/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Portions of this source code were derived from Berkeley 4.3 BSD * under license from the Regents of the University of California. */ #ifndef _NFS4_CLNT_H #define _NFS4_CLNT_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif #define NFS4_SIZE_OK(size) ((size) <= MAXOFFSET_T) /* Four states of nfs4_server's lease_valid */ #define NFS4_LEASE_INVALID 0 #define NFS4_LEASE_VALID 1 #define NFS4_LEASE_UNINITIALIZED 2 #define NFS4_LEASE_NOT_STARTED 3 /* flag to tell the renew thread it should exit */ #define NFS4_THREAD_EXIT 1 /* Default number of seconds to wait on GRACE and DELAY errors */ #define NFS4ERR_DELAY_TIME 10 /* Number of hash buckets for open owners for each nfs4_server */ #define NFS4_NUM_OO_BUCKETS 53 /* Number of freed open owners (per mntinfo4_t) to keep around */ #define NFS4_NUM_FREED_OPEN_OWNERS 8 /* Number of seconds to wait before retrying a SETCLIENTID(_CONFIRM) op */ #define NFS4_RETRY_SCLID_DELAY 10 /* Number of times we should retry a SETCLIENTID(_CONFIRM) op */ #define NFS4_NUM_SCLID_RETRIES 3 /* Number of times we should retry on open after getting NFS4ERR_BAD_SEQID */ #define NFS4_NUM_RETRY_BAD_SEQID 3 /* * Macro to wakeup sleeping async worker threads. */ #define NFS4_WAKE_ASYNC_WORKER(work_cv) { \ if (CV_HAS_WAITERS(&work_cv[NFS4_ASYNC_QUEUE])) \ cv_signal(&work_cv[NFS4_ASYNC_QUEUE]); \ else if (CV_HAS_WAITERS(&work_cv[NFS4_ASYNC_PGOPS_QUEUE])) \ cv_signal(&work_cv[NFS4_ASYNC_PGOPS_QUEUE]); \ } #define NFS4_WAKEALL_ASYNC_WORKERS(work_cv) { \ cv_broadcast(&work_cv[NFS4_ASYNC_QUEUE]); \ cv_broadcast(&work_cv[NFS4_ASYNC_PGOPS_QUEUE]); \ } /* * Is the attribute cache valid? If client holds a delegation, then attrs * are by definition valid. If not, then check to see if attrs have timed out. */ #define ATTRCACHE4_VALID(vp) (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE || \ gethrtime() < VTOR4(vp)->r_time_attr_inval) /* * Flags to indicate whether to purge the DNLC for non-directory vnodes * in a call to nfs_purge_caches. */ #define NFS4_NOPURGE_DNLC 0 #define NFS4_PURGE_DNLC 1 /* * Is cache valid? * Swap is always valid, if no attributes (attrtime == 0) or * if mtime matches cached mtime it is valid * NOTE: mtime is now a timestruc_t. * Caller should be holding the rnode r_statelock mutex. */ #define CACHE4_VALID(rp, mtime, fsize) \ ((RTOV4(rp)->v_flag & VISSWAP) == VISSWAP || \ (((mtime).tv_sec == (rp)->r_attr.va_mtime.tv_sec && \ (mtime).tv_nsec == (rp)->r_attr.va_mtime.tv_nsec) && \ ((fsize) == (rp)->r_attr.va_size))) /* * Macro to detect forced unmount or a zone shutdown. */ #define FS_OR_ZONE_GONE4(vfsp) \ (((vfsp)->vfs_flag & VFS_UNMOUNTED) || \ zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) /* * Macro to help determine whether a request failed because the underlying * filesystem has been forcibly unmounted or because of zone shutdown. */ #define NFS4_FRC_UNMT_ERR(err, vfsp) \ ((err) == EIO && FS_OR_ZONE_GONE4((vfsp))) /* * Due to the way the address space callbacks are used to execute a delmap, * we must keep track of how many times the same thread has called * VOP_DELMAP()->nfs4_delmap(). This is done by having a list of * nfs4_delmapcall_t's associated with each rnode4_t. This list is protected * by the rnode4_t's r_statelock. The individual elements do not need to be * protected as they will only ever be created, modified and destroyed by * one thread (the call_id). * See nfs4_delmap() for further explanation. */ typedef struct nfs4_delmapcall { kthread_t *call_id; int error; /* error from delmap */ list_node_t call_node; } nfs4_delmapcall_t; /* * delmap address space callback args */ typedef struct nfs4_delmap_args { vnode_t *vp; offset_t off; caddr_t addr; size_t len; uint_t prot; uint_t maxprot; uint_t flags; cred_t *cr; nfs4_delmapcall_t *caller; /* to retrieve errors from the cb */ } nfs4_delmap_args_t; /* * client side statistics */ /* * Per-zone counters */ struct clstat4 { kstat_named_t calls; /* client requests */ kstat_named_t badcalls; /* rpc failures */ kstat_named_t referrals; /* referrals */ kstat_named_t referlinks; /* referrals as symlinks */ kstat_named_t clgets; /* client handle gets */ kstat_named_t cltoomany; /* client handle cache misses */ #ifdef DEBUG kstat_named_t clalloc; /* number of client handles */ kstat_named_t noresponse; /* server not responding cnt */ kstat_named_t failover; /* server failover count */ kstat_named_t remap; /* server remap count */ #endif }; #ifdef DEBUG /* * The following are statistics that describe the behavior of the system as a * whole and don't correspond to any particular zone. */ struct clstat4_debug { kstat_named_t nrnode; /* number of allocated rnodes */ kstat_named_t access; /* size of access cache */ kstat_named_t dirent; /* size of readdir cache */ kstat_named_t dirents; /* size of readdir buf cache */ kstat_named_t reclaim; /* number of reclaims */ kstat_named_t clreclaim; /* number of cl reclaims */ kstat_named_t f_reclaim; /* number of free reclaims */ kstat_named_t a_reclaim; /* number of active reclaims */ kstat_named_t r_reclaim; /* number of rnode reclaims */ kstat_named_t rpath; /* bytes used to store rpaths */ }; extern struct clstat4_debug clstat4_debug; #endif /* * The NFS specific async_reqs structure. iotype4 is grouped to support two * types of async thread pools, please read comments section of mntinfo4_t * definition for more information. Care should be taken while adding new * members to this group. */ enum iotype4 { NFS4_PUTAPAGE, NFS4_PAGEIO, NFS4_COMMIT, NFS4_READ_AHEAD, NFS4_READDIR, NFS4_INACTIVE, NFS4_ASYNC_TYPES }; #define NFS4_ASYNC_PGOPS_TYPES (NFS4_COMMIT + 1) /* * NFS async requests queue type. */ enum ioqtype4 { NFS4_ASYNC_QUEUE, NFS4_ASYNC_PGOPS_QUEUE, NFS4_MAX_ASYNC_QUEUES }; /* * Number of NFS async threads operating exclusively on page op requests. */ #define NUM_ASYNC_PGOPS_THREADS 0x2 struct nfs4_async_read_req { void (*readahead)(); /* pointer to readahead function */ u_offset_t blkoff; /* offset in file */ struct seg *seg; /* segment to do i/o to */ caddr_t addr; /* address to do i/o to */ }; struct nfs4_pageio_req { int (*pageio)(); /* pointer to pageio function */ page_t *pp; /* page list */ u_offset_t io_off; /* offset in file */ uint_t io_len; /* size of request */ int flags; }; struct nfs4_readdir_req { int (*readdir)(); /* pointer to readdir function */ struct rddir4_cache *rdc; /* pointer to cache entry to fill */ }; struct nfs4_commit_req { void (*commit)(); /* pointer to commit function */ page_t *plist; /* page list */ offset4 offset; /* starting offset */ count4 count; /* size of range to be commited */ }; struct nfs4_async_reqs { struct nfs4_async_reqs *a_next; /* pointer to next arg struct */ #ifdef DEBUG kthread_t *a_queuer; /* thread id of queueing thread */ #endif struct vnode *a_vp; /* vnode pointer */ struct cred *a_cred; /* cred pointer */ enum iotype4 a_io; /* i/o type */ union { struct nfs4_async_read_req a_read_args; struct nfs4_pageio_req a_pageio_args; struct nfs4_readdir_req a_readdir_args; struct nfs4_commit_req a_commit_args; } a_args; }; #define a_nfs4_readahead a_args.a_read_args.readahead #define a_nfs4_blkoff a_args.a_read_args.blkoff #define a_nfs4_seg a_args.a_read_args.seg #define a_nfs4_addr a_args.a_read_args.addr #define a_nfs4_putapage a_args.a_pageio_args.pageio #define a_nfs4_pageio a_args.a_pageio_args.pageio #define a_nfs4_pp a_args.a_pageio_args.pp #define a_nfs4_off a_args.a_pageio_args.io_off #define a_nfs4_len a_args.a_pageio_args.io_len #define a_nfs4_flags a_args.a_pageio_args.flags #define a_nfs4_readdir a_args.a_readdir_args.readdir #define a_nfs4_rdc a_args.a_readdir_args.rdc #define a_nfs4_commit a_args.a_commit_args.commit #define a_nfs4_plist a_args.a_commit_args.plist #define a_nfs4_offset a_args.a_commit_args.offset #define a_nfs4_count a_args.a_commit_args.count /* * Security information */ typedef struct sv_secinfo { uint_t count; /* how many sdata there are */ uint_t index; /* which sdata[index] */ struct sec_data *sdata; } sv_secinfo_t; /* * Hash bucket for the mi's open owner list (mi_oo_list). */ typedef struct nfs4_oo_hash_bucket { list_t b_oo_hash_list; kmutex_t b_lock; } nfs4_oo_hash_bucket_t; /* * Global array of ctags. */ extern ctag_t nfs4_ctags[]; typedef enum nfs4_tag_type { TAG_NONE, TAG_ACCESS, TAG_CLOSE, TAG_CLOSE_LOST, TAG_CLOSE_UNDO, TAG_COMMIT, TAG_DELEGRETURN, TAG_FSINFO, TAG_GET_SYMLINK, TAG_GETATTR, TAG_GETATTR_FSLOCATION, TAG_INACTIVE, TAG_LINK, TAG_LOCK, TAG_LOCK_RECLAIM, TAG_LOCK_RESEND, TAG_LOCK_REINSTATE, TAG_LOCK_UNKNOWN, TAG_LOCKT, TAG_LOCKU, TAG_LOCKU_RESEND, TAG_LOCKU_REINSTATE, TAG_LOOKUP, TAG_LOOKUP_PARENT, TAG_LOOKUP_VALID, TAG_LOOKUP_VPARENT, TAG_MKDIR, TAG_MKNOD, TAG_MOUNT, TAG_OPEN, TAG_OPEN_CONFIRM, TAG_OPEN_CONFIRM_LOST, TAG_OPEN_DG, TAG_OPEN_DG_LOST, TAG_OPEN_LOST, TAG_OPENATTR, TAG_PATHCONF, TAG_PUTROOTFH, TAG_READ, TAG_READAHEAD, TAG_READDIR, TAG_READLINK, TAG_RELOCK, TAG_REMAP_LOOKUP, TAG_REMAP_LOOKUP_AD, TAG_REMAP_LOOKUP_NA, TAG_REMAP_MOUNT, TAG_RMDIR, TAG_REMOVE, TAG_RENAME, TAG_RENAME_VFH, TAG_RENEW, TAG_REOPEN, TAG_REOPEN_LOST, TAG_SECINFO, TAG_SETATTR, TAG_SETCLIENTID, TAG_SETCLIENTID_CF, TAG_SYMLINK, TAG_WRITE } nfs4_tag_type_t; #define NFS4_TAG_INITIALIZER { \ {TAG_NONE, "", \ {0x20202020, 0x20202020, 0x20202020}}, \ {TAG_ACCESS, "access", \ {0x61636365, 0x73732020, 0x20202020}}, \ {TAG_CLOSE, "close", \ {0x636c6f73, 0x65202020, 0x20202020}}, \ {TAG_CLOSE_LOST, "lost close", \ {0x6c6f7374, 0x20636c6f, 0x73652020}}, \ {TAG_CLOSE_UNDO, "undo close", \ {0x756e646f, 0x20636c6f, 0x73652020}}, \ {TAG_COMMIT, "commit", \ {0x636f6d6d, 0x69742020, 0x20202020}}, \ {TAG_DELEGRETURN, "delegreturn", \ {0x64656c65, 0x67726574, 0x75726e20}}, \ {TAG_FSINFO, "fsinfo", \ {0x6673696e, 0x666f2020, 0x20202020}}, \ {TAG_GET_SYMLINK, "get symlink text", \ {0x67657420, 0x736c6e6b, 0x20747874}}, \ {TAG_GETATTR, "getattr", \ {0x67657461, 0x74747220, 0x20202020}}, \ {TAG_GETATTR_FSLOCATION, "getattr fslocation", \ {0x67657461, 0x74747220, 0x66736c6f}}, \ {TAG_INACTIVE, "inactive", \ {0x696e6163, 0x74697665, 0x20202020}}, \ {TAG_LINK, "link", \ {0x6c696e6b, 0x20202020, 0x20202020}}, \ {TAG_LOCK, "lock", \ {0x6c6f636b, 0x20202020, 0x20202020}}, \ {TAG_LOCK_RECLAIM, "reclaim lock", \ {0x7265636c, 0x61696d20, 0x6c6f636b}}, \ {TAG_LOCK_RESEND, "resend lock", \ {0x72657365, 0x6e64206c, 0x6f636b20}}, \ {TAG_LOCK_REINSTATE, "reinstate lock", \ {0x7265696e, 0x7374206c, 0x6f636b20}}, \ {TAG_LOCK_UNKNOWN, "unknown lock", \ {0x756e6b6e, 0x6f776e20, 0x6c6f636b}}, \ {TAG_LOCKT, "lock test", \ {0x6c6f636b, 0x5f746573, 0x74202020}}, \ {TAG_LOCKU, "unlock", \ {0x756e6c6f, 0x636b2020, 0x20202020}}, \ {TAG_LOCKU_RESEND, "resend locku", \ {0x72657365, 0x6e64206c, 0x6f636b75}}, \ {TAG_LOCKU_REINSTATE, "reinstate unlock", \ {0x7265696e, 0x73742075, 0x6e6c636b}}, \ {TAG_LOOKUP, "lookup", \ {0x6c6f6f6b, 0x75702020, 0x20202020}}, \ {TAG_LOOKUP_PARENT, "lookup parent", \ {0x6c6f6f6b, 0x75702070, 0x6172656e}}, \ {TAG_LOOKUP_VALID, "lookup valid", \ {0x6c6f6f6b, 0x75702076, 0x616c6964}}, \ {TAG_LOOKUP_VPARENT, "lookup valid parent", \ {0x6c6f6f6b, 0x766c6420, 0x7061726e}}, \ {TAG_MKDIR, "mkdir", \ {0x6d6b6469, 0x72202020, 0x20202020}}, \ {TAG_MKNOD, "mknod", \ {0x6d6b6e6f, 0x64202020, 0x20202020}}, \ {TAG_MOUNT, "mount", \ {0x6d6f756e, 0x74202020, 0x20202020}}, \ {TAG_OPEN, "open", \ {0x6f70656e, 0x20202020, 0x20202020}}, \ {TAG_OPEN_CONFIRM, "open confirm", \ {0x6f70656e, 0x5f636f6e, 0x6669726d}}, \ {TAG_OPEN_CONFIRM_LOST, "lost open confirm", \ {0x6c6f7374, 0x206f7065, 0x6e5f636f}}, \ {TAG_OPEN_DG, "open downgrade", \ {0x6f70656e, 0x20646772, 0x61646520}}, \ {TAG_OPEN_DG_LOST, "lost open downgrade", \ {0x6c737420, 0x6f70656e, 0x20646772}}, \ {TAG_OPEN_LOST, "lost open", \ {0x6c6f7374, 0x206f7065, 0x6e202020}}, \ {TAG_OPENATTR, "openattr", \ {0x6f70656e, 0x61747472, 0x20202020}}, \ {TAG_PATHCONF, "pathconf", \ {0x70617468, 0x636f6e66, 0x20202020}}, \ {TAG_PUTROOTFH, "putrootfh", \ {0x70757472, 0x6f6f7466, 0x68202020}}, \ {TAG_READ, "read", \ {0x72656164, 0x20202020, 0x20202020}}, \ {TAG_READAHEAD, "readahead", \ {0x72656164, 0x61686561, 0x64202020}}, \ {TAG_READDIR, "readdir", \ {0x72656164, 0x64697220, 0x20202020}}, \ {TAG_READLINK, "readlink", \ {0x72656164, 0x6c696e6b, 0x20202020}}, \ {TAG_RELOCK, "relock", \ {0x72656c6f, 0x636b2020, 0x20202020}}, \ {TAG_REMAP_LOOKUP, "remap lookup", \ {0x72656d61, 0x70206c6f, 0x6f6b7570}}, \ {TAG_REMAP_LOOKUP_AD, "remap lookup attr dir", \ {0x72656d70, 0x206c6b75, 0x70206164}}, \ {TAG_REMAP_LOOKUP_NA, "remap lookup named attrs", \ {0x72656d70, 0x206c6b75, 0x70206e61}}, \ {TAG_REMAP_MOUNT, "remap mount", \ {0x72656d61, 0x70206d6f, 0x756e7420}}, \ {TAG_RMDIR, "rmdir", \ {0x726d6469, 0x72202020, 0x20202020}}, \ {TAG_REMOVE, "remove", \ {0x72656d6f, 0x76652020, 0x20202020}}, \ {TAG_RENAME, "rename", \ {0x72656e61, 0x6d652020, 0x20202020}}, \ {TAG_RENAME_VFH, "rename volatile fh", \ {0x72656e61, 0x6d652028, 0x76666829}}, \ {TAG_RENEW, "renew", \ {0x72656e65, 0x77202020, 0x20202020}}, \ {TAG_REOPEN, "reopen", \ {0x72656f70, 0x656e2020, 0x20202020}}, \ {TAG_REOPEN_LOST, "lost reopen", \ {0x6c6f7374, 0x2072656f, 0x70656e20}}, \ {TAG_SECINFO, "secinfo", \ {0x73656369, 0x6e666f20, 0x20202020}}, \ {TAG_SETATTR, "setattr", \ {0x73657461, 0x74747220, 0x20202020}}, \ {TAG_SETCLIENTID, "setclientid", \ {0x73657463, 0x6c69656e, 0x74696420}}, \ {TAG_SETCLIENTID_CF, "setclientid_confirm", \ {0x73636c6e, 0x7469645f, 0x636f6e66}}, \ {TAG_SYMLINK, "symlink", \ {0x73796d6c, 0x696e6b20, 0x20202020}}, \ {TAG_WRITE, "write", \ {0x77726974, 0x65202020, 0x20202020}} \ } /* * These flags are for differentiating the search criterian for * find_open_owner(). The comparison is done with the open_owners's * 'oo_just_created' flag. */ #define NFS4_PERM_CREATED 0x0 #define NFS4_JUST_CREATED 0x1 /* * Hashed by the cr_uid and cr_ruid of credential 'oo_cred'. 'oo_cred_otw' * is stored upon a successful OPEN. This is needed when the user's effective * and real uid's don't match. The 'oo_cred_otw' overrides the credential * passed down by VFS for async read/write, commit, lock, and close operations. * * The oo_ref_count keeps track the number of active references on this * data structure + number of nfs4_open_streams point to this structure. * * 'oo_valid' tells whether this stuct is about to be freed or not. * * 'oo_just_created' tells us whether this struct has just been created but * not been fully finalized (that is created upon an OPEN request and * finalized upon the OPEN success). * * The 'oo_seqid_inuse' is for the open seqid synchronization. If a thread * is currently using the open owner and it's open_seqid, then it sets the * oo_seqid_inuse to true if it currently is not set. If it is set then it * does a cv_wait on the oo_cv_seqid_sync condition variable. When the thread * is done it unsets the oo_seqid_inuse and does a cv_signal to wake a process * waiting on the condition variable. * * 'oo_last_good_seqid' is the last valid seqid this open owner sent OTW, * and 'oo_last_good_op' is the operation that issued the last valid seqid. * * Lock ordering: * mntinfo4_t::mi_lock > oo_lock (for searching mi_oo_list) * * oo_seqid_inuse > mntinfo4_t::mi_lock * oo_seqid_inuse > rnode4_t::r_statelock * oo_seqid_inuse > rnode4_t::r_statev4_lock * oo_seqid_inuse > nfs4_open_stream_t::os_sync_lock * * The 'oo_seqid_inuse'/'oo_cv_seqid_sync' protects: * oo_last_good_op * oo_last_good_seqid * oo_name * oo_seqid * * The 'oo_lock' protects: * oo_cred * oo_cred_otw * oo_foo_node * oo_hash_node * oo_just_created * oo_ref_count * oo_valid */ typedef struct nfs4_open_owner { cred_t *oo_cred; int oo_ref_count; int oo_valid; int oo_just_created; seqid4 oo_seqid; seqid4 oo_last_good_seqid; nfs4_tag_type_t oo_last_good_op; unsigned oo_seqid_inuse:1; cred_t *oo_cred_otw; kcondvar_t oo_cv_seqid_sync; /* * Fix this to always be 8 bytes */ uint64_t oo_name; list_node_t oo_hash_node; list_node_t oo_foo_node; kmutex_t oo_lock; } nfs4_open_owner_t; /* * Static server information. * These fields are read-only once they are initialized; sv_lock * should be held as writer if they are changed during mount: * sv_addr * sv_dhsec * sv_hostname * sv_hostnamelen * sv_knconf * sv_next * sv_origknconf * * These fields are protected by sv_lock: * sv_currsec * sv_fhandle * sv_flags * sv_fsid * sv_path * sv_pathlen * sv_pfhandle * sv_save_secinfo * sv_savesec * sv_secdata * sv_secinfo * sv_supp_attrs * * Lock ordering: * nfs_rtable4_lock > sv_lock * rnode4_t::r_statelock > sv_lock */ typedef struct servinfo4 { struct knetconfig *sv_knconf; /* bound TLI fd */ struct knetconfig *sv_origknconf; /* For RDMA save orig knconf */ struct netbuf sv_addr; /* server's address */ nfs4_fhandle_t sv_fhandle; /* this server's filehandle */ nfs4_fhandle_t sv_pfhandle; /* parent dir filehandle */ int sv_pathlen; /* Length of server path */ char *sv_path; /* Path name on server */ uint32_t sv_flags; /* flags for this server */ sec_data_t *sv_secdata; /* client initiated security data */ sv_secinfo_t *sv_secinfo; /* server security information */ sec_data_t *sv_currsec; /* security data currently used; */ /* points to one of the sec_data */ /* entries in sv_secinfo */ sv_secinfo_t *sv_save_secinfo; /* saved secinfo */ sec_data_t *sv_savesec; /* saved security data */ sec_data_t *sv_dhsec; /* AUTH_DH data from the user land */ char *sv_hostname; /* server's hostname */ int sv_hostnamelen; /* server's hostname length */ fattr4_fsid sv_fsid; /* fsid of shared obj */ fattr4_supported_attrs sv_supp_attrs; struct servinfo4 *sv_next; /* next in list */ nfs_rwlock_t sv_lock; } servinfo4_t; /* sv_flags fields */ #define SV4_TRYSECINFO 0x001 /* try secinfo data from the server */ #define SV4_TRYSECDEFAULT 0x002 /* try a default flavor */ #define SV4_NOTINUSE 0x004 /* servinfo4_t had fatal errors */ #define SV4_ROOT_STALE 0x008 /* root vnode got ESTALE */ /* * Lock call types. See nfs4frlock(). */ typedef enum nfs4_lock_call_type { NFS4_LCK_CTYPE_NORM, NFS4_LCK_CTYPE_RECLAIM, NFS4_LCK_CTYPE_RESEND, NFS4_LCK_CTYPE_REINSTATE } nfs4_lock_call_type_t; /* * This structure holds the information for a lost open/close/open downgrade/ * lock/locku request. It is also used for requests that are queued up so * that the recovery thread can release server state after a forced * unmount. * "lr_op" is 0 if the struct is uninitialized. Otherwise, it is set to * the proper OP_* nfs_opnum4 number. The other fields contain information * to reconstruct the call. * * lr_dvp is used for OPENs with CREATE, so that we can do a PUTFH of the * parent directroy without relying on vtodv (since we may not have a vp * for the file we wish to create). * * lr_putfirst means that the request should go to the front of the resend * queue, rather than the end. */ typedef struct nfs4_lost_rqst { list_node_t lr_node; nfs_opnum4 lr_op; vnode_t *lr_vp; vnode_t *lr_dvp; nfs4_open_owner_t *lr_oop; struct nfs4_open_stream *lr_osp; struct nfs4_lock_owner *lr_lop; cred_t *lr_cr; flock64_t *lr_flk; bool_t lr_putfirst; union { struct { nfs4_lock_call_type_t lru_ctype; nfs_lock_type4 lru_locktype; } lru_lockargs; /* LOCK, LOCKU */ struct { uint32_t lru_oaccess; uint32_t lru_odeny; enum open_claim_type4 lru_oclaim; stateid4 lru_ostateid; /* reopen only */ component4 lru_ofile; } lru_open_args; struct { uint32_t lru_dg_access; uint32_t lru_dg_deny; } lru_open_dg_args; } nfs4_lr_u; } nfs4_lost_rqst_t; #define lr_oacc nfs4_lr_u.lru_open_args.lru_oaccess #define lr_odeny nfs4_lr_u.lru_open_args.lru_odeny #define lr_oclaim nfs4_lr_u.lru_open_args.lru_oclaim #define lr_ostateid nfs4_lr_u.lru_open_args.lru_ostateid #define lr_ofile nfs4_lr_u.lru_open_args.lru_ofile #define lr_dg_acc nfs4_lr_u.lru_open_dg_args.lru_dg_access #define lr_dg_deny nfs4_lr_u.lru_open_dg_args.lru_dg_deny #define lr_ctype nfs4_lr_u.lru_lockargs.lru_ctype #define lr_locktype nfs4_lr_u.lru_lockargs.lru_locktype /* * Recovery actions. Some actions can imply further recovery using a * different recovery action (e.g., recovering the clientid leads to * recovering open files and locks). */ typedef enum { NR_UNUSED, NR_CLIENTID, NR_OPENFILES, NR_FHEXPIRED, NR_FAILOVER, NR_WRONGSEC, NR_EXPIRED, NR_BAD_STATEID, NR_BADHANDLE, NR_BAD_SEQID, NR_OLDSTATEID, NR_GRACE, NR_DELAY, NR_LOST_LOCK, NR_LOST_STATE_RQST, NR_STALE, NR_MOVED } nfs4_recov_t; /* * Administrative and debug message framework. */ #define NFS4_MSG_MAX 100 extern int nfs4_msg_max; #define NFS4_REFERRAL_LOOP_MAX 20 typedef enum { RE_BAD_SEQID, RE_BADHANDLE, RE_CLIENTID, RE_DEAD_FILE, RE_END, RE_FAIL_RELOCK, RE_FAIL_REMAP_LEN, RE_FAIL_REMAP_OP, RE_FAILOVER, RE_FILE_DIFF, RE_LOST_STATE, RE_OPENS_CHANGED, RE_SIGLOST, RE_SIGLOST_NO_DUMP, RE_START, RE_UNEXPECTED_ACTION, RE_UNEXPECTED_ERRNO, RE_UNEXPECTED_STATUS, RE_WRONGSEC, RE_LOST_STATE_BAD_OP, RE_REFERRAL } nfs4_event_type_t; typedef enum { RFS_NO_INSPECT, RFS_INSPECT } nfs4_fact_status_t; typedef enum { RF_BADOWNER, RF_ERR, RF_RENEW_EXPIRED, RF_SRV_NOT_RESPOND, RF_SRV_OK, RF_SRVS_NOT_RESPOND, RF_SRVS_OK, RF_DELMAP_CB_ERR, RF_SENDQ_FULL } nfs4_fact_type_t; typedef enum { NFS4_MS_DUMP, NFS4_MS_NO_DUMP } nfs4_msg_status_t; typedef struct nfs4_rfact { nfs4_fact_type_t rf_type; nfs4_fact_status_t rf_status; bool_t rf_reboot; nfs4_recov_t rf_action; nfs_opnum4 rf_op; nfsstat4 rf_stat4; timespec_t rf_time; int rf_error; struct rnode4 *rf_rp1; char *rf_char1; } nfs4_rfact_t; typedef struct nfs4_revent { nfs4_event_type_t re_type; nfsstat4 re_stat4; uint_t re_uint; pid_t re_pid; struct mntinfo4 *re_mi; struct rnode4 *re_rp1; struct rnode4 *re_rp2; char *re_char1; char *re_char2; nfs4_tag_type_t re_tag1; nfs4_tag_type_t re_tag2; seqid4 re_seqid1; seqid4 re_seqid2; } nfs4_revent_t; typedef enum { RM_EVENT, RM_FACT } nfs4_msg_type_t; typedef struct nfs4_debug_msg { timespec_t msg_time; nfs4_msg_type_t msg_type; char *msg_srv; char *msg_mntpt; union { nfs4_rfact_t msg_fact; nfs4_revent_t msg_event; } rmsg_u; nfs4_msg_status_t msg_status; list_node_t msg_node; } nfs4_debug_msg_t; /* * NFS private data per mounted file system * The mi_lock mutex protects the following fields: * mi_flags * mi_in_recovery * mi_recovflags * mi_recovthread * mi_error * mi_printed * mi_down * mi_stsize * mi_curread * mi_curwrite * mi_timers * mi_curr_serv * mi_klmconfig * mi_oo_list * mi_foo_list * mi_foo_num * mi_foo_max * mi_lost_state * mi_bseqid_list * mi_ephemeral * mi_ephemeral_tree * * Normally the netconfig information for the mount comes from * mi_curr_serv and mi_klmconfig is NULL. If NLM calls need to use a * different transport, mi_klmconfig contains the necessary netconfig * information. * * The mi_async_lock mutex protects the following fields: * mi_async_reqs * mi_async_req_count * mi_async_tail * mi_async_curr[NFS4_MAX_ASYNC_QUEUES] * mi_async_clusters * mi_async_init_clusters * mi_threads[NFS4_MAX_ASYNC_QUEUES] * mi_inactive_thread * mi_manager_thread * * The nfs4_server_t::s_lock protects the following fields: * mi_clientid * mi_clientid_next * mi_clientid_prev * mi_open_files * * The mntinfo4_t::mi_recovlock protects the following fields: * mi_srvsettime * mi_srvset_cnt * mi_srv * * Changing mi_srv from one nfs4_server_t to a different one requires * holding the mi_recovlock as RW_WRITER. * Exception: setting mi_srv the first time in mount/mountroot is done * holding the mi_recovlock as RW_READER. * * Locking order: * mi4_globals::mig_lock > mi_async_lock * mi_async_lock > nfs4_server_t::s_lock > mi_lock * mi_recovlock > mi_rename_lock > nfs_rtable4_lock * nfs4_server_t::s_recovlock > mi_recovlock * rnode4_t::r_rwlock > mi_rename_lock * nfs_rtable4_lock > mi_lock * nfs4_server_t::s_lock > mi_msg_list_lock * mi_recovlock > nfs4_server_t::s_lock * mi_recovlock > nfs4_server_lst_lock * * The 'mi_oo_list' represents the hash buckets that contain the * nfs4_open_owenrs for this particular mntinfo4. * * The 'mi_foo_list' represents the freed nfs4_open_owners for this mntinfo4. * 'mi_foo_num' is the current number of freed open owners on the list, * 'mi_foo_max' is the maximum number of freed open owners that are allowable * on the list. * * mi_rootfh and mi_srvparentfh are read-only once created, but that just * refers to the pointer. The contents must be updated to keep in sync * with mi_curr_serv. * * The mi_msg_list_lock protects against adding/deleting entries to the * mi_msg_list, and also the updating/retrieving of mi_lease_period; * * 'mi_zone' is initialized at structure creation time, and never * changes; it may be read without a lock. * * mi_zone_node is linkage into the mi4_globals.mig_list, and is * protected by mi4_globals.mig_list_lock. * * If MI4_EPHEMERAL is set in mi_flags, then mi_ephemeral points to an * ephemeral structure for this ephemeral mount point. It can not be * NULL. Also, mi_ephemeral_tree points to the root of the ephemeral * tree. * * If MI4_EPHEMERAL is not set in mi_flags, then mi_ephemeral has * to be NULL. If mi_ephemeral_tree is non-NULL, then this node * is the enclosing mntinfo4 for the ephemeral tree. */ struct zone; struct nfs4_ephemeral; struct nfs4_ephemeral_tree; struct nfs4_server; typedef struct mntinfo4 { kmutex_t mi_lock; /* protects mntinfo4 fields */ struct servinfo4 *mi_servers; /* server list */ struct servinfo4 *mi_curr_serv; /* current server */ struct nfs4_sharedfh *mi_rootfh; /* root filehandle */ struct nfs4_sharedfh *mi_srvparentfh; /* root's parent on server */ kcondvar_t mi_failover_cv; /* failover synchronization */ struct vfs *mi_vfsp; /* back pointer to vfs */ enum vtype mi_type; /* file type of the root vnode */ uint_t mi_flags; /* see below */ uint_t mi_recovflags; /* if recovery active; see below */ kthread_t *mi_recovthread; /* active recov thread or NULL */ uint_t mi_error; /* only set/valid when MI4_RECOV_FAIL */ /* is set in mi_flags */ int mi_tsize; /* transfer size (bytes) */ /* really read size */ int mi_stsize; /* server's max transfer size (bytes) */ /* really write size */ int mi_timeo; /* inital timeout in 10th sec */ int mi_retrans; /* times to retry request */ hrtime_t mi_acregmin; /* min time to hold cached file attr */ hrtime_t mi_acregmax; /* max time to hold cached file attr */ hrtime_t mi_acdirmin; /* min time to hold cached dir attr */ hrtime_t mi_acdirmax; /* max time to hold cached dir attr */ len_t mi_maxfilesize; /* for pathconf _PC_FILESIZEBITS */ int mi_curread; /* current read size */ int mi_curwrite; /* current write size */ uint_t mi_count; /* ref count */ /* * Async I/O management * We have 2 pools of threads working on async I/O: * (1) Threads which work on all async queues. Default number of * threads in this queue is 8. Threads in this pool work on async * queue pointed by mi_async_curr[NFS4_ASYNC_QUEUE]. Number of * active threads in this pool is tracked by * mi_threads[NFS4_ASYNC_QUEUE]. * (2) Threads which work only on page op async queues. * Page ops queue comprises of NFS4_PUTAPAGE, NFS4_PAGEIO & * NFS4_COMMIT. Default number of threads in this queue is 2 * (NUM_ASYNC_PGOPS_THREADS). Threads in this pool work on async * queue pointed by mi_async_curr[NFS4_ASYNC_PGOPS_QUEUE]. Number * of active threads in this pool is tracked by * mi_threads[NFS4_ASYNC_PGOPS_QUEUE]. * * In addition to above two pools, there is always one thread that * handles over-the-wire requests for VOP_INACTIVE. */ struct nfs4_async_reqs *mi_async_reqs[NFS4_ASYNC_TYPES]; struct nfs4_async_reqs *mi_async_tail[NFS4_ASYNC_TYPES]; struct nfs4_async_reqs **mi_async_curr[NFS4_MAX_ASYNC_QUEUES]; /* current async queue */ uint_t mi_async_clusters[NFS4_ASYNC_TYPES]; uint_t mi_async_init_clusters; uint_t mi_async_req_count; /* # outstanding work requests */ kcondvar_t mi_async_reqs_cv; /* signaled when there's work */ ushort_t mi_threads[NFS4_MAX_ASYNC_QUEUES]; /* number of active async threads */ ushort_t mi_max_threads; /* max number of async threads */ kthread_t *mi_manager_thread; /* async manager thread id */ kthread_t *mi_inactive_thread; /* inactive thread id */ kcondvar_t mi_inact_req_cv; /* notify VOP_INACTIVE thread */ kcondvar_t mi_async_work_cv[NFS4_MAX_ASYNC_QUEUES]; /* tell workers to work */ kcondvar_t mi_async_cv; /* all pool threads exited */ kmutex_t mi_async_lock; /* * Other stuff */ struct pathcnf *mi_pathconf; /* static pathconf kludge */ rpcprog_t mi_prog; /* RPC program number */ rpcvers_t mi_vers; /* RPC program version number */ char **mi_rfsnames; /* mapping to proc names */ kstat_named_t *mi_reqs; /* count of requests */ clock_t mi_printftime; /* last error printf time */ nfs_rwlock_t mi_recovlock; /* separate ops from recovery (v4) */ time_t mi_grace_wait; /* non-zero represents time to wait */ /* when we switched nfs4_server_t - only for observability purposes */ time_t mi_srvsettime; nfs_rwlock_t mi_rename_lock; /* atomic volfh rename */ struct nfs4_fname *mi_fname; /* root fname */ list_t mi_lost_state; /* resend list */ list_t mi_bseqid_list; /* bad seqid list */ /* * Client Side Failover stats */ uint_t mi_noresponse; /* server not responding count */ uint_t mi_failover; /* failover to new server count */ uint_t mi_remap; /* remap to new server count */ /* * Kstat statistics */ struct kstat *mi_io_kstats; struct kstat *mi_ro_kstats; kstat_t *mi_recov_ksp; /* ptr to the recovery kstat */ /* * Volatile fh flags (nfsv4) */ uint32_t mi_fh_expire_type; /* * Lease Management */ struct mntinfo4 *mi_clientid_next; struct mntinfo4 *mi_clientid_prev; clientid4 mi_clientid; /* redundant info found in nfs4_server */ int mi_open_files; /* count of open files */ int mi_in_recovery; /* count of recovery instances */ kcondvar_t mi_cv_in_recov; /* cv for recovery threads */ /* * Open owner stuff. */ struct nfs4_oo_hash_bucket mi_oo_list[NFS4_NUM_OO_BUCKETS]; list_t mi_foo_list; int mi_foo_num; int mi_foo_max; /* * Shared filehandle pool. */ nfs_rwlock_t mi_fh_lock; avl_tree_t mi_filehandles; /* * Debug message queue. */ list_t mi_msg_list; int mi_msg_count; time_t mi_lease_period; /* * not guaranteed to be accurate. * only should be used by debug queue. */ kmutex_t mi_msg_list_lock; /* * Zones support. */ struct zone *mi_zone; /* Zone in which FS is mounted */ zone_ref_t mi_zone_ref; /* Reference to aforementioned zone */ list_node_t mi_zone_node; /* linkage into per-zone mi list */ /* * Links for unmounting ephemeral mounts. */ struct nfs4_ephemeral *mi_ephemeral; struct nfs4_ephemeral_tree *mi_ephemeral_tree; uint_t mi_srvset_cnt; /* increment when changing the nfs4_server_t */ struct nfs4_server *mi_srv; /* backpointer to nfs4_server_t */ /* * Referral related info. */ int mi_vfs_referral_loop_cnt; /* * List of rnode4_t structures that belongs to this mntinfo4 */ kmutex_t mi_rnodes_lock; /* protects the mi_rnodes list */ list_t mi_rnodes; /* the list */ } mntinfo4_t; /* * The values for mi_flags. * * MI4_HARD hard or soft mount * MI4_PRINTED responding message printed * MI4_INT allow INTR on hard mount * MI4_DOWN server is down * MI4_NOAC don't cache attributes * MI4_NOCTO no close-to-open consistency * MI4_LLOCK local locking only (no lockmgr) * MI4_GRPID System V group id inheritance * MI4_SHUTDOWN System is rebooting or shutting down * MI4_LINK server supports link * MI4_SYMLINK server supports symlink * MI4_EPHEMERAL_RECURSED an ephemeral mount being unmounted * due to a recursive call - no need * for additional recursion * MI4_ACL server supports NFSv4 ACLs * MI4_MIRRORMOUNT is a mirrormount * MI4_NOPRINT don't print messages * MI4_DIRECTIO do direct I/O * MI4_RECOV_ACTIV filesystem has recovery a thread * MI4_REMOVE_ON_LAST_CLOSE remove from server's list * MI4_RECOV_FAIL client recovery failed * MI4_PUBLIC public/url option used * MI4_MOUNTING mount in progress, don't failover * MI4_POSIX_LOCK if server is using POSIX locking * MI4_LOCK_DEBUG cmn_err'd posix lock err msg * MI4_DEAD zone has released it * MI4_INACTIVE_IDLE inactive thread idle * MI4_BADOWNER_DEBUG badowner error msg per mount * MI4_ASYNC_MGR_STOP tell async manager to die * MI4_TIMEDOUT saw a timeout during zone shutdown * MI4_EPHEMERAL is an ephemeral mount */ #define MI4_HARD 0x1 #define MI4_PRINTED 0x2 #define MI4_INT 0x4 #define MI4_DOWN 0x8 #define MI4_NOAC 0x10 #define MI4_NOCTO 0x20 #define MI4_LLOCK 0x80 #define MI4_GRPID 0x100 #define MI4_SHUTDOWN 0x200 #define MI4_LINK 0x400 #define MI4_SYMLINK 0x800 #define MI4_EPHEMERAL_RECURSED 0x1000 #define MI4_ACL 0x2000 /* MI4_MIRRORMOUNT is also defined in nfsstat.c */ #define MI4_MIRRORMOUNT 0x4000 #define MI4_REFERRAL 0x8000 /* 0x10000 is available */ #define MI4_NOPRINT 0x20000 #define MI4_DIRECTIO 0x40000 /* 0x80000 is available */ #define MI4_RECOV_ACTIV 0x100000 #define MI4_REMOVE_ON_LAST_CLOSE 0x200000 #define MI4_RECOV_FAIL 0x400000 #define MI4_PUBLIC 0x800000 #define MI4_MOUNTING 0x1000000 #define MI4_POSIX_LOCK 0x2000000 #define MI4_LOCK_DEBUG 0x4000000 #define MI4_DEAD 0x8000000 #define MI4_INACTIVE_IDLE 0x10000000 #define MI4_BADOWNER_DEBUG 0x20000000 #define MI4_ASYNC_MGR_STOP 0x40000000 #define MI4_TIMEDOUT 0x80000000 #define MI4_EPHEMERAL (MI4_MIRRORMOUNT | MI4_REFERRAL) #define INTR4(vp) (VTOMI4(vp)->mi_flags & MI4_INT) #define FAILOVER_MOUNT4(mi) (mi->mi_servers->sv_next) /* * Recovery flags. * * MI4R_NEED_CLIENTID is sort of redundant (it's the nfs4_server_t flag * that's important), but some flag is needed to indicate that recovery is * going on for the filesystem. */ #define MI4R_NEED_CLIENTID 0x1 #define MI4R_REOPEN_FILES 0x2 #define MI4R_NEED_SECINFO 0x4 #define MI4R_NEED_NEW_SERVER 0x8 #define MI4R_REMAP_FILES 0x10 #define MI4R_SRV_REBOOT 0x20 /* server has rebooted */ #define MI4R_LOST_STATE 0x40 #define MI4R_BAD_SEQID 0x80 #define MI4R_MOVED 0x100 #define MI4_HOLD(mi) { \ mi_hold(mi); \ } #define MI4_RELE(mi) { \ mi_rele(mi); \ } /* * vfs pointer to mount info */ #define VFTOMI4(vfsp) ((mntinfo4_t *)((vfsp)->vfs_data)) /* * vnode pointer to mount info */ #define VTOMI4(vp) ((mntinfo4_t *)(((vp)->v_vfsp)->vfs_data)) /* * Lease Management * * lease_valid is initially set to NFS4_LEASE_NOT_STARTED. This is when the * nfs4_server is first created. lease_valid is then set to * NFS4_LEASE_UNITIALIZED when the renew thread is started. The extra state of * NFS4_LEASE_NOT_STARTED is needed for client recovery (so we know if a thread * already exists when we do SETCLIENTID). lease_valid is then set to * NFS4_LEASE_VALID (if it is at NFS4_LEASE_UNITIALIZED) when a state creating * operation (OPEN) is done. lease_valid stays at NFS4_LEASE_VALID as long as * the lease is renewed. It is set to NFS4_LEASE_INVALID when the lease * expires. Client recovery is needed to set the lease back to * NFS4_LEASE_VALID from NFS4_LEASE_INVALID. * * The s_cred is the credential used to mount the first file system for this * server. It used as the credential for the renew thread's calls to the * server. * * The renew thread waits on the condition variable cv_thread_exit. If the cv * is signalled, then the thread knows it must check s_thread_exit to see if * it should exit. The cv is signaled when the last file system is unmounted * from a particular server. s_thread_exit is set to 0 upon thread startup, * and set to NFS4_THREAD_EXIT, when the last file system is unmounted thereby * telling the thread to exit. s_thread_exit is needed to avoid spurious * wakeups. * * state_ref_count is incremented every time a new file is