/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include "rge.h" #define REG32(rgep, reg) ((uint32_t *)(rgep->io_regs+(reg))) #define REG16(rgep, reg) ((uint16_t *)(rgep->io_regs+(reg))) #define REG8(rgep, reg) ((uint8_t *)(rgep->io_regs+(reg))) #define PIO_ADDR(rgep, offset) ((void *)(rgep->io_regs+(offset))) /* * Patchable globals: * * rge_autorecover * Enables/disables automatic recovery after fault detection */ static uint32_t rge_autorecover = 1; /* * globals: */ #define RGE_DBG RGE_DBG_REGS /* debug flag for this code */ static uint32_t rge_watchdog_count = 1 << 16; /* * Operating register get/set access routines */ static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno); #pragma inline(rge_reg_get32) static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno) { RGE_TRACE(("rge_reg_get32($%p, 0x%lx)", (void *)rgep, regno)); return (ddi_get32(rgep->io_handle, REG32(rgep, regno))); } static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data); #pragma inline(rge_reg_put32) static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data) { RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)", (void *)rgep, regno, data)); ddi_put32(rgep->io_handle, REG32(rgep, regno), data); } static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits); #pragma inline(rge_reg_set32) static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits) { uint32_t regval; RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)", (void *)rgep, regno, bits)); regval = rge_reg_get32(rgep, regno); regval |= bits; rge_reg_put32(rgep, regno, regval); } static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits); #pragma inline(rge_reg_clr32) static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits) { uint32_t regval; RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)", (void *)rgep, regno, bits)); regval = rge_reg_get32(rgep, regno); regval &= ~bits; rge_reg_put32(rgep, regno, regval); } static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno); #pragma inline(rge_reg_get16) static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno) { RGE_TRACE(("rge_reg_get16($%p, 0x%lx)", (void *)rgep, regno)); return (ddi_get16(rgep->io_handle, REG16(rgep, regno))); } static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data); #pragma inline(rge_reg_put16) static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data) { RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)", (void *)rgep, regno, data)); ddi_put16(rgep->io_handle, REG16(rgep, regno), data); } static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno); #pragma inline(rge_reg_get8) static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno) { RGE_TRACE(("rge_reg_get8($%p, 0x%lx)", (void *)rgep, regno)); return (ddi_get8(rgep->io_handle, REG8(rgep, regno))); } static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data); #pragma inline(rge_reg_put8) static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data) { RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)", (void *)rgep, regno, data)); ddi_put8(rgep->io_handle, REG8(rgep, regno), data); } static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits); #pragma inline(rge_reg_set8) static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits) { uint8_t regval; RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)", (void *)rgep, regno, bits)); regval = rge_reg_get8(rgep, regno); regval |= bits; rge_reg_put8(rgep, regno, regval); } static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits); #pragma inline(rge_reg_clr8) static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits) { uint8_t regval; RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)", (void *)rgep, regno, bits)); regval = rge_reg_get8(rgep, regno); regval &= ~bits; rge_reg_put8(rgep, regno, regval); } uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii); #pragma no_inline(rge_mii_get16) uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii) { uint32_t regval; uint32_t val32; uint32_t i; regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT; rge_reg_put32(rgep, PHY_ACCESS_REG, regval); /* * Waiting for PHY reading OK */ for (i = 0; i < PHY_RESET_LOOP; i++) { drv_usecwait(1000); val32 = rge_reg_get32(rgep, PHY_ACCESS_REG); if (val32 & PHY_ACCESS_WR_FLAG) return ((uint16_t)(val32 & 0xffff)); } RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32)); return ((uint16_t)~0u); } void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data); #pragma no_inline(rge_mii_put16) void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data) { uint32_t regval; uint32_t val32; uint32_t i; regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT; regval |= data & PHY_DATA_MASK; regval |= PHY_ACCESS_WR_FLAG; rge_reg_put32(rgep, PHY_ACCESS_REG, regval); /* * Waiting for PHY writing OK */ for (i = 0; i < PHY_RESET_LOOP; i++) { drv_usecwait(1000); val32 = rge_reg_get32(rgep, PHY_ACCESS_REG); if (!