/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Kernel memory allocator, as described in the following two papers: * * Jeff Bonwick, * The Slab Allocator: An Object-Caching Kernel Memory Allocator. * Proceedings of the Summer 1994 Usenix Conference. * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. * * Jeff Bonwick and Jonathan Adams, * Magazines and vmem: Extending the Slab Allocator to Many CPUs and * Arbitrary Resources. * Proceedings of the 2001 Usenix Conference. * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void streams_msg_init(void); extern int segkp_fromheap; extern void segkp_cache_free(void); struct kmem_cache_kstat { kstat_named_t kmc_buf_size; kstat_named_t kmc_align; kstat_named_t kmc_chunk_size; kstat_named_t kmc_slab_size; kstat_named_t kmc_alloc; kstat_named_t kmc_alloc_fail; kstat_named_t kmc_free; kstat_named_t kmc_depot_alloc; kstat_named_t kmc_depot_free; kstat_named_t kmc_depot_contention; kstat_named_t kmc_slab_alloc; kstat_named_t kmc_slab_free; kstat_named_t kmc_buf_constructed; kstat_named_t kmc_buf_avail; kstat_named_t kmc_buf_inuse; kstat_named_t kmc_buf_total; kstat_named_t kmc_buf_max; kstat_named_t kmc_slab_create; kstat_named_t kmc_slab_destroy; kstat_named_t kmc_vmem_source; kstat_named_t kmc_hash_size; kstat_named_t kmc_hash_lookup_depth; kstat_named_t kmc_hash_rescale; kstat_named_t kmc_full_magazines; kstat_named_t kmc_empty_magazines; kstat_named_t kmc_magazine_size; } kmem_cache_kstat = { { "buf_size", KSTAT_DATA_UINT64 }, { "align", KSTAT_DATA_UINT64 }, { "chunk_size", KSTAT_DATA_UINT64 }, { "slab_size", KSTAT_DATA_UINT64 }, { "alloc", KSTAT_DATA_UINT64 }, { "alloc_fail", KSTAT_DATA_UINT64 }, { "free", KSTAT_DATA_UINT64 }, { "depot_alloc", KSTAT_DATA_UINT64 }, { "depot_free", KSTAT_DATA_UINT64 }, { "depot_contention", KSTAT_DATA_UINT64 }, { "slab_alloc", KSTAT_DATA_UINT64 }, { "slab_free", KSTAT_DATA_UINT64 }, { "buf_constructed", KSTAT_DATA_UINT64 }, { "buf_avail", KSTAT_DATA_UINT64 }, { "buf_inuse", KSTAT_DATA_UINT64 }, { "buf_total", KSTAT_DATA_UINT64 }, { "buf_max", KSTAT_DATA_UINT64 }, { "slab_create", KSTAT_DATA_UINT64 }, { "slab_destroy", KSTAT_DATA_UINT64 }, { "vmem_source", KSTAT_DATA_UINT64 }, { "hash_size", KSTAT_DATA_UINT64 }, { "hash_lookup_depth", KSTAT_DATA_UINT64 }, { "hash_rescale", KSTAT_DATA_UINT64 }, { "full_magazines", KSTAT_DATA_UINT64 }, { "empty_magazines", KSTAT_DATA_UINT64 }, { "magazine_size", KSTAT_DATA_UINT64 }, }; static kmutex_t kmem_cache_kstat_lock; /* * The default set of caches to back kmem_alloc(). * These sizes should be reevaluated periodically. * * We want allocations that are multiples of the coherency granularity * (64 bytes) to be satisfied from a cache which is a multiple of 64 * bytes, so that it will be 64-byte aligned. For all multiples of 64, * the next kmem_cache_size greater than or equal to it must be a * multiple of 64. */ static const int kmem_alloc_sizes[] = { 1 * 8, 2 * 8, 3 * 8, 4 * 8, 5 * 8, 6 * 8, 7 * 8, 4 * 16, 5 * 16, 6 * 16, 7 * 16, 4 * 32, 5 * 32, 6 * 32, 7 * 32, 4 * 64, 5 * 64, 6 * 64, 7 * 64, 4 * 128, 5 * 128, 6 * 128, 7 * 128, P2ALIGN(8192 / 7, 64), P2ALIGN(8192 / 6, 64), P2ALIGN(8192 / 5, 64), P2ALIGN(8192 / 4, 64), P2ALIGN(8192 / 3, 64), P2ALIGN(8192 / 2, 64), P2ALIGN(8192 / 1, 64), 4096 * 3, 8192 * 2, }; #define KMEM_MAXBUF 16384 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; static kmem_magtype_t kmem_magtype[] = { { 1, 8, 3200, 65536 }, { 3, 16, 256, 32768 }, { 7, 32, 64, 16384 }, { 15, 64, 0, 8192 }, { 31, 64, 0, 4096 }, { 47, 64, 0, 2048 }, { 63, 64, 0, 1024 }, { 95, 64, 0, 512 }, { 143, 64, 0, 0 }, }; static uint32_t kmem_reaping; static uint32_t kmem_reaping_idspace; /* * kmem tunables */ clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ int kmem_depot_contention = 3; /* max failed tryenters per real interval */ pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ int kmem_panic = 1; /* whether to panic on error */ int kmem_logging = 1; /* kmem_log_enter() override */ uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ size_t kmem_content_log_size; /* content log size [2% of memory] */ size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ #ifdef DEBUG int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; #else int kmem_flags = 0; #endif int kmem_ready; static kmem_cache_t *kmem_slab_cache; static kmem_cache_t *kmem_bufctl_cache; static kmem_cache_t *kmem_bufctl_audit_cache; static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ kmem_cache_t kmem_null_cache; static taskq_t *kmem_taskq; static kmutex_t kmem_flags_lock; static vmem_t *kmem_metadata_arena; static vmem_t *kmem_msb_arena; /* arena for metadata caches */ static vmem_t *kmem_cache_arena; static vmem_t *kmem_hash_arena; static vmem_t *kmem_log_arena; static vmem_t *kmem_oversize_arena; static vmem_t *kmem_va_arena; static vmem_t *kmem_default_arena; static vmem_t *kmem_firewall_va_arena; static vmem_t *kmem_firewall_arena; kmem_log_header_t *kmem_transaction_log; kmem_log_header_t *kmem_content_log; kmem_log_header_t *kmem_failure_log; kmem_log_header_t *kmem_slab_log; static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ if ((count) > 0) { \ pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ pc_t *_e; \ /* memmove() the old entries down one notch */ \ for (_e = &_s[(count) - 1]; _e > _s; _e--) \ *_e = *(_e - 1); \ *_s = (uintptr_t)(caller); \ } #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ #define KMERR_DUPFREE 2 /* freed a buffer twice */ #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ #define KMERR_BADBUFTAG 4 /* buftag corrupted */ #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ #define KMERR_BADSIZE 7 /* alloc size != free size */ #define KMERR_BADBASE 8 /* buffer base address wrong */ struct { hrtime_t kmp_timestamp; /* timestamp of panic */ int kmp_error; /* type of kmem error */ void *kmp_buffer; /* buffer that induced panic */ void *kmp_realbuf; /* real start address for buffer */ kmem_cache_t *kmp_cache; /* buffer's cache according to client */ kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ kmem_bufctl_t *kmp_bufctl; /* bufctl */ } kmem_panic_info; static void copy_pattern(uint64_t pattern, void *buf_arg, size_t size) { uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); uint64_t *buf = buf_arg; while (buf < bufend) *buf++ = pattern; } static void * verify_pattern(uint64_t pattern, void *buf_arg, size_t size) { uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); uint64_t *buf; for (buf = buf_arg; buf < bufend; buf++) if (*buf != pattern) return (buf); return (NULL); } static void * verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) { uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); uint64_t *buf; for (buf = buf_arg; buf < bufend; buf++) { if (*buf != old) { copy_pattern(old, buf_arg, (char *)buf - (char *)buf_arg); return (buf); } *buf = new; } return (NULL); } static void kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) { kmem_cache_t *cp; mutex_enter(&kmem_cache_lock); for (cp = kmem_null_cache.cache_next; cp != &kmem_null_cache; cp = cp->cache_next) if (tq != NULL) (void) taskq_dispatch(tq, (task_func_t *)func, cp, tqflag); else func(cp); mutex_exit(&kmem_cache_lock); } static void kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) { kmem_cache_t *cp; mutex_enter(&kmem_cache_lock); for (cp = kmem_null_cache.cache_next; cp != &kmem_null_cache; cp = cp->cache_next) { if (!