opened and * decremented every time a file is closed otw. This keeps track of whether * the nfs4_server has state associated with it or not. * * s_refcnt is the reference count for storage management of the struct * itself. * * mntinfo4_list points to the doubly linked list of mntinfo4s that share * this nfs4_server (ie: pair) in the current zone. This is * needed for a nfs4_server to get a mntinfo4 for use in rfs4call. * * s_recovlock is used to synchronize recovery operations. The thread * that is recovering the client must acquire it as a writer. If the * thread is using the clientid (including recovery operations on other * state), acquire it as a reader. * * The 's_otw_call_count' keeps track of the number of outstanding over the * wire requests for this structure. The struct will not go away as long * as this is non-zero (or s_refcnt is non-zero). * * The 's_cv_otw_count' is used in conjuntion with the 's_otw_call_count' * variable to let the renew thread when an outstanding otw request has * finished. * * 'zoneid' and 'zone_globals' are set at creation of this structure * and are read-only after that; no lock is required to read them. * * s_lock protects: everything except cv_thread_exit and s_recovlock. * * s_program is used as the index into the nfs4_callback_globals's * nfs4prog2server table. When a callback request comes in, we can * use that request's program number (minus NFS4_CALLBACK) as an index * into the nfs4prog2server. That entry will hold the nfs4_server_t ptr. * We can then access that nfs4_server_t and its 's_deleg_list' (its list of * delegated rnode4_ts). * * Lock order: * nfs4_server::s_lock > mntinfo4::mi_lock * nfs_rtable4_lock > s_lock * nfs4_server_lst_lock > s_lock * s_recovlock > s_lock */ struct nfs4_callback_globals; #define RS_SERVER_GONE 1 typedef struct nfs4_rcsync { list_node_t rs_link; uint64_t rs_seq; int rs_flags; mntinfo4_t *rs_mi; } nfs4_rcsync_t; typedef struct nfs4_server { struct nfs4_server *forw; struct nfs4_server *back; struct netbuf saddr; uint_t s_flags; /* see below */ uint_t s_refcnt; clientid4 clientid; /* what we get from server */ nfs_client_id4 clidtosend; /* what we send to server */ mntinfo4_t *mntinfo4_list; int lease_valid; time_t s_lease_time; time_t last_renewal_time; timespec_t propagation_delay; cred_t *s_cred; kcondvar_t cv_thread_exit; int s_thread_exit; int state_ref_count; int s_otw_call_count; kcondvar_t s_cv_otw_count; kcondvar_t s_clientid_pend; kmutex_t s_lock; list_t s_deleg_list; rpcprog_t s_program; nfs_rwlock_t s_recovlock; kcondvar_t wait_cb_null; /* used to wait for CB_NULL */ zoneid_t zoneid; /* zone using this nfs4_server_t */ struct nfs4_callback_globals *zone_globals; /* globals */ kmutex_t s_rcsync_lock; kcondvar_t s_rcsync_cv; list_t s_rcsync_list; /* list of pending opens */ uint64_t s_rcsync_seq; } nfs4_server_t; /* nfs4_server flags */ #define N4S_CLIENTID_SET 1 /* server has our clientid */ #define N4S_CLIENTID_PEND 0x2 /* server doesn't have clientid */ #define N4S_CB_PINGED 0x4 /* server has sent us a CB_NULL */ #define N4S_CB_WAITER 0x8 /* is/has wait{ing/ed} for cb_null */ #define N4S_INSERTED 0x10 /* list has reference for server */ #define N4S_BADOWNER_DEBUG 0x20 /* bad owner err msg per client */ #define N4S_CB_PAUSE_TIME 10000 /* Amount of time to pause (10ms) */ struct lease_time_arg { time_t lease_time; }; enum nfs4_delegreturn_policy { IMMEDIATE, FIRSTCLOSE, LASTCLOSE, INACTIVE }; /* * Operation hints for the recovery framework (mostly). * * EXCEPTIONS: * OH_ACCESS, OH_GETACL, OH_GETATTR, OH_LOOKUP, OH_READDIR * These hints exist to allow user visit/readdir a R4SRVSTUB dir. * (dir represents the root of a server fs that has not yet been * mounted at client) */ typedef enum { OH_OTHER, OH_READ, OH_WRITE, OH_COMMIT, OH_VFH_RENAME, OH_MOUNT, OH_CLOSE, OH_LOCKU, OH_DELEGRETURN, OH_ACCESS, OH_GETACL, OH_GETATTR, OH_LOOKUP, OH_READDIR } nfs4_op_hint_t; /* * This data structure is used to track ephemeral mounts for both * mirror mounts and referrals. * * Note that each nfs4_ephemeral can only have one other nfs4_ephemeral * pointing at it. So we don't need two backpointers to walk * back up the tree. * * An ephemeral tree is pointed to by an enclosing non-ephemeral * mntinfo4. The root is also pointed to by its ephemeral * mntinfo4. ne_child will get us back to it, while ne_prior * will get us back to the non-ephemeral mntinfo4. This is an * edge case we will need to be wary of when walking back up the * tree. * * The way we handle this edge case is to have ne_prior be NULL * for the root nfs4_ephemeral node. */ typedef struct nfs4_ephemeral { mntinfo4_t *ne_mount; /* who encloses us */ struct nfs4_ephemeral *ne_child; /* first child node */ struct nfs4_ephemeral *ne_peer; /* next sibling */ struct nfs4_ephemeral *ne_prior; /* who points at us */ time_t ne_ref_time; /* time last referenced */ uint_t ne_mount_to; /* timeout at */ int ne_state; /* used to traverse */ } nfs4_ephemeral_t; /* * State for the node (set in ne_state): */ #define NFS4_EPHEMERAL_OK 0x0 #define NFS4_EPHEMERAL_VISIT_CHILD 0x1 #define NFS4_EPHEMERAL_VISIT_SIBLING 0x2 #define NFS4_EPHEMERAL_PROCESS_ME 0x4 #define NFS4_EPHEMERAL_CHILD_ERROR 0x8 #define NFS4_EPHEMERAL_PEER_ERROR 0x10 /* * These are the locks used in processing ephemeral data: * * mi->mi_lock * * net->net_tree_lock * This lock is used to gate all tree operations. * If it is held, then no other process may * traverse the tree. This allows us to not * throw a hold on each vfs_t in the tree. * Can be held for a "long" time. * * net->net_cnt_lock * Used to protect refcnt and status. * Must be held for a really short time. * * nfs4_ephemeral_thread_lock * Is only held to create the harvester for the zone. * There is no ordering imposed on it. * Held for a really short time. * * Some further detail on the interactions: * * net_tree_lock controls access to net_root. Access needs to first be * attempted in a non-blocking check. * * net_cnt_lock controls access to net_refcnt and net_status. It must only be * held for very short periods of time, unless the refcnt is 0 and the status * is INVALID. * * Before a caller can grab net_tree_lock, it must first grab net_cnt_lock * to bump the net_refcnt. It then releases it and does the action specific * algorithm to get the net_tree_lock. Once it has that, then it is okay to * grab the net_cnt_lock and change the status. The status can only be * changed if the caller has the net_tree_lock held as well. * * Note that the initial grab of net_cnt_lock must occur whilst * mi_lock is being held. This prevents stale data in that if the * ephemeral tree is non-NULL, then the harvester can not remove * the tree from the mntinfo node until it grabs that lock. I.e., * we get the pointer to the tree and hold the lock atomically * with respect to being in mi_lock. * * When a caller is done with net_tree_lock, it can decrement the net_refcnt * either before it releases net_tree_lock or after. * * In either event, to decrement net_refcnt, it must hold net_cnt_lock. * * Note that the overall locking scheme for the nodes is to control access * via the tree. The current scheme could easily be extended such that * the enclosing root referenced a "forest" of trees. The underlying trees * would be autonomous with respect to locks. * * Note that net_next is controlled by external locks * particular to the data structure that the tree is being added to. */ typedef struct nfs4_ephemeral_tree { mntinfo4_t *net_mount; nfs4_ephemeral_t *net_root; struct nfs4_ephemeral_tree *net_next; kmutex_t net_tree_lock; kmutex_t net_cnt_lock; uint_t net_status; uint_t net_refcnt; } nfs4_ephemeral_tree_t; /* * State for the tree (set in net_status): */ #define NFS4_EPHEMERAL_TREE_OK 0x0 #define NFS4_EPHEMERAL_TREE_BUILDING 0x1 #define NFS4_EPHEMERAL_TREE_DEROOTING 0x2 #define NFS4_EPHEMERAL_TREE_INVALID 0x4 #define NFS4_EPHEMERAL_TREE_MOUNTING 0x8 #define NFS4_EPHEMERAL_TREE_UMOUNTING 0x10 #define NFS4_EPHEMERAL_TREE_LOCKED 0x20 #define NFS4_EPHEMERAL_TREE_PROCESSING (NFS4_EPHEMERAL_TREE_DEROOTING | \ NFS4_EPHEMERAL_TREE_INVALID | NFS4_EPHEMERAL_TREE_UMOUNTING | \ NFS4_EPHEMERAL_TREE_LOCKED) /* * This macro evaluates to non-zero if the given op releases state at the * server. */ #define OH_IS_STATE_RELE(op) ((op) == OH_CLOSE || (op) == OH_LOCKU || \ (op) == OH_DELEGRETURN) #ifdef _KERNEL extern void nfs4_async_manager(struct vfs *); extern void nfs4_async_manager_stop(struct vfs *); extern void nfs4_async_stop(struct vfs *); extern int nfs4_async_stop_sig(struct vfs *); extern int nfs4_async_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, cred_t *, void (*)(vnode_t *, u_offset_t, caddr_t, struct seg *, cred_t *)); extern int nfs4_async_putapage(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *, int (*)(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *)); extern int nfs4_async_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *, int (*)(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *)); extern void nfs4_async_commit(vnode_t *, page_t *, offset3, count3, cred_t *, void (*)(vnode_t *, page_t *, offset3, count3, cred_t *)); extern void nfs4_async_inactive(vnode_t *, cred_t *); extern void nfs4_inactive_thread(mntinfo4_t *mi); extern void nfs4_inactive_otw(vnode_t *, cred_t *); extern int nfs4_putpages(vnode_t *, u_offset_t, size_t, int, cred_t *); extern int nfs4_setopts(vnode_t *, model_t, struct nfs_args *); extern void nfs4_mnt_kstat_init(struct vfs *); extern void rfs4call(struct mntinfo4 *, struct COMPOUND4args_clnt *, struct COMPOUND4res_clnt *, cred_t *, int *, int, nfs4_error_t *); extern void nfs4_acl_fill_cache(struct rnode4 *, vsecattr_t *); extern int nfs4_attr_otw(vnode_t *, nfs4_tag_type_t, nfs4_ga_res_t *, bitmap4, cred_t *); extern void nfs4_attrcache_noinval(vnode_t *, nfs4_ga_res_t *, hrtime_t); extern void nfs4_attr_cache(vnode_t *, nfs4_ga_res_t *, hrtime_t, cred_t *, int, change_info4 *); extern void nfs4_purge_rddir_cache(vnode_t *); extern void nfs4_invalidate_pages(vnode_t *, u_offset_t, cred_t *); extern void nfs4_purge_caches(vnode_t *, int, cred_t *, int); extern void nfs4_purge_stale_fh(int, vnode_t *, cred_t *); extern void nfs4_flush_pages(vnode_t *vp, cred_t *cr); extern void nfs4rename_update(vnode_t *, vnode_t *, nfs_fh4 *, char *); extern void nfs4_update_paths(vnode_t *, char *, vnode_t *, char *, vnode_t *); extern void nfs4args_lookup_free(nfs_argop4 *, int); extern void nfs4args_copen_free(OPEN4cargs *); extern void nfs4_printfhandle(nfs4_fhandle_t *); extern void nfs_free_mi4(mntinfo4_t *); extern void sv4_free(servinfo4_t *); extern void nfs4_mi_zonelist_add(mntinfo4_t *); extern int nfs4_mi_zonelist_remove(mntinfo4_t *); extern int nfs4_secinfo_recov(mntinfo4_t *, vnode_t *, vnode_t *); extern void nfs4_secinfo_init(void); extern void nfs4_secinfo_fini(void); extern int nfs4_secinfo_path(mntinfo4_t *, cred_t *, int); extern int nfs4_secinfo_vnode_otw(vnode_t *, char *, cred_t *); extern void secinfo_free(sv_secinfo_t *); extern void save_mnt_secinfo(servinfo4_t *); extern void check_mnt_secinfo(servinfo4_t *, vnode_t *); extern int vattr_to_fattr4(vattr_t *, vsecattr_t *, fattr4 *, int, enum nfs_opnum4, bitmap4 supp_mask); extern int nfs4_putapage(vnode_t *, page_t *, u_offset_t *, size_t *, int, cred_t *); extern void nfs4_write_error(vnode_t *, int, cred_t *); extern void nfs4_lockcompletion(vnode_t *, int); extern bool_t nfs4_map_lost_lock_conflict(vnode_t *); extern int vtodv(vnode_t *, vnode_t **, cred_t *, bool_t); extern int vtoname(vnode_t *, char *, ssize_t); extern void nfs4open_confirm(vnode_t *, seqid4*, stateid4 *, cred_t *, bool_t, bool_t *, nfs4_open_owner_t *, bool_t, nfs4_error_t *, int *); extern void nfs4_error_zinit(nfs4_error_t *); extern void nfs4_error_init(nfs4_error_t *, int); extern void nfs4_free_args(struct nfs_args *); extern void mi_hold(mntinfo4_t *); extern void mi_rele(mntinfo4_t *); extern vnode_t *find_referral_stubvp(vnode_t *, char *, cred_t *); extern int nfs4_setup_referral(vnode_t *, char *, vnode_t **, cred_t *); extern sec_data_t *copy_sec_data(sec_data_t *); extern gss_clntdata_t *copy_sec_data_gss(gss_clntdata_t *); #ifdef DEBUG extern int nfs4_consistent_type(vnode_t *); #endif extern void nfs4_init_dot_entries(void); extern void nfs4_destroy_dot_entries(void); extern struct nfs4_callback_globals *nfs4_get_callback_globals(void); extern struct nfs4_server nfs4_server_lst; extern clock_t nfs_write_error_interval; #endif /* _KERNEL */ /* * Flags for nfs4getfh_otw. */ #define NFS4_GETFH_PUBLIC 0x01 #define NFS4_GETFH_NEEDSOP 0x02 /* * Found through rnodes. * * The os_open_ref_count keeps track the number of open file descriptor * refernces on this data structure. It will be bumped for any successful * OTW OPEN call and any OPEN call that determines the OTW call is not * necessary and the open stream hasn't just been created (see * nfs4_is_otw_open_necessary). * * os_mapcnt is a count of the number of mmapped pages for a particular * open stream; this in conjunction w/ os_open_ref_count is used to * determine when to do a close to the server. This is necessary because * of the semantics of doing open, mmap, close; the OTW close must be wait * until all open and mmap references have vanished. * * 'os_valid' tells us whether this structure is about to be freed or not, * if it is then don't return it in find_open_stream(). * * 'os_final_close' is set when a CLOSE OTW was attempted. This is needed * so we can properly count the os_open_ref_count in cases where we VOP_CLOSE * without a VOP_OPEN, and have nfs4_inactive() drive the OTW CLOSE. It * also helps differentiate the VOP_OPEN/VN_RELE case from the VOP_CLOSE * that tried to close OTW but failed, and left the state cleanup to * nfs4_inactive/CLOSE_FORCE. * * 'os_force_close' is used to let us know if an intervening thread came * and reopened the open stream after we decided to issue a CLOSE_FORCE, * but before we could actually process the CLOSE_FORCE. * * 'os_pending_close' is set when an over-the-wire CLOSE is deferred to the * lost state queue. * * 'open_stateid' is set the last open stateid returned by the server unless * 'os_delegation' is 1, in which case 'open_stateid' refers to the * delegation stateid returned by the server. This is used in cases where the * client tries to OPEN a file but already has a suitable delegation, so we * just stick the delegation stateid in the open stream. * * os_dc_openacc are open access bits which have been granted to the * open stream by virtue of a delegation, but which have not been seen * by the server. This applies even if the open stream does not have * os_delegation set. These bits are used when setting file locks to * determine whether an open with CLAIM_DELEGATE_CUR needs to be done * before the lock request can be sent to the server. See * nfs4frlock_check_deleg(). * * 'os_mmap_read/write' keep track of the read and write access our memory * maps require. We need to keep track of this so we can provide the proper * access bits in the open/mmap/close/reboot/reopen case. * * 'os_failed_reopen' tells us that we failed to successfully reopen this * open stream; therefore, we should not use this open stateid as it is * not valid anymore. This flag is also used to indicate an unsuccessful * attempt to reopen a delegation open stream with CLAIM_DELEGATE_CUR. * * If 'os_orig_oo_name' is different than os_open_owner's oo_name * then this tells us that this open stream's open owner used a * bad seqid (that is, got NFS4ERR_BAD_SEQID). If different, this open * stream will no longer be used for future OTW state releasing calls. * * Lock ordering: * rnode4_t::r_os_lock > os_sync_lock * os_sync_lock > rnode4_t::r_statelock * os_sync_lock > rnode4_t::r_statev4_lock * os_sync_lock > mntinfo4_t::mi_lock (via hold over rfs4call) * * The 'os_sync_lock' protects: * open_stateid * os_dc_openacc * os_delegation * os_failed_reopen * os_final_close * os_force_close * os_mapcnt * os_mmap_read * os_mmap_write * os_open_ref_count * os_pending_close * os_share_acc_read * os_share_acc_write * os_share_deny_none * os_share_deny_read * os_share_deny_write * os_ref_count * os_valid * * The rnode4_t::r_os_lock protects: * os_node * * These fields are set at creation time and * read only after that: * os_open_owner * os_orig_oo_name */ typedef struct nfs4_open_stream { uint64_t os_share_acc_read; uint64_t os_share_acc_write; uint64_t os_mmap_read; uint64_t os_mmap_write; uint32_t os_share_deny_none; uint32_t os_share_deny_read; uint32_t os_share_deny_write; stateid4 open_stateid; int os_dc_openacc; int os_ref_count; unsigned os_valid:1; unsigned os_delegation:1; unsigned os_final_close:1; unsigned os_pending_close:1; unsigned os_failed_reopen:1; unsigned os_force_close:1; int os_open_ref_count; long os_mapcnt; list_node_t os_node; struct nfs4_open_owner *os_open_owner; uint64_t os_orig_oo_name; kmutex_t os_sync_lock; } nfs4_open_stream_t; /* * This structure describes the format of the lock_owner_name * field of the lock owner. */ typedef struct nfs4_lo_name { uint64_t ln_seq_num; pid_t ln_pid; } nfs4_lo_name_t; /* * Flags for lo_flags. */ #define NFS4_LOCK_SEQID_INUSE 0x1 #define NFS4_BAD_SEQID_LOCK 0x2 /* * The lo_prev_rnode and lo_next_rnode are for a circular list that hangs * off the rnode. If the links are NULL it means this object is not on the * list. * * 'lo_pending_rqsts' is non-zero if we ever tried to send a request and * didn't get a response back. This is used to figure out if we have * possible remote v4 locks, so that we can clean up at process exit. In * theory, the client should be able to