(val32 & PHY_ACCESS_WR_FLAG)) return; } RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail", mii, data)); } void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data); #pragma no_inline(rge_ephy_put16) void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data) { uint32_t regval; uint32_t val32; uint32_t i; regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT; regval |= data & EPHY_DATA_MASK; regval |= EPHY_ACCESS_WR_FLAG; rge_reg_put32(rgep, EPHY_ACCESS_REG, regval); /* * Waiting for PHY writing OK */ for (i = 0; i < PHY_RESET_LOOP; i++) { drv_usecwait(1000); val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG); if (!(val32 & EPHY_ACCESS_WR_FLAG)) return; } RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail", emii, data)); } /* * Atomically shift a 32-bit word left, returning * the value it had *before* the shift was applied */ static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count); #pragma inline(rge_mii_put16) static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count) { uint32_t oldval; uint32_t newval; /* ATOMICALLY */ do { oldval = *sp; newval = oldval << count; } while (cas32(sp, oldval, newval) != oldval); return (oldval); } /* * PHY operation routines */ #if RGE_DEBUGGING void rge_phydump(rge_t *rgep) { uint16_t regs[32]; int i; ASSERT(mutex_owned(rgep->genlock)); for (i = 0; i < 32; ++i) { regs[i] = rge_mii_get16(rgep, i); } for (i = 0; i < 32; i += 8) RGE_DEBUG(("rge_phydump: " "0x%04x %04x %04x %04x %04x %04x %04x %04x", regs[i+0], regs[i+1], regs[i+2], regs[i+3], regs[i+4], regs[i+5], regs[i+6], regs[i+7])); } #endif /* RGE_DEBUGGING */ static void rge_phy_check(rge_t *rgep) { uint16_t gig_ctl; if (rgep->param_link_up == LINK_STATE_DOWN) { /* * RTL8169S/8110S PHY has the "PCS bug". Need reset PHY * every 15 seconds whin link down & advertise is 1000. */ if (rgep->chipid.phy_ver == PHY_VER_S) { gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL); if (gig_ctl & MII_1000BT_CTL_ADV_FDX) { rgep->link_down_count++; if (rgep->link_down_count > 15) { (void) rge_phy_reset(rgep); rgep->stats.phy_reset++; rgep->link_down_count = 0; } } } } else { rgep->link_down_count = 0; } } /* * Basic low-level function to reset the PHY. * Doesn't incorporate any special-case workarounds. * * Returns TRUE on success, FALSE if the RESET bit doesn't clear */ boolean_t rge_phy_reset(rge_t *rgep) { uint16_t control; uint_t count; /* * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear */ control = rge_mii_get16(rgep, MII_CONTROL); rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET); for (count = 0; count < 5; count++) { drv_usecwait(100); control = rge_mii_get16(rgep, MII_CONTROL); if (BIC(control, MII_CONTROL_RESET)) return (B_TRUE); } RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control)); return (B_FALSE); } /* * Synchronise the PHY's speed/duplex/autonegotiation capabilities * and advertisements with the required settings as specified by the various * param_* variables that can be poked via the NDD interface. * * We always reset the PHY and reprogram *all* the relevant registers, * not just those changed. This should cause the link to go down, and then * back up again once the link is stable and autonegotiation (if enabled) * is complete. We should get a link state change interrupt somewhere along * the way ... * * NOTE: must already be held by the caller */ void rge_phy_update(rge_t *rgep) { boolean_t adv_autoneg; boolean_t adv_pause; boolean_t adv_asym_pause; boolean_t adv_1000fdx; boolean_t adv_1000hdx; boolean_t adv_100fdx; boolean_t adv_100hdx; boolean_t adv_10fdx; boolean_t adv_10hdx; uint16_t control; uint16_t gigctrl; uint16_t anar; ASSERT(mutex_owned(rgep->genlock)); RGE_DEBUG(("rge_phy_update: autoneg %d " "pause %d asym_pause %d " "1000fdx %d 1000hdx %d " "100fdx %d 100hdx %d " "10fdx %d 10hdx %d ", rgep->param_adv_autoneg, rgep->param_adv_pause, rgep->param_adv_asym_pause, rgep->param_adv_1000fdx, rgep->param_adv_1000hdx, rgep->param_adv_100fdx, rgep->param_adv_100hdx, rgep->param_adv_10fdx, rgep->param_adv_10hdx)); control = gigctrl = anar = 0; /* * PHY settings are normally based on the param_* variables, * but if any loopback mode is in effect, that takes precedence. * * RGE supports MAC-internal loopback, PHY-internal loopback, * and External loopback at a variety of speeds (with a special * cable). In all cases, autoneg is turned OFF, full-duplex * is turned ON, and the speed/mastership is forced. */ switch (rgep->param_loop_mode) { case RGE_LOOP_NONE: default: adv_autoneg = rgep->param_adv_autoneg; adv_pause = rgep->param_adv_pause; adv_asym_pause = rgep->param_adv_asym_pause; adv_1000fdx = rgep->param_adv_1000fdx; adv_1000hdx = rgep->param_adv_1000hdx; adv_100fdx = rgep->param_adv_100fdx; adv_100hdx = rgep->param_adv_100hdx; adv_10fdx = rgep->param_adv_10fdx; adv_10hdx = rgep->param_adv_10hdx; break; case RGE_LOOP_INTERNAL_PHY: case RGE_LOOP_INTERNAL_MAC: adv_autoneg = adv_pause = adv_asym_pause = B_FALSE; adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE; adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE; rgep->param_link_duplex = LINK_DUPLEX_FULL; switch (rgep->param_loop_mode) { case RGE_LOOP_INTERNAL_PHY: if (rgep->chipid.mac_ver != MAC_VER_8101E) { rgep->param_link_speed = 1000; adv_1000fdx = B_TRUE; } else { rgep->param_link_speed = 100; adv_100fdx = B_TRUE; } control = MII_CONTROL_LOOPBACK; break; case RGE_LOOP_INTERNAL_MAC: if (rgep->chipid.mac_ver != MAC_VER_8101E) { rgep->param_link_speed = 1000; adv_1000fdx = B_TRUE; } else { rgep->param_link_speed = 100; adv_100fdx = B_TRUE; break; } } RGE_DEBUG(("rge_phy_update: autoneg %d " "pause %d asym_pause %d " "1000fdx %d 1000hdx %d " "100fdx %d 100hdx %d " "10fdx %d 10hdx %d ", adv_autoneg, adv_pause, adv_asym_pause, adv_1000fdx, adv_1000hdx, adv_100fdx, adv_100hdx, adv_10fdx, adv_10hdx)); /* * We should have at least one technology capability set; * if not, we select a default of 1000Mb/s full-duplex */ if (!adv_1000fdx && !adv_100fdx && !adv_10fdx && !adv_1000hdx && !adv_100hdx && !adv_10hdx) { if (rgep->chipid.mac_ver != MAC_VER_8101E) adv_1000fdx = B_TRUE; } else { adv_1000fdx = B_FALSE; adv_100fdx = B_TRUE; } } /* * Now transform the adv_* variables into the proper settings * of the PHY registers ... * * If autonegotiation is (now) enabled, we want to trigger * a new autonegotiation cycle once the PHY has been * programmed with the capabilities to be advertised. * * RTL8169/8110 doesn't support 1000Mb/s half-duplex. */ if (adv_autoneg) control |= MII_CONTROL_ANE|MII_CONTROL_RSAN; if (adv_1000fdx) control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX; else if (adv_1000hdx) control |= MII_CONTROL_1GB; else if (adv_100fdx) control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX; else if (adv_100hdx) control |= MII_CONTROL_100MB; else if (adv_10fdx) control |= MII_CONTROL_FDUPLEX; else if (adv_10hdx) control |= 0; else { _NOTE(EMPTY); } /* Can't get here anyway ... */ if (adv_1000fdx) { gigctrl |= MII_1000BT_CTL_ADV_FDX; /* * Chipset limitation: need set other capabilities to true */ if (rgep->chipid.is_pcie) adv_1000hdx = B_TRUE; adv_100fdx = B_TRUE; adv_100hdx = B_TRUE; adv_10fdx = B_TRUE; adv_10hdx = B_TRUE; } if (adv_1000hdx) gigctrl |= MII_1000BT_CTL_ADV_HDX; if (adv_100fdx) anar |= MII_ABILITY_100BASE_TX_FD; if (adv_100hdx) anar |= MII_ABILITY_100BASE_TX; if (adv_10fdx) anar |= MII_ABILITY_10BASE_T_FD; if (adv_10hdx) anar |= MII_ABILITY_10BASE_T; if (adv_pause) anar |= MII_ABILITY_PAUSE; if (adv_asym_pause) anar |= MII_ABILITY_ASMPAUSE; /* * Munge in any other fixed bits we require ... */ anar |= MII_AN_SELECTOR_8023; /* * Restart the PHY and write the new values. Note the * time, so that we can say whether subsequent link state * changes can be attributed to our reprogramming the PHY */ rge_phy_init(rgep); if (rgep->chipid.mac_ver == MAC_VER_8168B_B || rgep->chipid.mac_ver == MAC_VER_8168B_C) { /* power up PHY for RTL8168B chipset */ rge_mii_put16(rgep, PHY_1F_REG, 0x0000); rge_mii_put16(rgep, PHY_0E_REG, 0x0000); rge_mii_put16(rgep, PHY_1F_REG, 0x0000); } rge_mii_put16(rgep, MII_AN_ADVERT, anar); rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl); rge_mii_put16(rgep, MII_CONTROL, control); RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar)); RGE_DEBUG(("rge_phy_update: control <- 0x%x", control)); RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl)); } void rge_phy_init(rge_t *rgep); #pragma no_inline(rge_phy_init) void rge_phy_init(rge_t *rgep) { rgep->phy_mii_addr = 1; /* * Below phy config steps are copied from the Programming Guide * (there's no detail comments for these steps.) */ switch (rgep->chipid.mac_ver) { case MAC_VER_8169S_D: case MAC_VER_8169S_E : rge_mii_put16(rgep, PHY_1F_REG, 0x0001); rge_mii_put16(rgep, PHY_15_REG, 0x1000); rge_mii_put16(rgep, PHY_18_REG, 