_cont) { freemsg(bp->b_cont); bp->b_cont = NULL; } bp->b_datap->db_type = M_IOCDATA; bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); resp = (struct copyresp *)bp->b_rptr; resp->cp_rval = (caddr_t)1; /* failure */ /* * Protect against the driver passing up * messages after it has done a qprocsoff. */ if (_OTHERQ(q)->q_next == NULL) freemsg(bp); else qreply(q, bp); break; case M_IOCTL: if (bp->b_cont) { freemsg(bp->b_cont); bp->b_cont = NULL; } bp->b_datap->db_type = M_IOCNAK; /* * Protect against the driver passing up * messages after it has done a qprocsoff. */ if (_OTHERQ(q)->q_next == NULL) freemsg(bp); else qreply(q, bp); break; default: freemsg(bp); break; } return (0); } /* * Clean up after a process when it closes a stream. This is called * from closef for all closes, whereas strclose is called only for the * last close on a stream. The siglist is scanned for entries for the * current process, and these are removed. */ void strclean(struct vnode *vp) { strsig_t *ssp, *pssp, *tssp; stdata_t *stp; int update = 0; TRACE_1(TR_FAC_STREAMS_FR, TR_STRCLEAN, "strclean:%p", vp); stp = vp->v_stream; pssp = NULL; mutex_enter(&stp->sd_lock); ssp = stp->sd_siglist; while (ssp) { if (ssp->ss_pidp == curproc->p_pidp) { tssp = ssp->ss_next; if (pssp) pssp->ss_next = tssp; else stp->sd_siglist = tssp; mutex_enter(&pidlock); PID_RELE(ssp->ss_pidp); mutex_exit(&pidlock); kmem_free(ssp, sizeof (strsig_t)); update = 1; ssp = tssp; } else { pssp = ssp; ssp = ssp->ss_next; } } if (update) { stp->sd_sigflags = 0; for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) stp->sd_sigflags |= ssp->ss_events; } mutex_exit(&stp->sd_lock); } /* * Used on the last close to remove any remaining items on the siglist. * These could be present on the siglist due to I_ESETSIG calls that * use process groups or processed that do not have an open file descriptor * for this stream (Such entries would not be removed by strclean). */ static void strcleanall(struct vnode *vp) { strsig_t *ssp, *nssp; stdata_t *stp; stp = vp->v_stream; mutex_enter(&stp->sd_lock); ssp = stp->sd_siglist; stp->sd_siglist = NULL; while (ssp) { nssp = ssp->ss_next; mutex_enter(&pidlock); PID_RELE(ssp->ss_pidp); mutex_exit(&pidlock); kmem_free(ssp, sizeof (strsig_t)); ssp = nssp; } stp->sd_sigflags = 0; mutex_exit(&stp->sd_lock); } /* * Retrieve the next message from the logical stream head read queue * using either rwnext (if sync stream) or getq_noenab. * It is the callers responsibility to call qbackenable after * it is finished with the message. The caller should not call * qbackenable until after any putback calls to avoid spurious backenabling. */ mblk_t * strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, int *errorp) { mblk_t *bp; int error; ASSERT(MUTEX_HELD(&stp->sd_lock)); /* Holding sd_lock prevents the read queue from changing */ if (uiop != NULL && stp->sd_struiordq != NULL && q->q_first == NULL && (!first || (stp->sd_wakeq & RSLEEP))) { /* * Stream supports rwnext() for the read side. * If this is the first time we're called by e.g. strread * only do the downcall if there is a deferred wakeup * (registered in sd_wakeq). */ struiod_t uiod; if (first) stp->sd_wakeq &= ~RSLEEP; (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); uiod.d_mp = 0; /* * Mark that a thread is in rwnext on the read side * to prevent strrput from nacking ioctls immediately. * When the last concurrent rwnext returns * the ioctls are nack'ed. */ ASSERT(MUTEX_HELD(&stp->sd_lock)); stp->sd_struiodnak++; /* * Note: rwnext will drop sd_lock. */ error = rwnext(q, &uiod); ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); mutex_enter(&stp->sd_lock); stp->sd_struiodnak--; while (stp->sd_struiodnak == 0 && ((bp = stp->sd_struionak) != NULL)) { stp->sd_struionak = bp->b_next; bp->b_next = NULL; bp->b_datap->db_type = M_IOCNAK; /* * Protect against the driver passing up * messages after it has done a qprocsoff. */ if (_OTHERQ(q)->q_next == NULL) freemsg(bp); else { mutex_exit(&stp->sd_lock); qreply(q, bp); mutex_enter(&stp->sd_lock); } } ASSERT(MUTEX_HELD(&stp->sd_lock)); if (error == 0 || error == EWOULDBLOCK) { if ((bp = uiod.d_mp) != NULL) { *errorp = 0; ASSERT(MUTEX_HELD(&stp->sd_lock)); return (bp); } error = 0; } else if (error == EINVAL) { /* * The stream plumbing must have * changed while we were away, so * just turn off rwnext()s. */ error = 0; } else if (error == EBUSY) { /* * The module might have data in transit using putnext * Fall back on waiting + getq. */ error = 0; } else { *errorp = error; ASSERT(MUTEX_HELD(&stp->sd_lock)); return (NULL); } /* * Try a getq in case a rwnext() generated mblk * has bubbled up via strrput(). */ } *errorp = 0; ASSERT(MUTEX_HELD(&stp->sd_lock)); return (getq_noenab(q)); } /* * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. * If the message does not fit in the uio the remainder of it is returned; * otherwise NULL is returned. Any embedded zero-length mblk_t's are * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to * the error code, the message is consumed, and NULL is returned. */ static mblk_t * struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) { int error; ptrdiff_t n; mblk_t *nbp; ASSERT(bp->b_wptr >= bp->b_rptr); do { if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { ASSERT(n > 0); error = uiomove(bp->b_rptr, n, UIO_READ, uiop); if (error != 0) { freemsg(bp); *errorp = error; return (NULL); } } bp->b_rptr += n; while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { nbp = bp; bp = bp->b_cont; freeb(nbp); } } while (bp != NULL && uiop->uio_resid > 0); *errorp = 0; return (bp); } /* * Read a stream according to the mode flags in sd_flag: * * (default mode) - Byte stream, msg boundaries are ignored * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away * any data remaining in msg * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back * any remaining data on head of read queue * * Consume readable messages on the front of the queue until * ttolwp(curthread)->lwp_count * is satisfied, the readable messages are exhausted, or a message * boundary is reached in a message mode. If no data was read and * the stream was not opened with the NDELAY flag, block until data arrives. * Otherwise return the data read and update the count. * * In default mode a 0 length message signifies end-of-file and terminates * a read in progress. The 0 length message is removed from the queue * only if it is the only message read (no data is read). * * An attempt to read an M_PROTO or M_PCPROTO message results in an * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message * are unlinked from and M_DATA blocks in the message, the protos are * thrown away, and the data is read. */ /* ARGSUSED */ int strread(struct vnode *vp, struct uio *uiop, cred_t *crp) { struct stdata *stp; mblk_t *bp, *nbp; queue_t *q; int error = 0; uint_t old_sd_flag; int first; char rflg; uint_t mark; /* Contains MSG*MARK and _LASTMARK */ #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ short delim; unsigned char pri = 0; char waitflag; unsigned char type; TRACE_1(TR_FAC_STREAMS_FR, TR_STRREAD_ENTER, "strread:%p", vp); ASSERT(vp->v_stream); stp = vp->v_stream; if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) if (error = straccess(stp, JCREAD)) return (error); mutex_enter(&stp->sd_lock); if (stp->sd_flag & (STRDERR|STPLEX)) { error = strgeterr(stp, STRDERR|STPLEX, 0); if (error != 0) { mutex_exit(&stp->sd_lock); return (error); } } /* * Loop terminates when uiop->uio_resid == 0. */ rflg = 0; waitflag = READWAIT; q = _RD(stp->sd_wrq); for (;;) { ASSERT(MUTEX_HELD(&stp->sd_lock)); old_sd_flag = stp->sd_flag; mark = 0; delim = 0; first = 1; while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { int done = 0; ASSERT(MUTEX_HELD(&stp->sd_lock)); if (error != 0) goto oops; if (stp->sd_flag & (STRHUP|STREOF)) { goto oops; } if (rflg && !(stp->sd_flag & STRDELIM)) { goto oops; } /* * If a read(fd,buf,0) has been done, there is no * need to sleep. We always have zero bytes to * return. */ if (uiop->uio_resid == 0) { goto oops; } qbackenable(q, 0); TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, "strread calls strwaitq:%p, %p, %p", vp, uiop, crp); if ((error = strwaitq(stp, waitflag, uiop->uio_resid, uiop->uio_fmode, -1, &done)) != 0 || done) { TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, "strread error or done:%p, %p, %p", vp, uiop, crp); if ((uiop->uio_fmode & FNDELAY) && (stp->sd_flag & OLDNDELAY) && (error == EAGAIN)) error = 0; goto oops; } TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, "strread awakes:%p, %p, %p", vp, uiop, crp); if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { mutex_exit(&stp->sd_lock); if (error = straccess(stp, JCREAD)) goto oops1; mutex_enter(&stp->sd_lock); } first = 0; } ASSERT(MUTEX_HELD(&stp->sd_lock)); ASSERT(bp); pri = bp->b_band; /* * Extract any mark information. If the message is not * completely consumed this information will be put in the mblk * that is putback. * If MSGMARKNEXT is set and the message is completely consumed * the STRATMARK flag will be set below. Likewise, if * MSGNOTMARKNEXT is set and the message is * completely consumed STRNOTATMARK will be set. * * For some unknown reason strread only breaks the read at the * last mark. */ mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != (MSGMARKNEXT|MSGNOTMARKNEXT)); if (mark != 0 && bp == stp->sd_mark) { if (rflg) { putback(stp, q, bp, pri); goto oops; } mark |= _LASTMARK; stp->sd_mark = NULL; } if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) delim = 1; mutex_exit(&stp->sd_lock); if (STREAM_NEEDSERVICE(stp)) stream_runservice(stp); type = bp->b_datap->db_type; switch (type) { case M_DATA: ismdata: if (msgnodata(bp)) { if (mark || delim) { freemsg(bp); } else if (rflg) { /* * If already read data put zero * length message back on queue else * free msg and return 0. */ bp->b_band = pri; mutex_enter(&stp->sd_lock); putback(stp, q, bp, pri); mutex_exit(&stp->sd_lock); } else { freemsg(bp); } error = 0; goto oops1; } rflg = 1; waitflag |= NOINTR; bp = struiocopyout(bp, uiop, &error); if (error != 0) goto oops1; mutex_enter(&stp->sd_lock); if (bp) { /* * Have remaining data in message. * Free msg if in discard mode. */ if (stp->sd_read_opt & RD_MSGDIS) { freemsg(bp); } else { bp->b_band = pri; if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) stp->sd_mark = bp; bp->b_flag |= mark & ~_LASTMARK; if (delim) bp->b_flag |= MSGDELIM; if (msgnodata(bp)) freemsg(bp); else putback(stp, q, bp, pri); } } else { /* * Consumed the complete message. * Move the MSG*MARKNEXT information * to the stream head just in case * the read queue becomes empty. * * If the stream head was at the mark * (STRATMARK) before we dropped sd_lock above * and some data was consumed then we have * moved past the mark thus STRATMARK is * cleared. However, if a message arrived in * strrput during the copyout above causing * STRATMARK to be set we can not clear that * flag. */ if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { if (mark & MSGMARKNEXT) { stp->sd_flag &= ~STRNOTATMARK; stp->sd_flag |= STRATMARK; } else if (mark & MSGNOTMARKNEXT) { stp->sd_flag &= ~STRATMARK; stp->sd_flag |= STRNOTATMARK; } else { stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); } } else if (rflg && (old_sd_flag & STRATMARK)) { stp->sd_flag &= ~STRATMARK; } } /* * Check for signal messages at the front of the read * queue and generate the signal(s) if appropriate. * The only signal that can be on queue is M_SIG at * this point. */ while ((((bp = q->q_first)) != NULL) && (bp->b_datap->db_type == M_SIG)) { bp = getq_noenab(q); /* * sd_lock is held so the content of the * read queue can not change. */ ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); mutex_exit(&stp->sd_lock); freemsg(bp); if (STREAM_NEEDSERVICE(stp)) stream_runservice(stp); mutex_enter(&stp->sd_lock); } if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || delim || (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { goto oops; } continue; case M_SIG: strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); freemsg(bp); mutex_enter(&stp->sd_lock); continue; case M_PROTO: case M_PCPROTO: /* * Only data messages are readable. * Any others generate an error, unless * RD_PROTDIS or RD_PROTDAT is set. */ if (stp->sd_read_opt & RD_PROTDAT) { for (nbp = bp; nbp; nbp = nbp->b_next) { if ((nbp->b_datap->db_type == M_PROTO) || (nbp->b_datap->db_type == M_PCPROTO)) nbp->b_datap->db_type = M_DATA; else break; } /* * clear stream head hi pri flag based on * first message */ if (type == M_PCPROTO) { mutex_enter(&stp->sd_lock); stp->sd_flag &= ~STRPRI; mutex_exit(&stp->sd_lock); } goto ismdata; } else if (stp->sd_read_opt & RD_PROTDIS) { /* * discard non-data messages */ while (bp && ((bp->b_datap->db_type == M_PROTO) || (bp->b_datap->db_type == M_PCPROTO))) { nbp = unlinkb(bp); freeb(bp); bp = nbp; } /* * clear stream head hi pri flag based on * first message */ if (type == M_PCPROTO) { mutex_enter(&stp->sd_lock); stp->sd_flag &= ~STRPRI; mutex_exit(&stp->sd_lock); } if (bp) { bp->b_band = pri; goto ismdata; } else { break; } } /* FALLTHRU */ case M_PASSFP: if ((bp->b_datap->db_type == M_PASSFP) && (stp->sd_read_opt & RD_PROTDIS)) { freemsg(bp); break; } mutex_enter(&stp->sd_lock); putback(stp, q, bp, pri); mutex_exit(&stp->sd_lock); if (rflg == 0) error = EBADMSG; goto oops1; default: /* * Garbage on stream head read queue. */ cmn_err(CE_WARN, "bad %x found at stream head\n", bp->b_datap->db_type); freemsg(bp); goto oops1; } mutex_enter(&stp->sd_lock); } oops: mutex_exit(&stp->sd_lock); oops1: qbackenable(q, pri); return (error); #undef _LASTMARK } /* * Default processing of M_PROTO/M_PCPROTO messages. * Determine which wakeups and signals are needed. * This can be replaced by a user-specified procedure for kernel users * of STREAMS. */ /* ARGSUSED */ mblk_t * strrput_proto(vnode_t *vp, mblk_t *mp, strwakeup_t *wakeups, strsigset_t *firstmsgsigs, strsigset_t *allmsgsigs, strpollset_t *pollwakeups) { *wakeups = RSLEEP; *allmsgsigs = 0; switch (mp->b_datap->db_type) { case M_PROTO: if (mp->b_band == 0) { *firstmsgsigs = S_INPUT | S_RDNORM; *pollwakeups = POLLIN | POLLRDNORM; } else { *firstmsgsigs = S_INPUT | S_RDBAND; *pollwakeups = POLLIN | POLLRDBAND; } break; case M_PCPROTO: *firstmsgsigs = S_HIPRI; *pollwakeups = POLLPRI; break; } return (mp); } /* * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and * M_PASSFP messages. * Determine which wakeups and signals are needed. * This can be replaced by a user-specified procedure for kernel users * of STREAMS. */ /* ARGSUSED */ mblk_t * strrput_misc(vnode_t *vp, mblk_t *mp, strwakeup_t *wakeups, strsigset_t *firstmsgsigs, strsigset_t *allmsgsigs, strpollset_t *pollwakeups) { *wakeups = 0; *firstmsgsigs = 0; *allmsgsigs = 0; *pollwakeups = 0; return (mp); } /* * Stream read put procedure. Called from downstream driver/module * with messages for the stream head. Data, protocol, and in-stream * signal messages are placed on the queue, others are handled directly. */ int strrput(queue_t *q, mblk_t *bp) { struct stdata *stp; ulong_t rput_opt; strwakeup_t wakeups; strsigset_t firstmsgsigs; /* Signals if first message on queue */ strsigset_t allmsgsigs; /* Signals for all messages */ strsigset_t signals; /* Signals events to generate */ strpollset_t pollwakeups; mblk_t *nextbp; uchar_t band = 0; int hipri_sig; stp = (struct stdata *)q->q_ptr; /* * Use rput_opt for optimized access to the SR_ flags except * SR_POLLIN. That flag has to be checked under sd_lock since it * is modified by strpoll(). */ rput_opt = stp->sd_rput_opt; ASSERT(qclaimed(q)); TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, "strrput called with message type:q %p bp %p", q, bp); /* * Perform initial processing and pass to the parameterized functions. */ ASSERT(bp->b_next == NULL); switch (bp->b_datap->db_type) { case M_DATA: /* * sockfs is the only consumer of STREOF and when it is set, * it implies that the receiver is not interested in receiving * any more data, hence the mblk is freed to prevent unnecessary * message queueing at the stream head. */ if (stp->sd_flag == STREOF) { freemsg(bp); return (0); } if ((rput_opt & SR_IGN_ZEROLEN) && bp->b_rptr == bp->b_wptr && msgnodata(bp)) { /* * Ignore zero-length M_DATA messages. These might be * generated by some transports. * The zero-length M_DATA messages, even if they * are ignored, should effect the atmark tracking and * should wake up a thread sleeping in strwaitmark. */ mutex_enter(&stp->sd_lock); if (bp->b_flag & MSGMARKNEXT) { /* * Record the position of the mark either * in q_last or in STRATMARK. */ if (q->q_last != NULL) { q->q_last->b_flag &= ~MSGNOTMARKNEXT; q->q_last->b_flag |= MSGMARKNEXT; } else { stp->sd_flag &= ~STRNOTATMARK; stp->sd_flag |= STRATMARK; } } else if (bp->b_flag & MSGNOTMARKNEXT) { /* * Record that this is not the position of * the mark either in q_last or in * STRNOTATMARK. */ if (q->q_last != NULL) { q->q_last->b_flag &= ~MSGMARKNEXT; q->q_last->b_flag |= MSGNOTMARKNEXT; } else { stp->sd_flag &= ~STRATMARK; stp->sd_flag |= STRNOTATMARK; } } if (stp->sd_flag & RSLEEP) { stp->sd_flag &= ~RSLEEP; cv_broadcast(&q->q_wait); } mutex_exit(&stp->sd_lock); freemsg(bp); return (0); } wakeups = RSLEEP; if (bp->b_band == 0) { firstmsgsigs = S_INPUT | S_RDNORM; pollwakeups = POLLIN | POLLRDNORM; } else { firstmsgsigs = S_INPUT | S_RDBAND; pollwakeups = POLLIN | POLLRDBAND; } if (rput_opt & SR_SIGALLDATA) allmsgsigs = firstmsgsigs; else allmsgsigs = 0; mutex_enter(&stp->sd_lock); if ((rput_opt & SR_CONSOL_DATA) && (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { /* * Consolidate on M_DATA message onto an M_DATA, * M_PROTO, or M_PCPROTO by merging it with q_last. * The consolidation does not take place if * the old message is marked with either of the * marks or the delim flag or if the new * message is marked with MSGMARK. The MSGMARK * check is needed to handle the odd semantics of * MSGMARK where essentially the whole message * is to be treated as marked. * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the * new message to the front of the b_cont chain. */ mblk_t *lbp; lbp = q->q_last; if (lbp != NULL && (lbp->b_datap->db_type == M_DATA || lbp->b_datap->db_type == M_PROTO || lbp->b_datap->db_type == M_PCPROTO) && !(lbp->b_flag & (MSGDELIM|MSGMARK| MSGMARKNEXT))) { rmvq_noenab(q, lbp); /* * The first message in the b_cont list * tracks MSGMARKNEXT and MSGNOTMARKNEXT. * We need to handle the case where we * are appending * * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. * 2) a MSGMARKNEXT to a plain message. * 3) a MSGNOTMARKNEXT to a plain message * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT * message. * * Thus we never append a MSGMARKNEXT or * MSGNOTMARKNEXT to a MSGMARKNEXT message. */ if (bp->b_flag & MSGMARKNEXT) { lbp->b_flag |= MSGMARKNEXT; lbp->b_flag &= ~MSGNOTMARKNEXT; bp->b_flag &= ~MSGMARKNEXT; } else if (bp->b_flag & MSGNOTMARKNEXT) { lbp->b_flag |= MSGNOTMARKNEXT; bp->b_flag &= ~MSGNOTMARKNEXT; } linkb(lbp, bp); bp = lbp; /* * The new message logically isn't the first * even though the q_first check below thinks * it is. Clear the firstmsgsigs to make it * not appear to be first. */ firstmsgsigs = 0; } } break; case M_PASSFP: wakeups = RSLEEP; allmsgsigs = 0; if (bp->b_band == 0) { firstmsgsigs = S_INPUT | S_RDNORM; pollwakeups = POLLIN | POLLRDNORM; } else { firstmsgsigs = S_INPUT | S_RDBAND; pollwakeups = POLLIN | POLLRDBAND; } mutex_enter(&stp->sd_lock); break; case M_PROTO: case M_PCPROTO: ASSERT(stp->sd_rprotofunc != NULL); bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ POLLWRBAND) ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); ASSERT((firstmsgsigs & ~ALLSIG) == 0); ASSERT((allmsgsigs & ~ALLSIG) == 0); ASSERT((pollwakeups & ~ALLPOLL) == 0); mutex_enter(&stp->sd_lock); break; default: ASSERT(stp->sd_rmiscfunc != NULL); bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); ASSERT((firstmsgsigs & ~ALLSIG) == 0); ASSERT((allmsgsigs & ~ALLSIG) == 0); ASSERT((pollwakeups & ~ALLPOLL) == 0); #undef ALLSIG #undef ALLPOLL mutex_enter(&stp->sd_lock); break; } ASSERT(MUTEX_HELD(&stp->sd_lock)); /* By default generate superset of signals */ signals = (firstmsgsigs | allmsgsigs); /* * The proto and misc functions can return multiple messages * as a b_next chain. Such messages are processed separately. */ one_more: hipri_sig = 0; if (bp == NULL) { nextbp = NULL; } else { nextbp = bp->b_next; bp->b_next = NULL; switch (bp->b_datap->db_type) { case M_PCPROTO: /* * Only one priority protocol message is allowed at the * stream head at a time. */ if (stp->sd_flag & STRPRI) { TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, "M_PCPROTO already at head"); freemsg(bp); mutex_exit(&stp->sd_lock); goto done; } stp->sd_flag |= STRPRI; hipri_sig = 1; /* FALLTHRU */ case M_DATA: case M_PROTO: case M_PASSFP: band = bp->b_band; /* * Marking doesn't work well when messages * are marked in more than one band. We only * remember the last message received, even if * it is placed on the queue ahead of other * marked messages. */ if (bp->b_flag & MSGMARK) stp->sd_mark = bp; (void) putq(q, bp); /* * If message is a PCPROTO message, always use * firstmsgsigs to determine if a signal should be * sent as strrput is the only place to send * signals for PCPROTO. Other messages are based on * the STRGETINPROG flag. The flag determines if * strrput or (k)strgetmsg will be responsible for * sending the signals, in the firstmsgsigs case. */ if ((hipri_sig == 1) || (((stp->sd_flag & STRGETINPROG) == 0) && (q->q_first == bp))) signals = (firstmsgsigs | allmsgsigs); else signals = allmsgsigs; break; default: mutex_exit(&stp->sd_lock); (void) strrput_nondata(q, bp); mutex_enter(&stp->sd_lock); break; } } ASSERT(MUTEX_HELD(&stp->sd_lock)); /* * Wake sleeping read/getmsg and cancel deferred wakeup */ if (wakeups & RSLEEP) stp->sd_wakeq &= ~RSLEEP; wakeups &= stp->sd_flag; if (wakeups & RSLEEP) { stp->sd_flag &= ~RSLEEP; cv_broadcast(&q->q_wait); } if (wakeups & WSLEEP) { stp->sd_flag &= ~WSLEEP; cv_broadcast(&_WR(q)->q_wait); } if (pollwakeups != 0) { if (pollwakeups == (POLLIN | POLLRDNORM)) { /* * Can't use rput_opt since it was not * read when sd_lock was held and SR_POLLIN is changed * by strpoll() under sd_lock. */ if (!