figure out if the server received * the request (based on what seqid works), so maybe we can get rid of this * flag someday. * * 'lo_ref_count' tells us how many processes/threads are using this data * structure. The rnode's list accounts for one reference. * * 'lo_just_created' is set to NFS4_JUST_CREATED when we first create the * data structure. It is then set to NFS4_PERM_CREATED when a lock request * is successful using this lock owner structure. We need to keep 'temporary' * lock owners around so we can properly keep the lock seqid synchronization * when multiple processes/threads are trying to create the lock owner for the * first time (especially with the DENIED error case). Once * 'lo_just_created' is set to NFS4_PERM_CREATED, it doesn't change. * * 'lo_valid' tells us whether this structure is about to be freed or not, * if it is then don't return it from find_lock_owner(). * * Retrieving and setting of 'lock_seqid' is protected by the * NFS4_LOCK_SEQID_INUSE flag. Waiters for NFS4_LOCK_SEQID_INUSE should * use 'lo_cv_seqid_sync'. * * The setting of 'lock_stateid' is protected by the * NFS4_LOCK_SEQID_INUSE flag and 'lo_lock'. The retrieving of the * 'lock_stateid' is protected by 'lo_lock', with the additional * requirement that the calling function can handle NFS4ERR_OLD_STATEID and * NFS4ERR_BAD_STATEID as appropiate. * * The setting of NFS4_BAD_SEQID_LOCK to lo_flags tells us whether this lock * owner used a bad seqid (that is, got NFS4ERR_BAD_SEQID). With this set, * this lock owner will no longer be used for future OTW calls. Once set, * it is never unset. * * Lock ordering: * rnode4_t::r_statev4_lock > lo_lock */ typedef struct nfs4_lock_owner { struct nfs4_lock_owner *lo_next_rnode; struct nfs4_lock_owner *lo_prev_rnode; int lo_pid; stateid4 lock_stateid; seqid4 lock_seqid; /* * Fix this to always be 12 bytes */ nfs4_lo_name_t lock_owner_name; int lo_ref_count; int lo_valid; int lo_pending_rqsts; int lo_just_created; int lo_flags; kcondvar_t lo_cv_seqid_sync; kmutex_t lo_lock; kthread_t *lo_seqid_holder; /* debugging aid */ } nfs4_lock_owner_t; /* for nfs4_lock_owner_t lookups */ typedef enum {LOWN_ANY, LOWN_VALID_STATEID} lown_which_t; /* Number of times to retry a call that fails with state independent error */ #define NFS4_NUM_RECOV_RETRIES 3 typedef enum { NO_SID, DEL_SID, LOCK_SID, OPEN_SID, SPEC_SID } nfs4_stateid_type_t; typedef struct nfs4_stateid_types { stateid4 d_sid; stateid4 l_sid; stateid4 o_sid; nfs4_stateid_type_t cur_sid_type; } nfs4_stateid_types_t; /* * Per-zone data for dealing with callbacks. Included here solely for the * benefit of MDB. */ struct nfs4_callback_stats { kstat_named_t delegations; kstat_named_t cb_getattr; kstat_named_t cb_recall; kstat_named_t cb_null; kstat_named_t cb_dispatch; kstat_named_t delegaccept_r; kstat_named_t delegaccept_rw; kstat_named_t delegreturn; kstat_named_t callbacks; kstat_named_t claim_cur; kstat_named_t claim_cur_ok; kstat_named_t recall_trunc; kstat_named_t recall_failed; kstat_named_t return_limit_write; kstat_named_t return_limit_addmap; kstat_named_t deleg_recover; kstat_named_t cb_illegal; }; struct nfs4_callback_globals { kmutex_t nfs4_cb_lock; kmutex_t nfs4_dlist_lock; int nfs4_program_hint; /* this table maps the program number to the nfs4_server structure */ struct nfs4_server **nfs4prog2server; list_t nfs4_dlist; list_t nfs4_cb_ports; struct nfs4_callback_stats nfs4_callback_stats; #ifdef DEBUG int nfs4_dlistadd_c; int nfs4_dlistclean_c; #endif }; typedef enum { CLOSE_NORM, CLOSE_DELMAP, CLOSE_FORCE, CLOSE_RESEND, CLOSE_AFTER_RESEND } nfs4_close_type_t; /* * Structure to hold the bad seqid information that is passed * to the recovery framework. */ typedef struct nfs4_bseqid_entry { nfs4_open_owner_t *bs_oop; nfs4_lock_owner_t *bs_lop; vnode_t *bs_vp; pid_t bs_pid; nfs4_tag_type_t bs_tag; seqid4 bs_seqid; list_node_t bs_node; } nfs4_bseqid_entry_t; #ifdef _KERNEL extern void nfs4close_one(vnode_t *, nfs4_open_stream_t *, cred_t *, int, nfs4_lost_rqst_t *, nfs4_error_t *, nfs4_close_type_t, size_t, uint_t, uint_t); extern void nfs4close_notw(vnode_t *, nfs4_open_stream_t *, int *); extern void nfs4_set_lock_stateid(nfs4_lock_owner_t *, stateid4); extern void open_owner_hold(nfs4_open_owner_t *); extern void open_owner_rele(nfs4_open_owner_t *); extern nfs4_open_stream_t *find_or_create_open_stream(nfs4_open_owner_t *, struct rnode4 *, int *); extern nfs4_open_stream_t *find_open_stream(nfs4_open_owner_t *, struct rnode4 *); extern nfs4_open_stream_t *create_open_stream(nfs4_open_owner_t *oop, struct rnode4 *rp); extern void open_stream_hold(nfs4_open_stream_t *); extern void open_stream_rele(nfs4_open_stream_t *, struct rnode4 *); extern int nfs4close_all(vnode_t *, cred_t *); extern void lock_owner_hold(nfs4_lock_owner_t *); extern void lock_owner_rele(nfs4_lock_owner_t *); extern nfs4_lock_owner_t *create_lock_owner(struct rnode4 *, pid_t); extern nfs4_lock_owner_t *find_lock_owner(struct rnode4 *, pid_t, lown_which_t); extern void nfs4_rnode_remove_lock_owner(struct rnode4 *, nfs4_lock_owner_t *); extern void nfs4_flush_lock_owners(struct rnode4 *); extern void nfs4_setlockowner_args(lock_owner4 *, struct rnode4 *, pid_t); extern void nfs4_set_open_seqid(seqid4, nfs4_open_owner_t *, nfs4_tag_type_t); extern void nfs4_set_lock_seqid(seqid4, nfs4_lock_owner_t *); extern void nfs4_get_and_set_next_open_seqid(nfs4_open_owner_t *, nfs4_tag_type_t); extern void nfs4_end_open_seqid_sync(nfs4_open_owner_t *); extern int nfs4_start_open_seqid_sync(nfs4_open_owner_t *, mntinfo4_t *); extern void nfs4_end_lock_seqid_sync(nfs4_lock_owner_t *); extern int nfs4_start_lock_seqid_sync(nfs4_lock_owner_t *, mntinfo4_t *); extern void nfs4_setup_lock_args(nfs4_lock_owner_t *, nfs4_open_owner_t *, nfs4_open_stream_t *, clientid4, locker4 *); extern void nfs4_destroy_open_owner(nfs4_open_owner_t *); extern void nfs4_renew_lease_thread(nfs4_server_t *); extern nfs4_server_t *find_nfs4_server(mntinfo4_t *); extern nfs4_server_t *find_nfs4_server_all(mntinfo4_t *, int all); extern nfs4_server_t *new_nfs4_server(servinfo4_t *, cred_t *); extern void nfs4_mark_srv_dead(nfs4_server_t *); extern nfs4_server_t *servinfo4_to_nfs4_server(servinfo4_t *); extern void nfs4_inc_state_ref_count(mntinfo4_t *); extern void nfs4_inc_state_ref_count_nolock(nfs4_server_t *, mntinfo4_t *); extern void nfs4_dec_state_ref_count(mntinfo4_t *); extern void nfs4_dec_state_ref_count_nolock(nfs4_server_t *, mntinfo4_t *); extern clientid4 mi2clientid(mntinfo4_t *); extern int nfs4_server_in_recovery(nfs4_server_t *); extern bool_t nfs4_server_vlock(nfs4_server_t *, int); extern nfs4_open_owner_t *create_open_owner(cred_t *, mntinfo4_t *); extern uint64_t nfs4_get_new_oo_name(void); extern nfs4_open_owner_t *find_open_owner(cred_t *, int, mntinfo4_t *); extern nfs4_open_owner_t *find_open_owner_nolock(cred_t *, int, mntinfo4_t *); extern void nfs4frlock(nfs4_lock_call_type_t, vnode_t *, int, flock64_t *, cred_t *, nfs4_error_t *, nfs4_lost_rqst_t *, int *); extern void nfs4open_dg_save_lost_rqst(int, nfs4_lost_rqst_t *, nfs4_open_owner_t *, nfs4_open_stream_t *, cred_t *, vnode_t *, int, int); extern void nfs4_open_downgrade(int, int, nfs4_open_owner_t *, nfs4_open_stream_t *, vnode_t *, cred_t *, nfs4_lost_rqst_t *, nfs4_error_t *, cred_t **, seqid4 *); extern seqid4 nfs4_get_open_seqid(nfs4_open_owner_t *); extern cred_t *nfs4_get_otw_cred(cred_t *, mntinfo4_t *, nfs4_open_owner_t *); extern void nfs4_init_stateid_types(nfs4_stateid_types_t *); extern void nfs4_save_stateid(stateid4 *, nfs4_stateid_types_t *); extern kmutex_t nfs4_server_lst_lock; extern void nfs4callback_destroy(nfs4_server_t *); extern void nfs4_callback_init(void); extern void nfs4_callback_fini(void); extern void nfs4_cb_args(nfs4_server_t *, struct knetconfig *, SETCLIENTID4args *); extern void nfs4delegreturn_async(struct rnode4 *, int, bool_t); extern enum nfs4_delegreturn_policy nfs4_delegreturn_policy; extern void nfs4_add_mi_to_server(nfs4_server_t *, mntinfo4_t *); extern void nfs4_remove_mi_from_server(mntinfo4_t *, nfs4_server_t *); extern nfs4_server_t *nfs4_move_mi(mntinfo4_t *, servinfo4_t *, servinfo4_t *); extern bool_t nfs4_fs_active(nfs4_server_t *); extern void nfs4_server_rele(nfs4_server_t *); extern bool_t inlease(nfs4_server_t *); extern bool_t nfs4_has_pages(vnode_t *); extern void nfs4_log_badowner(mntinfo4_t *, nfs_opnum4); #endif /* _KERNEL */ /* * Client State Recovery */ /* * The following defines are used for rs_flags in * a nfs4_recov_state_t structure. * * NFS4_RS_RENAME_HELD Indicates that the mi_rename_lock was held. * NFS4_RS_GRACE_MSG Set once we have uprintf'ed a grace message. * NFS4_RS_DELAY_MSG Set once we have uprintf'ed a delay message. * NFS4_RS_RECALL_HELD1 r_deleg_recall_lock for vp1 was held. * NFS4_RS_RECALL_HELD2 