(cp->cache_cflags & KMC_IDENTIFIER)) continue; if (tq != NULL) (void) taskq_dispatch(tq, (task_func_t *)func, cp, tqflag); else func(cp); } mutex_exit(&kmem_cache_lock); } /* * Debugging support. Given a buffer address, find its slab. */ static kmem_slab_t * kmem_findslab(kmem_cache_t *cp, void *buf) { kmem_slab_t *sp; mutex_enter(&cp->cache_lock); for (sp = cp->cache_nullslab.slab_next; sp != &cp->cache_nullslab; sp = sp->slab_next) { if (KMEM_SLAB_MEMBER(sp, buf)) { mutex_exit(&cp->cache_lock); return (sp); } } mutex_exit(&cp->cache_lock); return (NULL); } static void kmem_error(int error, kmem_cache_t *cparg, void *bufarg) { kmem_buftag_t *btp = NULL; kmem_bufctl_t *bcp = NULL; kmem_cache_t *cp = cparg; kmem_slab_t *sp; uint64_t *off; void *buf = bufarg; kmem_logging = 0; /* stop logging when a bad thing happens */ kmem_panic_info.kmp_timestamp = gethrtime(); sp = kmem_findslab(cp, buf); if (sp == NULL) { for (cp = kmem_null_cache.cache_prev; cp != &kmem_null_cache; cp = cp->cache_prev) { if ((sp = kmem_findslab(cp, buf)) != NULL) break; } } if (sp == NULL) { cp = NULL; error = KMERR_BADADDR; } else { if (cp != cparg) error = KMERR_BADCACHE; else buf = (char *)bufarg - ((uintptr_t)bufarg - (uintptr_t)sp->slab_base) % cp->cache_chunksize; if (buf != bufarg) error = KMERR_BADBASE; if (cp->cache_flags & KMF_BUFTAG) btp = KMEM_BUFTAG(cp, buf); if (cp->cache_flags & KMF_HASH) { mutex_enter(&cp->cache_lock); for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) if (bcp->bc_addr == buf) break; mutex_exit(&cp->cache_lock); if (bcp == NULL && btp != NULL) bcp = btp->bt_bufctl; if (kmem_findslab(cp->cache_bufctl_cache, bcp) == NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || bcp->bc_addr != buf) { error = KMERR_BADBUFCTL; bcp = NULL; } } } kmem_panic_info.kmp_error = error; kmem_panic_info.kmp_buffer = bufarg; kmem_panic_info.kmp_realbuf = buf; kmem_panic_info.kmp_cache = cparg; kmem_panic_info.kmp_realcache = cp; kmem_panic_info.kmp_slab = sp; kmem_panic_info.kmp_bufctl = bcp; printf("kernel memory allocator: "); switch (error) { case KMERR_MODIFIED: printf("buffer modified after being freed\n"); off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); if (off == NULL) /* shouldn't happen */ off = buf; printf("modification occurred at offset 0x%lx " "(0x%llx replaced by 0x%llx)\n", (uintptr_t)off - (uintptr_t)buf, (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); break; case KMERR_REDZONE: printf("redzone violation: write past end of buffer\n"); break; case KMERR_BADADDR: printf("invalid free: buffer not in cache\n"); break; case KMERR_DUPFREE: printf("duplicate free: buffer freed twice\n"); break; case KMERR_BADBUFTAG: printf("boundary tag corrupted\n"); printf("bcp ^ bxstat = %lx, should be %lx\n", (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, KMEM_BUFTAG_FREE); break; case KMERR_BADBUFCTL: printf("bufctl corrupted\n"); break; case KMERR_BADCACHE: printf("buffer freed to wrong cache\n"); printf("buffer was allocated from %s,\n", cp->cache_name); printf("caller attempting free to %s.\n", cparg->cache_name); break; case KMERR_BADSIZE: printf("bad free: free size (%u) != alloc size (%u)\n", KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); break; case KMERR_BADBASE: printf("bad free: free address (%p) != alloc address (%p)\n", bufarg, buf); break; } printf("buffer=%p bufctl=%p cache: %s\n", bufarg, (void *)bcp, cparg->cache_name); if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && error != KMERR_BADBUFCTL) { int d; timestruc_t ts; kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); printf("previous transaction on buffer %p:\n", buf); printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, (void *)sp, cp->cache_name); for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { ulong_t off; char *sym = kobj_getsymname(bcap->bc_stack[d], &off); printf("%s+%lx\n", sym ? sym : "?", off); } } if (kmem_panic > 0) panic("kernel heap corruption detected"); if (kmem_panic == 0) debug_enter(NULL); kmem_logging = 1; /* resume logging */ } static kmem_log_header_t * kmem_log_init(size_t logsize) { kmem_log_header_t *lhp; int nchunks = 4 * max_ncpus; size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; int i; /* * Make sure that lhp->lh_cpu[] is nicely aligned * to prevent false sharing of cache lines. */ lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, NULL, NULL, VM_SLEEP); bzero(lhp, lhsize); mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); lhp->lh_nchunks = nchunks; lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); lhp->lh_base = vmem_alloc(kmem_log_arena, lhp->lh_chunksize * nchunks, VM_SLEEP); lhp->lh_free = vmem_alloc(kmem_log_arena, nchunks * sizeof (int), VM_SLEEP); bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); for (i = 0; i < max_ncpus; i++) { kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); clhp->clh_chunk = i; } for (i = max_ncpus; i < nchunks; i++) lhp->lh_free[i] = i; lhp->lh_head = max_ncpus; lhp->lh_tail = 0; return (lhp); } static void * kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) { void *logspace; kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; if (lhp == NULL || kmem_logging == 0 || panicstr) return (NULL); mutex_enter(&clhp->clh_lock); clhp->clh_hits++; if (size > clhp->clh_avail) { mutex_enter(&lhp->lh_lock); lhp->lh_hits++; lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; clhp->clh_current = lhp->lh_base + clhp->clh_chunk * lhp->lh_chunksize; clhp->clh_avail = lhp->lh_chunksize; if (size > lhp->lh_chunksize) size = lhp->lh_chunksize; mutex_exit(&lhp->lh_lock); } logspace = clhp->clh_current; clhp->clh_current += size; clhp->clh_avail -= size; bcopy(data, logspace, size); mutex_exit(&clhp->clh_lock); return (logspace); } #define KMEM_AUDIT(lp, cp, bcp) \ { \ kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ _bcp->bc_timestamp = gethrtime(); \ _bcp->bc_thread = curthread; \ _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ } static void kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, kmem_slab_t *sp, void *addr) { kmem_bufctl_audit_t bca; bzero(&bca, sizeof (kmem_bufctl_audit_t)); bca.bc_addr = addr; bca.bc_slab = sp; bca.bc_cache = cp; KMEM_AUDIT(lp, cp, &bca); } /* * Create a new slab for cache cp. */ static kmem_slab_t * kmem_slab_create(kmem_cache_t *cp, int kmflag) { size_t slabsize = cp->cache_slabsize; size_t chunksize = cp->cache_chunksize; int cache_flags = cp->cache_flags; size_t color, chunks; char *buf, *slab; kmem_slab_t *sp; kmem_bufctl_t *bcp; vmem_t *vmp = cp->cache_arena; color = cp->cache_color + cp->cache_align; if (color > cp->cache_maxcolor) color = cp->cache_mincolor; cp->cache_color = color; slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); if (slab == NULL) goto vmem_alloc_failure; ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); if (!