(stp->sd_rput_opt & SR_POLLIN)) goto no_pollwake; stp->sd_rput_opt &= ~SR_POLLIN; } mutex_exit(&stp->sd_lock); pollwakeup(&stp->sd_pollist, pollwakeups); mutex_enter(&stp->sd_lock); } no_pollwake: /* * strsendsig can handle multiple signals with a * single call. */ if (stp->sd_sigflags & signals) strsendsig(stp->sd_siglist, signals, band, 0); mutex_exit(&stp->sd_lock); done: if (nextbp == NULL) return (0); /* * Any signals were handled the first time. * Wakeups and pollwakeups are redone to avoid any race * conditions - all the messages are not queued until the * last message has been processed by strrput. */ bp = nextbp; signals = firstmsgsigs = allmsgsigs = 0; mutex_enter(&stp->sd_lock); goto one_more; } static void log_dupioc(queue_t *rq, mblk_t *bp) { queue_t *wq, *qp; char *modnames, *mnp, *dname; size_t maxmodstr; boolean_t islast; /* * Allocate a buffer large enough to hold the names of nstrpush modules * and one driver, with spaces between and NUL terminator. If we can't * get memory, then we'll just log the driver name. */ maxmodstr = nstrpush * (FMNAMESZ + 1); mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); /* march down write side to print log message down to the driver */ wq = WR(rq); /* make sure q_next doesn't shift around while we're grabbing data */ claimstr(wq); qp = wq->q_next; do { if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL) dname = "?"; islast = !SAMESTR(qp) || qp->q_next == NULL; if (modnames == NULL) { /* * If we don't have memory, then get the driver name in * the log where we can see it. Note that memory * pressure is a possible cause of these sorts of bugs. */ if (islast) { modnames = dname; maxmodstr = 0; } } else { mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); if (!islast) *mnp++ = ' '; } qp = qp->q_next; } while (!islast); releasestr(wq); /* Cannot happen unless stream head is corrupt. */ ASSERT(modnames != NULL); (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, SL_CONSOLE|SL_TRACE|SL_ERROR, "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); if (maxmodstr != 0) kmem_free(modnames, maxmodstr); } int strrput_nondata(queue_t *q, mblk_t *bp) { struct stdata *stp; struct iocblk *iocbp; struct stroptions *sop; struct copyreq *reqp; struct copyresp *resp; unsigned char bpri; unsigned char flushed_already = 0; stp = (struct stdata *)q->q_ptr; ASSERT(!(stp->sd_flag & STPLEX)); ASSERT(qclaimed(q)); switch (bp->b_datap->db_type) { case M_ERROR: /* * An error has occurred downstream, the errno is in the first * bytes of the message. */ if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ unsigned char rw = 0; mutex_enter(&stp->sd_lock); if (*bp->b_rptr != NOERROR) { /* read error */ if (*bp->b_rptr != 0) { if (stp->sd_flag & STRDERR) flushed_already |= FLUSHR; stp->sd_flag |= STRDERR; rw |= FLUSHR; } else { stp->sd_flag &= ~STRDERR; } stp->sd_rerror = *bp->b_rptr; } bp->b_rptr++; if (*bp->b_rptr != NOERROR) { /* write error */ if (*bp->b_rptr != 0) { if (stp->sd_flag & STWRERR) flushed_already |= FLUSHW; stp->sd_flag |= STWRERR; rw |= FLUSHW; } else { stp->sd_flag &= ~STWRERR; } stp->sd_werror = *bp->b_rptr; } if (rw) { TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, "strrput cv_broadcast:q %p, bp %p", q, bp); cv_broadcast(&q->q_wait); /* readers */ cv_broadcast(&_WR(q)->q_wait); /* writers */ cv_broadcast(&stp->sd_monitor); /* ioctllers */ mutex_exit(&stp->sd_lock); pollwakeup(&stp->sd_pollist, POLLERR); mutex_enter(&stp->sd_lock); if (stp->sd_sigflags & S_ERROR) strsendsig(stp->sd_siglist, S_ERROR, 0, ((rw & FLUSHR) ? stp->sd_rerror : stp->sd_werror)); mutex_exit(&stp->sd_lock); /* * Send the M_FLUSH only * for the first M_ERROR * message on the stream */ if (flushed_already == rw) { freemsg(bp); return (0); } bp->b_datap->db_type = M_FLUSH; *bp->b_rptr = rw; bp->b_wptr = bp->b_rptr + 1; /* * Protect against the driver * passing up messages after * it has done a qprocsoff */ if (_OTHERQ(q)->q_next == NULL) freemsg(bp); else qreply(q, bp); return (0); } else mutex_exit(&stp->sd_lock); } else if (*bp->b_rptr != 0) { /* Old flavor */ if (stp->sd_flag & (STRDERR|STWRERR)) flushed_already = FLUSHRW; mutex_enter(&stp->sd_lock); stp->sd_flag |= (STRDERR|STWRERR); stp->sd_rerror = *bp->b_rptr; stp->sd_werror = *bp->b_rptr; TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE2, "strrput wakeup #2:q %p, bp %p", q, bp); cv_broadcast(&q->q_wait); /* the readers */ cv_broadcast(&_WR(q)->q_wait); /* the writers */ cv_broadcast(&stp->sd_monitor); /* ioctllers */ mutex_exit(&stp->sd_lock); pollwakeup(&stp->sd_pollist, POLLERR); mutex_enter(&stp->sd_lock); if (stp->sd_sigflags & S_ERROR) strsendsig(stp->sd_siglist, S_ERROR, 0, (stp->sd_werror ? stp->sd_werror : stp->sd_rerror)); mutex_exit(&stp->sd_lock); /* * Send the M_FLUSH only * for the first M_ERROR * message on the stream */ if (flushed_already != FLUSHRW) { bp->b_datap->db_type = M_FLUSH; *bp->b_rptr = FLUSHRW; /* * Protect against the driver passing up * messages after it has done a * qprocsoff. */ if (_OTHERQ(q)->q_next == NULL) freemsg(bp); else qreply(q, bp); return (0); } } freemsg(bp); return (0); case M_HANGUP: freemsg(bp); mutex_enter(&stp->sd_lock); stp->sd_werror = ENXIO; stp->sd_flag |= STRHUP; stp->sd_flag &= ~(WSLEEP|RSLEEP); /* * send signal if controlling tty */ if (stp->sd_sidp) { prsignal(stp->sd_sidp, SIGHUP); if (stp->sd_sidp != stp->sd_pgidp) pgsignal(stp->sd_pgidp, SIGTSTP); } /* * wake up read, write, and exception pollers and * reset wakeup mechanism. */ cv_broadcast(&q->q_wait); /* the readers */ cv_broadcast(&_WR(q)->q_wait); /* the writers */ cv_broadcast(&stp->sd_monitor); /* the ioctllers */ mutex_exit(&stp->sd_lock); strhup(stp); return (0); case M_UNHANGUP: freemsg(bp); mutex_enter(&stp->sd_lock); stp->sd_werror = 0; stp->sd_flag &= ~STRHUP; mutex_exit(&stp->sd_lock); return (0); case M_SIG: /* * Someone downstream wants to post a signal. The * signal to post is contained in the first byte of the * message. If the message would go on the front of * the queue, send a signal to the process group * (if not SIGPOLL) or to the siglist processes * (SIGPOLL). If something is already on the queue, * OR if we are delivering a delayed suspend (*sigh* * another "tty" hack) and there's no one sleeping already, * just enqueue the message. */ mutex_enter(&stp->sd_lock); if (q->q_first || (*bp->b_rptr == SIGTSTP && !(stp->sd_flag & RSLEEP))) { (void) putq(q, bp); mutex_exit(&stp->sd_lock); return (0); } mutex_exit(&stp->sd_lock); /* FALLTHRU */ case M_PCSIG: /* * Don't enqueue, just post the signal. */ strsignal(stp, *bp->b_rptr, 0L); freemsg(bp); return (0); case M_FLUSH: /* * Flush queues. The indication of which queues to flush * is in the first byte of the message. If the read queue * is specified, then flush it. If FLUSHBAND is set, just * flush the band specified by the second byte of the message. * * If a module has issued a M_SETOPT to not flush hi * priority messages off of the stream head, then pass this * flag into the flushq code to preserve such messages. */ if (*bp->b_rptr & FLUSHR) { mutex_enter(&stp->sd_lock); if (*bp->b_rptr & FLUSHBAND) { ASSERT((bp->b_wptr - bp->b_rptr) >= 2); flushband(q, *(bp->b_rptr + 1), FLUSHALL); } else flushq_common(q, FLUSHALL, stp->sd_read_opt & RFLUSHPCPROT); if ((q->q_first == NULL) || (q->q_first->b_datap->db_type < QPCTL)) stp->sd_flag &= ~STRPRI; else { ASSERT(stp->sd_flag & STRPRI); } mutex_exit(&stp->sd_lock); } if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { *bp->b_rptr &= ~FLUSHR; bp->b_flag |= MSGNOLOOP; /* * Protect against the driver passing up * messages after it has done a qprocsoff. */ if (_OTHERQ(q)->q_next == NULL) freemsg(bp); else qreply(q, bp); return (0); } freemsg(bp); return (0); case M_IOCACK: case M_IOCNAK: iocbp = (struct iocblk *)bp->b_rptr; /* * If not waiting for ACK or NAK then just free msg. * If incorrect id sequence number then just free msg. * If already have ACK or NAK for user then this is a * duplicate, display a warning and free the msg. */ mutex_enter(&stp->sd_lock); if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || (stp->sd_iocid != iocbp->ioc_id)) { /* * If the ACK/NAK is a dup, display a message * Dup is when sd_iocid == ioc_id, and * sd_iocblk == or -1 (the former * is when an ioctl has been put on the stream * head, but has not yet been consumed, the * later is when it has been consumed). */ if ((stp->sd_iocid == iocbp->ioc_id) && (stp->sd_iocblk != NULL)) { log_dupioc(q, bp); } freemsg(bp); mutex_exit(&stp->sd_lock); return (0); } /* * Assign ACK or NAK to user and wake up. */ stp->sd_iocblk = bp; cv_broadcast(&stp->sd_monitor); mutex_exit(&stp->sd_lock); return (0); case M_COPYIN: case M_COPYOUT: reqp = (struct copyreq *)bp->b_rptr; /* * If not waiting for ACK or NAK then just fail request. * If already have ACK, NAK, or copy request, then just * fail request. * If incorrect id sequence number then just fail request. */ mutex_enter(&stp->sd_lock); if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || (stp->sd_iocid != reqp->cq_id)) { if (bp->b_cont) { freemsg(bp->b_cont); bp->b_cont = NULL; } bp->b_datap->db_type = M_IOCDATA; bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); resp = (struct copyresp *)bp->b_rptr; resp->cp_rval = (caddr_t)1; /* failure */ mutex_exit(&stp->sd_lock); putnext(stp->sd_wrq, bp); return (0); } /* * Assign copy request to user and wake up. */ stp->sd_iocblk = bp; cv_broadcast(&stp->sd_monitor); mutex_exit(&stp->sd_lock); return (0); case M_SETOPTS: /* * Set stream head options (read option, write offset, * min/max packet size, and/or high/low water marks for * the read side only). */ bpri = 0; sop = (struct stroptions *)bp->b_rptr; mutex_enter(&stp->sd_lock); if (sop->so_flags & SO_READOPT) { switch (sop->so_readopt & RMODEMASK) { case RNORM: stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); break; case RMSGD: stp->sd_read_opt = ((stp->sd_read_opt & ~RD_MSGNODIS) | RD_MSGDIS); break; case RMSGN: stp->sd_read_opt = ((stp->sd_read_opt & ~RD_MSGDIS) | RD_MSGNODIS); break; } switch (sop->so_readopt & RPROTMASK) { case RPROTNORM: stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); break; case RPROTDAT: stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | RD_PROTDAT); break; case RPROTDIS: stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | RD_PROTDIS); break; } switch (sop->so_readopt & RFLUSHMASK) { case RFLUSHPCPROT: /* * This sets the stream head to NOT flush * M_PCPROTO messages. */ stp->sd_read_opt |= RFLUSHPCPROT; break; } } if (sop->so_flags & SO_ERROPT) { switch (sop->so_erropt & RERRMASK) { case RERRNORM: stp->sd_flag &= ~STRDERRNONPERSIST; break; case RERRNONPERSIST: stp->sd_flag |= STRDERRNONPERSIST; break; } switch (sop->so_erropt & WERRMASK) { case WERRNORM: stp->sd_flag &= ~STWRERRNONPERSIST; break; case WERRNONPERSIST: stp->sd_flag |= STWRERRNONPERSIST; break; } } if (sop->so_flags & SO_COPYOPT) { if (sop->so_copyopt & ZCVMSAFE) { stp->sd_copyflag |= STZCVMSAFE; stp->sd_copyflag &= ~STZCVMUNSAFE; } else if (sop->so_copyopt & ZCVMUNSAFE) { stp->sd_copyflag |= STZCVMUNSAFE; stp->sd_copyflag &= ~STZCVMSAFE; } if (sop->so_copyopt & COPYCACHED) { stp->sd_copyflag |= STRCOPYCACHED; } } if (sop->so_flags & SO_WROFF) stp->sd_wroff = sop->so_wroff; if (sop->so_flags & SO_MINPSZ) q->q_minpsz = sop->so_minpsz; if (sop->so_flags & SO_MAXPSZ) q->q_maxpsz = sop->so_maxpsz; if (sop->so_flags & SO_MAXBLK) stp->sd_maxblk = sop->so_maxblk; if (sop->so_flags & SO_HIWAT) { if (sop->so_flags & SO_BAND) { if (strqset(q, QHIWAT, sop->so_band, sop->so_hiwat)) cmn_err(CE_WARN, "strrput: could not allocate qband\n"); else bpri = sop->so_band; } else { q->q_hiwat = sop->so_hiwat; } } if (sop->so_flags & SO_LOWAT) { if (sop->so_flags & SO_BAND) { if (strqset(q, QLOWAT, sop->so_band, sop->so_lowat)) cmn_err(CE_WARN, "strrput: could not allocate qband\n"); else bpri = sop->so_band; } else { q->q_lowat = sop->so_lowat; } } if (sop->so_flags & SO_MREADON) stp->sd_flag |= SNDMREAD; if (sop->so_flags & SO_MREADOFF) stp->sd_flag &= ~SNDMREAD; if (sop->so_flags & SO_NDELON) stp->sd_flag |= OLDNDELAY; if (sop->so_flags & SO_NDELOFF) stp->sd_flag &= ~OLDNDELAY; if (sop->so_flags & SO_ISTTY) stp->sd_flag |= STRISTTY; if (sop->so_flags & SO_ISNTTY) stp->sd_flag &= ~STRISTTY; if (sop->so_flags & SO_TOSTOP) stp->sd_flag |= STRTOSTOP; if (sop->so_flags & SO_TONSTOP) stp->sd_flag &= ~STRTOSTOP; if (sop->so_flags & SO_DELIM) stp->sd_flag |= STRDELIM; if (sop->so_flags & SO_NODELIM) stp->sd_flag &= ~STRDELIM; mutex_exit(&stp->sd_lock); freemsg(bp); /* Check backenable in case the water marks changed */ qbackenable(q, bpri); return (0); /* * The following set of cases deal with situations where two stream * heads are connected to each other (twisted streams). These messages * have no meaning at the stream head. */ case M_BREAK: case M_CTL: case M_DELAY: case M_START: case M_STOP: case M_IOCDATA: case M_STARTI: case M_STOPI: freemsg(bp); return (0); case M_IOCTL: /* * Always NAK this condition * (makes no sense) * If there is one or more threads in the read side * rwnext we have to defer the nacking until that thread * returns (in strget). */ mutex_enter(&stp->sd_lock); if (stp->sd_struiodnak != 0) { /* * Defer NAK to the streamhead. Queue at the end * the list. */ mblk_t *mp = stp->sd_struionak; while (mp && mp->b_next) mp = mp->b_next; if (mp) mp->b_next = bp; else stp->sd_struionak = bp; bp->b_next = NULL; mutex_exit(&stp->sd_lock); return (0); } mutex_exit(&stp->sd_lock); bp->b_datap->db_type = M_IOCNAK; /* * Protect against the driver passing up * messages after it has done a qprocsoff. */ if (_OTHERQ(q)->q_next == NULL) freemsg(bp); else qreply(q, bp); return (0); default: #ifdef DEBUG cmn_err(CE_WARN, "bad message type %x received at stream head\n", bp->b_datap->db_type); #endif freemsg(bp); return (0); } /* NOTREACHED */ } /* * Check if the stream pointed to by `stp' can be written to, and return an * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, * then always return EPIPE and send a SIGPIPE to the invoking thread. */ static int strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) { int error; ASSERT(MUTEX_HELD(&stp->sd_lock)); /* * For modem support, POSIX states that on writes, EIO should * be returned if the stream has been hung up. */ if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) error = EIO; else error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); if (error != 0) { if (!(stp->sd_flag & STPLEX) && (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { tsignal(curthread, SIGPIPE); error = EPIPE; } } return (error); } /* * Copyin and send data down a stream. * The caller will allocate and copyin any control part that precedes the * message and pass than in as mctl. * * Caller should *not* hold sd_lock. * When EWOULDBLOCK is returned the caller has to redo the canputnext * under sd_lock in order to avoid missing a backenabling wakeup. * * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. * * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. * For sync streams we can only ignore flow control by reverting to using * putnext. * * If sd_maxblk is less than *iosize this routine might return without * transferring all of *iosize. In all cases, on return *iosize will contain * the amount of data that was transferred. */ static int strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, int b_flag, int pri, int flags) { struiod_t uiod; mblk_t *mp; queue_t *wqp = stp->sd_wrq; int error = 0; ssize_t count = *iosize; cred_t *cr; ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); if (uiop != NULL && count >= 0) flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; if (!(flags & STRUIO_POSTPONE)) { /* * Use regular canputnext, strmakedata, putnext sequence. */ if (pri == 0) { if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { freemsg(mctl); return (EWOULDBLOCK); } } else { if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { freemsg(mctl); return (EWOULDBLOCK); } } if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { freemsg(mctl); /* * need to change return code to ENOMEM * so that this is not confused with * flow control, EAGAIN. */ if (error == EAGAIN) return (ENOMEM); else return (error); } if (mctl != NULL) { if (mctl->b_cont == NULL) mctl->b_cont = mp; else if (mp != NULL) linkb(mctl, mp); mp = mctl; /* * Note that for interrupt thread, the CRED() is * NULL. Don't bother with the pid either. */ if ((cr = CRED()) != NULL) { mblk_setcred(mp, cr); DB_CPID(mp) = curproc->p_pid; } } else if (mp == NULL) return (0); mp->b_flag |= b_flag; mp->b_band = (uchar_t)pri; if (flags & MSG_IGNFLOW) { /* * XXX Hack: Don't get stuck running service * procedures. This is needed for sockfs when * sending the unbind message out of the rput * procedure - we don't want a put procedure * to run service procedures. */ putnext(wqp, mp); } else { stream_willservice(stp); putnext(wqp, mp); stream_runservice(stp); } return (0); } /* * Stream supports rwnext() for the write side. */ if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { freemsg(mctl); /* * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". */ return (error == EAGAIN ? ENOMEM : error); } if (mctl != NULL) { if (mctl->b_cont == NULL) mctl->b_cont = mp; else if (mp != NULL) linkb(mctl, mp); mp = mctl; /* * Note that for interrupt thread, the CRED() is * NULL. Don't bother with the pid either. */ if ((cr = CRED()) != NULL) { mblk_setcred(mp, cr); DB_CPID(mp) = curproc->p_pid; } } else if (mp == NULL) { return (0); } mp->b_flag |= b_flag; mp->b_band = (uchar_t)pri; (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); uiod.d_uio.uio_offset = 0; uiod.d_mp = mp; error = rwnext(wqp, &uiod); if (! uiod.d_mp) { uioskip(uiop, *iosize); return (error); } ASSERT(mp == uiod.d_mp); if (error == EINVAL) { /* * The stream plumbing must have changed while * we were away, so just turn off rwnext()s. */ error = 0; } else if (error == EBUSY || error == EWOULDBLOCK) { /* * Couldn't enter a perimeter or took a page fault, * so fall-back to putnext(). */ error = 0; } else { freemsg(mp); return (error); } /* Have to check canput before consuming data from the uio */ if (pri == 0) { if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { freemsg(mp); return (EWOULDBLOCK); } } else { if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { freemsg(mp); return (EWOULDBLOCK); } } ASSERT(mp == uiod.d_mp); /* Copyin data from the uio */ if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { freemsg(mp); return (error); } uioskip(uiop, *iosize); if (flags & MSG_IGNFLOW) { /* * XXX Hack: Don't get stuck running service procedures. * This is needed for sockfs when sending the unbind message * out of the rput procedure - we don't want a put procedure * to run service procedures. */ putnext(wqp, mp); } else { stream_willservice(stp); putnext(wqp, mp); stream_runservice(stp); } return (0); } /* * Write attempts to break the write request into messages conforming * with the minimum and maximum packet sizes set downstream. * * Write will not block if downstream queue is full and * O_NDELAY is set, otherwise it will block waiting for the queue to get room. * * A write of zero bytes gets packaged into a zero length message and sent * downstream like any other message. * * If buffers of the requested sizes are