r_deleg_recall_lock for vp2 was held. */ #define NFS4_RS_RENAME_HELD 0x000000001 #define NFS4_RS_GRACE_MSG 0x000000002 #define NFS4_RS_DELAY_MSG 0x000000004 #define NFS4_RS_RECALL_HELD1 0x000000008 #define NFS4_RS_RECALL_HELD2 0x000000010 /* * Information that is retrieved from nfs4_start_op() and that is * passed into nfs4_end_op(). * * rs_sp is a reference to the nfs4_server that was found, or NULL. * * rs_num_retry_despite_err is the number times client retried an * OTW op despite a recovery error. It is only incremented for hints * exempt to normal R4RECOVERR processing * (OH_CLOSE/OH_LOCKU/OH_DELEGRETURN). (XXX this special-case code * needs review for possible removal.) * It is initialized wherever nfs4_recov_state_t is declared -- usually * very near initialization of rs_flags. */ typedef struct { nfs4_server_t *rs_sp; int rs_flags; int rs_num_retry_despite_err; } nfs4_recov_state_t; /* * Flags for nfs4_check_remap, nfs4_remap_file and nfs4_remap_root. */ #define NFS4_REMAP_CKATTRS 1 #define NFS4_REMAP_NEEDSOP 2 #ifdef _KERNEL extern int nfs4_is_otw_open_necessary(nfs4_open_owner_t *, int, vnode_t *, int, int *, int, nfs4_recov_state_t *); extern void nfs4setclientid(struct mntinfo4 *, struct cred *, bool_t, nfs4_error_t *); extern void nfs4_reopen(vnode_t *, nfs4_open_stream_t *, nfs4_error_t *, open_claim_type4, bool_t, bool_t); extern void nfs4_remap_root(struct mntinfo4 *, nfs4_error_t *, int); extern void nfs4_check_remap(mntinfo4_t *mi, vnode_t *vp, int, nfs4_error_t *); extern void nfs4_remap_file(mntinfo4_t *mi, vnode_t *vp, int, nfs4_error_t *); extern int nfs4_make_dotdot(struct nfs4_sharedfh *, hrtime_t, vnode_t *, cred_t *, vnode_t **, int); extern void nfs4_fail_recov(vnode_t *, char *, int, nfsstat4); extern int nfs4_needs_recovery(nfs4_error_t *, bool_t, vfs_t *); extern int nfs4_recov_marks_dead(nfsstat4); extern bool_t nfs4_start_recovery(nfs4_error_t *, struct mntinfo4 *, vnode_t *, vnode_t *, stateid4 *, nfs4_lost_rqst_t *, nfs_opnum4, nfs4_bseqid_entry_t *, vnode_t *, char *); extern int nfs4_start_op(struct mntinfo4 *, vnode_t *, vnode_t *, nfs4_recov_state_t *); extern void nfs4_end_op(struct mntinfo4 *, vnode_t *, vnode_t *, nfs4_recov_state_t *, bool_t); extern int nfs4_start_fop(struct mntinfo4 *, vnode_t *, vnode_t *, nfs4_op_hint_t, nfs4_recov_state_t *, bool_t *); extern void nfs4_end_fop(struct mntinfo4 *, vnode_t *, vnode_t *, nfs4_op_hint_t, nfs4_recov_state_t *, bool_t); extern char *nfs4_recov_action_to_str(nfs4_recov_t); /* * In sequence, code desiring to unmount an ephemeral tree must * call nfs4_ephemeral_umount, nfs4_ephemeral_umount_activate, * and nfs4_ephemeral_umount_unlock. The _unlock must also be * called on all error paths that occur before it would naturally * be invoked. * * The caller must also provde a pointer to a boolean to keep track * of whether or not the code in _unlock is to be ran. */ extern void nfs4_ephemeral_umount_activate(mntinfo4_t *, bool_t *, nfs4_ephemeral_tree_t **); extern int nfs4_ephemeral_umount(mntinfo4_t *, int, cred_t *, bool_t *, nfs4_ephemeral_tree_t **); extern void nfs4_ephemeral_umount_unlock(bool_t *, nfs4_ephemeral_tree_t **); extern int nfs4_record_ephemeral_mount(mntinfo4_t *mi, vnode_t *mvp); extern int nfs4_callmapid(utf8string *, struct nfs_fsl_info *); extern int nfs4_fetch_locations(mntinfo4_t *, struct nfs4_sharedfh *, char *, cred_t *, nfs4_ga_res_t *, COMPOUND4res_clnt *, bool_t); extern int wait_for_recall(vnode_t *, vnode_t *, nfs4_op_hint_t, nfs4_recov_state_t *); extern void nfs4_end_op_recall(vnode_t *, vnode_t *, nfs4_recov_state_t *); extern void nfs4_send_siglost(pid_t, mntinfo4_t *mi, vnode_t *vp, bool_t, int, nfsstat4); extern time_t nfs4err_delay_time; extern void nfs4_set_grace_wait(mntinfo4_t *); extern void nfs4_set_delay_wait(vnode_t *); extern int nfs4_wait_for_grace(mntinfo4_t *, nfs4_recov_state_t *); extern int nfs4_wait_for_delay(vnode_t *, nfs4_recov_state_t *); extern nfs4_bseqid_entry_t *nfs4_create_bseqid_entry(nfs4_open_owner_t *, nfs4_lock_owner_t *, vnode_t *, pid_t, nfs4_tag_type_t, seqid4); extern void nfs4_resend_open_otw(vnode_t **, nfs4_lost_rqst_t *, nfs4_error_t *); extern void nfs4_resend_delegreturn(nfs4_lost_rqst_t *, nfs4_error_t *, nfs4_server_t *); extern int nfs4_rpc_retry_error(int); extern int nfs4_try_failover(nfs4_error_t *); extern void nfs4_free_msg(nfs4_debug_msg_t *); extern void nfs4_mnt_recov_kstat_init(vfs_t *); extern void nfs4_mi_kstat_inc_delay(mntinfo4_t *); extern void nfs4_mi_kstat_inc_no_grace(mntinfo4_t *); extern char *nfs4_stat_to_str(nfsstat4); extern char *nfs4_op_to_str(nfs_opnum4); extern void nfs4_queue_event(nfs4_event_type_t, mntinfo4_t *, char *, uint_t, vnode_t *, vnode_t *, nfsstat4, char *, pid_t, nfs4_tag_type_t, nfs4_tag_type_t, seqid4, seqid4); extern void nfs4_queue_fact(nfs4_fact_type_t, mntinfo4_t *, nfsstat4, nfs4_recov_t, nfs_opnum4, bool_t, char *, int, vnode_t *); #pragma rarely_called(nfs4_queue_event) #pragma rarely_called(nfs4_queue_fact) /* Used for preformed "." and ".." dirents */ extern char *nfs4_dot_entries; extern char *nfs4_dot_dot_entry; #ifdef DEBUG extern uint_t nfs4_tsd_key; #endif #endif /* _KERNEL */ /* * Filehandle management. * * Filehandles can change in v4, so rather than storing the filehandle * directly in the rnode, etc., we manage the filehandle through one of * these objects. * Locking: sfh_fh and sfh_tree is protected by the filesystem's * mi_fh_lock. The reference count and flags are protected by sfh_lock. * sfh_mi is read-only. * * mntinfo4_t::mi_fh_lock > sfh_lock. */ typedef struct nfs4_sharedfh { nfs_fh4 sfh_fh; /* key and current filehandle */ kmutex_t sfh_lock; uint_t sfh_refcnt; /* reference count */ uint_t sfh_flags; mntinfo4_t *sfh_mi; /* backptr to filesystem */ avl_node_t sfh_tree; /* used by avl package */ } nfs4_sharedfh_t; #define SFH4_SAME(sfh1, sfh2) ((sfh1) == (sfh2)) /* * Flags. */ #define SFH4_IN_TREE 0x1 /* currently in an AVL tree */ #ifdef _KERNEL extern void sfh4_createtab(avl_tree_t *); extern nfs4_sharedfh_t *sfh4_get(const nfs_fh4 *, mntinfo4_t *); extern nfs4_sharedfh_t *sfh4_put(const nfs_fh4 *, mntinfo4_t *, nfs4_sharedfh_t *); extern void sfh4_update(nfs4_sharedfh_t *, const nfs_fh4 *); extern void sfh4_copyval(const nfs4_sharedfh_t *, nfs4_fhandle_t *); extern void sfh4_hold(nfs4_sharedfh_t *); extern void sfh4_rele(nfs4_sharedfh_t **); extern void sfh4_printfhandle(const nfs4_sharedfh_t *); #endif /* * Path and file name management. * * This type stores the name of an entry in the filesystem and keeps enough * information that it can provide a complete path. All fields are * protected by fn_lock, except for the reference count, which is managed * using atomic add/subtract. * * Additionally shared filehandle for this fname is stored. * Normally, fn_get() when it creates this fname stores the passed in * shared fh in fn_sfh by doing sfh_hold. Similarly the path which * destroys this fname releases the reference on this fh by doing sfh_rele. * * fn_get uses the fn_sfh to refine the comparision in cases * where we have matched the name but have differing file handles, * this normally happens due to * * 1. Server side rename of a file/directory. * 2. Another client renaming a file/directory on the server. * * Differing names but same filehandle is possible as in the case of hardlinks, * but differing filehandles with same name component will later confuse * the client and can cause various panics. * * Lock order: child and then parent. */ typedef struct nfs4_fname { struct nfs4_fname *fn_parent; /* parent name; null if fs root */ char *fn_name; /* the actual name */ ssize_t fn_len; /* strlen(fn_name) */ uint32_t fn_refcnt; /* reference count */ kmutex_t fn_lock; avl_node_t fn_tree; avl_tree_t fn_children; /* children, if any */ nfs4_sharedfh_t *fn_sfh; /* The fh for this fname */ } nfs4_fname_t; #ifdef _KERNEL extern vnode_t nfs4_xattr_notsupp_vnode; #define NFS4_XATTR_DIR_NOTSUPP &nfs4_xattr_notsupp_vnode extern nfs4_fname_t *fn_get(nfs4_fname_t *, char *, nfs4_sharedfh_t *); extern void fn_hold(nfs4_fname_t *); extern void fn_rele(nfs4_fname_t **); extern char *fn_name(nfs4_fname_t *); extern char *fn_path(nfs4_fname_t *); extern void fn_move(nfs4_fname_t *, nfs4_fname_t *, char *); extern nfs4_fname_t *fn_parent(nfs4_fname_t *); /* Referral Support */ extern int nfs4_process_referral(mntinfo4_t *, nfs4_sharedfh_t *, char *, cred_t *, nfs4_ga_res_t *, COMPOUND4res_clnt *, struct nfs_fsl_info *); #endif /* * Per-zone data for managing client handles, included in this file for the * benefit of MDB. */ struct nfs4_clnt { struct chhead *nfscl_chtable4; kmutex_t nfscl_chtable4_lock; zoneid_t nfscl_zoneid; list_node_t nfscl_node; struct clstat4 nfscl_stat; }; #ifdef __cplusplus } #endif #endif /* _NFS4_CLNT_H */