(cp->cache_cflags & KMC_NOTOUCH)) copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); if (cache_flags & KMF_HASH) { if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) goto slab_alloc_failure; chunks = (slabsize - color) / chunksize; } else { sp = KMEM_SLAB(cp, slab); chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; } sp->slab_cache = cp; sp->slab_head = NULL; sp->slab_refcnt = 0; sp->slab_base = buf = slab + color; sp->slab_chunks = chunks; ASSERT(chunks > 0); while (chunks-- != 0) { if (cache_flags & KMF_HASH) { bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); if (bcp == NULL) goto bufctl_alloc_failure; if (cache_flags & KMF_AUDIT) { kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; bzero(bcap, sizeof (kmem_bufctl_audit_t)); bcap->bc_cache = cp; } bcp->bc_addr = buf; bcp->bc_slab = sp; } else { bcp = KMEM_BUFCTL(cp, buf); } if (cache_flags & KMF_BUFTAG) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); btp->bt_redzone = KMEM_REDZONE_PATTERN; btp->bt_bufctl = bcp; btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; if (cache_flags & KMF_DEADBEEF) { copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); } } bcp->bc_next = sp->slab_head; sp->slab_head = bcp; buf += chunksize; } kmem_log_event(kmem_slab_log, cp, sp, slab); return (sp); bufctl_alloc_failure: while ((bcp = sp->slab_head) != NULL) { sp->slab_head = bcp->bc_next; kmem_cache_free(cp->cache_bufctl_cache, bcp); } kmem_cache_free(kmem_slab_cache, sp); slab_alloc_failure: vmem_free(vmp, slab, slabsize); vmem_alloc_failure: kmem_log_event(kmem_failure_log, cp, NULL, NULL); atomic_add_64(&cp->cache_alloc_fail, 1); return (NULL); } /* * Destroy a slab. */ static void kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) { vmem_t *vmp = cp->cache_arena; void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); if (cp->cache_flags & KMF_HASH) { kmem_bufctl_t *bcp; while ((bcp = sp->slab_head) != NULL) { sp->slab_head = bcp->bc_next; kmem_cache_free(cp->cache_bufctl_cache, bcp); } kmem_cache_free(kmem_slab_cache, sp); } vmem_free(vmp, slab, cp->cache_slabsize); } /* * Allocate a raw (unconstructed) buffer from cp's slab layer. */ static void * kmem_slab_alloc(kmem_cache_t *cp, int kmflag) { kmem_bufctl_t *bcp, **hash_bucket; kmem_slab_t *sp; void *buf; mutex_enter(&cp->cache_lock); cp->cache_slab_alloc++; sp = cp->cache_freelist; ASSERT(sp->slab_cache == cp); if (sp->slab_head == NULL) { /* * The freelist is empty. Create a new slab. */ mutex_exit(&cp->cache_lock); if ((sp = kmem_slab_create(cp, kmflag)) == NULL) return (NULL); mutex_enter(&cp->cache_lock); cp->cache_slab_create++; if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) cp->cache_bufmax = cp->cache_buftotal; sp->slab_next = cp->cache_freelist; sp->slab_prev = cp->cache_freelist->slab_prev; sp->slab_next->slab_prev = sp; sp->slab_prev->slab_next = sp; cp->cache_freelist = sp; } sp->slab_refcnt++; ASSERT(sp->slab_refcnt <= sp->slab_chunks); /* * If we're taking the last buffer in the slab, * remove the slab from the cache's freelist. */ bcp = sp->slab_head; if ((sp->slab_head = bcp->bc_next) == NULL) { cp->cache_freelist = sp->slab_next; ASSERT(sp->slab_refcnt == sp->slab_chunks); } if (cp->cache_flags & KMF_HASH) { /* * Add buffer to allocated-address hash table. */ buf = bcp->bc_addr; hash_bucket = KMEM_HASH(cp, buf); bcp->bc_next = *hash_bucket; *hash_bucket = bcp; if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { KMEM_AUDIT(kmem_transaction_log, cp, bcp); } } else { buf = KMEM_BUF(cp, bcp); } ASSERT(KMEM_SLAB_MEMBER(sp, buf)); mutex_exit(&cp->cache_lock); return (buf); } /* * Free a raw (unconstructed) buffer to cp's slab layer. */ static void kmem_slab_free(kmem_cache_t *cp, void *buf) { kmem_slab_t *sp; kmem_bufctl_t *bcp, **prev_bcpp; ASSERT(buf != NULL); mutex_enter(&cp->cache_lock); cp->cache_slab_free++; if (cp->cache_flags & KMF_HASH) { /* * Look up buffer in allocated-address hash table. */ prev_bcpp = KMEM_HASH(cp, buf); while ((bcp = *prev_bcpp) != NULL) { if (bcp->bc_addr == buf) { *prev_bcpp = bcp->bc_next; sp = bcp->bc_slab; break; } cp->cache_lookup_depth++; prev_bcpp = &bcp->bc_next; } } else { bcp = KMEM_BUFCTL(cp, buf); sp = KMEM_SLAB(cp, buf); } if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { mutex_exit(&cp->cache_lock); kmem_error(KMERR_BADADDR, cp, buf); return; } if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { if (cp->cache_flags & KMF_CONTENTS) ((kmem_bufctl_audit_t *)bcp)->bc_contents = kmem_log_enter(kmem_content_log, buf, cp->cache_contents); KMEM_AUDIT(kmem_transaction_log, cp, bcp); } /* * If this slab isn't currently on the freelist, put it there. */ if (sp->slab_head == NULL) { ASSERT(sp->slab_refcnt == sp->slab_chunks); ASSERT(cp->cache_freelist != sp); sp->slab_next->slab_prev = sp->slab_prev; sp->slab_prev->slab_next = sp->slab_next; sp->slab_next = cp->cache_freelist; sp->slab_prev = cp->cache_freelist->slab_prev; sp->slab_next->slab_prev = sp; sp->slab_prev->slab_next = sp; cp->cache_freelist = sp; } bcp->bc_next = sp->slab_head; sp->slab_head = bcp; ASSERT(sp->slab_refcnt >= 1); if (--sp->slab_refcnt == 0) { /* * There are no outstanding allocations from this slab, * so we can reclaim the memory. */ sp->slab_next->slab_prev = sp->slab_prev; sp->slab_prev->slab_next = sp->slab_next; if (sp == cp->cache_freelist) cp->cache_freelist = sp->slab_next; cp->cache_slab_destroy++; cp->cache_buftotal -= sp->slab_chunks; mutex_exit(&cp->cache_lock); kmem_slab_destroy(cp, sp); return; } mutex_exit(&cp->cache_lock); } static int kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, caddr_t caller) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; uint32_t mtbf; if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { kmem_error(KMERR_BADBUFTAG, cp, buf); return (-1); } btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { kmem_error(KMERR_BADBUFCTL, cp, buf); return (-1); } if (cp->cache_flags & KMF_DEADBEEF) { if (!construct && (cp->cache_flags & KMF_LITE)) { if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { kmem_error(KMERR_MODIFIED, cp, buf); return (-1); } if (cp->cache_constructor != NULL) *(uint64_t *)buf = btp->bt_redzone; else *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; } else { construct = 1; if (verify_and_copy_pattern(KMEM_FREE_PATTERN, KMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) { kmem_error(KMERR_MODIFIED, cp, buf); return (-1); } } } btp->bt_redzone = KMEM_REDZONE_PATTERN; if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && gethrtime() % mtbf == 0 && (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { kmem_log_event(kmem_failure_log, cp, NULL, NULL); if (!construct && cp->cache_destructor != NULL) cp->cache_destructor(buf, cp->cache_private); } else { mtbf = 0; } if (mtbf || (construct && cp->cache_constructor != NULL && cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { atomic_add_64(&cp->cache_alloc_fail, 1); btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; if (cp->cache_flags & KMF_DEADBEEF) copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); kmem_slab_free(cp, buf); return (-1); } if (cp->cache_flags & KMF_AUDIT) { KMEM_AUDIT(kmem_transaction_log, cp, bcp); } if ((cp->cache_flags & KMF_LITE) && !(cp->cache_cflags & KMC_KMEM_ALLOC)) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); } return (0); } static int kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; kmem_slab_t *sp; if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { kmem_error(KMERR_DUPFREE, cp, buf); return (-1); } sp = kmem_findslab(cp, buf); if (sp == NULL || sp->slab_cache != cp) kmem_error(KMERR_BADADDR, cp, buf); else kmem_error(KMERR_REDZONE, cp, buf); return (-1); } btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { kmem_error(KMERR_BADBUFCTL, cp, buf); return (-1); } if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { kmem_error(KMERR_REDZONE, cp, buf); return (-1); } if (cp->cache_flags & KMF_AUDIT) { if (cp->cache_flags & KMF_CONTENTS) bcp->bc_contents = kmem_log_enter(kmem_content_log, buf, cp->cache_contents); KMEM_AUDIT(kmem_transaction_log, cp, bcp); } if ((cp->cache_flags & KMF_LITE) && !