not available, the write will * sleep until the buffers become available. * * Write (if specified) will supply a write offset in a message if it * makes sense. This can be specified by downstream modules as part of * a M_SETOPTS message. Write will not supply the write offset if it * cannot supply any data in a buffer. In other words, write will never * send down an empty packet due to a write offset. */ /* ARGSUSED2 */ int strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) { struct stdata *stp; struct queue *wqp; ssize_t rmin, rmax; ssize_t iosize; char waitflag; int tempmode; int error = 0; int b_flag; ASSERT(vp->v_stream); stp = vp->v_stream; if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) if ((error = straccess(stp, JCWRITE)) != 0) return (error); if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { mutex_enter(&stp->sd_lock); error = strwriteable(stp, B_TRUE, B_TRUE); mutex_exit(&stp->sd_lock); if (error != 0) return (error); } wqp = stp->sd_wrq; /* get these values from them cached in the stream head */ rmin = stp->sd_qn_minpsz; rmax = stp->sd_qn_maxpsz; /* * Check the min/max packet size constraints. If min packet size * is non-zero, the write cannot be split into multiple messages * and still guarantee the size constraints. */ TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); ASSERT((rmax >= 0) || (rmax == INFPSZ)); if (rmax == 0) { return (0); } if (rmin > 0) { if (uiop->uio_resid < rmin) { TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, "strwrite out:q %p out %d error %d", wqp, 0, ERANGE); return (ERANGE); } if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, "strwrite out:q %p out %d error %d", wqp, 1, ERANGE); return (ERANGE); } } /* * Do until count satisfied or error. */ waitflag = WRITEWAIT; if (stp->sd_flag & OLDNDELAY) tempmode = uiop->uio_fmode & ~FNDELAY; else tempmode = uiop->uio_fmode; if (rmax == INFPSZ) rmax = uiop->uio_resid; /* * Note that tempmode does not get used in strput/strmakedata * but only in strwaitq. The other routines use uio_fmode * unmodified. */ /* LINTED: constant in conditional context */ while (1) { /* breaks when uio_resid reaches zero */ /* * Determine the size of the next message to be * packaged. May have to break write into several * messages based on max packet size. */ iosize = MIN(uiop->uio_resid, rmax); /* * Put block downstream when flow control allows it. */ if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) b_flag = MSGDELIM; else b_flag = 0; for (;;) { int done = 0; error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); if (error == 0) break; if (error != EWOULDBLOCK) goto out; mutex_enter(&stp->sd_lock); /* * Check for a missed wakeup. * Needed since strput did not hold sd_lock across * the canputnext. */ if (canputnext(wqp)) { /* Try again */ mutex_exit(&stp->sd_lock); continue; } TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, "strwrite wait:q %p wait", wqp); if ((error = strwaitq(stp, waitflag, (ssize_t)0, tempmode, -1, &done)) != 0 || done) { mutex_exit(&stp->sd_lock); if ((vp->v_type == VFIFO) && (uiop->uio_fmode & FNDELAY) && (error == EAGAIN)) error = 0; goto out; } TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, "strwrite wake:q %p awakes", wqp); mutex_exit(&stp->sd_lock); if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) if (error = straccess(stp, JCWRITE)) goto out; } waitflag |= NOINTR; TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, "strwrite resid:q %p uiop %p", wqp, uiop); if (uiop->uio_resid) { /* Recheck for errors - needed for sockets */ if ((stp->sd_wput_opt & SW_RECHECK_ERR) && (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { mutex_enter(&stp->sd_lock); error = strwriteable(stp, B_FALSE, B_TRUE); mutex_exit(&stp->sd_lock); if (error != 0) return (error); } continue; } break; } out: /* * For historical reasons, applications expect EAGAIN when a data * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. */ if (error == ENOMEM) error = EAGAIN; TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, "strwrite out:q %p out %d error %d", wqp, 2, error); return (error); } /* * kstrwritemp() has very similar semantics as that of strwrite(). * The main difference is it obtains mblks from the caller and also * does not do any copy as done in strwrite() from user buffers to * kernel buffers. * * * Currently, this routine is used by sendfile to send data allocated * within the kernel without any copying. This interface does not use the * synchronous stream interface as synch. stream interface implies * copying. */ int kstrwritemp(struct vnode *vp, mblk_t *mp, ushort_t fmode) { struct stdata *stp; struct queue *wqp; char waitflag; int tempmode; int error; int done = 0; ASSERT(vp->v_stream); stp = vp->v_stream; if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { mutex_enter(&stp->sd_lock); error = strwriteable(stp, B_FALSE, B_TRUE); mutex_exit(&stp->sd_lock); if (error != 0) return (error); } /* * First, check for flow control without grabbing the sd_lock. * If we would block, re-check with the lock. This is similar * to the logic used by strwrite(). */ wqp = stp->sd_wrq; if (canputnext(wqp)) { putnext(wqp, mp); return (0); } waitflag = WRITEWAIT; if (stp->sd_flag & OLDNDELAY) tempmode = fmode & ~FNDELAY; else tempmode = fmode; mutex_enter(&stp->sd_lock); do { if (canputnext(wqp)) { mutex_exit(&stp->sd_lock); putnext(wqp, mp); return (0); } error = strwaitq(stp, waitflag, (ssize_t)0, tempmode, -1, &done); } while (error == 0 && !done); mutex_exit(&stp->sd_lock); /* * EAGAIN tells the application to try again. ENOMEM * is returned only if the memory allocation size * exceeds the physical limits of the system. ENOMEM * can't be true here. */ if (error == ENOMEM) error = EAGAIN; return (error); } /* * Stream head write service routine. * Its job is to wake up any sleeping writers when a queue * downstream needs data (part of the flow control in putq and getq). * It also must wake anyone sleeping on a poll(). * For stream head right below mux module, it must also invoke put procedure * of next downstream module. */ int strwsrv(queue_t *q) { struct stdata *stp; queue_t *tq; qband_t *qbp; int i; qband_t *myqbp; int isevent; unsigned char qbf[NBAND]; /* band flushing backenable flags */ TRACE_1(TR_FAC_STREAMS_FR, TR_STRWSRV, "strwsrv:q %p", q); stp = (struct stdata *)q->q_ptr; ASSERT(qclaimed(q)); mutex_enter(&stp->sd_lock); ASSERT(!(stp->sd_flag & STPLEX)); if (stp->sd_flag & WSLEEP) { stp->sd_flag &= ~WSLEEP; cv_broadcast(&q->q_wait); } mutex_exit(&stp->sd_lock); /* The other end of a stream pipe went away. */ if ((tq = q->q_next) == NULL) { return (0); } /* Find the next module forward that has a service procedure */ claimstr(q); tq = q->q_nfsrv; ASSERT(tq != NULL); if ((q->q_flag & QBACK)) { if ((tq->q_flag & QFULL)) { mutex_enter(QLOCK(tq)); if (!(tq->q_flag & QFULL)) { mutex_exit(QLOCK(tq)); goto wakeup; } /* * The queue must have become full again. Set QWANTW * again so strwsrv will be back enabled when * the queue becomes non-full next time. */ tq->q_flag |= QWANTW; mutex_exit(QLOCK(tq)); } else { wakeup: pollwakeup(&stp->sd_pollist, POLLWRNORM); mutex_enter(&stp->sd_lock); if (stp->sd_sigflags & S_WRNORM) strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); mutex_exit(&stp->sd_lock); } } isevent = 0; i = 1; bzero((caddr_t)qbf, NBAND); mutex_enter(QLOCK(tq)); if ((myqbp = q->q_bandp) != NULL) for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { ASSERT(myqbp); if ((myqbp->qb_flag & QB_BACK)) { if (qbp->qb_flag & QB_FULL) { /* * The band must have become full again. * Set QB_WANTW again so strwsrv will * be back enabled when the band becomes * non-full next time. */ qbp->qb_flag |= QB_WANTW; } else { isevent = 1; qbf[i] = 1; } } myqbp = myqbp->qb_next; i++; } mutex_exit(QLOCK(tq)); if (isevent) { for (i = tq->q_nband; i; i--) { if (qbf[i]) { pollwakeup(&stp->sd_pollist, POLLWRBAND); mutex_enter(&stp->sd_lock); if (stp->sd_sigflags & S_WRBAND) strsendsig(stp->sd_siglist, S_WRBAND, (uchar_t)i, 0); mutex_exit(&stp->sd_lock); } } } releasestr(q); return (0); } /* * Special case of strcopyin/strcopyout for copying * struct strioctl that can deal with both data * models. */ #ifdef _LP64 static int strcopyin_strioctl(void *from, void *to, int flag, int copyflag) { struct strioctl32 strioc32; struct strioctl *striocp; if (copyflag & U_TO_K) { ASSERT((copyflag & K_TO_K) == 0); if ((flag & FMODELS) == DATAMODEL_ILP32) { if (copyin(from, &strioc32, sizeof (strioc32))) return (EFAULT); striocp = (struct strioctl *)to; striocp->ic_cmd = strioc32.ic_cmd; striocp->ic_timout = strioc32.ic_timout; striocp->ic_len = strioc32.ic_len; striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; } else { /* NATIVE data model */ if (copyin(from, to, sizeof (struct strioctl))) { return (EFAULT); } else { return (0); } } } else { ASSERT(copyflag & K_TO_K); bcopy(from, to, sizeof (struct strioctl)); } return (0); } static int strcopyout_strioctl(void *from, void *to, int flag, int copyflag) { struct strioctl32 strioc32; struct strioctl *striocp; if (copyflag & U_TO_K) { ASSERT((copyflag & K_TO_K) == 0); if ((flag & FMODELS) == DATAMODEL_ILP32) { striocp = (struct strioctl *)from; strioc32.ic_cmd = striocp->ic_cmd; strioc32.ic_timout = striocp->ic_timout; strioc32.ic_len = striocp->ic_len; strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; ASSERT((char *)(uintptr_t)strioc32.ic_dp == striocp->ic_dp); if (copyout(&strioc32, to, sizeof (strioc32))) return (EFAULT); } else { /* NATIVE data model */ if (copyout(from, to, sizeof (struct strioctl))) { return (EFAULT); } else { return (0); } } } else { ASSERT(copyflag & K_TO_K); bcopy(from, to, sizeof (struct strioctl)); } return (0); } #else /* ! _LP64 */ /* ARGSUSED2 */ static int strcopyin_strioctl(void *from, void *to, int flag, int copyflag) { return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); } /* ARGSUSED2 */ static int strcopyout_strioctl(void *from, void *to, int flag, int copyflag) { return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); } #endif /* _LP64 */ /* * Determine type of job control semantics expected by user. The * possibilities are: * JCREAD - Behaves like read() on fd; send SIGTTIN * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP * JCGETP - Gets a value in the stream; no signals. * See straccess in strsubr.c for usage of these values. * * This routine also returns -1 for I_STR as a special case; the * caller must call again with the real ioctl number for * classification. */ static int job_control_type(int cmd) { switch (cmd) { case I_STR: return (-1); case I_RECVFD: case I_E_RECVFD: return (JCREAD); case I_FDINSERT: case I_SENDFD: return (JCWRITE); case TCSETA: case TCSETAW: case TCSETAF: case TCSBRK: case TCXONC: case TCFLSH: case TCDSET: /* Obsolete */ case TIOCSWINSZ: case TCSETS: case TCSETSW: case TCSETSF: case TIOCSETD: case TIOCHPCL: case TIOCSETP: case TIOCSETN: case TIOCEXCL: case TIOCNXCL: case TIOCFLUSH: case TIOCSETC: case TIOCLBIS: case TIOCLBIC: case TIOCLSET: case TIOCSBRK: case TIOCCBRK: case TIOCSDTR: case TIOCCDTR: case TIOCSLTC: case TIOCSTOP: case TIOCSTART: case TIOCSTI: case TIOCSPGRP: case TIOCMSET: case TIOCMBIS: case TIOCMBIC: case TIOCREMOTE: case TIOCSIGNAL: case LDSETT: case LDSMAP: /* Obsolete */ case DIOCSETP: case I_FLUSH: case I_SRDOPT: case I_SETSIG: case I_SWROPT: case I_FLUSHBAND: case I_SETCLTIME: case I_SERROPT: case I_ESETSIG: case FIONBIO: case FIOASYNC: case FIOSETOWN: case JBOOT: /* Obsolete */ case JTERM: /* Obsolete */ case JTIMOM: /* Obsolete */ case JZOMBOOT: /* Obsolete */ case JAGENT: /* Obsolete */ case JTRUN: /* Obsolete */ case JXTPROTO: /* Obsolete */ return (JCSETP); } return (JCGETP); } /* * ioctl for streams */ int strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, cred_t *crp, int *rvalp) { struct stdata *stp; struct strioctl strioc; struct uio uio; struct iovec iov; int access; mblk_t *mp; int error = 0; int done = 0; ssize_t rmin, rmax; queue_t *wrq; queue_t *rdq; boolean_t kioctl = B_FALSE; if (flag & FKIOCTL) { copyflag = K_TO_K; kioctl = B_TRUE; } ASSERT(vp->v_stream); ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); stp = vp->v_stream; TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); #ifdef C2_AUDIT if (audit_active) audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp); #endif /* * If the copy is kernel to kernel, make sure that the FNATIVE * flag is set. After this it would be a serious error to have * no model flag. */ if (copyflag == K_TO_K) flag = (flag & ~FMODELS) | FNATIVE; ASSERT((flag & FMODELS) != 0); wrq = stp->sd_wrq; rdq = _RD(wrq); access = job_control_type(cmd); /* We should never see these here, should be handled by iwscn */ if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) return (EINVAL); if (access != -1 && stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) if (error = straccess(stp, access)) return (error); /* * Check for sgttyb-related ioctls first, and complain as * necessary. */ switch (cmd) { case TIOCGETP: case TIOCSETP: case TIOCSETN: if (sgttyb_handling >= 2 && !sgttyb_complaint) { sgttyb_complaint = B_TRUE; cmn_err(CE_NOTE, "application used obsolete TIOC[GS]ET"); } if (sgttyb_handling >= 3) { tsignal(curthread, SIGSYS); return (EIO); } break; } mutex_enter(&stp->sd_lock); switch (cmd) { case I_RECVFD: case I_E_RECVFD: case I_PEEK: case I_NREAD: case FIONREAD: case FIORDCHK: case I_ATMARK: case FIONBIO: case FIOASYNC: if (stp->sd_flag & (STRDERR|STPLEX)) { error = strgeterr(stp, STRDERR|STPLEX, 0); if (error != 0) { mutex_exit(&stp->sd_lock); return (error); } } break; default: if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); if (error != 0) { mutex_exit(&stp->sd_lock); return (error); } } } mutex_exit(&stp->sd_lock); switch (cmd) { default: /* * The stream head has hardcoded knowledge of a * miscellaneous collection of terminal-, keyboard- and * mouse-related ioctls, enumerated below. This hardcoded * knowledge allows the stream head to automatically * convert transparent ioctl requests made by userland * programs into I_STR ioctls which many old STREAMS * modules and drivers require. * * No new ioctls should ever be added to this list. * Instead, the STREAMS module or driver should be written * to either handle transparent ioctls or require any * userland programs to use I_STR ioctls (by returning * EINVAL to any transparent ioctl requests). * * More importantly, removing ioctls from this list should * be done with the utmost care, since our STREAMS modules * and drivers *count* on the stream head performing this * conversion, and thus may panic while processing * transparent ioctl request for one of these ioctls (keep * in mind that third party modules and drivers may have * similar problems). */ if (((cmd & IOCTYPE) == LDIOC) || ((cmd & IOCTYPE) == tIOC) || ((cmd & IOCTYPE) == TIOC) || ((cmd & IOCTYPE) == KIOC) || ((cmd & IOCTYPE) == MSIOC) || ((cmd & IOCTYPE) == VUIOC)) { /* * The ioctl is a tty ioctl - set up strioc buffer * and call strdoioctl() to do the work. */ if (stp->sd_flag & STRHUP) return (ENXIO); strioc.ic_cmd = cmd; strioc.ic_timout = INFTIM; switch (cmd) { case TCXONC: case TCSBRK: case TCFLSH: case TCDSET: { int native_arg = (int)arg; strioc.ic_len = sizeof (int); strioc.ic_dp = (char *)&native_arg; return (strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp)); } case TCSETA: case TCSETAW: case TCSETAF: strioc.ic_len = sizeof (struct termio); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case TCSETS: case TCSETSW: case TCSETSF: strioc.ic_len = sizeof (struct termios); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case LDSETT: strioc.ic_len = sizeof (struct termcb); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case TIOCSETP: strioc.ic_len = sizeof (struct sgttyb); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case TIOCSTI: if ((flag & FREAD) == 0 && secpolicy_sti(crp) != 0) { return (EPERM); } if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp && secpolicy_sti(crp) != 0) { return (EACCES); } strioc.ic_len = sizeof (char); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case TIOCSWINSZ: strioc.ic_len = sizeof (struct winsize); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case TIOCSSIZE: strioc.ic_len = sizeof (struct ttysize); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case TIOCSSOFTCAR: case KIOCTRANS: case KIOCTRANSABLE: case KIOCCMD: case KIOCSDIRECT: case KIOCSCOMPAT: case KIOCSKABORTEN: case KIOCSRPTDELAY: case KIOCSRPTRATE: case VUIDSFORMAT: case TIOCSPPS: strioc.ic_len = sizeof (int); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case KIOCSETKEY: case KIOCGETKEY: strioc.ic_len = sizeof (struct kiockey); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case KIOCSKEY: case KIOCGKEY: strioc.ic_len = sizeof (struct kiockeymap); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case KIOCSLED: /* arg is a pointer to char */ strioc.ic_len = sizeof (char); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case MSIOSETPARMS: strioc.ic_len = sizeof (Ms_parms); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case VUIDSADDR: case VUIDGADDR: strioc.ic_len = sizeof (struct vuid_addr_probe); strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); /* * These M_IOCTL's don't require any data to be sent * downstream, and the driver will allocate and link * on its own mblk_t upon M_IOCACK -- thus we set * ic_len to zero and set ic_dp to arg so we know * where to copyout to later. */ case TIOCGSOFTCAR: case TIOCGWINSZ: case TIOCGSIZE: case KIOCGTRANS: case KIOCGTRANSABLE: case KIOCTYPE: case KIOCGDIRECT: case KIOCGCOMPAT: case KIOCLAYOUT: case KIOCGLED: case MSIOGETPARMS: case MSIOBUTTONS: case VUIDGFORMAT: case TIOCGPPS: case TIOCGPPSEV: case TCGETA: case TCGETS: case LDGETT: case TIOCGETP: case KIOCGRPTDELAY: case KIOCGRPTRATE: strioc.ic_len = 0; strioc.ic_dp = (char *)arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); } } /* * Unknown cmd - send it down as a transparent ioctl. */ strioc.ic_cmd = cmd; strioc.ic_timout = INFTIM; strioc.ic_len = TRANSPARENT; strioc.ic_dp = (char *)&arg; return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); case I_STR: /* * Stream ioctl. Read in an strioctl buffer from the user * along with any data specified and send it downstream. * Strdoioctl will wait allow only one ioctl message at * a time, and waits for the acknowledgement. */ if (stp->sd_flag & STRHUP) return (ENXIO); error = strcopyin_strioctl((void *)arg, &strioc, flag, copyflag); if (error != 0) return (error); if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) return (EINVAL); access = job_control_type(strioc.ic_cmd); if (access != -1 && stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO && (error = straccess(stp, access)) != 0) return (error); /* * The I_STR facility provides a trap door for malicious * code to send down bogus streamio(7I) ioctl commands to * unsuspecting STREAMS modules and drivers which expect to * only get these messages from the stream head. * Explicitly prohibit any streamio ioctls which can be * passed downstream by the stream head. Note that we do * not block all streamio ioctls because the ioctl * numberspace is not well managed and thus it's possible * that a module or driver's ioctl numbers may accidentally * collide with them. */ switch (strioc.ic_cmd) { case I_LINK: case I_PLINK: case I_UNLINK: case I_PUNLINK: case _I_GETPEERCRED: case _I_PLINK_LH: return (EINVAL); } error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); if (error == 0) { error = strcopyout_strioctl(&strioc, (void *)arg, flag, copyflag); } return (error); case I_NREAD: /* * Return number of bytes of data in first message * in queue in "arg" and return the number of messages * in queue in return value. */ { size_t size; int retval; int count = 0; mutex_enter(QLOCK(rdq)); size = msgdsize(rdq->q_first); for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) count++; mutex_exit(QLOCK(rdq)); if (stp->sd_struiordq) { infod_t infod; infod.d_cmd = INFOD_COUNT; infod.d_count = 0; if (count == 0) { infod.d_cmd |= INFOD_FIRSTBYTES; infod.d_bytes = 0; } infod.d_res = 0; (void) infonext(rdq, &infod); count += infod.d_count; if (infod.d_res & INFOD_FIRSTBYTES) size = infod.d_bytes; } /* * Drop down from size_t to the "int" required by the * interface. Cap at INT_MAX. */ retval = MIN(size, INT_MAX); error = strcopyout(&retval, (void *)arg, sizeof (retval), copyflag); if (!error) *rvalp = count; return (error); } case FIONREAD: /* * Return number of bytes of data in all data messages * in queue in "arg". */ { size_t size = 0; int retval; mutex_enter(QLOCK(rdq)); for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) size += msgdsize(mp); mutex_exit(QLOCK(rdq)); if (stp->sd_struiordq) { infod_t infod; infod.d_cmd = INFOD_BYTES; infod.d_res = 0; infod.d_bytes = 0; (void) infonext(rdq, &infod); size += infod.d_bytes; } /* * Drop down from size_t to the "int" required by the * interface. Cap at INT_MAX. */ retval = MIN(size, INT_MAX); error = strcopyout(&retval, (void *)arg, sizeof (retval), copyflag); *rvalp = 0; return (error); } case FIORDCHK: /* * FIORDCHK does not use arg value (like FIONREAD), * instead a count is returned. I_NREAD value may * not be accurate but safe. The real thing to do is * to add the msgdsizes of all data messages until * a non-data message. */ { size_t size = 0; mutex_enter(QLOCK(rdq)); for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) size += msgdsize(mp); mutex_exit(QLOCK(rdq)); if (stp->sd_struiordq) { infod_t infod; infod.d_cmd = INFOD_BYTES; infod.d_res = 0; infod.d_bytes = 0; (void) infonext(rdq, &infod); size += infod.d_bytes; } /* * Since ioctl returns an int, and memory sizes under * LP64 may not fit, we return INT_MAX if the count was * actually greater. */ *rvalp = MIN(size, INT_MAX); return (0); } case I_FIND: /* * Get module name. */ { char mname[FMNAMESZ + 1]; queue_t *q; error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, mname, FMNAMESZ + 1, NULL); if (error) return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); /* * Return EINVAL if we're handed a bogus module name. */ if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { TRACE_0(TR_FAC_STREAMS_FR, TR_I_CANT_FIND, "couldn't I_FIND"); return (EINVAL); } *rvalp = 0; /* Look downstream to see if module is there. */ claimstr(stp->sd_wrq); for (q = stp->sd_wrq->q_next; q; q = q->q_next) { if (q->q_flag&QREADR) { q = NULL; break; } if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0) break; } releasestr(stp->sd_wrq); *rvalp = (q ? 