/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Discovery refers to the heroic effort made to discover a device which * cannot be accessed at the physical path where it once resided. Discovery * involves walking the entire device tree attaching all possible disk * instances, to search for the device referenced by a devid. Obviously, * full device discovery is something to be avoided where possible. * Note that simply invoking devfsadm(1M) is equivalent to running full * discovery at the devid cache level. * * Reasons why a disk may not be accessible: * disk powered off * disk removed or cable disconnected * disk or adapter broken * * Note that discovery is not needed and cannot succeed in any of these * cases. * * When discovery may succeed: * Discovery will result in success when a device has been moved * to a different address. Note that it's recommended that * devfsadm(1M) be invoked (no arguments required) whenever a system's * h/w configuration has been updated. Alternatively, a * reconfiguration boot can be used to accomplish the same result. * * Note that discovery is not necessary to be able to correct an access * failure for a device which was powered off. Assuming the cache has an * entry for such a device, simply powering it on should permit the system * to access it. If problems persist after powering it on, invoke * devfsadm(1M). * * Discovery prior to mounting root is only of interest when booting * from a filesystem which accesses devices by device id, which of * not all do. * * Tunables * * devid_discovery_boot (default 1) * Number of times discovery will be attempted prior to mounting root. * Must be done at least once to recover from corrupted or missing * devid cache backing store. Probably there's no reason to ever * set this to greater than one as a missing device will remain * unavailable no matter how often the system searches for it. * * devid_discovery_postboot (default 1) * Number of times discovery will be attempted after mounting root. * This must be performed at least once to discover any devices * needed after root is mounted which may have been powered * off and moved before booting. * Setting this to a larger positive number will introduce * some inconsistency in system operation. Searching for a device * will take an indeterminate amount of time, sometimes slower, * sometimes faster. In addition, the system will sometimes * discover a newly powered on device, sometimes it won't. * Use of this option is not therefore recommended. * * devid_discovery_postboot_always (default 0) * Set to 1, the system will always attempt full discovery. * * devid_discovery_secs (default 0) * Set to a positive value, the system will attempt full discovery * but with a minimum delay between attempts. A device search * within the period of time specified will result in failure. * * devid_cache_read_disable (default 0) * Set to 1 to disable reading /etc/devices/devid_cache. * Devid cache will continue to operate normally but * at least one discovery attempt will be required. * * devid_cache_write_disable (default 0) * Set to 1 to disable updates to /etc/devices/devid_cache. * Any updates to the devid cache will not be preserved across a reboot. * * devid_report_error (default 0) * Set to 1 to enable some error messages related to devid * cache failures. * * The devid is packed in the cache file as a byte