0x65c7); rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000); rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1); rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008); rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020); rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000); rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800); rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000); rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000); rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41); rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60); rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140); rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077); rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800); rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000); rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000); rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01); rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20); rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95); rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00); rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800); rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000); rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000); rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41); rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20); rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140); rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb); rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800); rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000); rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000); rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01); rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20); rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95); rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00); rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800); rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000); rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000); rge_mii_put16(rgep, PHY_1F_REG, 0x0000); rge_mii_put16(rgep, PHY_0B_REG, 0x0000); break; case MAC_VER_8169SB: rge_mii_put16(rgep, PHY_1F_REG, 0x0001); rge_mii_put16(rgep, PHY_1B_REG, 0xD41E); rge_mii_put16(rgep, PHY_0E_REG, 0x7bff); rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT); rge_mii_put16(rgep, PHY_1F_REG, 0x0002); rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0); rge_mii_put16(rgep, PHY_1F_REG, 0x0000); break; case MAC_VER_8169SC: rge_mii_put16(rgep, PHY_1F_REG, 0x0001); rge_mii_put16(rgep, PHY_ANER_REG, 0x0078); rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc); rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672); rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14); rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0); rge_mii_put16(rgep, PHY_0C_REG, 0xdb80); rge_mii_put16(rgep, PHY_1B_REG, 0xc414); rge_mii_put16(rgep, PHY_1C_REG, 0xef03); rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8); rge_mii_put16(rgep, PHY_1F_REG, 0x0003); rge_mii_put16(rgep, PHY_13_REG, 0x0600); rge_mii_put16(rgep, PHY_1F_REG, 0x0000); break; case MAC_VER_8168: rge_mii_put16(rgep, PHY_1F_REG, 0x0001); rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa); rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173); rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc); rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0); rge_mii_put16(rgep, PHY_0B_REG, 0x941a); rge_mii_put16(rgep, PHY_18_REG, 0x65fe); rge_mii_put16(rgep, PHY_1C_REG, 0x1e02); rge_mii_put16(rgep, PHY_1F_REG, 0x0002); rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e); rge_mii_put16(rgep, PHY_1F_REG, 0x0000); break; case MAC_VER_8168B_B: case MAC_VER_8168B_C: rge_mii_put16(rgep, PHY_1F_REG, 0x0001); rge_mii_put16(rgep, PHY_0B_REG, 0x94b0); rge_mii_put16(rgep, PHY_1B_REG, 0xc416); rge_mii_put16(rgep, PHY_1F_REG, 0x0003); rge_mii_put16(rgep, PHY_12_REG, 0x6096); rge_mii_put16(rgep, PHY_1F_REG, 0x0000); break; } } void rge_chip_ident(rge_t *rgep); #pragma no_inline(rge_chip_ident) void rge_chip_ident(rge_t *rgep) { chip_id_t *chip = &rgep->chipid; uint32_t val32; uint16_t val16; /* * Read and record MAC version */ val32 = rge_reg_get32(rgep, TX_CONFIG_REG); val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1; chip->mac_ver = val32; chip->is_pcie = pci_lcap_locate(rgep->cfg_handle, PCI_CAP_ID_PCI_E, &val16) == DDI_SUCCESS; /* * Read and record PHY version */ val16 = rge_mii_get16(rgep, PHY_ID_REG_2); val16 &= PHY_VER_MASK; chip->phy_ver = val16; /* set pci latency timer */ if (chip->mac_ver == MAC_VER_8169 || chip->mac_ver == MAC_VER_8169S_D || chip->mac_ver == MAC_VER_8169SC) pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40); if (chip->mac_ver == MAC_VER_8169SC) { val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG); val16 &= 0x0300; if (val16 == 0x1) /* 66Mhz PCI */ pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ff00ff); else if (val16 == 0x0) /* 33Mhz PCI */ pci_config_put32(rgep->cfg_handle, 0x7c, 0x00ffff00); } /* * PCIE chipset require the Rx buffer start address must be * 8-byte alignment and the Rx buffer size must be multiple of 8. * We'll just use bcopy in receive procedure for the PCIE chipset. */ if (chip->is_pcie) { rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY; if (rgep->default_mtu > ETHERMTU) { rge_notice(rgep, "Jumbo packets not supported " "for this PCIE