1 : 0); return (error); } case I_PUSH: case __I_PUSH_NOCTTY: /* * Push a module. * For the case __I_PUSH_NOCTTY push a module but * do not allocate controlling tty. See bugid 4025044 */ { char mname[FMNAMESZ + 1]; fmodsw_impl_t *fp; dev_t dummydev; if (stp->sd_flag & STRHUP) return (ENXIO); /* * Get module name and look up in fmodsw. */ error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, mname, FMNAMESZ + 1, NULL); if (error) return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == NULL) return (EINVAL); TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, "I_PUSH:fp %p stp %p", fp, stp); if (error = strstartplumb(stp, flag, cmd)) { fmodsw_rele(fp); return (error); } /* * See if any more modules can be pushed on this stream. * Note that this check must be done after strstartplumb() * since otherwise multiple threads issuing I_PUSHes on * the same stream will be able to exceed nstrpush. */ mutex_enter(&stp->sd_lock); if (stp->sd_pushcnt >= nstrpush) { fmodsw_rele(fp); strendplumb(stp); mutex_exit(&stp->sd_lock); return (EINVAL); } mutex_exit(&stp->sd_lock); /* * Push new module and call its open routine * via qattach(). Modules don't change device * numbers, so just ignore dummydev here. */ dummydev = vp->v_rdev; if ((error = qattach(rdq, &dummydev, 0, crp, fp, B_FALSE)) == 0) { if (vp->v_type == VCHR && /* sorry, no pipes allowed */ (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { /* * try to allocate it as a controlling terminal */ strctty(stp); } } /* * If flow control is on, don't break it - enable * first back queue with svc procedure. */ if (rdq->q_flag & QWANTW) { /* Note: no setqback here - use pri -1. */ backenable(_RD(wrq->q_next), -1); } mutex_enter(&stp->sd_lock); /* * As a performance concern we are caching the values of * q_minpsz and q_maxpsz of the module below the stream * head in the stream head. */ mutex_enter(QLOCK(stp->sd_wrq->q_next)); rmin = stp->sd_wrq->q_next->q_minpsz; rmax = stp->sd_wrq->q_next->q_maxpsz; mutex_exit(QLOCK(stp->sd_wrq->q_next)); /* Do this processing here as a performance concern */ if (strmsgsz != 0) { if (rmax == INFPSZ) rmax = strmsgsz; else { if (vp->v_type == VFIFO) rmax = MIN(PIPE_BUF, rmax); else rmax = MIN(strmsgsz, rmax); } } mutex_enter(QLOCK(wrq)); stp->sd_qn_minpsz = rmin; stp->sd_qn_maxpsz = rmax; mutex_exit(QLOCK(wrq)); strendplumb(stp); mutex_exit(&stp->sd_lock); return (error); } case I_POP: { queue_t *q; if (stp->sd_flag & STRHUP) return (ENXIO); if (!wrq->q_next) /* for broken pipes */ return (EINVAL); if (error = strstartplumb(stp, flag, cmd)) return (error); /* * If there is an anchor on this stream and popping * the current module would attempt to pop through the * anchor, then disallow the pop unless we have sufficient * privileges; take the cheapest (non-locking) check * first. */ if (secpolicy_net_config(crp, B_TRUE) != 0) { mutex_enter(&stp->sd_lock); /* * Anchors only apply if there's at least one * module on the stream (sd_pushcnt > 0). */ if (stp->sd_pushcnt > 0 && stp->sd_pushcnt == stp->sd_anchor && stp->sd_vnode->v_type != VFIFO) { strendplumb(stp); mutex_exit(&stp->sd_lock); /* Audit and report error */ return (secpolicy_net_config(crp, B_FALSE)); } mutex_exit(&stp->sd_lock); } q = wrq->q_next; TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, "I_POP:%p from %p", q, stp); if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { error = EINVAL; } else { qdetach(_RD(q), 1, flag, crp, B_FALSE); error = 0; } mutex_enter(&stp->sd_lock); /* * As a performance concern we are caching the values of * q_minpsz and q_maxpsz of the module below the stream * head in the stream head. */ mutex_enter(QLOCK(wrq->q_next)); rmin = wrq->q_next->q_minpsz; rmax = wrq->q_next->q_maxpsz; mutex_exit(QLOCK(wrq->q_next)); /* Do this processing here as a performance concern */ if (strmsgsz != 0) { if (rmax == INFPSZ) rmax = strmsgsz; else { if (vp->v_type == VFIFO) rmax = MIN(PIPE_BUF, rmax); else rmax = MIN(strmsgsz, rmax); } } mutex_enter(QLOCK(wrq)); stp->sd_qn_minpsz = rmin; stp->sd_qn_maxpsz = rmax; mutex_exit(QLOCK(wrq)); /* If we popped through the anchor, then reset the anchor. */ if (stp->sd_pushcnt < stp->sd_anchor) stp->sd_anchor = 0; strendplumb(stp); mutex_exit(&stp->sd_lock); return (error); } case _I_MUXID2FD: { /* * Create a fd for a I_PLINK'ed lower stream with a given * muxid. With the fd, application can send down ioctls, * like I_LIST, to the previously I_PLINK'ed stream. Note * that after getting the fd, the application has to do an * I_PUNLINK on the muxid before it can do any operation * on the lower stream. This is required by spec1170. * * The fd used to do this ioctl should point to the same * controlling device used to do the I_PLINK. If it uses * a different stream or an invalid muxid, I_MUXID2FD will * fail. The error code is set to EINVAL. * * The intended use of this interface is the following. * An application I_PLINK'ed a stream and exits. The fd * to the lower stream is gone. Another application * wants to get a fd to the lower stream, it uses I_MUXID2FD. */ int muxid = (int)arg; int fd; linkinfo_t *linkp; struct file *fp; /* * Do not allow the wildcard muxid. This ioctl is not * intended to find arbitrary link. */ if (muxid == 0) { return (EINVAL); } mutex_enter(&muxifier); linkp = findlinks(vp->v_stream, muxid, LINKPERSIST); if (linkp == NULL) { mutex_exit(&muxifier); return (EINVAL); } if ((fd = ufalloc(0)) == -1) { mutex_exit(&muxifier); return (EMFILE); } fp = linkp->li_fpdown; mutex_enter(&fp->f_tlock); fp->f_count++; mutex_exit(&fp->f_tlock); mutex_exit(&muxifier); setf(fd, fp); *rvalp = fd; return (0); } case _I_INSERT: { /* * To insert a module to a given position in a stream. * In the first release, only allow privileged user * to use this ioctl. * * Note that we do not plan to support this ioctl * on pipes in the first release. We want to learn more * about the implications of these ioctls before extending * their support. And we do not think these features are * valuable for pipes. * * Neither do we support O/C hot stream. Note that only * the upper streams of TCP/IP stack are O/C hot streams. * The lower IP stream is not. * When there is a O/C cold barrier, we only allow inserts * above the barrier. */ STRUCT_DECL(strmodconf, strmodinsert); char mod_name[FMNAMESZ + 1]; fmodsw_impl_t *fp; dev_t dummydev; queue_t *tmp_wrq; int pos; boolean_t is_insert; STRUCT_INIT(strmodinsert, flag); if (stp->sd_flag & STRHUP) return (ENXIO); if (STRMATED(stp)) return (EINVAL); if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) return (error); error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), STRUCT_SIZE(strmodinsert), copyflag); if (error) return (error); /* * Get module name and look up in fmodsw. */ error = (copyflag & U_TO_K ? copyinstr : copystr)(STRUCT_FGETP(strmodinsert, mod_name), mod_name, FMNAMESZ + 1, NULL); if (error) return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) return (EINVAL); if (error = strstartplumb(stp, flag, cmd)) { fmodsw_rele(fp); return (error); } /* * Is this _I_INSERT just like an I_PUSH? We need to know * this because we do some optimizations if this is a * module being pushed. */ pos = STRUCT_FGET(strmodinsert, pos); is_insert = (pos != 0); /* * Make sure pos is valid. Even though it is not an I_PUSH, * we impose the same limit on the number of modules in a * stream. */ mutex_enter(&stp->sd_lock); if (stp->sd_pushcnt >= nstrpush || pos < 0 || pos > stp->sd_pushcnt) { fmodsw_rele(fp); strendplumb(stp); mutex_exit(&stp->sd_lock); return (EINVAL); } mutex_exit(&stp->sd_lock); /* * First find the correct position this module to * be inserted. We don't need to call claimstr() * as the stream should not be changing at this point. * * Insert new module and call its open routine * via qattach(). Modules don't change device * numbers, so just ignore dummydev here. */ for (tmp_wrq = stp->sd_wrq; pos > 0; tmp_wrq = tmp_wrq->q_next, pos--) { ASSERT(SAMESTR(tmp_wrq)); } dummydev = vp->v_rdev; if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, fp, is_insert)) != 0) { mutex_enter(&stp->sd_lock); strendplumb(stp); mutex_exit(&stp->sd_lock); return (error); } /* * If flow control is on, don't break it - enable * first back queue with svc procedure. */ if (_RD(tmp_wrq)->q_nfsrv->q_flag & QWANTW) { /* * Note: no setqback here - use pri -1. * tmp_wrq->q_next is the new module. We need * to backenable() the module below the new module. */ backenable(_RD(tmp_wrq->q_next->q_next), -1); } mutex_enter(&stp->sd_lock); /* * As a performance concern we are caching the values of * q_minpsz and q_maxpsz of the module below the stream * head in the stream head. */ if (!is_insert) { mutex_enter(QLOCK(stp->sd_wrq->q_next)); rmin = stp->sd_wrq->q_next->q_minpsz; rmax = stp->sd_wrq->q_next->q_maxpsz; mutex_exit(QLOCK(stp->sd_wrq->q_next)); /* Do this processing here as a performance concern */ if (strmsgsz != 0) { if (rmax == INFPSZ) { rmax = strmsgsz; } else { rmax = MIN(strmsgsz, rmax); } } mutex_enter(QLOCK(wrq)); stp->sd_qn_minpsz = rmin; stp->sd_qn_maxpsz = rmax; mutex_exit(QLOCK(wrq)); } /* * Need to update the anchor value if this module is * inserted below the anchor point. */ if (stp->sd_anchor != 0) { pos = STRUCT_FGET(strmodinsert, pos); if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) stp->sd_anchor++; } strendplumb(stp); mutex_exit(&stp->sd_lock); return (0); } case _I_REMOVE: { /* * To remove a module with a given name in a stream. The * caller of this ioctl needs to provide both the name and * the position of the module to be removed. This eliminates * the ambiguity of removal if a module is inserted/pushed * multiple times in a stream. In the first release, only * allow privileged user to use this ioctl. * * Note that we do not plan to support this ioctl * on pipes in the first release. We want to learn more * about the implications of these ioctls before extending * their support. And we do not think these features are * valuable for pipes. * * Neither do we support O/C hot stream. Note that only * the upper streams of TCP/IP stack are O/C hot streams. * The lower IP stream is not. * When there is a O/C cold barrier we do not allow removal * below the barrier. * * Also note that _I_REMOVE cannot be used to remove a * driver or the stream head. */ STRUCT_DECL(strmodconf, strmodremove); queue_t *q; int pos; char mod_name[FMNAMESZ + 1]; boolean_t is_remove; STRUCT_INIT(strmodremove, flag); if (stp->sd_flag & STRHUP) return (ENXIO); if (STRMATED(stp)) return (EINVAL); if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) return (error); error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), STRUCT_SIZE(strmodremove), copyflag); if (error) return (error); error = (copyflag & U_TO_K ? copyinstr : copystr)(STRUCT_FGETP(strmodremove, mod_name), mod_name, FMNAMESZ + 1, NULL); if (error) return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); if ((error = strstartplumb(stp, flag, cmd)) != 0) return (error); /* * Match the name of given module to the name of module at * the given position. */ pos = STRUCT_FGET(strmodremove, pos); is_remove = (pos != 0); for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; q = q->q_next, pos--) ; if (pos > 0 || ! SAMESTR(q) || strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name, strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) { mutex_enter(&stp->sd_lock); strendplumb(stp); mutex_exit(&stp->sd_lock); return (EINVAL); } ASSERT(!(q->q_flag & QREADR)); qdetach(_RD(q), 1, flag, crp, is_remove); mutex_enter(&stp->sd_lock); /* * As a performance concern we are caching the values of * q_minpsz and q_maxpsz of the module below the stream * head in the stream head. */ if (!is_remove) { mutex_enter(QLOCK(wrq->q_next)); rmin = wrq->q_next->q_minpsz; rmax = wrq->q_next->q_maxpsz; mutex_exit(QLOCK(wrq->q_next)); /* Do this processing here as a performance concern */ if (strmsgsz != 0) { if (rmax == INFPSZ) rmax = strmsgsz; else { if (vp->v_type == VFIFO) rmax = MIN(PIPE_BUF, rmax); else rmax = MIN(strmsgsz, rmax); } } mutex_enter(QLOCK(wrq)); stp->sd_qn_minpsz = rmin; stp->sd_qn_maxpsz = rmax; mutex_exit(QLOCK(wrq)); } /* * Need to update the anchor value if this module is removed * at or below the anchor point. If the removed module is at * the anchor point, remove the anchor for this stream if * there is no module above the anchor point. Otherwise, if * the removed module is below the anchor point, decrement the * anchor point by 1. */ if (stp->sd_anchor != 0) { pos = STRUCT_FGET(strmodremove, pos); if (pos == 0) stp->sd_anchor = 0; else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) stp->sd_anchor--; } strendplumb(stp); mutex_exit(&stp->sd_lock); return (0); } case I_ANCHOR: /* * Set the anchor position on the stream to reside at * the top module (in other words, the top module * cannot be popped). Anchors with a FIFO make no * obvious sense, so they're not allowed. */ mutex_enter(&stp->sd_lock); if (stp->sd_vnode->v_type == VFIFO) { mutex_exit(&stp->sd_lock); return (EINVAL); } stp->sd_anchor = stp->sd_pushcnt; mutex_exit(&stp->sd_lock); return (0); case I_LOOK: /* * Get name of first module downstream. * If no module, return an error. */ { claimstr(wrq); if (_SAMESTR(wrq) && wrq->q_next->q_next) { char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname; error = strcopyout(name, (void *)arg, strlen(name) + 1, copyflag); releasestr(wrq); return (error); } releasestr(wrq); return (EINVAL); } case I_LINK: case I_PLINK: /* * Link a multiplexor. */ return (mlink(vp, cmd, (int)arg, crp, rvalp, 0)); case _I_PLINK_LH: /* * Link a multiplexor: Call must originate from kernel. */ if (kioctl) return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); return (EINVAL); case I_UNLINK: case I_PUNLINK: /* * Unlink a multiplexor. * If arg is -1, unlink all links for which this is the * controlling stream. Otherwise, arg is an index number * for a link to be removed. */ { struct linkinfo *linkp; int native_arg = (int)arg; int type; TRACE_1(TR_FAC_STREAMS_FR, TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); if (vp->v_type == VFIFO) { return (EINVAL); } if (cmd == I_UNLINK) type = LINKNORMAL; else /* I_PUNLINK */ type = LINKPERSIST; if (native_arg == 0) { return (EINVAL); } if (native_arg == MUXID_ALL) error = munlinkall(stp, type, crp, rvalp); else { mutex_enter(&muxifier); if (!(linkp = findlinks(stp, (int)arg, type))) { /* invalid user supplied index number */ mutex_exit(&muxifier); return (EINVAL); } /* munlink drops the muxifier lock */ error = munlink(stp, linkp, type, crp, rvalp); } return (error); } case I_FLUSH: /* * send a flush message downstream * flush message can indicate * FLUSHR - flush read queue * FLUSHW - flush write queue * FLUSHRW - flush read/write queue */ if (stp->sd_flag & STRHUP) return (ENXIO); if (arg & ~FLUSHRW) return (EINVAL); for (;;) { if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { break; } if (error = strwaitbuf(1, BPRI_HI)) { return (error); } } /* * Send down an unsupported ioctl and wait for the nack * in order to allow the M_FLUSH to propagate back * up to the stream head. * Replaces if (qready()) runqueues(); */ strioc.ic_cmd = -1; /* The unsupported ioctl */ strioc.ic_timout = 0; strioc.ic_len = 0; strioc.ic_dp = NULL; (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); *rvalp = 0; return (0); case I_FLUSHBAND: { struct bandinfo binfo; error = strcopyin((void *)arg, &binfo, sizeof (binfo), copyflag); if (error) return (error); if (stp->sd_flag & STRHUP) return (ENXIO); if (binfo.bi_flag & ~FLUSHRW) return (EINVAL); while (!(mp = allocb(2, BPRI_HI))) { if (error = strwaitbuf(2, BPRI_HI)) return (error); } mp->b_datap->db_type = M_FLUSH; *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; *mp->b_wptr++ = binfo.bi_pri; putnext(stp->sd_wrq, mp); /* * Send down an unsupported ioctl and wait for the nack * in order to allow the M_FLUSH to propagate back * up to the stream head. * Replaces if (qready()) runqueues(); */ strioc.ic_cmd = -1; /* The unsupported ioctl */ strioc.ic_timout = 0; strioc.ic_len = 0; strioc.ic_dp = NULL; (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); *rvalp = 0; return (0); } case I_SRDOPT: /* * Set read options * * RNORM - default stream mode * RMSGN - message no discard * RMSGD - message discard * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs * RPROTDAT - convert M_[PC]PROTOs to M_DATAs * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs */ if (arg & ~(RMODEMASK | RPROTMASK)) return (EINVAL); if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) return (EINVAL); mutex_enter(&stp->sd_lock); switch (arg & RMODEMASK) { case RNORM: stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); break; case RMSGD: stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | RD_MSGDIS; break; case RMSGN: stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | RD_MSGNODIS; break; } switch (arg & RPROTMASK) { case RPROTNORM: stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); break; case RPROTDAT: stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | RD_PROTDAT); break; case RPROTDIS: stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | RD_PROTDIS); break; } mutex_exit(&stp->sd_lock); return (0); case I_GRDOPT: /* * Get read option and return the value * to spot pointed to by arg */ { int rdopt; rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); return (strcopyout(&rdopt, (void *)arg, sizeof (int), copyflag)); } case I_SERROPT: /* * Set error options * * RERRNORM - persistent read errors * RERRNONPERSIST - non-persistent read errors * WERRNORM - persistent write errors * WERRNONPERSIST - non-persistent write errors */ if (arg & ~(RERRMASK | WERRMASK)) return (EINVAL); mutex_enter(&stp->sd_lock); switch (arg & RERRMASK) { case RERRNORM: stp->sd_flag &= ~STRDERRNONPERSIST; break; case RERRNONPERSIST: stp->sd_flag |= STRDERRNONPERSIST; break; } switch (arg & WERRMASK) { case WERRNORM: stp->sd_flag &= ~STWRERRNONPERSIST; break; case WERRNONPERSIST: stp->sd_flag |= STWRERRNONPERSIST; break; } mutex_exit(&stp->sd_lock); return (0); case I_GERROPT: /* * Get error option and return the value * to spot pointed to by arg */ { int erropt = 0; erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : RERRNORM; erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : WERRNORM; return (strcopyout(&erropt, (void *)arg, sizeof (int), copyflag)); } case I_SETSIG: /* * Register the calling proc to receive the SIGPOLL * signal based on the events given in arg. If * arg is zero, remove the proc from register list. */ { strsig_t *ssp, *pssp; struct pid *pidp; pssp = NULL; pidp = curproc->p_pidp; /* * Hold sd_lock to prevent traversal of sd_siglist while * it is modified. */ mutex_enter(&stp->sd_lock); for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); pssp = ssp, ssp = ssp->ss_next) ; if (arg) { if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { mutex_exit(&stp->sd_lock); return (EINVAL); } if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { mutex_exit(&stp->sd_lock); return (EINVAL); } /* * If proc not already registered, add it * to list. */ if (!ssp) { ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); ssp->ss_pidp = pidp; ssp->ss_pid = pidp->pid_id; ssp->ss_next = NULL; if (pssp) pssp->ss_next = ssp; else stp->sd_siglist = ssp; mutex_enter(&pidlock); PID_HOLD(pidp); mutex_exit(&pidlock); } /* * Set events. */ ssp->ss_events = (int)arg; } else { /* * Remove proc from register list. */ if (ssp) { mutex_enter(&pidlock); PID_RELE(pidp); mutex_exit(&pidlock); if (pssp) pssp->ss_next = ssp->ss_next; else stp->sd_siglist = ssp->ss_next; kmem_free(ssp, sizeof (strsig_t)); } else { mutex_exit(&stp->sd_lock); return (EINVAL); } } /* * Recalculate OR of sig events. */ stp->sd_sigflags = 0; for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) stp->sd_sigflags |= ssp->ss_events; mutex_exit(&stp->sd_lock); return (0); } case I_GETSIG: /* * Return (in arg) the current registration of events * for which the calling proc is to be signaled. */ { struct strsig *ssp; struct pid *pidp; pidp = curproc->p_pidp; mutex_enter(&stp->sd_lock); for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) if (ssp->ss_pidp == pidp) { error = strcopyout(&ssp->ss_events, (void *)arg, sizeof (int), copyflag); mutex_exit(&stp->sd_lock); return (error); } mutex_exit(&stp->sd_lock); return (EINVAL); } case I_ESETSIG: /* * Register the ss_pid to receive the SIGPOLL * signal based on the events is ss_events arg. If * ss_events is zero, remove the proc from register list. */ { struct strsig *ssp, *pssp; struct proc *proc; struct pid *pidp; pid_t pid; struct strsigset ss; error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); if (error) return (error); pid = ss.ss_pid; if (ss.ss_events != 0) { /* * Permissions check by sending signal 0. * Note that when kill fails it does a set_errno * causing the system call to fail. */ error = kill(pid, 0); if (error) { return (error); } } mutex_enter(&pidlock); if (pid == 0) proc = curproc; else if (pid < 0) proc = pgfind(-pid); else proc = prfind(pid); if (proc == NULL) { mutex_exit(&pidlock); return (ESRCH); } if (pid < 0) pidp = proc->p_pgidp; else pidp = proc->p_pidp; ASSERT(pidp); /* * Get a hold on the pid structure while referencing it. * There is a separate PID_HOLD should it be inserted * in the list below. */ PID_HOLD(pidp); mutex_exit(&pidlock); pssp = NULL; /* * Hold sd_lock to prevent traversal of sd_siglist while * it is modified. */ mutex_enter(&stp->sd_lock); for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); pssp = ssp, ssp = ssp->ss_next) ; if (ss.ss_events) { if (ss.ss_events & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { mutex_exit(&stp->sd_lock); mutex_enter(&pidlock); PID_RELE(pidp); mutex_exit(&pidlock); return (EINVAL); } if ((ss.ss_events & S_BANDURG) && !