(cp->cache_cflags & KMC_KMEM_ALLOC)) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); } if (cp->cache_flags & KMF_DEADBEEF) { if (cp->cache_flags & KMF_LITE) btp->bt_redzone = *(uint64_t *)buf; else if (cp->cache_destructor != NULL) cp->cache_destructor(buf, cp->cache_private); copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); } return (0); } /* * Free each object in magazine mp to cp's slab layer, and free mp itself. */ static void kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) { int round; ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread)); for (round = 0; round < nrounds; round++) { void *buf = mp->mag_round[round]; if (cp->cache_flags & KMF_DEADBEEF) { if (verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify) != NULL) { kmem_error(KMERR_MODIFIED, cp, buf); continue; } if ((cp->cache_flags & KMF_LITE) && cp->cache_destructor != NULL) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); *(uint64_t *)buf = btp->bt_redzone; cp->cache_destructor(buf, cp->cache_private); *(uint64_t *)buf = KMEM_FREE_PATTERN; } } else if (cp->cache_destructor != NULL) { cp->cache_destructor(buf, cp->cache_private); } kmem_slab_free(cp, buf); } ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); kmem_cache_free(cp->cache_magtype->mt_cache, mp); } /* * Allocate a magazine from the depot. */ static kmem_magazine_t * kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) { kmem_magazine_t *mp; /* * If we can't get the depot lock without contention, * update our contention count. We use the depot * contention rate to determine whether we need to * increase the magazine size for better scalability. */ if (!mutex_tryenter(&cp->cache_depot_lock)) { mutex_enter(&cp->cache_depot_lock); cp->cache_depot_contention++; } if ((mp = mlp->ml_list) != NULL) { ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); mlp->ml_list = mp->mag_next; if (--mlp->ml_total < mlp->ml_min) mlp->ml_min = mlp->ml_total; mlp->ml_alloc++; } mutex_exit(&cp->cache_depot_lock); return (mp); } /* * Free a magazine to the depot. */ static void kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) { mutex_enter(&cp->cache_depot_lock); ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); mp->mag_next = mlp->ml_list; mlp->ml_list = mp; mlp->ml_total++; mutex_exit(&cp->cache_depot_lock); } /* * Update the working set statistics for cp's depot. */ static void kmem_depot_ws_update(kmem_cache_t *cp) { mutex_enter(&cp->cache_depot_lock); cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; cp->cache_full.ml_min = cp->cache_full.ml_total; cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; cp->cache_empty.ml_min = cp->cache_empty.ml_total; mutex_exit(&cp->cache_depot_lock); } /* * Reap all magazines that have fallen out of the depot's working set. */ static void kmem_depot_ws_reap(kmem_cache_t *cp) { long reap; kmem_magazine_t *mp; ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread)); reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) kmem_magazine_destroy(cp, mp, 0); } static void kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) { ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); ASSERT(ccp->cc_magsize > 0); ccp->cc_ploaded = ccp->cc_loaded; ccp->cc_prounds = ccp->cc_rounds; ccp->cc_loaded = mp; ccp->cc_rounds = rounds; } /* * Allocate a constructed object from cache cp. */ void * kmem_cache_alloc(kmem_cache_t *cp, int kmflag) { kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); kmem_magazine_t *fmp; void *buf; mutex_enter(&ccp->cc_lock); for (;;) { /* * If there's an object available in the current CPU's * loaded magazine, just take it and return. */ if (ccp->cc_rounds > 0) { buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; ccp->cc_alloc++; mutex_exit(&ccp->cc_lock); if ((ccp->cc_flags & KMF_BUFTAG) && kmem_cache_alloc_debug(cp, buf, kmflag, 0, caller()) == -1) { if (kmflag & KM_NOSLEEP) return (NULL); mutex_enter(&ccp->cc_lock); continue; } return (buf); } /* * The loaded magazine is empty. If the previously loaded * magazine was full, exchange them and try again. */ if (ccp->cc_prounds > 0) { kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); continue; } /* * If the magazine layer is disabled, break out now. */ if (ccp->cc_magsize == 0) break; /* * Try to get a full magazine from the depot. */ fmp = kmem_depot_alloc(cp, &cp->cache_full); if (fmp != NULL) { if (ccp->cc_ploaded != NULL) kmem_depot_free(cp, &cp->cache_empty, ccp->cc_ploaded); kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); continue; } /* * There are no full magazines in the depot, * so fall through to the slab layer. */ break; } mutex_exit(&ccp->cc_lock); /* * We couldn't allocate a constructed object from the magazine layer, * so get a raw buffer from the slab layer and apply its constructor. */ buf = kmem_slab_alloc(cp, kmflag); if (buf == NULL) return (NULL); if (cp->cache_flags & KMF_BUFTAG) { /* * Make kmem_cache_alloc_debug() apply the constructor for us. */ if (kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()) == -1) { if (kmflag & KM_NOSLEEP) return (NULL); /* * kmem_cache_alloc_debug() detected corruption * but didn't panic (kmem_panic <= 0). Try again. */ return (kmem_cache_alloc(cp, kmflag)); } return (buf); } if (cp->cache_constructor != NULL && cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { atomic_add_64(&cp->cache_alloc_fail, 1); kmem_slab_free(cp, buf); return (NULL); } return (buf); } /* * Free a constructed object to cache cp. */ void kmem_cache_free(kmem_cache_t *cp, void *buf) { kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); kmem_magazine_t *emp; kmem_magtype_t *mtp; if (ccp->cc_flags & KMF_BUFTAG) if (kmem_cache_free_debug(cp, buf, caller()) == -1) return; mutex_enter(&ccp->cc_lock); for (;;) { /* * If there's a slot available in the current CPU's * loaded magazine, just put the object there and return. */ if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; ccp->cc_free++; mutex_exit(&ccp->cc_lock); return; } /* * The loaded magazine is full. If the previously loaded * magazine was empty, exchange them and try again. */ if (ccp->cc_prounds == 0) { kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); continue; } /* * If the magazine layer is disabled, break out now. */ if (ccp->cc_magsize == 0) break; /* * Try to get an empty magazine from the depot. */ emp = kmem_depot_alloc(cp, &cp->cache_empty); if (emp != NULL) { if (ccp->cc_ploaded != NULL) kmem_depot_free(cp, &cp->cache_full, ccp->cc_ploaded); kmem_cpu_reload(ccp, emp, 0); continue; } /* * There are no empty magazines in the depot, * so try to allocate a new one. We must drop all locks * across kmem_cache_alloc() because lower layers may * attempt to allocate from this cache. */ mtp = cp->cache_magtype; mutex_exit(&ccp->cc_lock); emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); mutex_enter(&ccp->cc_lock); if (emp != NULL) { /* * We successfully allocated an empty magazine. * However, we had to drop ccp->cc_lock to do it, * so the cache's magazine size may have changed. * If so, free the magazine and try again. */ if (ccp->cc_magsize != mtp->mt_magsize) { mutex_exit(&ccp->cc_lock); kmem_cache_free(mtp->mt_cache, emp); mutex_enter(&ccp->cc_lock); continue; } /* * We got a magazine of the right size. Add it to * the depot and try the whole dance again. */ kmem_depot_free(cp, &cp->cache_empty, emp); continue; } /* * We couldn't allocate an empty magazine, * so fall through to the slab layer. */ break; } mutex_exit(&ccp->cc_lock); /* * We couldn't free our constructed object to the magazine layer, * so apply its destructor and free it to the slab layer. * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, * kmem_cache_free_debug() will have already applied the destructor. */ if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && cp->cache_destructor != NULL) { if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); *(uint64_t *)buf = btp->bt_redzone; cp->cache_destructor(buf, cp->cache_private); *(uint64_t *)buf = KMEM_FREE_PATTERN; } else { cp->cache_destructor(buf, cp->cache_private); } } kmem_slab_free(cp, buf); } void * kmem_zalloc(size_t size, int kmflag) { size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; void *buf; if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { kmem_cache_t *cp = kmem_alloc_table[index]; buf = kmem_cache_alloc(cp, kmflag); if (buf != NULL) { if (cp->cache_flags & KMF_BUFTAG) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); if (cp->cache_flags & KMF_LITE) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); } } bzero(buf, size); } } else { buf = kmem_alloc(size, kmflag); if (buf != NULL) bzero(buf, size); } return (buf); } void * kmem_alloc(size_t size, int kmflag) { size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; void *buf; if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { kmem_cache_t *cp = kmem_alloc_table[index]; buf = kmem_cache_alloc(cp, kmflag); if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); if (cp->cache_flags & KMF_LITE) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); } } return (buf); } if (size == 0) return (NULL); buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS); if (buf == NULL) kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size); return (buf); } void kmem_free(void *buf, size_t size) { size_t index = (size - 1) >> KMEM_ALIGN_SHIFT; if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) { kmem_cache_t *cp = kmem_alloc_table[index]; if (cp->cache_flags & KMF_BUFTAG) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); uint32_t *ip = (uint32_t *)btp; if (ip[1] != KMEM_SIZE_ENCODE(size)) { if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { kmem_error(KMERR_DUPFREE, cp, buf); return; } if (KMEM_SIZE_VALID(ip[1])) { ip[0] = KMEM_SIZE_ENCODE(size); kmem_error(KMERR_BADSIZE, cp, buf); } else { kmem_error(KMERR_REDZONE, cp, buf); } return; } if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { kmem_error(KMERR_REDZONE, cp, buf); return; } btp->bt_redzone = KMEM_REDZONE_PATTERN; if (cp->cache_flags & KMF_LITE) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); } } kmem_cache_free(cp, buf); } else { if (buf == NULL && size == 0) return; vmem_free(kmem_oversize_arena, buf, size); } } void * kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) { size_t realsize = size + vmp->vm_quantum; void *addr; /* * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding * vm_quantum will cause integer wraparound. Check for this, and * blow off the firewall page in this case. Note that such a * giant allocation (the entire kernel address space) can never * be satisfied, so it will either fail immediately (VM_NOSLEEP) * or sleep forever (VM_SLEEP). Thus, there is no need for a * corresponding check in kmem_firewall_va_free(). */ if (realsize < size) realsize = size; /* * While boot still owns resource management, make sure that this * redzone virtual address allocation is properly accounted for in * OBPs "virtual-memory" "available" lists because we're * effectively claiming them for a red zone. If we don't do this, * the available lists become too fragmented and too large for the * current boot/kernel memory list interface. */ addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); if (addr != NULL && kvseg.s_base == NULL && realsize != size) (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); return (addr); } void kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) { ASSERT((kvseg.s_base == NULL ? va_to_pfn((char *)addr + size) : hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); vmem_free(vmp, addr, size + vmp->vm_quantum); } /* * Try to allocate at least `size' bytes of memory without sleeping or * panicking. Return actual allocated size in `asize'. If allocation failed, * try final allocation with sleep or panic allowed. */ void * kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) { void *p; *asize = P2ROUNDUP(size, KMEM_ALIGN); do { p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); if (p != NULL) return (p); *asize += KMEM_ALIGN; } while (*asize <= PAGESIZE); *asize = P2ROUNDUP(size, KMEM_ALIGN); return (kmem_alloc(*asize, kmflag)); } /* * Reclaim all unused memory from a cache. */ static void kmem_cache_reap(kmem_cache_t *cp) { /* * Ask the cache's owner to free some memory if possible. * The idea is to handle things like the inode cache, which * typically sits on a bunch of memory that it doesn't truly * *need*. Reclaim policy is entirely up to the owner; this * callback is just an advisory plea for help. */ if (cp->cache_reclaim != NULL) cp->cache_reclaim(cp->cache_private); kmem_depot_ws_reap(cp); } static void kmem_reap_timeout(void *flag_arg) { uint32_t *flag = (uint32_t *)flag_arg; ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); *flag = 0; } static void kmem_reap_done(void *flag) { (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); } static void kmem_reap_start(void *flag) { ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); if (flag == &kmem_reaping) { kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); /* * if we have segkp under heap, reap segkp cache. */ if (segkp_fromheap) segkp_cache_free(); } else kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); /* * We use taskq_dispatch() to schedule a timeout to clear * the flag so that kmem_reap() becomes self-throttling: * we won't reap again until the current reap completes *and* * at least kmem_reap_interval ticks have elapsed. */ if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) kmem_reap_done(flag); } static void kmem_reap_common(void *flag_arg) { uint32_t *flag = (uint32_t *)flag_arg; if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || cas32(flag, 0, 1) != 0) return; /* * It may not be kosher to do memory allocation when a reap is called * is called (for example, if vmem_populate() is in the call chain). * So we start the reap going with a TQ_NOALLOC dispatch. If the * dispatch fails, we reset the flag, and the next reap will try again. */ if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) *flag = 0; } /* * Reclaim all unused memory from all caches. Called from the VM system * when memory gets tight. */ void kmem_reap(void) { kmem_reap_common(&kmem_reaping); } /* * Reclaim all unused memory from identifier arenas, called when a vmem * arena not back by memory is exhausted. Since reaping memory-backed caches * cannot help with identifier exhaustion, we avoid both a large amount of * work and unwanted side-effects from reclaim callbacks. */ void kmem_reap_idspace(void) { kmem_reap_common(&kmem_reaping_idspace); } /* * Purge all magazines from a cache and set its magazine limit to zero. * All calls are serialized by the kmem_taskq lock, except for the final * call from kmem_cache_destroy(). */ static void kmem_cache_magazine_purge(kmem_cache_t *cp) { kmem_cpu_cache_t *ccp; kmem_magazine_t *mp, *pmp; int rounds, prounds, cpu_seqid; ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread)); ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { ccp = &cp->cache_cpu[cpu_seqid]; mutex_enter(&ccp->cc_lock); mp = ccp->cc_loaded; pmp = ccp->cc_ploaded; rounds = ccp->cc_rounds; prounds = ccp->cc_prounds; ccp->cc_loaded = NULL; ccp->cc_ploaded = NULL; ccp->cc_rounds = -1; ccp->cc_prounds = -1; ccp->cc_magsize = 0; mutex_exit(&ccp->cc_lock); if (mp) kmem_magazine_destroy(cp, mp, rounds); if (pmp) kmem_magazine_destroy(cp, pmp, prounds); } /* * Updating the working set statistics twice in a row has the * effect of setting the working set size to zero, so everything * is eligible for reaping. */ kmem_depot_ws_update(cp); kmem_depot_ws_update(cp); kmem_depot_ws_reap(cp); } /* * Enable