chipset"); rgep->default_mtu = ETHERMTU; } } if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY) rgep->head_room = 0; else rgep->head_room = RGE_HEADROOM; /* * Initialize other variables. */ if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU) rgep->default_mtu = ETHERMTU; if (rgep->default_mtu > ETHERMTU) { rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO; rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO; rgep->ethmax_size = RGE_JUMBO_SIZE; } else { rgep->rxbuf_size = RGE_BUFF_SIZE_STD; rgep->txbuf_size = RGE_BUFF_SIZE_STD; rgep->ethmax_size = ETHERMAX; } chip->rxconfig = RX_CONFIG_DEFAULT; chip->txconfig = TX_CONFIG_DEFAULT; /* interval to update statistics for polling mode */ rgep->tick_delta = drv_usectohz(1000*1000/CLK_TICK); /* ensure we are not in polling mode */ rgep->curr_tick = ddi_get_lbolt() - 2*rgep->tick_delta; RGE_TRACE(("%s: MAC version = %x, PHY version = %x", rgep->ifname, chip->mac_ver, chip->phy_ver)); } /* * Perform first-stage chip (re-)initialisation, using only config-space * accesses: * * + Read the vendor/device/revision/subsystem/cache-line-size registers, * returning the data in the structure pointed to by . * + Enable Memory Space accesses. * + Enable Bus Mastering according. */ void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp); #pragma no_inline(rge_chip_cfg_init) void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp) { ddi_acc_handle_t handle; uint16_t commd; handle = rgep->cfg_handle; /* * Save PCI cache line size and subsystem vendor ID */ cidp->command = pci_config_get16(handle, PCI_CONF_COMM); cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID); cidp->device = pci_config_get16(handle, PCI_CONF_DEVID); cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID); cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID); cidp->revision = pci_config_get8(handle, PCI_CONF_REVID); cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ); cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER); /* * Turn on Master Enable (DMA) and IO Enable bits. * Enable PCI Memory Space accesses */ commd = cidp->command; commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO; pci_config_put16(handle, PCI_CONF_COMM, commd); RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x", cidp->vendor, cidp->device, cidp->revision)); RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x", cidp->subven, cidp->subdev)); RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x", cidp->clsize, cidp->latency, cidp->command)); } int rge_chip_reset(rge_t *rgep); #pragma no_inline(rge_chip_reset) int rge_chip_reset(rge_t *rgep) { int i; uint8_t val8; /* * Chip should be in STOP state */ rge_reg_clr8(rgep, RT_COMMAND_REG, RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE); /* * Disable interrupt */ rgep->int_mask = INT_MASK_NONE; rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask); /* * Clear pended interrupt */ rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL); /* * Reset chip */ rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET); /* * Wait for reset success */ for (i = 0; i < CHIP_RESET_LOOP; i++) { drv_usecwait(10); val8 = rge_reg_get8(rgep, RT_COMMAND_REG); if (!(val8 & RT_COMMAND_RESET)) { rgep->rge_chip_state = RGE_CHIP_RESET; return (0); } } RGE_REPORT((rgep, "rge_chip_reset fail.")); return (-1); } void rge_chip_init(rge_t *rgep); #pragma no_inline(rge_chip_init) void rge_chip_init(rge_t *rgep) { uint32_t val32; uint32_t val16; uint32_t *hashp; chip_id_t *chip = &rgep->chipid; /* * Increase the threshold voltage of RX sensitivity */ if (chip->mac_ver == MAC_VER_8168B_B || chip->mac_ver == MAC_VER_8168B_C || chip->mac_ver == MAC_VER_8101E || chip->mac_ver == MAC_VER_8101E_C) { rge_ephy_put16(rgep, 0x01, 0x1bd3); } if (chip->mac_ver == MAC_VER_8168 || chip->mac_ver == MAC_VER_8168B_B) { val16 = rge_reg_get8(rgep, PHY_STATUS_REG); val16 = 0x12<<8 | val16; rge_reg_put16(rgep, PHY_STATUS_REG, val16); rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01); rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088); rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000); rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0); rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068); val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG); val32 |= 0x7000; val32 &= 0xffff5fff; rge_reg_put32(rgep, RT_CSI_DATA_REG, val32); rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068); } /* * Config MII register */ rgep->param_link_up = LINK_STATE_DOWN; rge_phy_update(rgep); /* * Enable Rx checksum offload. * Then for vlan support, we must enable receive vlan de-tagging. * Otherwise, there'll be checksum error. */ val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG); val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG; if (chip->mac_ver == MAC_VER_8169S_D) { val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE; rge_reg_put8(rgep, RESV_82_REG, 0x01); } rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03)); /* * Start transmit/receive before set tx/rx configuration register */ if (!chip->is_pcie) rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE); /* * Set dump tally counter register */ val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32; rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32); val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0); val32 &= DUMP_COUNTER_REG_RESV; val32 |= rgep->dma_area_stats.cookie.dmac_laddress; rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32); /* * Change to config register write enable mode */ rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); /* * Set Tx/Rx maximum packet size */ if (rgep->default_mtu > ETHERMTU) { rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO); rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO); } else if (rgep->chipid.mac_ver != MAC_VER_8101E) { rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD); rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD); } else { rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E); rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E); } /* * Set receive configuration register */ val32 = rge_reg_get32(rgep, RX_CONFIG_REG); val32 &= RX_CONFIG_REG_RESV; if (rgep->promisc) val32 |= RX_ACCEPT_ALL_PKT; rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig); /* * Set transmit configuration register */ val32 = rge_reg_get32(rgep, TX_CONFIG_REG); val32 &= TX_CONFIG_REG_RESV; rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig); /* * Set Tx/Rx descriptor register */ val32 = rgep->tx_desc.cookie.dmac_laddress; rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32); val32 = rgep->tx_desc.cookie.dmac_laddress >> 32; rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32); rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0); rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0); val32 = rgep->rx_desc.cookie.dmac_laddress; rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32); val32 = rgep->rx_desc.cookie.dmac_laddress >> 32; rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32); /* * Suggested setting from Realtek */ if (rgep->chipid.mac_ver != MAC_VER_8101E) rge_reg_put16(rgep, RESV_E2_REG, 0x282a); else rge_reg_put16(rgep, RESV_E2_REG, 0x0000); /* * Set multicast register */ hashp = (uint32_t *)rgep->mcast_hash; if (rgep->promisc) { rge_reg_put32(rgep, MULTICAST_0_REG, ~0U); rge_reg_put32(rgep, MULTICAST_4_REG, ~0U); } else { rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0])); rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1])); } /* * Msic register setting: * -- Missed packet counter: clear it * -- TimerInt Register * -- Timer count register */ rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0); rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE); rge_reg_put32(rgep, TIMER_COUNT_REG, 0); /* * disable the Unicast Wakeup Frame capability */ rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME); /* * Return to normal network/host communication mode */ rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); drv_usecwait(20); } /* * rge_chip_start() -- start the chip transmitting and/or receiving, * including enabling interrupts */ void rge_chip_start(rge_t *rgep); #pragma no_inline(rge_chip_start) void rge_chip_start(rge_t *rgep) { /* * Clear statistics */ bzero(&rgep->stats, sizeof (rge_stats_t)); DMA_ZERO(rgep->dma_area_stats); /* * Start transmit/receive */ rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE); /* * Enable interrupt */ rgep->int_mask = RGE_INT_MASK; if (rgep->chipid.is_pcie) { rgep->int_mask |= NO_TXDESC_INT; } rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask); /* * All done! */ rgep->rge_chip_state = RGE_CHIP_RUNNING; } /* * rge_chip_stop() -- stop board receiving * * Since this function is also invoked by rge_quiesce(), it * must not block; also, no tracing or logging takes place * when invoked by rge_quiesce(). */ void rge_chip_stop(rge_t *rgep, boolean_t fault); #pragma no_inline(rge_chip_stop) void rge_chip_stop(rge_t *rgep, boolean_t fault) { /* * Disable interrupt */ rgep->int_mask = INT_MASK_NONE; rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask); /* * Clear pended interrupt */ if (!rgep->suspended) { rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL); } /* * Stop the board and disable transmit/receive */ rge_reg_clr8(rgep, RT_COMMAND_REG, RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE); if (fault) rgep->rge_chip_state = RGE_CHIP_FAULT; else rgep->rge_chip_state = RGE_CHIP_STOPPED; } /* * rge_get_mac_addr() -- get the MAC address on NIC */ static void rge_get_mac_addr(rge_t *rgep); #pragma inline(rge_get_mac_addr) static