(ss.ss_events & S_RDBAND)) { mutex_exit(&stp->sd_lock); mutex_enter(&pidlock); PID_RELE(pidp); mutex_exit(&pidlock); return (EINVAL); } /* * If proc not already registered, add it * to list. */ if (!ssp) { ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); ssp->ss_pidp = pidp; ssp->ss_pid = pid; ssp->ss_next = NULL; if (pssp) pssp->ss_next = ssp; else stp->sd_siglist = ssp; mutex_enter(&pidlock); PID_HOLD(pidp); mutex_exit(&pidlock); } /* * Set events. */ ssp->ss_events = ss.ss_events; } else { /* * Remove proc from register list. */ if (ssp) { mutex_enter(&pidlock); PID_RELE(pidp); mutex_exit(&pidlock); if (pssp) pssp->ss_next = ssp->ss_next; else stp->sd_siglist = ssp->ss_next; kmem_free(ssp, sizeof (strsig_t)); } else { mutex_exit(&stp->sd_lock); mutex_enter(&pidlock); PID_RELE(pidp); mutex_exit(&pidlock); return (EINVAL); } } /* * Recalculate OR of sig events. */ stp->sd_sigflags = 0; for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) stp->sd_sigflags |= ssp->ss_events; mutex_exit(&stp->sd_lock); mutex_enter(&pidlock); PID_RELE(pidp); mutex_exit(&pidlock); return (0); } case I_EGETSIG: /* * Return (in arg) the current registration of events * for which the calling proc is to be signaled. */ { struct strsig *ssp; struct proc *proc; pid_t pid; struct pid *pidp; struct strsigset ss; error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); if (error) return (error); pid = ss.ss_pid; mutex_enter(&pidlock); if (pid == 0) proc = curproc; else if (pid < 0) proc = pgfind(-pid); else proc = prfind(pid); if (proc == NULL) { mutex_exit(&pidlock); return (ESRCH); } if (pid < 0) pidp = proc->p_pgidp; else pidp = proc->p_pidp; /* Prevent the pidp from being reassigned */ PID_HOLD(pidp); mutex_exit(&pidlock); mutex_enter(&stp->sd_lock); for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) if (ssp->ss_pid == pid) { ss.ss_pid = ssp->ss_pid; ss.ss_events = ssp->ss_events; error = strcopyout(&ss, (void *)arg, sizeof (struct strsigset), copyflag); mutex_exit(&stp->sd_lock); mutex_enter(&pidlock); PID_RELE(pidp); mutex_exit(&pidlock); return (error); } mutex_exit(&stp->sd_lock); mutex_enter(&pidlock); PID_RELE(pidp); mutex_exit(&pidlock); return (EINVAL); } case I_PEEK: { STRUCT_DECL(strpeek, strpeek); size_t n; mblk_t *fmp, *tmp_mp = NULL; STRUCT_INIT(strpeek, flag); error = strcopyin((void *)arg, STRUCT_BUF(strpeek), STRUCT_SIZE(strpeek), copyflag); if (error) return (error); mutex_enter(QLOCK(rdq)); /* * Skip the invalid messages */ for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) if (mp->b_datap->db_type != M_SIG) break; /* * If user has requested to peek at a high priority message * and first message is not, return 0 */ if (mp != NULL) { if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && queclass(mp) == QNORM) { *rvalp = 0; mutex_exit(QLOCK(rdq)); return (0); } } else if (stp->sd_struiordq == NULL || (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { /* * No mblks to look at at the streamhead and * 1). This isn't a synch stream or * 2). This is a synch stream but caller wants high * priority messages which is not supported by * the synch stream. (it only supports QNORM) */ *rvalp = 0; mutex_exit(QLOCK(rdq)); return (0); } fmp = mp; if (mp && mp->b_datap->db_type == M_PASSFP) { mutex_exit(QLOCK(rdq)); return (EBADMSG); } ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || mp->b_datap->db_type == M_PROTO || mp->b_datap->db_type == M_DATA); if (mp && mp->b_datap->db_type == M_PCPROTO) { STRUCT_FSET(strpeek, flags, RS_HIPRI); } else { STRUCT_FSET(strpeek, flags, 0); } if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { mutex_exit(QLOCK(rdq)); return (ENOSR); } mutex_exit(QLOCK(rdq)); /* * set mp = tmp_mp, so that I_PEEK processing can continue. * tmp_mp is used to free the dup'd message. */ mp = tmp_mp; uio.uio_fmode = 0; uio.uio_extflg = UIO_COPY_CACHED; uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : UIO_SYSSPACE; uio.uio_limit = 0; /* * First process PROTO blocks, if any. * If user doesn't want to get ctl info by setting maxlen <= 0, * then set len to -1/0 and skip control blocks part. */ if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) STRUCT_FSET(strpeek, ctlbuf.len, -1); else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) STRUCT_FSET(strpeek, ctlbuf.len, 0); else { int ctl_part = 0; iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); uio.uio_iov = &iov; uio.uio_resid = iov.iov_len; uio.uio_loffset = 0; uio.uio_iovcnt = 1; while (mp && mp->b_datap->db_type != M_DATA && uio.uio_resid >= 0) { ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? mp->b_datap->db_type == M_PROTO : mp->b_datap->db_type == M_PCPROTO); if ((n = MIN(uio.uio_resid, mp->b_wptr - mp->b_rptr)) != 0 && (error = uiomove((char *)mp->b_rptr, n, UIO_READ, &uio)) != 0) { freemsg(tmp_mp); return (error); } ctl_part = 1; mp = mp->b_cont; } /* No ctl message */ if (ctl_part == 0) STRUCT_FSET(strpeek, ctlbuf.len, -1); else STRUCT_FSET(strpeek, ctlbuf.len, STRUCT_FGET(strpeek, ctlbuf.maxlen) - uio.uio_resid); } /* * Now process DATA blocks, if any. * If user doesn't want to get data info by setting maxlen <= 0, * then set len to -1/0 and skip data blocks part. */ if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) STRUCT_FSET(strpeek, databuf.len, -1); else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) STRUCT_FSET(strpeek, databuf.len, 0); else { int data_part = 0; iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); uio.uio_iov = &iov; uio.uio_resid = iov.iov_len; uio.uio_loffset = 0; uio.uio_iovcnt = 1; while (mp && uio.uio_resid) { if (mp->b_datap->db_type == M_DATA) { if ((n = MIN(uio.uio_resid, mp->b_wptr - mp->b_rptr)) != 0 && (error = uiomove((char *)mp->b_rptr, n, UIO_READ, &uio)) != 0) { freemsg(tmp_mp); return (error); } data_part = 1; } ASSERT(data_part == 0 || mp->b_datap->db_type == M_DATA); mp = mp->b_cont; } /* No data message */ if (data_part == 0) STRUCT_FSET(strpeek, databuf.len, -1); else STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, databuf.maxlen) - uio.uio_resid); } freemsg(tmp_mp); /* * It is a synch stream and user wants to get * data (maxlen > 0). * uio setup is done by the codes that process DATA * blocks above. */ if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { infod_t infod; infod.d_cmd = INFOD_COPYOUT; infod.d_res = 0; infod.d_uiop = &uio; error = infonext(rdq, &infod); if (error == EINVAL || error == EBUSY) error = 0; if (error) return (error); STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, databuf.maxlen) - uio.uio_resid); if (STRUCT_FGET(strpeek, databuf.len) == 0) { /* * No data found by the infonext(). */ STRUCT_FSET(strpeek, databuf.len, -1); } } error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, STRUCT_SIZE(strpeek), copyflag); if (error) { return (error); } /* * If there is no message retrieved, set return code to 0 * otherwise, set it to 1. */ if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && STRUCT_FGET(strpeek, databuf.len) == -1) *rvalp = 0; else *rvalp = 1; return (0); } case I_FDINSERT: { STRUCT_DECL(strfdinsert, strfdinsert); struct file *resftp; struct stdata *resstp; t_uscalar_t ival; ssize_t msgsize; struct strbuf mctl; STRUCT_INIT(strfdinsert, flag); if (stp->sd_flag & STRHUP) return (ENXIO); /* * STRDERR, STWRERR and STPLEX tested above. */ error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), STRUCT_SIZE(strfdinsert), copyflag); if (error) return (error); if (STRUCT_FGET(strfdinsert, offset) < 0 || (STRUCT_FGET(strfdinsert, offset) % sizeof (t_uscalar_t)) != 0) return (EINVAL); if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { if ((resstp = resftp->f_vnode->v_stream) == NULL) { releasef(STRUCT_FGET(strfdinsert, fildes)); return (EINVAL); } } else return (EINVAL); mutex_enter(&resstp->sd_lock); if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { error = strgeterr(resstp, STRDERR|STWRERR|STRHUP|STPLEX, 0); if (error != 0) { mutex_exit(&resstp->sd_lock); releasef(STRUCT_FGET(strfdinsert, fildes)); return (error); } } mutex_exit(&resstp->sd_lock); #ifdef _ILP32 { queue_t *q; queue_t *mate = NULL; /* get read queue of stream terminus */ claimstr(resstp->sd_wrq); for (q = resstp->sd_wrq->q_next; q->q_next != NULL; q = q->q_next) if (!STRMATED(resstp) && STREAM(q) != resstp && mate == NULL) { ASSERT(q->q_qinfo->qi_srvp); ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); claimstr(q); mate = q; } q = _RD(q); if (mate) releasestr(mate); releasestr(resstp->sd_wrq); ival = (t_uscalar_t)q; } #else ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); #endif /* _ILP32 */ if (STRUCT_FGET(strfdinsert, ctlbuf.len) < STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { releasef(STRUCT_FGET(strfdinsert, fildes)); return (EINVAL); } /* * Check for legal flag value. */ if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { releasef(STRUCT_FGET(strfdinsert, fildes)); return (EINVAL); } /* get these values from those cached in the stream head */ mutex_enter(QLOCK(stp->sd_wrq)); rmin = stp->sd_qn_minpsz; rmax = stp->sd_qn_maxpsz; mutex_exit(QLOCK(stp->sd_wrq)); /* * Make sure ctl and data sizes together fall within * the limits of the max and min receive packet sizes * and do not exceed system limit. A negative data * length means that no data part is to be sent. */ ASSERT((rmax >= 0) || (rmax == INFPSZ)); if (rmax == 0) { releasef(STRUCT_FGET(strfdinsert, fildes)); return (ERANGE); } if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) msgsize = 0; if ((msgsize < rmin) || ((msgsize > rmax) && (rmax != INFPSZ)) || (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { releasef(STRUCT_FGET(strfdinsert, fildes)); return (ERANGE); } mutex_enter(&stp->sd_lock); while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && !canputnext(stp->sd_wrq)) { if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, flag, -1, &done)) != 0 || done) { mutex_exit(&stp->sd_lock); releasef(STRUCT_FGET(strfdinsert, fildes)); return (error); } if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { mutex_exit(&stp->sd_lock); if (error = straccess(stp, access)) { releasef( STRUCT_FGET(strfdinsert, fildes)); return (error); } mutex_enter(&stp->sd_lock); } } mutex_exit(&stp->sd_lock); /* * Copy strfdinsert.ctlbuf into native form of * ctlbuf to pass down into strmakemsg(). */ mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_loffset = 0; uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : UIO_SYSSPACE; uio.uio_fmode = 0; uio.uio_extflg = UIO_COPY_CACHED; uio.uio_resid = iov.iov_len; if ((error = strmakemsg(&mctl, &msgsize, &uio, stp, STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { STRUCT_FSET(strfdinsert, databuf.len, msgsize); releasef(STRUCT_FGET(strfdinsert, fildes)); return (error); } STRUCT_FSET(strfdinsert, databuf.len, msgsize); /* * Place the possibly reencoded queue pointer 'offset' bytes * from the start of the control portion of the message. */ *((t_uscalar_t *)(mp->b_rptr + STRUCT_FGET(strfdinsert, offset))) = ival; /* * Put message downstream. */ stream_willservice(stp); putnext(stp->sd_wrq, mp); stream_runservice(stp); releasef(STRUCT_FGET(strfdinsert, fildes)); return (error); } case I_SENDFD: { struct file *fp; if ((fp = getf((int)arg)) == NULL) return (EBADF); error = do_sendfp(stp, fp, crp); #ifdef C2_AUDIT if (audit_active) { audit_fdsend((int)arg, fp, error); } #endif releasef((int)arg); return (error); } case I_RECVFD: case I_E_RECVFD: { struct k_strrecvfd *srf; int i, fd; mutex_enter(&stp->sd_lock); while (!(mp = getq(rdq))) { if (stp->sd_flag & (STRHUP|STREOF)) { mutex_exit(&stp->sd_lock); return (ENXIO); } if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, flag, -1, &done)) != 0 || done) { mutex_exit(&stp->sd_lock); return (error); } if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { mutex_exit(&stp->sd_lock); if (error = straccess(stp, access)) return (error); mutex_enter(&stp->sd_lock); } } if (mp->b_datap->db_type != M_PASSFP) { putback(stp, rdq, mp, mp->b_band); mutex_exit(&stp->sd_lock); return (EBADMSG); } mutex_exit(&stp->sd_lock); srf = (struct k_strrecvfd *)mp->b_rptr; if ((fd = ufalloc(0)) == -1) { mutex_enter(&stp->sd_lock); putback(stp, rdq, mp, mp->b_band); mutex_exit(&stp->sd_lock); return (EMFILE); } if (cmd == I_RECVFD) { struct o_strrecvfd ostrfd; /* check to see if uid/gid values are too large. */ if (srf->uid > (o_uid_t)USHRT_MAX || srf->gid > (o_gid_t)USHRT_MAX) { mutex_enter(&stp->sd_lock); putback(stp, rdq, mp, mp->b_band); mutex_exit(&stp->sd_lock); setf(fd, NULL); /* release fd entry */ return (EOVERFLOW); } ostrfd.fd = fd; ostrfd.uid = (o_uid_t)srf->uid; ostrfd.gid = (o_gid_t)srf->gid; /* Null the filler bits */ for (i = 0; i < 8; i++) ostrfd.fill[i] = 0; error = strcopyout(&ostrfd, (void *)arg, sizeof (struct o_strrecvfd), copyflag); } else { /* I_E_RECVFD */ struct strrecvfd strfd; strfd.fd = fd; strfd.uid = srf->uid; strfd.gid = srf->gid; /* null the filler bits */ for (i = 0; i < 8; i++) strfd.fill[i] = 0; error = strcopyout(&strfd, (void *)arg, sizeof (struct strrecvfd), copyflag); } if (error) { setf(fd, NULL); /* release fd entry */ mutex_enter(&stp->sd_lock); putback(stp, rdq, mp, mp->b_band); mutex_exit(&stp->sd_lock); return (error); } #ifdef C2_AUDIT if (audit_active) { audit_fdrecv(fd, srf->fp); } #endif /* * Always increment f_count since the freemsg() below will * always call free_passfp() which performs a closef(). */ mutex_enter(&srf->fp->f_tlock); srf->fp->f_count++; mutex_exit(&srf->fp->f_tlock); setf(fd, srf->fp); freemsg(mp); return (0); } case I_SWROPT: /* * Set/clear the write options. arg is a bit * mask with any of the following bits set... * SNDZERO - send zero length message * SNDPIPE - send sigpipe to process if * sd_werror is set and process is * doing a write or putmsg. * The new stream head write options should reflect * what is in arg. */ if (arg & ~(SNDZERO|SNDPIPE)) return (EINVAL); mutex_enter(&stp->sd_lock); stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); if (arg & SNDZERO) stp->sd_wput_opt |= SW_SNDZERO; if (arg & SNDPIPE) stp->sd_wput_opt |= SW_SIGPIPE; mutex_exit(&stp->sd_lock); return (0); case I_GWROPT: { int wropt = 0; if (stp->sd_wput_opt & SW_SNDZERO) wropt |= SNDZERO; if (stp->sd_wput_opt & SW_SIGPIPE) wropt |= SNDPIPE; return (strcopyout(&wropt, (void *)arg, sizeof (wropt), copyflag)); } case I_LIST: /* * Returns all the modules found on this stream, * upto the driver. If argument is NULL, return the * number of modules (including driver). If argument * is not NULL, copy the names into the structure * provided. */ { queue_t *q; int num_modules, space_allocated; STRUCT_DECL(str_list, strlist); struct str_mlist *mlist_ptr; if (arg == NULL) { /* Return number of modules plus driver */ q = stp->sd_wrq; if (stp->sd_vnode->v_type == VFIFO) { *rvalp = stp->sd_pushcnt; } else { *rvalp = stp->sd_pushcnt + 1; } } else { STRUCT_INIT(strlist, flag); error = strcopyin((void *)arg, STRUCT_BUF(strlist), STRUCT_SIZE(strlist), copyflag); if (error) return (error); space_allocated = STRUCT_FGET(strlist, sl_nmods); if ((space_allocated) <= 0) return (EINVAL); claimstr(stp->sd_wrq); q = stp->sd_wrq; num_modules = 0; while (_SAMESTR(q) && (space_allocated != 0)) { char *name = q->q_next->q_qinfo->qi_minfo->mi_idname; mlist_ptr = STRUCT_FGETP(strlist, sl_modlist); error = strcopyout(name, mlist_ptr, strlen(name) + 1, copyflag); if (error) { releasestr(stp->sd_wrq); return (error); } q = q->q_next; space_allocated--; num_modules++; mlist_ptr = (struct str_mlist *)((uintptr_t)mlist_ptr + sizeof (struct str_mlist)); STRUCT_FSETP(strlist, sl_modlist, mlist_ptr); } releasestr(stp->sd_wrq); error = strcopyout(&num_modules, (void *)arg, sizeof (int), copyflag); } return (error); } case I_CKBAND: { queue_t *q; qband_t *qbp; if ((arg < 0) || (arg >= NBAND)) return (EINVAL); q = _RD(stp->sd_wrq); mutex_enter(QLOCK(q)); if (arg > (int)q->q_nband) { *rvalp = 0; } else { if (arg == 0) { if (q->q_first) *rvalp = 1; else *rvalp = 0; } else { qbp = q->q_bandp; while (--arg > 0) qbp = qbp->qb_next; if (qbp->qb_first) *rvalp = 1; else *rvalp = 0; } } mutex_exit(QLOCK(q)); return (0); } case I_GETBAND: { int intpri; queue_t *q; q = _RD(stp->sd_wrq); mutex_enter(QLOCK(q)); mp = q->q_first; if (!mp) { mutex_exit(QLOCK(q)); return (ENODATA); } intpri = (int)mp->b_band; error = strcopyout(&intpri, (void *)arg, sizeof (int), copyflag); mutex_exit(QLOCK(q)); return (error); } case I_ATMARK: { queue_t *q; if (arg & ~(ANYMARK|LASTMARK)) return (EINVAL); q = _RD(stp->sd_wrq); mutex_enter(&stp->sd_lock); if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { *rvalp = 1; } else { mutex_enter(QLOCK(q)); mp = q->q_first; if (mp == NULL) *rvalp = 0; else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) *rvalp = 1; else if ((arg == LASTMARK) && (mp == stp->sd_mark)) *rvalp = 1; else *rvalp = 0; mutex_exit(QLOCK(q)); } mutex_exit(&stp->sd_lock); return (0); } case I_CANPUT: { char band; if ((arg < 0) || (arg >= NBAND)) return (EINVAL); band = (char)arg; *rvalp = bcanputnext(stp->sd_wrq, band); return (0); } case I_SETCLTIME: { int closetime; error = strcopyin((void *)arg, &closetime, sizeof (int), copyflag); if (error) return (error); if (closetime < 0) return (EINVAL); stp->sd_closetime = closetime; return (0); } case I_GETCLTIME: { int closetime; closetime = stp->sd_closetime; return (strcopyout(&closetime, (void *)arg, sizeof (int), copyflag)); } case TIOCGSID: { pid_t sid; mutex_enter(&pidlock); if (stp->sd_sidp == NULL) { mutex_exit(&pidlock); return (ENOTTY); } sid = stp->sd_sidp->pid_id; mutex_exit(&pidlock); return (strcopyout(&sid, (void *)arg, sizeof (pid_t), copyflag)); } case TIOCSPGRP: { pid_t pgrp; proc_t *q; pid_t sid, fg_pgid, bg_pgid; if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), copyflag)) return (error); mutex_enter(&stp->sd_lock); mutex_enter(&pidlock); if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { mutex_exit(&pidlock); mutex_exit(&stp->sd_lock); return (ENOTTY); } if (pgrp == stp->sd_pgidp->pid_id) { mutex_exit(&pidlock); mutex_exit(&stp->sd_lock); return (0); } if (pgrp <= 0 || pgrp >= maxpid) { mutex_exit(&pidlock); mutex_exit(&stp->sd_lock); return (EINVAL); } if ((q = pgfind(pgrp)) == NULL || q->p_sessp != ttoproc(curthread)->p_sessp) { mutex_exit(&pidlock); mutex_exit(&stp->sd_lock); return (EPERM); } sid = stp->sd_sidp->pid_id; fg_pgid = q->p_pgrp; bg_pgid = stp->sd_pgidp->pid_id; CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); PID_RELE(stp->sd_pgidp); stp->sd_pgidp = q->p_pgidp; PID_HOLD(stp->sd_pgidp); mutex_exit(&pidlock); mutex_exit(&stp->sd_lock); return (0); } case TIOCGPGRP: { pid_t pgrp; mutex_enter(&pidlock); if (stp->sd_sidp == NULL) { mutex_exit(&pidlock); return (ENOTTY); } pgrp = stp->sd_pgidp->pid_id; mutex_exit(&pidlock); return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), copyflag)); } case FIONBIO: case FIOASYNC: return (0); /* handled by the upper layer */ } } /* * Custom free routine used for M_PASSFP messages. */ static void free_passfp(struct k_strrecvfd *srf) { (void) closef(srf->fp); kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); } /* ARGSUSED */ int do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) { queue_t *qp, *nextqp; struct k_strrecvfd *srf; mblk_t *mp; frtn_t *frtnp; size_t bufsize; queue_t *mate = NULL; syncq_t *sq = NULL; int retval = 0; if (stp->sd_flag & STRHUP) return (ENXIO); claimstr(stp->sd_wrq); /* Fastpath, we have a pipe, and we are already mated, use it. */ if (STRMATED(stp)) { qp = _RD(stp->sd_mate->sd_wrq); claimstr(qp); mate = qp; } else { /* Not already mated. */ /* * Walk the stream to the end of this one. * assumes that the claimstr() will prevent * plumbing between the stream head and the * driver from changing */ qp = stp->sd_wrq; /* * Loop until we reach the end of this stream. * On completion, qp points to the write queue * at the end of the stream, or the read queue * at the stream head if this is a fifo. */ while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) ; /* * Just in case we get a q_next which is NULL, but * not at the end of the stream. This is actually * broken, so we set an assert to catch it in * debug, and set an error and return if not debug. */ ASSERT(qp); if (qp == NULL) { releasestr(stp->sd_wrq); return (EINVAL); } /* * Enter the syncq for the driver, so (hopefully) * the queue values will not change on us. * XXXX - This will only prevent the race IFF only * the write side modifies the q_next member, and * the put procedure is protected by at least * MT_PERQ. */ if ((sq = qp->q_syncq) != NULL) entersq(sq, SQ_PUT); /* Now get the q_next value from this qp. */ nextqp = qp->q_next; /* * If nextqp exists and the other stream is different * from this one claim the stream, set the mate, and * get the read queue at the stream head of the other * stream. Assumes that nextqp was at least valid when * we got it. Hopefully the entersq of the driver * will prevent it from changing on us. */ if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { ASSERT(qp->q_qinfo->qi_srvp); ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); claimstr(nextqp); /* Make sure we still have a q_next */ if (nextqp != qp->q_next) { releasestr(stp->sd_wrq); releasestr(nextqp); return (EINVAL); } qp = _RD(STREAM(nextqp)->sd_wrq); mate = qp; } /* If we entered the synq above, leave it. */ if (sq != NULL) leavesq(sq, SQ_PUT); } /* STRMATED(STP) */ /* XXX prevents substitution of the ops vector */ if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { retval = EINVAL; goto out; } if (qp->q_flag & QFULL) { retval = EAGAIN; goto out; } /* * Since M_PASSFP messages include a file descriptor, we use * esballoc() and specify a custom free routine (free_passfp()) that * will close the descriptor as part of freeing the message. For * convenience, we stash the frtn_t right after the data block. */ bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); srf = kmem_alloc(bufsize, KM_NOSLEEP); if (srf == NULL) { retval = EAGAIN; goto out; } frtnp = (frtn_t *)(srf + 1); frtnp->free_arg = (caddr_t)srf; frtnp->free_func = free_passfp; mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); if (mp == NULL) { kmem_free(srf, bufsize); retval = EAGAIN; goto out; } mp->b_wptr += sizeof (struct k_strrecvfd); mp->b_datap->db_type = M_PASSFP; srf->fp = fp; srf->uid = crgetuid(curthread->t_cred); srf->gid = crgetgid(curthread->t_cred); mutex_enter(&fp->f_tlock); fp->f_count++; mutex_exit(&fp->f_tlock); put(qp, mp); out: releasestr(stp->sd_wrq); if (mate) releasestr(mate); return (retval); } /* * Send an ioctl message downstream and wait for acknowledgement. * flags may be set to either U_TO_K or K_TO_K and a combination * of STR_NOERROR or STR_NOSIG * STR_NOSIG: Signals are essentially ignored or held and have * no effect for the duration of the call. * STR_NOERROR: Ignores stream head read, write and hup errors. * Additionally, if an existing ioctl times out, it is assumed * lost and and this ioctl will continue as if the previous ioctl had * finished. ETIME may be returned if this ioctl times out (i.e. * ic_timout is not INFTIM). Non-stream head errors may be returned if * the ioc_error indicates that the driver/module had problems, * an EFAULT was found when accessing user data, a lack of * resources, etc. */ int strdoioctl( struct stdata *stp, struct strioctl *strioc, int fflags, /* file flags with model info */ int flag, cred_t *crp, int *rvalp) { mblk_t *bp; struct iocblk *iocbp; struct copyreq *reqp; struct copyresp *resp; int id; int transparent = 0; int error = 0; int len = 0; caddr_t taddr; int copyflag = (flag & (U_TO_K | K_TO_K)); int sigflag = (flag & STR_NOSIG); int errs; uint_t waitflags; ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); ASSERT((fflags & FMODELS) != 0); TRACE_2(TR_FAC_STREAMS_FR, TR_STRDOIOCTL, "strdoioctl:stp %p strioc %p", stp, strioc); if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ transparent = 1; strioc->ic_len = sizeof (intptr_t); } if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) return (EINVAL); if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, crp)) == NULL) return (error); bzero(bp->b_wptr, sizeof (union ioctypes)); iocbp = (struct iocblk *)bp->b_wptr; iocbp->ioc_count = strioc->ic_len; iocbp->ioc_cmd = strioc->ic_cmd; iocbp->ioc_flag = (fflags & FMODELS); crhold(crp); iocbp->ioc_cr = crp; DB_TYPE(bp) = M_IOCTL; DB_CPID(bp) = curproc->p_pid; bp->b_wptr += sizeof (struct iocblk); if (flag & STR_NOERROR) errs = STPLEX; else errs = STRHUP|STRDERR|STWRERR|STPLEX; /* * If there is data to copy into ioctl block, do so. */ if (iocbp->ioc_count > 0) { if (transparent) /* * Note: STR_NOERROR does not have an effect * in putiocd() */ id = K_TO_K | sigflag; else id = flag; if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { freemsg(bp); crfree(crp); return (error); } /* * We could have slept copying in user pages. * Recheck the stream head state (the other end * of a pipe could have gone away). */ if (stp->sd_flag & errs) { mutex_enter(&stp->sd_lock); error = strgeterr(stp, errs, 0); mutex_exit(&stp->sd_lock); if (error != 0) { freemsg(bp); crfree(crp); return (error); } } } if (transparent) iocbp->ioc_count = TRANSPARENT; /* * Block for up to STRTIMOUT milliseconds if there is an outstanding * ioctl for this stream already running. All processes * sleeping here will be awakened as a result of an ACK * or NAK being received for the outstanding ioctl, or * as a result of the timer expiring on the outstanding * ioctl (a failure), or as a result of any waiting * process's timer expiring (also a failure). */ error = 0; mutex_enter(&stp->sd_lock); while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) { clock_t cv_rval; TRACE_0(TR_FAC_STREAMS_FR, TR_STRDOIOCTL_WAIT, "strdoioctl sleeps - IOCWAIT"); cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, STRTIMOUT, sigflag); if (cv_rval <= 0) { if (cv_rval == 0) { error = EINTR; } else { if (flag & STR_NOERROR) { /* * Terminating current ioctl in * progress -- assume it got lost and * wake up the other thread so that the * operation completes. */ if (!(stp->sd_flag & IOCWAITNE)) { stp->sd_flag |= IOCWAITNE; cv_broadcast(&stp->sd_monitor); } /* * Otherwise, there's a running * STR_NOERROR -- we have no choice * here but to wait forever (or until * interrupted). */ } else { /* * pending ioctl has caused * us to time out */ error = ETIME; } } } else if ((stp->sd_flag & errs)) { error = strgeterr(stp, errs, 0); } if (error) { mutex_exit(&stp->sd_lock); freemsg(bp); crfree(crp); return (error); } } /* * Have control of ioctl mechanism. * Send down ioctl packet and wait for response. */ if (stp->sd_iocblk != (mblk_t *)-1) { freemsg(stp->sd_iocblk); } stp->sd_iocblk = NULL; /* * If this is marked with 'noerror' (internal; mostly * I_{P,}{UN,}LINK), then make sure nobody else is able to get * in here by setting IOCWAITNE. */ waitflags = IOCWAIT; if (flag & STR_NOERROR) waitflags |= IOCWAITNE; stp->sd_flag |= waitflags; /* * Assign sequence number. */ iocbp->ioc_id = stp->sd_iocid = getiocseqno(); mutex_exit(&stp->sd_lock); TRACE_1(TR_FAC_STREAMS_FR, TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); stream_willservice(stp); putnext(stp->sd_wrq, bp); stream_runservice(stp); /* * Timed wait for acknowledgment. The wait time is limited by the * timeout value, which must be a positive integer (number of * milliseconds to wait, or 0 (use default value of STRTIMOUT * milliseconds), or -1 (wait forever). This will be awakened * either by an ACK/NAK message arriving, the timer expiring, or * the timer expiring on another ioctl waiting for control of the * mechanism. */ waitioc: mutex_enter(&stp->sd_lock); /* * If the reply has already arrived, don't sleep. If awakened from * the sleep, fail only if the reply has not arrived by then. * Otherwise, process the reply. */ while (!stp->sd_iocblk) { clock_t cv_rval; if (stp->sd_flag & errs) { error = strgeterr(stp, errs, 0); if (error != 0) { stp->sd_flag &= ~waitflags; cv_broadcast(&stp->sd_iocmonitor); mutex_exit(&stp->sd_lock); crfree(crp); return (error); } } TRACE_0(TR_FAC_STREAMS_FR, TR_STRDOIOCTL_WAIT2, "strdoioctl sleeps awaiting reply"); ASSERT(error == 0); cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, (strioc->ic_timout ? strioc->ic_timout * 1000 : STRTIMOUT), sigflag); /* * There are four possible cases here: interrupt, timeout, * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a * valid M_IOCTL reply). * * If we've been awakened by a STR_NOERROR ioctl on some other * thread, then sd_iocblk will still be NULL, and IOCWAITNE * will be set. Pretend as if we just timed out. Note that * this other thread waited at least STRTIMOUT before trying to * awaken our thread, so this is indistinguishable (even for * INFTIM) from the case where we failed with ETIME waiting on * IOCWAIT in the prior loop. */ if (cv_rval > 0 && !(flag & STR_NOERROR) && stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { cv_rval = -1; } /* * note: STR_NOERROR does not protect * us here.. use ic_timout < 0 */ if (cv_rval <= 0) { if (cv_rval == 0) { error = EINTR; } else { error = ETIME; } /* * A message could have come in after we were scheduled * but before we were actually run. */ bp = stp->sd_iocblk; stp->sd_iocblk = NULL; if (bp != NULL) { if ((bp->b_datap->db_type == M_COPYIN) || (bp->b_datap->db_type == M_COPYOUT)) { mutex_exit(&stp->sd_lock); if (bp->b_cont) { freemsg(bp->b_cont); bp->b_cont = NULL; } bp->b_datap->db_type = M_IOCDATA; bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); resp = (struct copyresp *)bp->b_rptr; resp->cp_rval = (caddr_t)1; /* failure */ stream_willservice(stp); putnext(stp->sd_wrq, bp); stream_runservice(stp); mutex_enter(&stp->sd_lock); } else { freemsg(bp); } } stp->sd_flag &= ~waitflags; cv_broadcast(&stp->sd_iocmonitor); mutex_exit(&stp->sd_lock); crfree(crp); return (error); } } bp = stp->sd_iocblk; /* * Note: it is strictly impossible to get here with sd_iocblk set to * -1. This is because the initial loop above doesn't allow any new * ioctls into the fray until all others have passed this point. */ ASSERT(bp != NULL && bp != (mblk_t *)-1); TRACE_1(TR_FAC_STREAMS_FR, TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); if ((bp->b_datap->db_type == M_IOCACK) || (bp->b_datap->db_type == M_IOCNAK)) { /* for detection of duplicate ioctl replies */ stp->sd_iocblk = (mblk_t *)-1; stp->sd_flag &= ~waitflags; cv_broadcast(&stp->sd_iocmonitor); mutex_exit(&stp->sd_lock); } else { /* * flags not cleared here because we're still doing * copy in/out for ioctl. */ stp->sd_iocblk = NULL; mutex_exit(&stp->sd_lock); } /* * Have received acknowledgment. */ switch (bp->b_datap->db_type) { case M_IOCACK: /* * Positive ack. */ iocbp = (struct iocblk *)bp->b_rptr; /* * Set error if indicated. */ if (iocbp->ioc_error) { error = iocbp->ioc_error; break; } /* * Set return value. */ *rvalp = iocbp->ioc_rval; /* * Data may have been returned in ACK message (ioc_count > 0). * If so, copy it out to the user's buffer. */ if (iocbp->ioc_count && !transparent) { if (error = getiocd(bp, strioc->ic_dp, copyflag)) break; } if (!transparent) { if (len) /* an M_COPYOUT was used with I_STR */ strioc->ic_len = len; else strioc->ic_len = (int)iocbp->ioc_count; } break; case M_IOCNAK: /* * Negative ack. * * The only thing to do is set error as specified * in neg ack packet. */ iocbp = (struct iocblk *)bp->b_rptr; error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); break; case M_COPYIN: /* * Driver or module has requested user ioctl data. */ reqp = (struct copyreq *)bp->b_rptr; /* * M_COPYIN should *never* have a message attached, though * it's harmless if it does -- thus, panic on a DEBUG * kernel and just free it on a non-DEBUG build. */ ASSERT(bp->b_cont == NULL); if (bp->b_cont != NULL) { freemsg(bp->b_cont); bp->b_cont = NULL; } error = putiocd(bp, reqp->cq_addr, flag, crp); if (error && bp->b_cont) { freemsg(bp->b_cont); bp->b_cont = NULL; } bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); bp->b_datap->db_type = M_IOCDATA; mblk_setcred(bp, crp); DB_CPID(bp) = curproc->p_pid; resp = (struct copyresp *)bp->b_rptr; resp->cp_rval = (caddr_t)(uintptr_t)error; resp->cp_flag = (fflags & FMODELS); stream_willservice(stp); putnext(stp->sd_wrq, bp); stream_runservice(stp); if (error) { mutex_enter(&stp->sd_lock); stp->sd_flag &= ~waitflags; cv_broadcast(&stp->sd_iocmonitor); mutex_exit(&stp->sd_lock); crfree(crp); return (error); } goto waitioc; case M_COPYOUT: /* * Driver or module has ioctl data for a user. */ reqp = (struct copyreq *)bp->b_rptr; ASSERT(bp->b_cont != NULL); /* * Always (transparent or non-transparent ) * use the address specified in the request */ taddr = reqp->cq_addr; if (!transparent) len = (int)reqp->cq_size; /* copyout data to the provided address */ error = getiocd(bp, taddr, copyflag); freemsg(bp->b_cont); bp->b_cont = NULL; bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); bp->b_datap->db_type = M_IOCDATA; mblk_setcred(bp, crp); DB_CPID(bp) = curproc->p_pid; resp = (struct copyresp *)bp->b_rptr; resp->cp_rval = (caddr_t)(uintptr_t)error; resp->cp_flag = (fflags & FMODELS); stream_willservice(stp); putnext(stp->sd_wrq, bp); stream_runservice(stp); if (error) { mutex_enter(&stp->sd_lock); stp->sd_flag &= ~waitflags; cv_broadcast(&stp->sd_iocmonitor); mutex_exit(&stp->sd_lock); crfree(crp); return (error); } goto waitioc; default: ASSERT(0); mutex_enter(&stp->sd_lock); stp->sd_flag &= ~waitflags; cv_broadcast(&stp->sd_iocmonitor); mutex_exit(&stp->sd_lock); break; } freemsg(bp); crfree(crp); return (error); } /* * For the SunOS keyboard driver. * Return the next available "ioctl" sequence number. * Exported, so that streams modules can send "ioctl" messages * downstream from their open routine. */ int getiocseqno(void) { int i; mutex_enter(&strresources); i = ++ioc_id; mutex_exit(&strresources); return (i); } /* * Get the next message from the read queue. If the message is * priority, STRPRI will have been set by strrput(). This flag * should be reset only when the entire message at the front of the * queue as been consumed. * * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. */ int strgetmsg( struct vnode *vp, struct strbuf *mctl, struct strbuf *mdata, unsigned char *prip, int *flagsp, int fmode, rval_t *rvp) { struct stdata *stp; mblk_t *bp, *nbp; mblk_t *savemp = NULL; mblk_t *savemptail = NULL; uint_t old_sd_flag; int flg; int more = 0; int error = 0; char first = 1; uint_t mark; /* Contains MSG*MARK and _LASTMARK */ #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ unsigned char pri = 0; queue_t *q; int pr = 0; /* Partial read successful */ struct uio uios; struct uio *uiop = &uios; struct iovec iovs; unsigned char type; TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, "strgetmsg:%p", vp); ASSERT(vp->v_stream); stp = vp->v_stream; rvp->r_val1 = 0; if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) if (error = straccess(stp, JCREAD)) return (error); /* Fast check of flags before acquiring the lock */ if (stp->sd_flag & (STRDERR|STPLEX)) { mutex_enter(&stp->sd_lock); error = strgeterr(stp, STRDERR|STPLEX, 0); mutex_exit(&stp->sd_lock); if (error != 0) return (error); } switch (*flagsp) { case MSG_HIPRI: if (*prip != 0) return (EINVAL); break; case MSG_ANY: case MSG_BAND: break; default: return (EINVAL); } /* * Setup uio and iov for data part */ iovs.iov_base = mdata->buf; iovs.iov_len = mdata->maxlen; uios.uio_iov = &iovs; uios.uio_iovcnt = 1; uios.uio_loffset = 0; uios.uio_segflg = UIO_USERSPACE; uios.uio_fmode = 0; uios.uio_extflg = UIO_COPY_CACHED; uios.uio_resid = mdata->maxlen; uios.uio_offset = 0; q = _RD(stp->sd_wrq); mutex_enter(&stp->sd_lock); old_sd_flag = stp->sd_flag; mark = 0; for (;;) { int done = 0; mblk_t *q_first = q->q_first; /* * Get the next message of appropriate priority * from the stream head. If the caller is interested * in band or hipri messages, then they should already * be enqueued at the stream head. On the other hand * if the caller wants normal (band 0) messages, they * might be deferred in a synchronous stream and they * will need to be pulled up. * * After we have dequeued a message, we might find that * it was a deferred M_SIG that was enqueued at the * stream head. It must now be posted as part of the * read by calling strsignal_nolock(). * * Also note that strrput does not enqueue an M_PCSIG, * and there cannot be more than one hipri message, * so there was no need to have the M_PCSIG case. * * At some time it might be nice to try and wrap the * functionality of kstrgetmsg() and strgetmsg() into * a common routine so to reduce the amount of replicated * code (since they are extremely similar). */ if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { /* Asking for normal, band0 data */ bp = strget(stp, q, uiop, first, &error); ASSERT(MUTEX_HELD(&stp->sd_lock)); if (bp != NULL) { if (bp->b_datap->db_type == M_SIG) { strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); continue; } else { break; } } if (error != 0) { goto getmout; } /* * We can't depend on the value of STRPRI here because * the stream head may be in transit. Therefore, we * must look at the type of the first message to * determine if a high priority messages is waiting */ } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && q_first->b_datap->db_type >= QPCTL && (bp = getq_noenab(q)) != NULL) { /* Asked for HIPRI and got one */ ASSERT(bp->b_datap->db_type >= QPCTL); break; } else if ((*flagsp & MSG_BAND) && q_first != NULL && ((q_first->b_band >= *prip) || q_first->b_datap->db_type >= QPCTL) && (bp = getq_noenab(q)) != NULL) { /* * Asked for at least band "prip" and got either at * least that band or a hipri message. */ ASSERT(bp->b_band >= *prip || bp->b_datap->db_type >= QPCTL); if (bp->b_datap->db_type == M_SIG) { strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); continue; } else { break; } } /* No data. Time to sleep? */ qbackenable(q, 0); /* * If STRHUP or STREOF, return 0 length control and data. * If resid is 0, then a read(fd,buf,0) was done. Do not * sleep to satisfy this request because by default we have * zero bytes to return. */ if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && mdata->maxlen == 0)) { mctl->len = mdata->len = 0; *flagsp = 0; mutex_exit(&stp->sd_lock); return (0); } TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, "strgetmsg calls strwaitq:%p, %p", vp, uiop); if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, &done)) != 0) || done) { TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, "strgetmsg error or done:%p, %p", vp, uiop); mutex_exit(&stp->sd_lock); return (error); } TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, "strgetmsg awakes:%p, %p", vp, uiop); if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { mutex_exit(&stp->sd_lock); if (error = straccess(stp, JCREAD)) return (error); mutex_enter(&stp->sd_lock); } first = 0; } ASSERT(bp != NULL); /* * Extract any mark information. If the message is not completely * consumed this information will be put in the mblk * that is putback. * If MSGMARKNEXT is set and the message is completely consumed * the STRATMARK flag will be set below. Likewise, if * MSGNOTMARKNEXT is set and the message is * completely consumed STRNOTATMARK will be set. */ mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != (MSGMARKNEXT|MSGNOTMARKNEXT)); if (mark != 0 && bp == stp->sd_mark) { mark |= _LASTMARK; stp->sd_mark = NULL; } /* * keep track of the original message type and priority */ pri = bp->b_band; type = bp->b_datap->db_type; if (type == M_PASSFP) { if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) stp->sd_mark = bp; bp->b_flag |= mark & ~_LASTMARK; putback(stp, q, bp, pri); qbackenable(q, pri); mutex_exit(&stp->sd_lock); return (EBADMSG); } ASSERT(type != M_SIG); /* * Set this flag so strrput will not generate signals. Need to * make sure this flag is cleared before leaving this routine * else signals will stop being sent. */ stp->sd_flag |= STRGETINPROG; mutex_exit(&stp->sd_lock); if (STREAM_NEEDSERVICE(stp)) stream_runservice(stp); /* * Set HIPRI flag if message is priority. */ if (type >= QPCTL) flg = MSG_HIPRI; else flg = MSG_BAND; /* * First process PROTO or PCPROTO blocks, if any. */ if (mctl->maxlen >= 0 && type != M_DATA) { size_t n, bcnt; char *ubuf; bcnt = mctl->maxlen; ubuf = mctl->buf; while (bp != NULL && bp->b_datap->db_type != M_DATA) { if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && copyout(bp->b_rptr, ubuf, n)) { error = EFAULT; mutex_enter(&stp->sd_lock); /* * clear stream head pri flag based on * first message type */ if (type >= QPCTL) { ASSERT(type == M_PCPROTO); stp->sd_flag &= ~STRPRI; } more = 0; freemsg(bp); goto getmout; } ubuf += n; bp->b_rptr += n; if (bp->b_rptr >= bp->b_wptr) { nbp = bp; bp = bp->b_cont; freeb(nbp); } ASSERT(n <= bcnt); bcnt -= n; if (bcnt == 0) break; } mctl->len = mctl->maxlen - bcnt; } else mctl->len = -1; if (bp && bp->b_datap->db_type != M_DATA) { /* * More PROTO blocks in msg. */ more |= MORECTL; savemp = bp; while (bp && bp->b_datap->db_type != M_DATA) { savemptail = bp; bp = bp->b_cont; } savemptail->b_cont = NULL; } /* * Now process DATA blocks, if any. */ if (mdata->maxlen >= 0 && bp) { /* * struiocopyout will consume a potential zero-length * M_DATA even if uio_resid is zero. */ size_t oldresid = uiop->uio_resid; bp = struiocopyout(bp, uiop, &error); if (error != 0) { mutex_enter(&stp->sd_lock); /* * clear stream head hi pri flag based on * first message */ if (type >= QPCTL) { ASSERT(type == M_PCPROTO); stp->sd_flag &= ~STRPRI; } more = 0; freemsg(savemp); goto getmout; } /* * (pr == 1) indicates a partial read. */ if (oldresid > uiop->uio_resid) pr = 1; mdata->len = mdata->maxlen - uiop->uio_resid; } else mdata->len = -1; if (bp) { /* more data blocks in msg */ more |= MOREDATA; if (savemp) savemptail->b_cont = bp; else savemp = bp; } mutex_enter(&stp->sd_lock); if (savemp) { if (pr && (savemp->b_datap->db_type == M_DATA) && msgnodata(savemp)) { /* * Avoid queuing a zero-length tail part of * a message. pr=1 indicates that we read some of * the message. */ freemsg(savemp); more &= ~MOREDATA; /* * clear stream head hi pri flag based on * first message */ if (type >= QPCTL) { ASSERT(type == M_PCPROTO); stp->sd_flag &= ~STRPRI; } } else { savemp->b_band = pri; /* * If the first message was HIPRI and the one we're * putting back isn't, then clear STRPRI, otherwise * set STRPRI again. Note that we must set STRPRI * again since the flush logic in strrput_nondata() * may have cleared it while we had sd_lock dropped. */ if (type >= QPCTL) { ASSERT(type == M_PCPROTO); if (queclass(savemp) < QPCTL) stp->sd_flag &= ~STRPRI; else stp->sd_flag |= STRPRI; } else if (queclass(savemp) >= QPCTL) { /* * The first message was not a HIPRI message, * but the one we are about to putback is. * For simplicitly, we do not allow for HIPRI * messages to be embedded in the message * body, so just force it to same type as * first message. */ ASSERT(type == M_DATA || type == M_PROTO); ASSERT(savemp->b_datap->db_type == M_PCPROTO); savemp->b_datap->db_type = type; } if (mark != 0) { savemp->b_flag |= mark & ~_LASTMARK; if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) { /* * If another marked message arrived * while sd_lock was not held sd_mark * would be non-NULL. */ stp->sd_mark = savemp; } } putback(stp, q, savemp, pri); } } else { /* * The complete message was consumed. * * If another M_PCPROTO arrived while sd_lock was not held * it would have been discarded since STRPRI was still set. * * Move the MSG*MARKNEXT information * to the stream head just in case * the read queue becomes empty. * clear stream head hi pri flag based on * first message * * If the stream head was at the mark * (STRATMARK) before we dropped sd_lock above * and some data was consumed then we have * moved past the mark thus STRATMARK is * cleared. However, if a message arrived in * strrput during the copyout above causing * STRATMARK to be set we can not clear that * flag. */ if (type >= QPCTL) { ASSERT(type == M_PCPROTO); stp->sd_flag &= ~STRPRI; } if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { if (mark & MSGMARKNEXT) { stp->sd_flag &= ~STRNOTATMARK; stp->sd_flag |= STRATMARK; } else if (mark & MSGNOTMARKNEXT) { stp->sd_flag &= ~STRATMARK; stp->sd_flag |= STRNOTATMARK; } else { stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); } } else if (pr && (old_sd_flag & STRATMARK)) { stp->sd_flag &= ~STRATMARK; } } *flagsp = flg; *prip = pri; /* * Getmsg cleanup processing - if the state of the queue has changed * some signals may need to be sent and/or poll awakened. */ getmout: qbackenable(q, pri); /* * We dropped the stream head lock above. Send all M_SIG messages * before processing stream head for SIGPOLL messages. */ ASSERT(MUTEX_HELD(&stp->sd_lock)); while ((bp = q->q_first) != NULL && (bp->b_datap->db_type == M_SIG)) { /* * sd_lock is held so the content of the read queue can not * change. */ bp = getq(q); ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); mutex_exit(&stp->sd_lock); freemsg(bp); if (STREAM_NEEDSERVICE(stp)) stream_runservice(stp); mutex_enter(&stp->sd_lock); } /* * stream head cannot change while we make the determination * whether or not to send a signal. Drop the flag to allow strrput * to send firstmsgsigs again. */ stp->sd_flag &= ~STRGETINPROG; /* * If the type of message at the front of the queue changed * due to the receive the appropriate signals and pollwakeup events * are generated. The type of changes are: * Processed a hipri message, q_first is not hipri. * Processed a band X message, and q_first is band Y. * The generated signals and pollwakeups are identical to what * strrput() generates should the message that is now on q_first * arrive to an empty read queue. * * Note: only strrput will send a signal for a hipri message. */ if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { strsigset_t signals = 0; strpollset_t pollwakeups = 0; if (flg & MSG_HIPRI) { /* * Removed a hipri message. Regular data at * the front of the queue. */ if (bp->b_band == 0) { signals = S_INPUT | S_RDNORM; pollwakeups = POLLIN | POLLRDNORM; } else { signals = S_INPUT | S_RDBAND; pollwakeups = POLLIN | POLLRDBAND; } } else if (pri != bp->b_band) { /* * The band is different for the new q_first. */ if (bp->b_band == 0) { signals = S_RDNORM; pollwakeups = POLLIN | POLLRDNORM; } else { signals = S_RDBAND; pollwakeups = POLLIN | POLLRDBAND; } } if (pollwakeups != 0) { if (pollwakeups == (POLLIN | POLLRDNORM)) { if (!(stp->sd_rput_opt & SR_POLLIN)) goto no_pollwake; stp->sd_rput_opt &= ~SR_POLLIN; } mutex_exit(&stp->sd_lock); pollwakeup(&stp->sd_pollist, pollwakeups); mutex_enter(&stp->sd_lock); } no_pollwake: if (stp->sd_sigflags & signals) strsendsig(stp->sd_siglist, signals, bp->b_band, 0); } mutex_exit(&stp->sd_lock); rvp->r_val1 = more; return (error); #undef _LASTMARK } /* * Get the next message from the read queue. If the message is * priority, STRPRI will have been set by strrput(). This flag * should be reset only when the entire message at the front of the * queue as been consumed. * * If uiop is NULL all data is returned in mctlp. * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed * not enabled. * The timeout parameter is in milliseconds; -1 for infinity. * This routine handles the consolidation private flags: * MSG_IGNERROR Ignore any stream head error except STPLEX. * MSG_DELAYERROR Defer the error check until the queue is empty. * MSG_HOLDSIG Hold signals while waiting for data. * MSG_IPEEK Only peek at messages. * MSG_DISCARDTAIL Discard the tail M_DATA part of the message * that doesn't fit. * MSG_NOMARK If the message is marked leave it on the queue. * * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. */ int kstrgetmsg( struct vnode *vp, mblk_t **mctlp, struct uio *uiop, unsigned char *prip, int *flagsp, clock_t timout, rval_t *rvp) { struct stdata *stp; mblk_t *bp, *nbp; mblk_t *savemp = NULL; mblk_t *savemptail = NULL; int flags; uint_t old_sd_flag; int flg; int more = 0; int error = 0; char first = 1; uint_t mark; /* Contains MSG*MARK and _LASTMARK */ #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ unsigned char pri = 0; queue_t *q; int pr = 0; /* Partial read successful */ unsigned char type; TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, "kstrgetmsg:%p", vp); ASSERT(vp->v_stream); stp = vp->v_stream; rvp->r_val1 = 0; if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) if (error = straccess(stp, JCREAD)) return (error); flags = *flagsp; /* Fast check of flags before acquiring the lock */ if (stp->sd_flag & (STRDERR|STPLEX)) { if ((stp->sd_flag & STPLEX) || (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { mutex_enter(&stp->sd_lock); error = strgeterr(stp, STRDERR|STPLEX, (flags & MSG_IPEEK)); mutex_exit(&stp->sd_lock); if (error != 0) return (error); } } switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { case MSG_HIPRI: if (*prip != 0) return (EINVAL); break; case MSG_ANY: case MSG_BAND: break; default: return (EINVAL); } retry: q = _RD(stp->sd_wrq); mutex_enter(&stp->sd_lock); old_sd_flag = stp->sd_flag; mark = 0; for (;;) { int done = 0; int waitflag; int fmode; mblk_t *q_first = q->q_first; /* * This section of the code operates just like the code * in strgetmsg(). There is a comment there about what * is going on here. */ if (!(flags & (MSG_HIPRI|MSG_BAND))) { /* Asking for normal, band0 data */ bp = strget(stp, q, uiop, first, &error); ASSERT(MUTEX_HELD(&stp->sd_lock)); if (bp != NULL) { if (bp->b_datap->db_type == M_SIG) { strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); continue; } else { break; } } if (error != 0) { goto getmout; } /* * We can't depend on the value of STRPRI here because * the stream head may be in transit. Therefore, we * must look at the type of the first message to * determine if a high priority messages is waiting */ } else if ((flags & MSG_HIPRI) && q_first != NULL && q_first->b_datap->db_type >= QPCTL && (bp = getq_noenab(q)) != NULL) { ASSERT(bp->b_datap->db_type >= QPCTL); break; } else if ((flags & MSG_BAND) && q_first != NULL && ((q_first->b_band >= *prip) || q_first->b_datap->db_type >= QPCTL) && (bp = getq_noenab(q)) != NULL) { /* * Asked for at least band "prip" and got either at * least that band or a hipri message. */ ASSERT(bp->b_band >= *prip || bp->b_datap->db_type >= QPCTL); if (bp->b_datap->db_type == M_SIG) { strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); continue; } else { break; } } /* No data. Time to sleep? */ qbackenable(q, 0); /* * Delayed error notification? */ if ((stp->sd_flag & (STRDERR|STPLEX)) && (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { error = strgeterr(stp, STRDERR|STPLEX, (flags & MSG_IPEEK)); if (error != 0) { mutex_exit(&stp->sd_lock); return (error); } } /* * If STRHUP or STREOF, return 0 length control and data. * If a read(fd,buf,0) has been done, do not sleep, just * return. * * If mctlp == NULL and uiop == NULL, then the code will * do the strwaitq. This is an understood way of saying * sleep "polling" until a message is received. */ if ((stp->sd_flag & (STRHUP|STREOF)) || (uiop != NULL && uiop->uio_resid == 0)) { if (mctlp != NULL) *mctlp = NULL; *flagsp = 0; mutex_exit(&stp->sd_lock); return (0); } waitflag = GETWAIT; if (flags & (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { if (flags & MSG_HOLDSIG) waitflag |= STR_NOSIG; if (flags & MSG_IGNERROR) waitflag |= STR_NOERROR; if (flags & MSG_IPEEK) waitflag |= STR_PEEK; if (flags & MSG_DELAYERROR) waitflag |= STR_DELAYERR; } if (uiop != NULL) fmode = uiop->uio_fmode; else fmode = 0; TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, "kstrgetmsg calls strwaitq:%p, %p", vp, uiop); if (((error = strwaitq(stp, waitflag, (ssize_t)0, fmode, timout, &done)) != 0) || done) { TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, "kstrgetmsg error or done:%p, %p", vp, uiop); mutex_exit(&stp->sd_lock); return (error); } TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, "kstrgetmsg awakes:%p, %p", vp, uiop); if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { mutex_exit(&stp->sd_lock); if (error = straccess(stp, JCREAD)) return (error); mutex_enter(&stp->sd_lock); } first = 0; } ASSERT(bp != NULL); /* * Extract any mark information. If the message is not completely * consumed this information will be put in the mblk * that is putback. * If MSGMARKNEXT is set and the message is completely consumed * the STRATMARK flag will be set below. Likewise, if * MSGNOTMARKNEXT is set and the message is * completely consumed STRNOTATMARK will be set. */ mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != (MSGMARKNEXT|MSGNOTMARKNEXT)); pri = bp->b_band; if (mark != 0) { /* * If the caller doesn't want the mark return. * Used to implement MSG_WAITALL in sockets. */ if (flags & MSG_NOMARK) { putback(stp, q, bp, pri); qbackenable(q, pri); mutex_exit(&stp->sd_lock); return (EWOULDBLOCK); } if (bp == stp->sd_mark) { mark |= _LASTMARK; stp->sd_mark = NULL; } } /* * keep track of the first message type */ type = bp->b_datap->db_type; if (bp->b_datap->db_type == M_PASSFP) { if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) stp->sd_mark = bp; bp->b_flag |= mark & ~_LASTMARK; putback(stp, q, bp, pri); qbackenable(q, pri); mutex_exit(&stp->sd_lock); return (EBADMSG); } ASSERT(type != M_SIG); if (flags & MSG_IPEEK) { /* * Clear any struioflag - we do the uiomove over again * when peeking since it simplifies the code. * * Dup the message and put the original back on the queue. * If dupmsg() fails, try again with copymsg() to see if * there is indeed a shortage of memory. dupmsg() may fail * if db_ref in any of the messages reaches its limit. */ if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { /* * Restore the state of the stream head since we * need to drop sd_lock (strwaitbuf is sleeping). */ size_t size = msgdsize(bp); if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) stp->sd_mark = bp; bp->b_flag |= mark & ~_LASTMARK; putback(stp, q, bp, pri); mutex_exit(&stp->sd_lock); error = strwaitbuf(size, BPRI_HI); if (error) { /* * There is no net change to the queue thus * no need to qbackenable. */ return (error); } goto retry; } if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) stp->sd_mark = bp; bp->b_flag |= mark & ~_LASTMARK; putback(stp, q, bp, pri); bp = nbp; } /* * Set this flag so strrput will not generate signals. Need to * make sure this flag is cleared before leaving this routine * else signals will stop being sent. */ stp->sd_flag |= STRGETINPROG; mutex_exit(&stp->sd_lock); if (STREAM_NEEDSERVICE(stp)) stream_runservice(stp); /* * Set HIPRI flag if message is priority. */ if (type >= QPCTL) flg = MSG_HIPRI; else flg = MSG_BAND; /* * First process PROTO or PCPROTO blocks, if any. */ if (mctlp != NULL && type != M_DATA) { mblk_t *nbp; *mctlp = bp; while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) bp = bp->b_cont; nbp = bp->b_cont; bp->b_cont = NULL; bp = nbp; } if (bp && bp->b_datap->db_type != M_DATA) { /* * More PROTO blocks in msg. Will only happen if mctlp is NULL. */ more |= MORECTL; savemp = bp; while (bp && bp->b_datap->db_type != M_DATA) { savemptail = bp; bp = bp->b_cont; } savemptail->b_cont = NULL; } /* * Now process DATA blocks, if any. */ if (uiop == NULL) { /* Append data to tail of mctlp */ if (mctlp != NULL) { mblk_t **mpp = mctlp; while (*mpp != NULL) mpp = &((*mpp)->b_cont); *mpp = bp; bp = NULL; } } else if (uiop->uio_resid >= 0 && bp) { size_t oldresid = uiop->uio_resid; /* * If a streams message is likely to consist * of many small mblks, it is pulled up into * one continuous chunk of memory. * see longer comment at top of page * by mblk_pull_len declaration. */ if (MBLKL(bp) < mblk_pull_len) { (void) pullupmsg(bp, -1); } bp = struiocopyout(bp, uiop, &error); if (error != 0) { if (mctlp != NULL) { freemsg(*mctlp); *mctlp = NULL; } else freemsg(savemp); mutex_enter(&stp->sd_lock); /* * clear stream head hi pri flag based on * first message */ if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { ASSERT(type == M_PCPROTO); stp->sd_flag &= ~STRPRI; } more = 0; goto getmout; } /* * (pr == 1) indicates a partial read. */ if (oldresid > uiop->uio_resid) pr = 1; } if (bp) { /* more data blocks in msg */ more |= MOREDATA; if (savemp) savemptail->b_cont = bp; else savemp = bp; } mutex_enter(&stp->sd_lock); if (savemp) { if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { /* * When MSG_DISCARDTAIL is set or * when peeking discard any tail. When peeking this * is the tail of the dup that was copied out - the * message has already been putback on the queue. * Return MOREDATA to the caller even though the data * is discarded. This is used by sockets (to * set MSG_TRUNC). */ freemsg(savemp); if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { ASSERT(type == M_PCPROTO); stp->sd_flag &= ~STRPRI; } } else if (pr && (savemp->b_datap->db_type == M_DATA) && msgnodata(savemp)) { /* * Avoid queuing a zero-length tail part of * a message. pr=1 indicates that we read some of * the message. */ freemsg(savemp); more &= ~MOREDATA; if (type >= QPCTL) { ASSERT(type == M_PCPROTO); stp->sd_flag &= ~STRPRI; } } else { savemp->b_band = pri; /* * If the first message was HIPRI and the one we're * putting back isn't, then clear STRPRI, otherwise * set STRPRI again. Note that we must set STRPRI * again since the flush logic in strrput_nondata() * may have cleared it while we had sd_lock dropped. */ if (type >= QPCTL) { ASSERT(type == M_PCPROTO); if (queclass(savemp) < QPCTL) stp->sd_flag &= ~STRPRI; else stp->sd_flag |= STRPRI; } else if (queclass(savemp) >= QPCTL) { /* * The first message was not a HIPRI message, * but the one we are about to putback is. * For simplicitly, we do not allow for HIPRI * messages to be embedded in the message * body, so just force it to same type as * first message. */ ASSERT(type == M_DATA || type == M_PROTO); ASSERT(savemp->b_datap->db_type == M_PCPROTO); savemp->b_datap->db_type = type; } if (mark != 0) { if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) { /* * If another marked message arrived * while sd_lock was not held sd_mark * would be non-NULL. */ stp->sd_mark = savemp; } savemp->b_flag |= mark & ~_LASTMARK; } putback(stp, q, savemp, pri); } } else if (!