per-cpu magazines on a cache. */ static void kmem_cache_magazine_enable(kmem_cache_t *cp) { int cpu_seqid; if (cp->cache_flags & KMF_NOMAGAZINE) return; for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; mutex_enter(&ccp->cc_lock); ccp->cc_magsize = cp->cache_magtype->mt_magsize; mutex_exit(&ccp->cc_lock); } } /* * Recompute a cache's magazine size. The trade-off is that larger magazines * provide a higher transfer rate with the depot, while smaller magazines * reduce memory consumption. Magazine resizing is an expensive operation; * it should not be done frequently. * * Changes to the magazine size are serialized by the kmem_taskq lock. * * Note: at present this only grows the magazine size. It might be useful * to allow shrinkage too. */ static void kmem_cache_magazine_resize(kmem_cache_t *cp) { kmem_magtype_t *mtp = cp->cache_magtype; ASSERT(taskq_member(kmem_taskq, curthread)); if (cp->cache_chunksize < mtp->mt_maxbuf) { kmem_cache_magazine_purge(cp); mutex_enter(&cp->cache_depot_lock); cp->cache_magtype = ++mtp; cp->cache_depot_contention_prev = cp->cache_depot_contention + INT_MAX; mutex_exit(&cp->cache_depot_lock); kmem_cache_magazine_enable(cp); } } /* * Rescale a cache's hash table, so that the table size is roughly the * cache size. We want the average lookup time to be extremely small. */ static void kmem_hash_rescale(kmem_cache_t *cp) { kmem_bufctl_t **old_table, **new_table, *bcp; size_t old_size, new_size, h; ASSERT(taskq_member(kmem_taskq, curthread)); new_size = MAX(KMEM_HASH_INITIAL, 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); old_size = cp->cache_hash_mask + 1; if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) return; new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), VM_NOSLEEP); if (new_table == NULL) return; bzero(new_table, new_size * sizeof (void *)); mutex_enter(&cp->cache_lock); old_size = cp->cache_hash_mask + 1; old_table = cp->cache_hash_table; cp->cache_hash_mask = new_size - 1; cp->cache_hash_table = new_table; cp->cache_rescale++; for (h = 0; h < old_size; h++) { bcp = old_table[h]; while (bcp != NULL) { void *addr = bcp->bc_addr; kmem_bufctl_t *next_bcp = bcp->bc_next; kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); bcp->bc_next = *hash_bucket; *hash_bucket = bcp; bcp = next_bcp; } } mutex_exit(&cp->cache_lock); vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); } /* * Perform periodic maintenance on a cache: hash rescaling, * depot working-set update, and magazine resizing. */ static void kmem_cache_update(kmem_cache_t *cp) { int need_hash_rescale = 0; int need_magazine_resize = 0; ASSERT(MUTEX_HELD(&kmem_cache_lock)); /* * If the cache has become much larger or smaller than its hash table, * fire off a request to rescale the hash table. */ mutex_enter(&cp->cache_lock); if ((cp->cache_flags & KMF_HASH) && (cp->cache_buftotal > (cp->cache_hash_mask << 1) || (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && cp->cache_hash_mask > KMEM_HASH_INITIAL))) need_hash_rescale = 1; mutex_exit(&cp->cache_lock); /* * Update the depot working set statistics. */ kmem_depot_ws_update(cp); /* * If there's a lot of contention in the depot, * increase the magazine size. */ mutex_enter(&cp->cache_depot_lock); if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && (int)(cp->cache_depot_contention - cp->cache_depot_contention_prev) > kmem_depot_contention) need_magazine_resize = 1; cp->cache_depot_contention_prev = cp->cache_depot_contention; mutex_exit(&cp->cache_depot_lock); if (need_hash_rescale) (void) taskq_dispatch(kmem_taskq, (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); if (need_magazine_resize) (void) taskq_dispatch(kmem_taskq, (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); } static void kmem_update_timeout(void *dummy) { static void kmem_update(void *); (void) timeout(kmem_update, dummy, kmem_reap_interval); } static void kmem_update(void *dummy) { kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); /* * We use taskq_dispatch() to reschedule the timeout so that * kmem_update() becomes self-throttling: it won't schedule * new tasks until all previous tasks have completed. */ if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) kmem_update_timeout(NULL); } static int kmem_cache_kstat_update(kstat_t *ksp, int rw) { struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; kmem_cache_t *cp = ksp->ks_private; kmem_slab_t *sp; uint64_t cpu_buf_avail; uint64_t buf_avail = 0; int cpu_seqid; ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); if (rw == KSTAT_WRITE) return (EACCES); mutex_enter(&cp->cache_lock); kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; kmcp->kmc_free.value.ui64 = cp->cache_slab_free; kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; mutex_enter(&ccp->cc_lock); cpu_buf_avail = 0; if (ccp->cc_rounds > 0) cpu_buf_avail += ccp->cc_rounds; if (ccp->cc_prounds > 0) cpu_buf_avail += ccp->cc_prounds; kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; kmcp->kmc_free.value.ui64 += ccp->cc_free; buf_avail += cpu_buf_avail; mutex_exit(&ccp->cc_lock); } mutex_enter(&cp->cache_depot_lock); kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; kmcp->kmc_magazine_size.value.ui64 = (cp->cache_flags & KMF_NOMAGAZINE) ? 0 : cp->cache_magtype->mt_magsize; kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; mutex_exit(&cp->cache_depot_lock); kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; kmcp->kmc_align.value.ui64 = cp->cache_align; kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; kmcp->kmc_buf_constructed.value.ui64 = buf_avail; for (sp = cp->cache_freelist; sp != &cp->cache_nullslab; sp = sp->slab_next) buf_avail += sp->slab_chunks - sp->slab_refcnt; kmcp->kmc_buf_avail.value.ui64 = buf_avail; kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? cp->cache_hash_mask + 1 : 0; kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; mutex_exit(&cp->cache_lock); return (0); } /* * Return a named statistic about a particular cache. * This shouldn't be called very often, so it's currently designed for * simplicity (leverages existing kstat support) rather than efficiency. */ uint64_t kmem_cache_stat(kmem_cache_t *cp, char *name) { int i; kstat_t *ksp = cp->cache_kstat; kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; uint64_t value = 0; if (ksp != NULL) { mutex_enter(&kmem_cache_kstat_lock); (void) kmem_cache_kstat_update(ksp, KSTAT_READ); for (i = 0; i < ksp->ks_ndata; i++) { if (strcmp(knp[i].name, name) == 0) { value = knp[i].value.ui64; break; } } mutex_exit(&kmem_cache_kstat_lock); } return (value); } /* * Return an estimate of currently available kernel heap memory. * On 32-bit systems, physical memory may exceed virtual memory, * we just truncate the result at 1GB. */ size_t kmem_avail(void) { spgcnt_t rmem = availrmem - tune.t_minarmem; spgcnt_t fmem = freemem - minfree; return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 1 << (30 - PAGESHIFT)))); } /* * Return the maximum amount of memory that is (in theory) allocatable * from the heap. This may be used as an estimate only since there * is no guarentee this space will still be available when an allocation * request is made, nor that the space may be allocated in one big request * due to kernel heap fragmentation. */ size_t kmem_maxavail(void) { spgcnt_t pmem = availrmem - tune.t_minarmem; spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); } kmem_cache_t * kmem_cache_create( char *name, /* descriptive name for this cache */ size_t bufsize, /* size of the objects it manages */ size_t align, /* required object alignment */ int (*constructor)(void *, void *, int), /* object constructor */ void (*destructor)(void *, void *), /* object destructor */ void (*reclaim)(void *), /* memory reclaim callback */ void *private, /* pass-thru arg for constr/destr/reclaim */ vmem_t *vmp, /* vmem source for slab allocation */ int cflags) /* cache creation flags */ { int cpu_seqid; size_t chunksize; kmem_cache_t *cp, *cnext, *cprev; kmem_magtype_t *mtp; size_t csize = KMEM_CACHE_SIZE(max_ncpus); #ifdef DEBUG /* * Cache names should conform to the rules for valid C identifiers */ if (!strident_valid(name)) { cmn_err(CE_CONT, "kmem_cache_create: '%s' is an invalid cache name\n" "cache names must conform to the rules for " "C identifiers\n", name); } #endif /* DEBUG */ if (vmp == NULL) vmp = kmem_default_arena; /* * If this kmem cache has an identifier vmem arena as its source, mark * it such to allow kmem_reap_idspace(). */ ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ if (vmp->vm_cflags & VMC_IDENTIFIER) cflags |= KMC_IDENTIFIER; /* * Get a kmem_cache structure. We arrange that cp->cache_cpu[] * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent * false sharing of per-CPU data. */ cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); bzero(cp, csize); if (align == 0) align = KMEM_ALIGN; /* * If we're not at least KMEM_ALIGN aligned, we can't use free * memory to hold bufctl information (because we can't safely * perform word loads and stores on it). */ if (align < KMEM_ALIGN) cflags |= KMC_NOTOUCH; if ((align & (align - 1)) != 0 || align > vmp->vm_quantum) panic("kmem_cache_create: bad alignment %lu", align); mutex_enter(&kmem_flags_lock); if (kmem_flags & KMF_RANDOMIZE) kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | KMF_RANDOMIZE; cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; mutex_exit(&kmem_flags_lock); /* * Make sure all the various flags are reasonable. */ ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); if (cp->cache_flags & KMF_LITE) { if (bufsize >= kmem_lite_minsize && align <= kmem_lite_maxalign && P2PHASE(bufsize, kmem_lite_maxalign) != 0) { cp->cache_flags |= KMF_BUFTAG; cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); } else { cp->cache_flags &= ~KMF_DEBUG; } } if (cp->cache_flags & KMF_DEADBEEF) cp->cache_flags |= KMF_REDZONE; if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) cp->cache_flags |= KMF_NOMAGAZINE; if (cflags & KMC_NODEBUG) cp->cache_flags &= ~KMF_DEBUG; if (cflags & KMC_NOTOUCH) cp->cache_flags &= ~KMF_TOUCH; if (cflags & KMC_NOHASH) cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); if (cflags & KMC_NOMAGAZINE) cp->cache_flags |= KMF_NOMAGAZINE; if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) cp->cache_flags |= KMF_REDZONE; if (!(cp->cache_flags & KMF_AUDIT)) cp->cache_flags &= ~KMF_CONTENTS; if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) cp->cache_flags |= KMF_FIREWALL; if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) cp->cache_flags &= ~KMF_FIREWALL; if (cp->cache_flags & KMF_FIREWALL) { cp->cache_flags &= ~KMF_BUFTAG; cp->cache_flags |= KMF_NOMAGAZINE; ASSERT(vmp == kmem_default_arena); vmp = kmem_firewall_arena; } /* * Set cache properties. */ (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN); cp->cache_bufsize = bufsize; cp->cache_align = align; cp->cache_constructor = constructor; cp->cache_destructor = destructor; cp->cache_reclaim = reclaim; cp->cache_private = private; cp->cache_arena = vmp; cp->cache_cflags = cflags; /* * Determine the chunk size. */ chunksize = bufsize; if (align >= KMEM_ALIGN) { chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); cp->cache_bufctl = chunksize - KMEM_ALIGN; } if (cp->cache_flags & KMF_BUFTAG) { cp->cache_bufctl = chunksize; cp->cache_buftag = chunksize; if (cp->cache_flags & KMF_LITE) chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); else chunksize += sizeof (kmem_buftag_t); } if (cp->cache_flags & KMF_DEADBEEF) { cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); if (cp->cache_flags & KMF_LITE) cp->cache_verify = sizeof (uint64_t); } cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); /* * Now that we know the chunk size, determine the optimal slab size. */ if (vmp == kmem_firewall_arena) { cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); cp->cache_mincolor = cp->cache_slabsize - chunksize; cp->cache_maxcolor = cp->cache_mincolor; cp->cache_flags |= KMF_HASH; ASSERT(!(cp->cache_flags & KMF_BUFTAG)); } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && !(cp->cache_flags & KMF_AUDIT) && chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { cp->cache_slabsize = vmp->vm_quantum; cp->cache_mincolor = 0; cp->cache_maxcolor = (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); ASSERT(!(cp->cache_flags & KMF_AUDIT)); } else { size_t chunks, bestfit, waste, slabsize; size_t minwaste = LONG_MAX; for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { slabsize = P2ROUNDUP(chunksize * chunks, vmp->vm_quantum); chunks = slabsize / chunksize; waste = (slabsize % chunksize) / chunks; if (waste < minwaste) { minwaste = waste; bestfit = slabsize; } } if (cflags & KMC_QCACHE) bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); cp->cache_slabsize = bestfit; cp->cache_mincolor = 0; cp->cache_maxcolor = bestfit % chunksize; cp->cache_flags |= KMF_HASH; } if (cp->cache_flags & KMF_HASH) { ASSERT(!(cflags & KMC_NOHASH)); cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? kmem_bufctl_audit_cache : kmem_bufctl_cache; } if (cp->cache_maxcolor >= vmp->vm_quantum) cp->cache_maxcolor = vmp->vm_quantum - 1; cp->cache_color = cp->cache_mincolor; /* * Initialize the rest of the slab layer. */ mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); cp->cache_freelist = &cp->cache_nullslab; cp->cache_nullslab.slab_cache = cp; cp->cache_nullslab.slab_refcnt = -1; cp->cache_nullslab.slab_next = &cp->cache_nullslab; cp->cache_nullslab.slab_prev = &cp->cache_nullslab; if (cp->cache_flags & KMF_HASH) { cp->cache_hash_table = vmem_alloc(kmem_hash_arena, KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); bzero(cp->cache_hash_table, KMEM_HASH_INITIAL * sizeof (void *)); cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; } /* * Initialize the depot. */ mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) continue; cp->cache_magtype = mtp; /* * Initialize the CPU layer. */ for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); ccp->cc_flags = cp->cache_flags; ccp->cc_rounds = -1; ccp->cc_prounds = -1; } /* * Create the cache's kstats. */ if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, "kmem_cache", KSTAT_TYPE_NAMED, sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) { cp->cache_kstat->ks_data = &kmem_cache_kstat; cp->cache_kstat->ks_update = kmem_cache_kstat_update; cp->cache_kstat->ks_private = cp; cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; kstat_install(cp->cache_kstat); } /* * Add the cache to the global list. This makes it visible * to kmem_update(), so the cache must be ready for business. */ mutex_enter(&kmem_cache_lock); cp->cache_next = cnext = &kmem_null_cache; cp->cache_prev = cprev = kmem_null_cache.cache_prev; cnext->cache_prev = cp; cprev->cache_next = cp; mutex_exit(&kmem_cache_lock); if (kmem_ready) kmem_cache_magazine_enable(cp); return (cp); } void kmem_cache_destroy(kmem_cache_t *cp) { int cpu_seqid; /* * Remove the cache from the global cache list so that no one else * can schedule tasks on its behalf, wait for any pending tasks to * complete, purge the cache, and then destroy it. */ mutex_enter(&kmem_cache_lock); cp->cache_prev->cache_next = cp->cache_next; cp->cache_next->cache_prev = cp->cache_prev; cp->cache_prev = cp->cache_next = NULL; mutex_exit(&kmem_cache_lock); if (kmem_taskq != NULL) taskq_wait(kmem_taskq); kmem_cache_magazine_purge(cp); mutex_enter(&cp->cache_lock); if (cp->cache_buftotal != 0) cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", cp->cache_name, (void *)cp); cp->cache_reclaim = NULL; /* * The cache is now dead. There should be no further activity. * We enforce this by setting land mines in the constructor and * destructor routines that induce a kernel text fault if invoked. */ cp->cache_constructor = (int (*)(void *, void *, int))1; cp->cache_destructor = (void (*)(void *, void *))2; mutex_exit(&cp->cache_lock); kstat_delete(cp->cache_kstat); if (cp->cache_hash_table != NULL) vmem_free(kmem_hash_arena, cp->cache_hash_table, (cp->cache_hash_mask + 1) * sizeof (void *)); for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); mutex_destroy(&cp->cache_depot_lock); mutex_destroy(&cp->cache_lock); vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); } /*ARGSUSED*/ static int kmem_cpu_setup(cpu_setup_t what, int id, void *arg) { ASSERT(MUTEX_HELD(&cpu_lock)); if (what == CPU_UNCONFIG) { kmem_cache_applyall(kmem_cache_magazine_purge, kmem_taskq, TQ_SLEEP); kmem_cache_applyall(kmem_cache_magazine_enable, kmem_taskq, TQ_SLEEP); } return (0); } static void kmem_cache_init(int pass, int use_large_pages) { int i; size_t size; kmem_cache_t *cp; kmem_magtype_t *mtp; char name[KMEM_CACHE_NAMELEN + 1]; for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { mtp = &kmem_magtype[i]; (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); mtp->mt_cache = kmem_cache_create(name, (mtp->mt_magsize + 1) * sizeof (void *), mtp->mt_align, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); } kmem_slab_cache = kmem_cache_create("kmem_slab_cache", sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); if (pass == 2) { kmem_va_arena = vmem_create("kmem_va", NULL, 0, PAGESIZE, vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, VM_SLEEP); if (use_large_pages) { kmem_default_arena = vmem_xcreate("kmem_default", NULL, 0, PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 0, VM_SLEEP); } else { kmem_default_arena = vmem_create("kmem_default", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, kmem_va_arena, 0, VM_SLEEP); } } else { /* * During the first pass, the kmem_alloc_* caches * are treated as metadata. */ kmem_default_arena = kmem_msb_arena; } /* * Set up the default caches to back kmem_alloc() */ size = KMEM_ALIGN; for (i = 0; i < sizeof (kmem_alloc_sizes) / sizeof (int); i++) { size_t align = KMEM_ALIGN; size_t cache_size = kmem_alloc_sizes[i]; /* * If they allocate a multiple of the coherency granularity, * they get a coherency-granularity-aligned address. */ if (IS_P2ALIGNED(cache_size, 64)) align = 64; if (IS_P2ALIGNED(cache_size, PAGESIZE)) align = PAGESIZE; (void) sprintf(name, "kmem_alloc_%lu", cache_size); cp = kmem_cache_create(name, cache_size, align, NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); while (size <= cache_size) { kmem_alloc_table[(size - 1) >> KMEM_ALIGN_SHIFT] = cp; size += KMEM_ALIGN; } } } void kmem_init(void) { kmem_cache_t *cp; int old_kmem_flags = kmem_flags; int use_large_pages = 0; size_t maxverify, minfirewall; kstat_init(); /* * Small-memory systems (< 24 MB) can't handle kmem_flags overhead. */ if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY)) kmem_flags = 0; /* * Don't do firewalled allocations if the heap is less than 1TB * (i.e. on a 32-bit kernel) * The resulting VM_NEXTFIT allocations would create too much * fragmentation in a small heap. */ #if defined(_LP64) maxverify = minfirewall = PAGESIZE / 2; #else maxverify = minfirewall = ULONG_MAX; #endif /* LINTED */ ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); kmem_null_cache.cache_next = &kmem_null_cache; kmem_null_cache.cache_prev = &kmem_null_cache; kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, VM_SLEEP | VMC_NO_QCACHE); kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); kmem_firewall_va_arena = vmem_create("kmem_firewall_va", NULL, 0, PAGESIZE, kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 0, VM_SLEEP); kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP); /* temporary oversize arena for mod_read_system_file */ kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); kmem_null_cache.cache_next = &kmem_null_cache; kmem_null_cache.cache_prev = &kmem_null_cache; kmem_reap_interval = 15 * hz; /* * Read /etc/system. This is a chicken-and-egg problem because * kmem_flags may be set in /etc/system, but mod_read_system_file() * needs to use the allocator. The simplest solution is to create * all the standard kmem caches, read /etc/system, destroy all the * caches we just created, and then create them all again in light * of the (possibly) new kmem_flags and other kmem tunables. */ kmem_cache_init(1, 0); mod_read_system_file(boothowto & RB_ASKNAME); while ((cp = kmem_null_cache.cache_prev) != &kmem_null_cache) kmem_cache_destroy(cp); vmem_destroy(kmem_oversize_arena); if (old_kmem_flags & KMF_STICKY) kmem_flags = old_kmem_flags; if (!(kmem_flags & KMF_AUDIT)) vmem_seg_size = offsetof(vmem_seg_t, vs_thread); if (kmem_maxverify == 0) kmem_maxverify = maxverify; if (kmem_minfirewall == 0) kmem_minfirewall = minfirewall; /* * give segkmem a chance to figure out if we are using large pages * for the kernel heap */ use_large_pages = segkmem_lpsetup(); /* * To protect against corruption, we keep the actual number of callers * KMF_LITE records seperate from the tunable. We arbitrarily clamp * to 16, since the overhead for small buffers quickly gets out of * hand. * * The real limit would depend on the needs of the largest KMC_NOHASH * cache. */ kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); kmem_lite_pcs = kmem_lite_count; /* * Normally, we firewall oversized allocations when possible, but * if we are using large pages for kernel memory, and we don't have * any non-LITE debugging flags set, we want to allocate oversized * buffers from large pages, and so skip the firewalling. */ if (use_large_pages && ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 0, VM_SLEEP); } else { kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP); } kmem_cache_init(2, use_large_pages); if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { if (kmem_transaction_log_size == 0) kmem_transaction_log_size = kmem_maxavail() / 50; kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); } if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { if (kmem_content_log_size == 0) kmem_content_log_size = kmem_maxavail() / 50; kmem_content_log = kmem_log_init(kmem_content_log_size); } kmem_failure_log = kmem_log_init(kmem_failure_log_size); kmem_slab_log = kmem_log_init(kmem_slab_log_size); /* * Initialize STREAMS message caches so allocb() is available. * This allows us to initialize the logging framework (cmn_err(9F), * strlog(9F), etc) so we can start recording messages. */ streams_msg_init(); /* * Initialize the ZSD framework in Zones so modules loaded henceforth * can register their callbacks. */ zone_zsd_init(); log_init(); taskq_init(); kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); kmem_ready = 1; /* * Initialize the platform-specific aligned/DMA memory allocator. */ ka_init(); /* * Initialize 32-bit ID cache. */ id32_init(); } void kmem_thread_init(void) { kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 300, INT_MAX, TASKQ_PREPOPULATE); } void kmem_mp_init(void) { mutex_enter(&cpu_lock); register_cpu_setup_func(kmem_cpu_setup, NULL); mutex_exit(&cpu_lock); kmem_update_timeout(NULL); }