void rge_get_mac_addr(rge_t *rgep) { uint8_t *macaddr = rgep->netaddr; uint32_t val32; /* * Read first 4-byte of mac address */ val32 = rge_reg_get32(rgep, ID_0_REG); macaddr[0] = val32 & 0xff; val32 = val32 >> 8; macaddr[1] = val32 & 0xff; val32 = val32 >> 8; macaddr[2] = val32 & 0xff; val32 = val32 >> 8; macaddr[3] = val32 & 0xff; /* * Read last 2-byte of mac address */ val32 = rge_reg_get32(rgep, ID_4_REG); macaddr[4] = val32 & 0xff; val32 = val32 >> 8; macaddr[5] = val32 & 0xff; } static void rge_set_mac_addr(rge_t *rgep); #pragma inline(rge_set_mac_addr) static void rge_set_mac_addr(rge_t *rgep) { uint8_t *p = rgep->netaddr; uint32_t val32; /* * Change to config register write enable mode */ rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); /* * Get first 4 bytes of mac address */ val32 = p[3]; val32 = val32 << 8; val32 |= p[2]; val32 = val32 << 8; val32 |= p[1]; val32 = val32 << 8; val32 |= p[0]; /* * Set first 4 bytes of mac address */ rge_reg_put32(rgep, ID_0_REG, val32); /* * Get last 2 bytes of mac address */ val32 = p[5]; val32 = val32 << 8; val32 |= p[4]; /* * Set last 2 bytes of mac address */ val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff; rge_reg_put32(rgep, ID_4_REG, val32); /* * Return to normal network/host communication mode */ rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); } static void rge_set_multi_addr(rge_t *rgep); #pragma inline(rge_set_multi_addr) static void rge_set_multi_addr(rge_t *rgep) { uint32_t *hashp; hashp = (uint32_t *)rgep->mcast_hash; /* * Change to config register write enable mode */ if (rgep->chipid.mac_ver == MAC_VER_8169SC) { rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); } if (rgep->promisc) { rge_reg_put32(rgep, MULTICAST_0_REG, ~0U); rge_reg_put32(rgep, MULTICAST_4_REG, ~0U); } else { rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0])); rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1])); } /* * Return to normal network/host communication mode */ if (rgep->chipid.mac_ver == MAC_VER_8169SC) { rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG); } } static void rge_set_promisc(rge_t *rgep); #pragma inline(rge_set_promisc) static void rge_set_promisc(rge_t *rgep) { if (rgep->promisc) rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT); else rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT); } /* * rge_chip_sync() -- program the chip with the unicast MAC address, * the multicast hash table, the required level of promiscuity, and * the current loopback mode ... */ void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo); #pragma no_inline(rge_chip_sync) void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo) { switch (todo) { case RGE_GET_MAC: rge_get_mac_addr(rgep); break; case RGE_SET_MAC: /* Reprogram the unicast MAC address(es) ... */ rge_set_mac_addr(rgep); break; case RGE_SET_MUL: /* Reprogram the hashed multicast address table ... */ rge_set_multi_addr(rgep); break; case RGE_SET_PROMISC: /* Set or clear the PROMISCUOUS mode bit */ rge_set_multi_addr(rgep); rge_set_promisc(rgep); break; default: break; } } void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag); #pragma no_inline(rge_chip_blank) /* ARGSUSED */ void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag) { _NOTE(ARGUNUSED(arg, ticks, count)); } void rge_tx_trigger(rge_t *rgep); #pragma no_inline(rge_tx_trigger) void rge_tx_trigger(rge_t *rgep) { rge_reg_put8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL); } void rge_hw_stats_dump(rge_t *rgep); #pragma no_inline(rge_tx_trigger) void rge_hw_stats_dump(rge_t *rgep) { int i = 0; while (rge_reg_get32(rgep, DUMP_COUNTER_REG_0) & DUMP_START) { drv_usecwait(100); if (++i > STATS_DUMP_LOOP) { RGE_DEBUG(("rge h/w statistics dump fail!")); rgep->rge_chip_state = RGE_CHIP_ERROR; return; } } DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL); /* * Start H/W statistics dump for RTL8169 chip */ rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START); } /* * ========== Hardware interrupt handler ========== */ #undef RGE_DBG #define RGE_DBG RGE_DBG_INT /* debug flag for this code */ static void rge_wake_factotum(rge_t *rgep); #pragma inline(rge_wake_factotum) static void rge_wake_factotum(rge_t *rgep) { if (rgep->factotum_flag == 0) { rgep->factotum_flag = 1; (void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL); } } /* * rge_intr() -- handle chip interrupts */ uint_t rge_intr(caddr_t arg1, caddr_t arg2); #pragma no_inline(rge_intr) uint_t rge_intr(caddr_t arg1, caddr_t arg2) { rge_t *rgep = (rge_t *)arg1; uint16_t int_status; clock_t now; uint32_t tx_pkts; uint32_t rx_pkts; uint32_t poll_rate; uint32_t opt_pkts; uint32_t opt_intrs; boolean_t update_int_mask = B_FALSE; uint32_t itimer; _NOTE(ARGUNUSED(arg2)) mutex_enter(rgep->genlock); if (rgep->suspended) { mutex_exit(rgep->genlock); return (DDI_INTR_UNCLAIMED); } /* * Was this interrupt caused by our device... */ int_status = rge_reg_get16(rgep, INT_STATUS_REG); if (!