array. For * portability, this could be done in the encoded string format. */ int devid_discovery_boot = 1; int devid_discovery_postboot = 1; int devid_discovery_postboot_always = 0; int devid_discovery_secs = 0; int devid_cache_read_disable = 0; int devid_cache_write_disable = 0; int devid_report_error = 0; /* * State to manage discovery of devices providing a devid */ static int devid_discovery_busy = 0; static kmutex_t devid_discovery_mutex; static kcondvar_t devid_discovery_cv; static clock_t devid_last_discovery = 0; #ifdef DEBUG int nvp_devid_debug = 0; int devid_debug = 0; int devid_log_registers = 0; int devid_log_finds = 0; int devid_log_lookups = 0; int devid_log_discovery = 0; int devid_log_matches = 0; int devid_log_paths = 0; int devid_log_failures = 0; int devid_log_hold = 0; int devid_log_unregisters = 0; int devid_log_removes = 0; int devid_register_debug = 0; int devid_log_stale = 0; int devid_log_detaches = 0; #endif /* DEBUG */ /* * devid cache file registration for cache reads and updates */ static nvf_ops_t devid_cache_ops = { "/etc/devices/devid_cache", /* path to cache */ devid_cache_unpack_nvlist, /* read: nvlist to nvp */ devid_cache_pack_list, /* write: nvp to nvlist */ devid_list_free, /* free data list */ NULL /* write complete callback */ }; /* * handle to registered devid cache handlers */ nvf_handle_t dcfd_handle; /* * Initialize devid cache file management */ void devid_cache_init(void) { dcfd_handle = nvf_register_file(&devid_cache_ops); ASSERT(dcfd_handle); list_create(nvf_list(dcfd_handle), sizeof (nvp_devid_t), offsetof(nvp_devid_t, nvp_link)); mutex_init(&devid_discovery_mutex, NULL, MUTEX_DEFAULT, NULL); cv_init(&devid_discovery_cv, NULL, CV_DRIVER, NULL); } /* * Read and initialize the devid cache from the persistent store */ void devid_cache_read(void) { if (!devid_cache_read_disable) { rw_enter(nvf_lock(dcfd_handle), RW_WRITER); ASSERT(list_head(nvf_list(dcfd_handle)) == NULL); (void) nvf_read_file(dcfd_handle); rw_exit(nvf_lock(dcfd_handle)); } } static void devid_nvp_free(nvp_devid_t *dp) { if (dp->nvp_devpath) kmem_free(dp->nvp_devpath, strlen(dp->nvp_devpath)+1); if (dp->nvp_devid) kmem_free(dp->nvp_devid, ddi_devid_sizeof(dp->nvp_devid)); kmem_free(dp, sizeof (nvp_devid_t)); } static void devid_list_free(nvf_handle_t fd) { list_t *listp; nvp_devid_t *np; ASSERT(RW_WRITE_HELD(nvf_lock(dcfd_handle))); listp = nvf_list(fd); while (np = list_head(listp)) { list_remove(listp, np); devid_nvp_free(np); } } /* * Free an nvp element in a list */ static void devid_nvp_unlink_and_free(nvf_handle_t fd, nvp_devid_t *np) { list_remove(nvf_list(fd), np); devid_nvp_free(np); } /* * Unpack a device path/nvlist pair to the list of devid cache elements. * Used to parse the nvlist format when reading * /etc/devices/devid_cache */ static int devid_cache_unpack_nvlist(nvf_handle_t fd, nvlist_t *nvl, char *name) { nvp_devid_t *np; ddi_devid_t devidp; int rval; uint_t n; NVP_DEVID_DEBUG_PATH((name)); ASSERT(RW_WRITE_HELD(nvf_lock(dcfd_handle))); /* * check path for a devid */ rval = nvlist_lookup_byte_array(nvl, DP_DEVID_ID, (uchar_t **)&devidp, &n); if (rval == 0) { if (ddi_devid_valid(devidp) == DDI_SUCCESS) { ASSERT(n == ddi_devid_sizeof(devidp)); np = kmem_zalloc(sizeof (nvp_devid_t), KM_SLEEP); np->nvp_devpath = i_ddi_strdup(name, KM_SLEEP); np->nvp_devid = kmem_alloc(n, KM_SLEEP); (void) bcopy(devidp, np->nvp_devid, n); list_insert_tail(nvf_list(fd), np); NVP_DEVID_DEBUG_DEVID((np->nvp_devid)); } else { DEVIDERR((CE_CONT, "%s: invalid devid\n", name)); } } else { DEVIDERR((CE_CONT, "%s: devid not available\n", name)); } return (0); } /* * Pack the list of devid cache elements into a single nvlist * Used when writing the nvlist file. */ static int devid_cache_pack_list(nvf_handle_t fd, nvlist_t **ret_nvl) { nvlist_t *nvl, *sub_nvl; nvp_devid_t *np; int rval; list_t *listp; ASSERT(RW_WRITE_HELD(nvf_lock(dcfd_handle))); rval = nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP); if (rval != 0) { nvf_error("%s: nvlist alloc error %d\n", nvf_cache_name(fd), rval); return (DDI_FAILURE); } listp = nvf_list(fd); for (np = list_head(listp); np; np = list_next(listp, np)) { if (np->nvp_devid == NULL) continue; NVP_DEVID_DEBUG_PATH(np->nvp_devpath); rval = nvlist_alloc(&sub_nvl, NV_UNIQUE_NAME, KM_SLEEP); if (rval != 0) { nvf_error("%s: nvlist alloc error %d\n", nvf_cache_name(fd), rval); sub_nvl = NULL; goto err; } rval = nvlist_add_byte_array(sub_nvl, DP_DEVID_ID, (uchar_t *)np->nvp_devid, ddi_devid_sizeof(np->nvp_devid)); if (rval == 0) { NVP_DEVID_DEBUG_DEVID(np->nvp_devid); } else { nvf_error( "%s: nvlist add error %d (devid)\n", nvf_cache_name(fd), rval); goto err; } rval = nvlist_add_nvlist(nvl, np->nvp_devpath, sub_nvl); if (rval != 0) { nvf_error("%s: nvlist add error %d (sublist)\n", nvf_cache_name(fd), rval); goto err; } nvlist_free(sub_nvl); } *ret_nvl = nvl; return (DDI_SUCCESS); err: if (sub_nvl) nvlist_free(sub_nvl); nvlist_free(nvl); *ret_nvl = NULL; return (DDI_FAILURE); } static int e_devid_do_discovery(void) { ASSERT(mutex_owned(&devid_discovery_mutex)); if (i_ddi_io_initialized() == 0) { if (devid_discovery_boot > 0) { devid_discovery_boot--; return (1); } } else { if (devid_discovery_postboot_always > 0) return (1); if (devid_discovery_postboot > 0) { devid_discovery_postboot--; return (1); } if (devid_discovery_secs > 0) { if ((ddi_get_lbolt() - devid_last_discovery) > drv_usectohz(devid_discovery_secs * MICROSEC)) { return (1); } } } DEVID_LOG_DISC((CE_CONT, "devid_discovery: no discovery\n")); return (0); } static void e_ddi_devid_hold_by_major(major_t major) { DEVID_LOG_DISC((CE_CONT, "devid_discovery: ddi_hold_installed_driver %d\n", major)); if (ddi_hold_installed_driver(major) == NULL) return; ddi_rele_driver(major); } static char *e_ddi_devid_hold_driver_list[] = { "sd", "ssd", "dad" }; #define N_DRIVERS_TO_HOLD \ (sizeof (e_ddi_devid_hold_driver_list) / sizeof (char *)) static void e_ddi_devid_hold_installed_driver(ddi_devid_t devid) { impl_devid_t *id = (impl_devid_t *)devid; major_t major, hint_major; char hint[DEVID_HINT_SIZE + 1]; char **drvp; int i; /* Count non-null bytes */ for (i = 0; i < DEVID_HINT_SIZE; i++) if (id->did_driver[i] == '\0') break; /* Make a copy of the driver hint */ bcopy(id->did_driver, hint, i); hint[i] = '\0'; /* search for the devid using the hint driver */ hint_major = ddi_name_to_major(hint); if (hint_major != DDI_MAJOR_T_NONE) { e_ddi_devid_hold_by_major(hint_major); } drvp = e_ddi_devid_hold_driver_list; for (i = 0; i < N_DRIVERS_TO_HOLD; i++, drvp++) { major = ddi_name_to_major(*drvp); if (major != DDI_MAJOR_T_NONE && major != hint_major) { e_ddi_devid_hold_by_major(major); } } } /* * Return success if discovery was attempted, to indicate * that the