(flags & MSG_IPEEK)) { /* * The complete message was consumed. * * If another M_PCPROTO arrived while sd_lock was not held * it would have been discarded since STRPRI was still set. * * Move the MSG*MARKNEXT information * to the stream head just in case * the read queue becomes empty. * clear stream head hi pri flag based on * first message * * If the stream head was at the mark * (STRATMARK) before we dropped sd_lock above * and some data was consumed then we have * moved past the mark thus STRATMARK is * cleared. However, if a message arrived in * strrput during the copyout above causing * STRATMARK to be set we can not clear that * flag. * XXX A "perimeter" would help by single-threading strrput, * strread, strgetmsg and kstrgetmsg. */ if (type >= QPCTL) { ASSERT(type == M_PCPROTO); stp->sd_flag &= ~STRPRI; } if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { if (mark & MSGMARKNEXT) { stp->sd_flag &= ~STRNOTATMARK; stp->sd_flag |= STRATMARK; } else if (mark & MSGNOTMARKNEXT) { stp->sd_flag &= ~STRATMARK; stp->sd_flag |= STRNOTATMARK; } else { stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); } } else if (pr && (old_sd_flag & STRATMARK)) { stp->sd_flag &= ~STRATMARK; } } *flagsp = flg; *prip = pri; /* * Getmsg cleanup processing - if the state of the queue has changed * some signals may need to be sent and/or poll awakened. */ getmout: qbackenable(q, pri); /* * We dropped the stream head lock above. Send all M_SIG messages * before processing stream head for SIGPOLL messages. */ ASSERT(MUTEX_HELD(&stp->sd_lock)); while ((bp = q->q_first) != NULL && (bp->b_datap->db_type == M_SIG)) { /* * sd_lock is held so the content of the read queue can not * change. */ bp = getq(q); ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band); mutex_exit(&stp->sd_lock); freemsg(bp); if (STREAM_NEEDSERVICE(stp)) stream_runservice(stp); mutex_enter(&stp->sd_lock); } /* * stream head cannot change while we make the determination * whether or not to send a signal. Drop the flag to allow strrput * to send firstmsgsigs again. */ stp->sd_flag &= ~STRGETINPROG; /* * If the type of message at the front of the queue changed * due to the receive the appropriate signals and pollwakeup events * are generated. The type of changes are: * Processed a hipri message, q_first is not hipri. * Processed a band X message, and q_first is band Y. * The generated signals and pollwakeups are identical to what * strrput() generates should the message that is now on q_first * arrive to an empty read queue. * * Note: only strrput will send a signal for a hipri message. */ if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { strsigset_t signals = 0; strpollset_t pollwakeups = 0; if (flg & MSG_HIPRI) { /* * Removed a hipri message. Regular data at * the front of the queue. */ if (bp->b_band == 0) { signals = S_INPUT | S_RDNORM; pollwakeups = POLLIN | POLLRDNORM; } else { signals = S_INPUT | S_RDBAND; pollwakeups = POLLIN | POLLRDBAND; } } else if (pri != bp->b_band) { /* * The band is different for the new q_first. */ if (bp->b_band == 0) { signals = S_RDNORM; pollwakeups = POLLIN | POLLRDNORM; } else { signals = S_RDBAND; pollwakeups = POLLIN | POLLRDBAND; } } if (pollwakeups != 0) { if (pollwakeups == (POLLIN | POLLRDNORM)) { if (!(stp->sd_rput_opt & SR_POLLIN)) goto no_pollwake; stp->sd_rput_opt &= ~SR_POLLIN; } mutex_exit(&stp->sd_lock); pollwakeup(&stp->sd_pollist, pollwakeups); mutex_enter(&stp->sd_lock); } no_pollwake: if (stp->sd_sigflags & signals) strsendsig(stp->sd_siglist, signals, bp->b_band, 0); } mutex_exit(&stp->sd_lock); rvp->r_val1 = more; return (error); #undef _LASTMARK } /* * Put a message downstream. * * NOTE: strputmsg and kstrputmsg have much of the logic in common. */ int strputmsg( struct vnode *vp, struct strbuf *mctl, struct strbuf *mdata, unsigned char pri, int flag, int fmode) { struct stdata *stp; queue_t *wqp; mblk_t *mp; ssize_t msgsize; ssize_t rmin, rmax; int error; struct uio uios; struct uio *uiop = &uios; struct iovec iovs; int xpg4 = 0; ASSERT(vp->v_stream); stp = vp->v_stream; wqp = stp->sd_wrq; /* * If it is an XPG4 application, we need to send * SIGPIPE below */ xpg4 = (flag & MSG_XPG4) ? 1 : 0; flag &= ~MSG_XPG4; #ifdef C2_AUDIT if (audit_active) audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); #endif if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) if (error = straccess(stp, JCWRITE)) return (error); if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { mutex_enter(&stp->sd_lock); error = strwriteable(stp, B_FALSE, xpg4); mutex_exit(&stp->sd_lock); if (error != 0) return (error); } /* * Check for legal flag value. */ switch (flag) { case MSG_HIPRI: if ((mctl->len < 0) || (pri != 0)) return (EINVAL); break; case MSG_BAND: break; default: return (EINVAL); } TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, "strputmsg in:stp %p", stp); /* get these values from those cached in the stream head */ rmin = stp->sd_qn_minpsz; rmax = stp->sd_qn_maxpsz; /* * Make sure ctl and data sizes together fall within the * limits of the max and min receive packet sizes and do * not exceed system limit. */ ASSERT((rmax >= 0) || (rmax == INFPSZ)); if (rmax == 0) { return (ERANGE); } /* * Use the MAXIMUM of sd_maxblk and q_maxpsz. * Needed to prevent partial failures in the strmakedata loop. */ if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) rmax = stp->sd_maxblk; if ((msgsize = mdata->len) < 0) { msgsize = 0; rmin = 0; /* no range check for NULL data part */ } if ((msgsize < rmin) || ((msgsize > rmax) && (rmax != INFPSZ)) || (mctl->len > strctlsz)) { return (ERANGE); } /* * Setup uio and iov for data part */ iovs.iov_base = mdata->buf; iovs.iov_len = msgsize; uios.uio_iov = &iovs; uios.uio_iovcnt = 1; uios.uio_loffset = 0; uios.uio_segflg = UIO_USERSPACE; uios.uio_fmode = fmode; uios.uio_extflg = UIO_COPY_DEFAULT; uios.uio_resid = msgsize; uios.uio_offset = 0; /* Ignore flow control in strput for HIPRI */ if (flag & MSG_HIPRI) flag |= MSG_IGNFLOW; for (;;) { int done = 0; /* * strput will always free the ctl mblk - even when strput * fails. */ if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, "strputmsg out:stp %p out %d error %d", stp, 1, error); return (error); } /* * Verify that the whole message can be transferred by * strput. */ ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= mdata->len); msgsize = mdata->len; error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); mdata->len = msgsize; if (error == 0) break; if (error != EWOULDBLOCK) goto out; mutex_enter(&stp->sd_lock); /* * Check for a missed wakeup. * Needed since strput did not hold sd_lock across * the canputnext. */ if (bcanputnext(wqp, pri)) { /* Try again */ mutex_exit(&stp->sd_lock); continue; } TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, "strputmsg wait:stp %p waits pri %d", stp, pri); if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, &done)) != 0) || done) { mutex_exit(&stp->sd_lock); TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, "strputmsg out:q %p out %d error %d", stp, 0, error); return (error); } TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, "strputmsg wake:stp %p wakes", stp); mutex_exit(&stp->sd_lock); if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) if (error = straccess(stp, JCWRITE)) return (error); } out: /* * For historic reasons, applications expect EAGAIN * when data mblk could not be allocated. so change * ENOMEM back to EAGAIN */ if (error == ENOMEM) error = EAGAIN; TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, "strputmsg out:stp %p out %d error %d", stp, 2, error); return (error); } /* * Put a message downstream. * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio * and the fmode parameter. * * This routine handles the consolidation private flags: * MSG_IGNERROR Ignore any stream head error except STPLEX. * MSG_HOLDSIG Hold signals while waiting for data. * MSG_IGNFLOW Don't check streams flow control. * * NOTE: strputmsg and kstrputmsg have much of the logic in common. */ int kstrputmsg( struct vnode *vp, mblk_t *mctl, struct uio *uiop, ssize_t msgsize, unsigned char pri, int flag, int fmode) { struct stdata *stp; queue_t *wqp; ssize_t rmin, rmax; int error; ASSERT(vp->v_stream); stp = vp->v_stream; wqp = stp->sd_wrq; #ifdef C2_AUDIT if (audit_active) audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); #endif if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { if (error = straccess(stp, JCWRITE)) { freemsg(mctl); return (error); } } if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { mutex_enter(&stp->sd_lock); error = strwriteable(stp, B_FALSE, B_TRUE); mutex_exit(&stp->sd_lock); if (error != 0) { freemsg(mctl); return (error); } } } /* * Check for legal flag value. */ switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { case MSG_HIPRI: if ((mctl == NULL) || (pri != 0)) { freemsg(mctl); return (EINVAL); } break; case MSG_BAND: break; default: freemsg(mctl); return (EINVAL); } TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, "kstrputmsg in:stp %p", stp); /* get these values from those cached in the stream head */ rmin = stp->sd_qn_minpsz; rmax = stp->sd_qn_maxpsz; /* * Make sure ctl and data sizes together fall within the * limits of the max and min receive packet sizes and do * not exceed system limit. */ ASSERT((rmax >= 0) || (rmax == INFPSZ)); if (rmax == 0) { freemsg(mctl); return (ERANGE); } /* * Use the MAXIMUM of sd_maxblk and q_maxpsz. * Needed to prevent partial failures in the strmakedata loop. */ if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) rmax = stp->sd_maxblk; if (uiop == NULL) { msgsize = -1; rmin = -1; /* no range check for NULL data part */ } else { /* Use uio flags as well as the fmode parameter flags */ fmode |= uiop->uio_fmode; if ((msgsize < rmin) || ((msgsize > rmax) && (rmax != INFPSZ))) { freemsg(mctl); return (ERANGE); } } /* Ignore flow control in strput for HIPRI */ if (flag & MSG_HIPRI) flag |= MSG_IGNFLOW; for (;;) { int done = 0; int waitflag; mblk_t *mp; /* * strput will always free the ctl mblk - even when strput * fails. If MSG_IGNFLOW is set then any error returned * will cause us to break the loop, so we don't need a copy * of the message. If MSG_IGNFLOW is not set, then we can * get hit by flow control and be forced to try again. In * this case we need to have a copy of the message. We * do this using copymsg since the message may get modified * by something below us. * * We've observed that many TPI providers do not check db_ref * on the control messages but blindly reuse them for the * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more * friendly to such providers than using dupmsg. Also, note * that sockfs uses MSG_IGNFLOW for all TPI control messages. * Only data messages are subject to flow control, hence * subject to this copymsg. */ if (flag & MSG_IGNFLOW) { mp = mctl; mctl = NULL; } else { do { /* * If a message has a free pointer, the message * must be dupmsg to maintain this pointer. * Code using this facility must be sure * that modules below will not change the * contents of the dblk without checking db_ref * first. If db_ref is > 1, then the module * needs to do a copymsg first. Otherwise, * the contents of the dblk may become * inconsistent because the freesmg/freeb below * may end up calling atomic_add_32_nv. * The atomic_add_32_nv in freeb (accessing * all of db_ref, db_type, db_flags, and * db_struioflag) does not prevent other threads * from concurrently trying to modify e.g. * db_type. */ if (mctl->b_datap->db_frtnp != NULL) mp = dupmsg(mctl); else mp = copymsg(mctl); if (mp != NULL || mctl == NULL) break; error = strwaitbuf(msgdsize(mctl), BPRI_MED); if (error) { freemsg(mctl); return (error); } } while (mp == NULL); } /* * Verify that all of msgsize can be transferred by * strput. */ ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); if (error == 0) break; if (error != EWOULDBLOCK) goto out; /* * IF MSG_IGNFLOW is set we should have broken out of loop * above. */ ASSERT(!(flag & MSG_IGNFLOW)); mutex_enter(&stp->sd_lock); /* * Check for a missed wakeup. * Needed since strput did not hold sd_lock across * the canputnext. */ if (bcanputnext(wqp, pri)) { /* Try again */ mutex_exit(&stp->sd_lock); continue; } TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, "kstrputmsg wait:stp %p waits pri %d", stp, pri); waitflag = WRITEWAIT; if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { if (flag & MSG_HOLDSIG) waitflag |= STR_NOSIG; if (flag & MSG_IGNERROR) waitflag |= STR_NOERROR; } if (((error = strwaitq(stp, waitflag, (ssize_t)0, fmode, -1, &done)) != 0) || done) { mutex_exit(&stp->sd_lock); TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, "kstrputmsg out:stp %p out %d error %d", stp, 0, error); freemsg(mctl); return (error); } TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, "kstrputmsg wake:stp %p wakes", stp); mutex_exit(&stp->sd_lock); if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) { if (error = straccess(stp, JCWRITE)) { freemsg(mctl); return (error); } } } out: freemsg(mctl); /* * For historic reasons, applications expect EAGAIN * when data mblk could not be allocated. so change * ENOMEM back to EAGAIN */ if (error == ENOMEM) error = EAGAIN; TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, "kstrputmsg out:stp %p out %d error %d", stp, 2, error); return (error); } /* * Determines whether the necessary conditions are set on a stream * for it to be readable, writeable, or have exceptions. * * strpoll handles the consolidation private events: * POLLNOERR Do not return POLLERR even if there are stream * head errors. * Used by sockfs. * POLLRDDATA Do not return POLLIN unless at least one message on * the queue contains one or more M_DATA mblks. Thus * when this flag is set a queue with only * M_PROTO/M_PCPROTO mblks does not return POLLIN. * Used by sockfs to ignore T_EXDATA_IND messages. * * Note: POLLRDDATA assumes that synch streams only return messages with * an M_DATA attached (i.e. not messages consisting of only * an M_PROTO/M_PCPROTO part). */ int strpoll( struct stdata *stp, short events_arg, int anyyet, short *reventsp, struct pollhead **phpp) { int events = (ushort_t)events_arg; int retevents = 0; mblk_t *mp; qband_t *qbp; long sd_flags = stp->sd_flag; int headlocked = 0; /* * For performance, a single 'if' tests for most possible edge * conditions in one shot */ if (sd_flags & (STPLEX | STRDERR | STWRERR)) { if (sd_flags & STPLEX) { *reventsp = POLLNVAL; return (EINVAL); } if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && (sd_flags & STRDERR)) || ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && (sd_flags & STWRERR))) { if (!(events & POLLNOERR)) { *reventsp = POLLERR; return (0); } } } if (sd_flags & STRHUP) { retevents |= POLLHUP; } else if (events & (POLLWRNORM | POLLWRBAND)) { queue_t *tq; queue_t *qp = stp->sd_wrq; claimstr(qp); /* Find next module forward that has a service procedure */ tq = qp->q_next->q_nfsrv; ASSERT(tq != NULL); polllock(&stp->sd_pollist, QLOCK(tq)); if (events & POLLWRNORM) { queue_t *sqp; if (tq->q_flag & QFULL) /* ensure backq svc procedure runs */ tq->q_flag |= QWANTW; else if ((sqp = stp->sd_struiowrq) != NULL) { /* Check sync stream barrier write q */ mutex_exit(QLOCK(tq)); polllock(&stp->sd_pollist, QLOCK(sqp)); if (sqp->q_flag & QFULL) /* ensure pollwakeup() is done */ sqp->q_flag |= QWANTWSYNC; else retevents |= POLLOUT; /* More write events to process ??? */ if (! (events & POLLWRBAND)) { mutex_exit(QLOCK(sqp)); releasestr(qp); goto chkrd; } mutex_exit(QLOCK(sqp)); polllock(&stp->sd_pollist, QLOCK(tq)); } else retevents |= POLLOUT; } if (events & POLLWRBAND) { qbp = tq->q_bandp; if (qbp) { while (qbp) { if (qbp->qb_flag & QB_FULL) qbp->qb_flag |= QB_WANTW; else retevents |= POLLWRBAND; qbp = qbp->qb_next; } } else { retevents |= POLLWRBAND; } } mutex_exit(QLOCK(tq)); releasestr(qp); } chkrd: if (sd_flags & STRPRI) { retevents |= (events & POLLPRI); } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { queue_t *qp = _RD(stp->sd_wrq); int normevents = (events & (POLLIN | POLLRDNORM)); /* * Note: Need to do polllock() here since ps_lock may be * held. See bug 4191544. */ polllock(&stp->sd_pollist, &stp->sd_lock); headlocked = 1; mp = qp->q_first; while (mp) { /* * For POLLRDDATA we scan b_cont and b_next until we * find an M_DATA. */ if ((events & POLLRDDATA) && mp->b_datap->db_type != M_DATA) { mblk_t *nmp = mp->b_cont; while (nmp != NULL && nmp->b_datap->db_type != M_DATA) nmp = nmp->b_cont; if (nmp == NULL) { mp = mp->b_next; continue; } } if (mp->b_band == 0) retevents |= normevents; else retevents |= (events & (POLLIN | POLLRDBAND)); break; } if (! (retevents & normevents) && (stp->sd_wakeq & RSLEEP)) { /* * Sync stream barrier read queue has data. */ retevents |= normevents; } /* Treat eof as normal data */ if (sd_flags & STREOF) retevents |= normevents; } *reventsp = (short)retevents; if (retevents) { if (headlocked) mutex_exit(&stp->sd_lock); return (0); } /* * If poll() has not found any events yet, set up event cell * to wake up the poll if a requested event occurs on this * stream. Check for collisions with outstanding poll requests. */ if (!anyyet) { *phpp = &stp->sd_pollist; if (headlocked == 0) { polllock(&stp->sd_pollist, &stp->sd_lock); headlocked = 1; } stp->sd_rput_opt |= SR_POLLIN; } if (headlocked) mutex_exit(&stp->sd_lock); return (0); } /* * The purpose of putback() is to assure sleeping polls/reads * are awakened when there are no new messages arriving at the, * stream head, and a message is placed back on the read queue. * * sd_lock must be held when messages are placed back on stream * head. (getq() holds sd_lock when it removes messages from * the queue) */ static void putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) { ASSERT(MUTEX_HELD(&stp->sd_lock)); (void) putbq(q, bp); /* * A message may have come in when the sd_lock was dropped in the * calling routine. If this is the case and STR*ATMARK info was * received, need to move that from the stream head to the q_last * so that SIOCATMARK can return the proper value. */ if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { unsigned short *flagp = &q->q_last->b_flag; uint_t b_flag = (uint_t)*flagp; if (stp->sd_flag & STRATMARK) { b_flag &= ~MSGNOTMARKNEXT; b_flag |= MSGMARKNEXT; stp->sd_flag &= ~STRATMARK; } else { b_flag &= ~MSGMARKNEXT; b_flag |= MSGNOTMARKNEXT; stp->sd_flag &= ~STRNOTATMARK; } *flagp = (unsigned short) b_flag; } #ifdef DEBUG /* * Make sure that the flags are not messed up. */ { mblk_t *mp; mp = q->q_last; while (mp != NULL) { ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != (MSGMARKNEXT|MSGNOTMARKNEXT)); mp = mp->b_cont; } } #endif if (q->q_first == bp) { short pollevents; if (stp->sd_flag & RSLEEP) { stp->sd_flag &= ~RSLEEP; cv_broadcast(&q->q_wait); } if (stp->sd_flag & STRPRI) { pollevents = POLLPRI; } else { if (band == 0) { if (!(stp->sd_rput_opt & SR_POLLIN)) return; stp->sd_rput_opt &= ~SR_POLLIN; pollevents = POLLIN | POLLRDNORM; } else { pollevents = POLLIN | POLLRDBAND; } } mutex_exit(&stp->sd_lock); pollwakeup(&stp->sd_pollist, pollevents); mutex_enter(&stp->sd_lock); } } /* * Return the held vnode attached to the stream head of a * given queue * It is the responsibility of the calling routine to ensure * that the queue does not go away (e.g. pop). */ vnode_t * strq2vp(queue_t *qp) { vnode_t *vp; vp = STREAM(qp)->sd_vnode; ASSERT(vp != NULL); VN_HOLD(vp); return (vp); } /* * return the stream head write queue for the given vp * It is the responsibility of the calling routine to ensure * that the stream or vnode do not close. */ queue_t * strvp2wq(vnode_t *vp) { ASSERT(vp->v_stream != NULL); return (vp->v_stream->sd_wrq); } /* * pollwakeup stream head * It is the responsibility of the calling routine to ensure * that the stream or vnode do not close. */ void strpollwakeup(vnode_t *vp, short event) { ASSERT(vp->v_stream); pollwakeup(&vp->v_stream->sd_pollist, event); } /* * Mate the stream heads of two vnodes together. If the two vnodes are the * same, we just make the write-side point at the read-side -- otherwise, * we do a full mate. Only works on vnodes associated with streams that are * still being built and thus have only a stream head. */ void strmate(vnode_t *vp1, vnode_t *vp2) { queue_t *wrq1 = strvp2wq(vp1); queue_t *wrq2 = strvp2wq(vp2); /* * Verify that there are no modules on the stream yet. We also * rely on the stream head always having a service procedure to * avoid tweaking q_nfsrv. */ ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); ASSERT(wrq1->q_qinfo->qi_srvp != NULL); ASSERT(wrq2->q_qinfo->qi_srvp != NULL); /* * If the queues are the same, just twist; otherwise do a full mate. */ if (wrq1 == wrq2) { wrq1->q_next = _RD(wrq1); } else { wrq1->q_next = _RD(wrq2); wrq2->q_next = _RD(wrq1); STREAM(wrq1)->sd_mate = STREAM(wrq2); STREAM(wrq1)->sd_flag |= STRMATE; STREAM(wrq2)->sd_mate = STREAM(wrq1); STREAM(wrq2)->sd_flag |= STRMATE; } } /* * XXX will go away when console is correctly fixed. * Clean up the console PIDS, from previous I_SETSIG, * called only for cnopen which never calls strclean(). */ void str_cn_clean(struct vnode *vp) { strsig_t *ssp, *pssp, *tssp; struct stdata *stp; struct pid *pidp; int update = 0; ASSERT(vp->v_stream); stp = vp->v_stream; pssp = NULL; mutex_enter(&stp->sd_lock); ssp = stp->sd_siglist; while (ssp) { mutex_enter(&pidlock); pidp = ssp->ss_pidp; /* * Get rid of PID if the proc is gone. */ if (pidp->pid_prinactive) { tssp = ssp->ss_next; if (pssp) pssp->ss_next = tssp; else stp->sd_siglist = tssp; ASSERT(pidp->pid_ref <= 1); PID_RELE(ssp->ss_pidp); mutex_exit(&pidlock); kmem_free(ssp, sizeof (strsig_t)); update = 1; ssp = tssp; continue; } else mutex_exit(&pidlock); pssp = ssp; ssp = ssp->ss_next; } if (update) { stp->sd_sigflags = 0; for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) stp->sd_sigflags |= ssp->ss_events; } mutex_exit(&stp->sd_lock); } /* * Return B_TRUE if there is data in the message, B_FALSE otherwise. */ static boolean_t msghasdata(mblk_t *bp) { for (; bp; bp = bp->b_cont) if (bp->b_datap->db_type == M_DATA) { ASSERT(bp->b_wptr >= bp->b_rptr); if (bp->b_wptr > bp->b_rptr) return (B_TRUE); } return (B_FALSE); }