desired device may now be available. */ int e_ddi_devid_discovery(ddi_devid_t devid) { int flags; int rval = DDI_SUCCESS; mutex_enter(&devid_discovery_mutex); if (devid_discovery_busy) { DEVID_LOG_DISC((CE_CONT, "devid_discovery: busy\n")); while (devid_discovery_busy) { cv_wait(&devid_discovery_cv, &devid_discovery_mutex); } } else if (e_devid_do_discovery()) { devid_discovery_busy = 1; mutex_exit(&devid_discovery_mutex); if (i_ddi_io_initialized() == 0) { e_ddi_devid_hold_installed_driver(devid); } else { DEVID_LOG_DISC((CE_CONT, "devid_discovery: ndi_devi_config\n")); flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT; if (i_ddi_io_initialized()) flags |= NDI_DRV_CONF_REPROBE; (void) ndi_devi_config(ddi_root_node(), flags); } mutex_enter(&devid_discovery_mutex); devid_discovery_busy = 0; cv_broadcast(&devid_discovery_cv); if (devid_discovery_secs > 0) devid_last_discovery = ddi_get_lbolt(); DEVID_LOG_DISC((CE_CONT, "devid_discovery: done\n")); } else { rval = DDI_FAILURE; DEVID_LOG_DISC((CE_CONT, "no devid discovery\n")); } mutex_exit(&devid_discovery_mutex); return (rval); } /* * As part of registering a devid for a device, * update the devid cache with this device/devid pair * or note that this combination has registered. * * If a devpath is provided it will be used as the path to register the * devid against, otherwise we use ddi_pathname(dip). In both cases * we duplicate the path string so that it can be cached/freed indepdently * of the original owner. */ static int e_devid_cache_register_cmn(dev_info_t *dip, ddi_devid_t devid, char *devpath) { nvp_devid_t *np; nvp_devid_t *new_nvp; ddi_devid_t new_devid; int new_devid_size; char *path, *fullpath; ddi_devid_t free_devid = NULL; int pathlen; list_t *listp; int is_dirty = 0; ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS); if (devpath) { pathlen = strlen(devpath) + 1; path = kmem_alloc(pathlen, KM_SLEEP); bcopy(devpath, path, pathlen); } else { /* * We are willing to accept DS_BOUND nodes if we can form a full * ddi_pathname (i.e. the node is part way to becomming * DS_INITIALIZED and devi_addr/ddi_get_name_addr are non-NULL). */ if (ddi_get_name_addr(dip) == NULL) return (DDI_FAILURE); fullpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, fullpath); pathlen = strlen(fullpath) + 1; path = kmem_alloc(pathlen, KM_SLEEP); bcopy(fullpath, path, pathlen); kmem_free(fullpath, MAXPATHLEN); } DEVID_LOG_REG(("register", devid, path)); new_nvp = kmem_zalloc(sizeof (nvp_devid_t), KM_SLEEP); new_devid_size = ddi_devid_sizeof(devid); new_devid = kmem_alloc(new_devid_size, KM_SLEEP); (void) bcopy(devid, new_devid, new_devid_size); rw_enter(nvf_lock(dcfd_handle), RW_WRITER); listp = nvf_list(dcfd_handle); for (np = list_head(listp); np; np = list_next(listp, np)) { if (strcmp(path, np->nvp_devpath) == 0) { DEVID_DEBUG2((CE_CONT, "register: %s path match\n", path)); if (np->nvp_devid == NULL) { replace: np->nvp_devid = new_devid; np->nvp_flags |= NVP_DEVID_DIP | NVP_DEVID_REGISTERED; np->nvp_dip = dip; if (!devid_cache_write_disable) { nvf_mark_dirty(dcfd_handle); is_dirty = 1; } rw_exit(nvf_lock(dcfd_handle)); kmem_free(new_nvp, sizeof (nvp_devid_t)); kmem_free(path, pathlen); goto exit; } if (ddi_devid_valid(np->nvp_devid) != DDI_SUCCESS) { /* replace invalid devid */ free_devid = np->nvp_devid; goto replace; } /* * We're registering an already-cached path * Does the device's devid match the cache? */ if (ddi_devid_compare(devid, np->nvp_devid) != 0) { DEVID_DEBUG((CE_CONT, "devid register: " "devid %s does not match\n", path)); /* * Replace cached devid for this path * with newly registered devid. A devid * may map to multiple paths but one path * should only map to one devid. */ devid_nvp_unlink_and_free(dcfd_handle, np); np = NULL; break; } else { DEVID_DEBUG2((CE_CONT, "devid register: %s devid match\n", path)); np->nvp_flags |= NVP_DEVID_DIP | NVP_DEVID_REGISTERED; np->nvp_dip = dip; rw_exit(nvf_lock(dcfd_handle)); kmem_free(new_nvp, sizeof (nvp_devid_t)); kmem_free(path, pathlen); kmem_free(new_devid, new_devid_size); return (DDI_SUCCESS); } } } /* * Add newly registered devid to the cache */ ASSERT(np == NULL); new_nvp->nvp_devpath = path; new_nvp->nvp_flags = NVP_DEVID_DIP | NVP_DEVID_REGISTERED; new_nvp->nvp_dip = dip; new_nvp->nvp_devid = new_devid; if (!devid_cache_write_disable) { is_dirty = 1; nvf_mark_dirty(dcfd_handle); } list_insert_tail(nvf_list(dcfd_handle), new_nvp); rw_exit(nvf_lock(dcfd_handle)); exit: if (free_devid) kmem_free(free_devid, ddi_devid_sizeof(free_devid)); if (is_dirty) nvf_wake_daemon(); return (DDI_SUCCESS); } int e_devid_cache_register(dev_info_t *dip, ddi_devid_t devid) { return (e_devid_cache_register_cmn(dip, devid, NULL)); } /* * Unregister a device's devid * Called as an instance detachs * Invalidate the devid's devinfo reference * Devid-path remains in the cache */ void e_devid_cache_unregister(dev_info_t *dip) { nvp_devid_t *np; list_t *listp; rw_enter(nvf_lock(dcfd_handle), RW_WRITER); listp = nvf_list(dcfd_handle); for (np = list_head(listp); np; np = list_next(listp, np)) { if (np->nvp_devid == NULL) continue; if ((np->nvp_flags & NVP_DEVID_DIP) && np->nvp_dip == dip) { DEVID_LOG_UNREG((CE_CONT, "unregister: %s\n", np->nvp_devpath)); np->nvp_flags &= ~NVP_DEVID_DIP; np->nvp_dip = NULL; break; } } rw_exit(nvf_lock(dcfd_handle)); } int e_devid_cache_pathinfo(mdi_pathinfo_t *pip, ddi_devid_t devid) { char *path = mdi_pi_pathname(pip); return (e_devid_cache_register_cmn(mdi_pi_get_client(pip), devid, path)); } /* * Purge devid cache of stale devids */ void devid_cache_cleanup(void) { nvp_devid_t *np, *next; list_t *listp; int is_dirty = 0; rw_enter(nvf_lock(dcfd_handle), RW_WRITER); listp = nvf_list(dcfd_handle); for (np = list_head(listp); np; np = next) { next = list_next(listp, np); if (np->nvp_devid == NULL) continue; if ((np->nvp_flags & NVP_DEVID_REGISTERED) == 0) { DEVID_LOG_REMOVE((CE_CONT, "cleanup: %s\n", np->nvp_devpath)); if (!devid_cache_write_disable) { nvf_mark_dirty(dcfd_handle); is_dirty = 0; } devid_nvp_unlink_and_free(dcfd_handle, np); } } rw_exit(nvf_lock(dcfd_handle)); if (is_dirty) nvf_wake_daemon(); } /* * Build a list of dev_t's for a device/devid * * The effect of this function is cumulative, adding dev_t's * for the device to the list of all dev_t's for a given * devid. */ static void e_devid_minor_to_devlist( dev_info_t *dip, char *minor_name, int ndevts_alloced, int *devtcntp, dev_t *devtsp) { int circ; struct ddi_minor_data *dmdp; int minor_all = 0; int ndevts = *devtcntp; ASSERT(i_ddi_devi_attached(dip)); /* are we looking for a set of minor nodes? */ if ((minor_name == DEVID_MINOR_NAME_ALL) || (minor_name == DEVID_MINOR_NAME_ALL_CHR) || (minor_name == DEVID_MINOR_NAME_ALL_BLK)) minor_all = 1; /* Find matching minor names */ ndi_devi_enter(dip, &circ); for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) { /* Skip non-minors, and non matching minor names */ if ((dmdp->type != DDM_MINOR) || ((minor_all == 0) && strcmp(dmdp->ddm_name, minor_name))) continue; /* filter out minor_all mismatches */ if (minor_all && (((minor_name == DEVID_MINOR_NAME_ALL_CHR) && (dmdp->ddm_spec_type != S_IFCHR)) || ((minor_name == DEVID_MINOR_NAME_ALL_BLK) && (dmdp->ddm_spec_type != S_IFBLK)))) continue; if (ndevts < ndevts_alloced) devtsp[ndevts] = dmdp->ddm_dev; ndevts++; } ndi_devi_exit(dip, circ); *devtcntp = ndevts; } /* * Search for cached entries matching a devid * Return two lists: * a list of dev_info nodes, for those devices in the attached state * a list of pathnames whose instances registered the given devid * If the lists passed in are not sufficient to return the matching * references, return the size of lists required. * The dev_info nodes are returned with a hold that the caller must release. */ static int e_devid_cache_devi_path_lists(ddi_devid_t devid, int retmax, int *retndevis, dev_info_t **retdevis, int *retnpaths, char **retpaths) { nvp_devid_t *np; int ndevis, npaths; dev_info_t *dip, *pdip; int circ; int maxdevis = 0; int maxpaths = 0; list_t *listp; ndevis = 0; npaths = 0; listp = nvf_list(dcfd_handle); for (np = list_head(listp); np; np = list_next(listp, np)) { if (np->nvp_devid == NULL) continue; if (ddi_devid_valid(np->nvp_devid) != DDI_SUCCESS) { DEVIDERR((CE_CONT, "find: invalid devid %s\n", np->nvp_devpath)); continue; } if (ddi_devid_compare(devid, np->nvp_devid) == 0) { DEVID_DEBUG2((CE_CONT, "find: devid match: %s 0x%x\n", np->nvp_devpath, np->nvp_flags)); DEVID_LOG_MATCH(("find", devid, np->nvp_devpath)); DEVID_LOG_PATHS((CE_CONT, "%s\n", np->nvp_devpath)); /* * Check if we have a cached devinfo reference for this * devid. Place a hold on it to prevent detach * Otherwise, use the path instead. * Note: returns with a hold on each dev_info * node in the list. */ dip = NULL; if (np->nvp_flags & NVP_DEVID_DIP) { pdip = ddi_get_parent(np->nvp_dip); if (ndi_devi_tryenter(pdip, &circ)) { dip = np->nvp_dip; ndi_hold_devi(dip); ndi_devi_exit(pdip, circ); ASSERT(!DEVI_IS_ATTACHING(dip)); ASSERT(!DEVI_IS_DETACHING(dip)); } else { DEVID_LOG_DETACH((CE_CONT, "may be detaching: %s\n", np->nvp_devpath)); } } if (dip) { if (ndevis < retmax) { retdevis[ndevis++] = dip; } else { ndi_rele_devi(dip); } maxdevis++; } else { if (npaths < retmax) retpaths[npaths++] = np->nvp_devpath; maxpaths++; } } } *retndevis = ndevis; *retnpaths = npaths; return (maxdevis > maxpaths ? maxdevis : maxpaths); } /* * Search the devid cache, returning dev_t list for all * device paths mapping to the device identified by the * given devid. * * Primary interface used by ddi_lyr_devid_to_devlist() */ int e_devid_cache_to_devt_list(ddi_devid_t devid, char *minor_name, int *retndevts, dev_t **retdevts) { char *path, **paths; int i, j, n; dev_t *devts, *udevts; dev_t tdevt; int ndevts, undevts, ndevts_alloced; dev_info_t *devi, **devis; int ndevis, npaths, nalloced; ddi_devid_t match_devid; DEVID_LOG_FIND(("find", devid, NULL)); ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS); if (ddi_devid_valid(devid) != DDI_SUCCESS) { DEVID_LOG_ERR(("invalid devid", devid, NULL)); return (DDI_FAILURE); } nalloced = 128; for (;;) { paths = kmem_zalloc(nalloced * sizeof (char *), KM_SLEEP); devis = kmem_zalloc(nalloced * sizeof (dev_info_t *), KM_SLEEP); rw_enter(nvf_lock(dcfd_handle), RW_READER); n = e_devid_cache_devi_path_lists(devid, nalloced, &ndevis, devis, &npaths, paths); if (n <= nalloced) break; rw_exit(nvf_lock(dcfd_handle)); for (i = 0; i < ndevis; i++) ndi_rele_devi(devis[i]); kmem_free(paths, nalloced * sizeof (char *)); kmem_free(devis, nalloced * sizeof (dev_info_t *)); nalloced = n + 128; } for (i = 0; i < npaths; i++) { path = i_ddi_strdup(paths[i], KM_SLEEP); paths[i] = path; } rw_exit(nvf_lock(dcfd_handle)); if (ndevis == 0 && npaths == 0) { DEVID_LOG_ERR(("no devid found", devid, NULL)); kmem_free(paths, nalloced * sizeof (char *)); kmem_free(devis, nalloced * sizeof (dev_info_t *)); return (DDI_FAILURE); } ndevts_alloced = 128; restart: ndevts = 0; devts = kmem_alloc(ndevts_alloced * sizeof (dev_t), KM_SLEEP); for (i = 0; i < ndevis; i++) { ASSERT(!DEVI_IS_ATTACHING(devis[i])); ASSERT(!DEVI_IS_DETACHING(devis[i])); e_devid_minor_to_devlist(devis[i], minor_name, ndevts_alloced, &ndevts, devts); if (ndevts > ndevts_alloced) { kmem_free(devts, ndevts_alloced * sizeof (dev_t)); ndevts_alloced += 128; goto restart; } } for (i = 0; i < npaths; i++) { DEVID_LOG_LOOKUP((CE_CONT, "lookup %s\n", paths[i])); devi = e_ddi_hold_devi_by_path(paths[i], 0); if (devi == NULL) { DEVID_LOG_STALE(("stale device reference", devid, paths[i])); continue; } /* * Verify the newly attached device registered a matching devid */ if (i_ddi_devi_get_devid(DDI_DEV_T_ANY, devi, &match_devid) != DDI_SUCCESS) { DEVIDERR((CE_CONT, "%s: no devid registered on attach\n", paths[i])); ddi_release_devi(devi); continue; } if (ddi_devid_compare(devid, match_devid) != 0) { DEVID_LOG_STALE(("new devid registered", devid, paths[i])); ddi_release_devi(devi); ddi_devid_free(match_devid); continue; } ddi_devid_free(match_devid); e_devid_minor_to_devlist(devi, minor_name, ndevts_alloced, &ndevts, devts); ddi_release_devi(devi); if (ndevts > ndevts_alloced) { kmem_free(devts, ndevts_alloced * sizeof (dev_t)); ndevts_alloced += 128; goto restart; } } /* drop hold from e_devid_cache_devi_path_lists */ for (i = 0; i < ndevis; i++) { ndi_rele_devi(devis[i]); } for (i = 0; i < npaths; i++) { kmem_free(paths[i], strlen(paths[i]) + 1); } kmem_free(paths, nalloced * sizeof (char *)); kmem_free(devis, nalloced * sizeof (dev_info_t *)); if (ndevts == 0) { DEVID_LOG_ERR(("no devid found", devid, NULL)); kmem_free(devts, ndevts_alloced * sizeof (dev_t)); return (DDI_FAILURE); } /* * Build the final list of sorted dev_t's with duplicates collapsed so * returned results are consistent. This prevents implementation * artifacts from causing unnecessary changes in SVM namespace. */ /* bubble sort */ for (i = 0; i < (ndevts - 1); i++) { for (j = 0; j < ((ndevts - 1) - i); j++) { if (devts[j + 1] < devts[j]) { tdevt = devts[j]; devts[j] = devts[j + 1]; devts[j + 1] = tdevt; } } } /* determine number of unique values */ for (undevts = ndevts, i = 1; i < ndevts; i++) { if (devts[i - 1] == devts[i]) undevts--; } /* allocate unique */ udevts = kmem_alloc(undevts * sizeof (dev_t), KM_SLEEP); /* copy unique */ udevts[0] = devts[0]; for (i = 1, j = 1; i < ndevts; i++) { if (devts[i - 1] != devts[i]) udevts[j++] = devts[i]; } ASSERT(j == undevts); kmem_free(devts, ndevts_alloced * sizeof (dev_t)); *retndevts = undevts; *retdevts = udevts; return (DDI_SUCCESS); } void e_devid_cache_free_devt_list(int ndevts, dev_t *devt_list) { kmem_free(devt_list, ndevts * sizeof (dev_t *)); } /* * If given a full path and NULL ua, search for a cache entry * whose path matches the full path. On a cache hit duplicate the * devid of the matched entry into the given devid (caller * must free); nodenamebuf is not touched for this usage. * * Given a path and a non-NULL unit address, search the cache for any entry * matching "/%@" where '%' is a wildcard meaning * any node name. The path should not end a '/'. On a cache hit * duplicate the devid as before (caller must free) and copy into * the caller-provided nodenamebuf (if not NULL) the nodename of the * matched entry. * * We must not make use of nvp_dip since that may be NULL for cached * entries that are not present in the current tree. */ int e_devid_cache_path_to_devid(char *path, char *ua, char *nodenamebuf, ddi_devid_t *devidp) { size_t pathlen, ualen; int rv = DDI_FAILURE; nvp_devid_t *np; list_t *listp; char *cand; if (path == NULL || *path == '\0' || (ua && *ua == '\0') || devidp == NULL) return (DDI_FAILURE); *devidp = NULL; if (ua) { pathlen = strlen(path); ualen = strlen(ua); } rw_enter(nvf_lock(dcfd_handle), RW_READER); listp = nvf_list(dcfd_handle); for (np = list_head(listp); np; np = list_next(listp, np)) { size_t nodelen, candlen, n; ddi_devid_t devid_dup; char *uasep, *node; if (np->nvp_devid == NULL) continue; if (ddi_devid_valid(np->nvp_devid) != DDI_SUCCESS) { DEVIDERR((CE_CONT, "pathsearch: invalid devid %s\n", np->nvp_devpath)); continue; } cand = np->nvp_devpath; /* candidate path */ /* If a full pathname was provided the compare is easy */ if (ua == NULL) { if (strcmp(cand, path) == 0) goto match; else continue; } /* * The compare for initial path plus ua and unknown nodename * is trickier. * * Does the initial path component match 'path'? */ if (strncmp(path, cand, pathlen) != 0) continue; candlen = strlen(cand); /* * The next character must be a '/' and there must be no * further '/' thereafter. Begin by checking that the * candidate is long enough to include at mininum a * "/@" after the initial portion already * matched assuming a nodename length of 1. */ if (candlen < pathlen + 1 + 1 + 1 + ualen || cand[pathlen] != '/' || strchr(cand + pathlen + 1, '/') != NULL) continue; node = cand + pathlen + 1; /* @ string */ /* * Find the '@' before the unit address. Check for * unit address match. */ if ((uasep = strchr(node, '@')) == NULL) continue; /* * Check we still have enough length and that ua matches */ nodelen = (uintptr_t)uasep - (uintptr_t)node; if (candlen < pathlen + 1 + nodelen + 1 + ualen || strncmp(ua, uasep + 1, ualen) != 0) continue; match: n = ddi_devid_sizeof(np->nvp_devid); devid_dup = kmem_alloc(n, KM_SLEEP); /* caller must free */ (void) bcopy(np->nvp_devid, devid_dup, n); *devidp = devid_dup; if (ua && nodenamebuf) { (void) strncpy(nodenamebuf, node, nodelen); nodenamebuf[nodelen] = '\0'; } rv = DDI_SUCCESS; break; } rw_exit(nvf_lock(dcfd_handle)); return (rv); } #ifdef DEBUG static void devid_log(char *fmt, ddi_devid_t devid, char *path) { char *devidstr = ddi_devid_str_encode(devid, NULL); if (path) { cmn_err(CE_CONT, "%s: %s %s\n", fmt, path, devidstr); } else { cmn_err(CE_CONT, "%s: %s\n", fmt, devidstr); } ddi_devid_str_free(devidstr); } #endif /* DEBUG */