(int_status & rgep->int_mask)) { mutex_exit(rgep->genlock); return (DDI_INTR_UNCLAIMED); /* indicate it wasn't our interrupt */ } rgep->stats.intr++; /* * Clear interrupt * For PCIE chipset, we need disable interrupt first. */ if (rgep->chipid.is_pcie) { rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE); update_int_mask = B_TRUE; } rge_reg_put16(rgep, INT_STATUS_REG, int_status); /* * Calculate optimal polling interval */ now = ddi_get_lbolt(); if (now - rgep->curr_tick >= rgep->tick_delta && (rgep->param_link_speed == RGE_SPEED_1000M || rgep->param_link_speed == RGE_SPEED_100M)) { /* number of rx and tx packets in the last tick */ tx_pkts = rgep->stats.opackets - rgep->last_opackets; rx_pkts = rgep->stats.rpackets - rgep->last_rpackets; rgep->last_opackets = rgep->stats.opackets; rgep->last_rpackets = rgep->stats.rpackets; /* restore interrupt mask */ rgep->int_mask |= TX_OK_INT | RX_OK_INT; if (rgep->chipid.is_pcie) { rgep->int_mask |= NO_TXDESC_INT; } /* optimal number of packets in a tick */ if (rgep->param_link_speed == RGE_SPEED_1000M) { opt_pkts = (1000*1000*1000/8)/ETHERMTU/CLK_TICK; } else { opt_pkts = (100*1000*1000/8)/ETHERMTU/CLK_TICK; } /* * calculate polling interval based on rx and tx packets * in the last tick */ poll_rate = 0; if (now - rgep->curr_tick < 2*rgep->tick_delta) { opt_intrs = opt_pkts/TX_COALESC; if (tx_pkts > opt_intrs) { poll_rate = max(tx_pkts/TX_COALESC, opt_intrs); rgep->int_mask &= ~(TX_OK_INT | NO_TXDESC_INT); } opt_intrs = opt_pkts/RX_COALESC; if (rx_pkts > opt_intrs) { opt_intrs = max(rx_pkts/RX_COALESC, opt_intrs); poll_rate = max(opt_intrs, poll_rate); rgep->int_mask &= ~RX_OK_INT; } /* ensure poll_rate reasonable */ poll_rate = min(poll_rate, opt_pkts*4); } if (poll_rate) { /* move to polling mode */ if (rgep->chipid.is_pcie) { itimer = (TIMER_CLK_PCIE/CLK_TICK)/poll_rate; } else { itimer = (TIMER_CLK_PCI/CLK_TICK)/poll_rate; } } else { /* move to normal mode */ itimer = 0; } RGE_DEBUG(("%s: poll: itimer:%d int_mask:0x%x", __func__, itimer, rgep->int_mask)); rge_reg_put32(rgep, TIMER_INT_REG, itimer); /* update timestamp for statistics */ rgep->curr_tick = now; /* reset timer */ int_status |= TIME_OUT_INT; update_int_mask = B_TRUE; } if (int_status & TIME_OUT_INT) { rge_reg_put32(rgep, TIMER_COUNT_REG, 0); } /* flush post writes */ (void) rge_reg_get16(rgep, INT_STATUS_REG); /* * Cable link change interrupt */ if (int_status & LINK_CHANGE_INT) { rge_chip_cyclic(rgep); } mutex_exit(rgep->genlock); /* * Receive interrupt */ if (int_status & RGE_RX_INT) rge_receive(rgep); /* * Transmit interrupt */ if (int_status & TX_ERR_INT) { RGE_REPORT((rgep, "tx error happened, resetting the chip ")); mutex_enter(rgep->genlock); rgep->rge_chip_state = RGE_CHIP_ERROR; mutex_exit(rgep->genlock); } else if ((rgep->chipid.is_pcie && (int_status & NO_TXDESC_INT)) || ((int_status & TX_OK_INT) && rgep->tx_free < RGE_SEND_SLOTS/8)) { (void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL); } /* * Re-enable interrupt for PCIE chipset or install new int_mask */ if (update_int_mask) rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask); return (DDI_INTR_CLAIMED); /* indicate it was our interrupt */ } /* * ========== Factotum, implemented as a softint handler ========== */ #undef RGE_DBG #define RGE_DBG RGE_DBG_FACT /* debug flag for this code */ static boolean_t rge_factotum_link_check(rge_t *rgep); #pragma no_inline(rge_factotum_link_check) static boolean_t rge_factotum_link_check(rge_t *rgep) { uint8_t media_status; int32_t link; media_status = rge_reg_get8(rgep, PHY_STATUS_REG); link = (media_status & PHY_STATUS_LINK_UP) ? LINK_STATE_UP : LINK_STATE_DOWN; if (rgep->param_link_up != link) { /* * Link change. */ rgep->param_link_up = link; if (link == LINK_STATE_UP) { if (media_status & PHY_STATUS_1000MF) { rgep->param_link_speed = RGE_SPEED_1000M; rgep->param_link_duplex = LINK_DUPLEX_FULL; } else { rgep->param_link_speed = (media_status & PHY_STATUS_100M) ? RGE_SPEED_100M : RGE_SPEED_10M; rgep->param_link_duplex = (media_status & PHY_STATUS_DUPLEX_FULL) ? LINK_DUPLEX_FULL : LINK_DUPLEX_HALF; } } return (B_TRUE); } return (B_FALSE); } /* * Factotum routine to check for Tx stall, using the 'watchdog' counter */ static boolean_t rge_factotum_stall_check(rge_t *rgep); #pragma no_inline(rge_factotum_stall_check) static boolean_t rge_factotum_stall_check(rge_t *rgep) { uint32_t dogval; ASSERT(mutex_owned(rgep->genlock)); /* * Specific check for Tx stall ... * * The 'watchdog' counter is incremented whenever a packet * is queued, reset to 1 when some (but not all) buffers * are reclaimed, reset to 0 (disabled) when all buffers * are reclaimed, and shifted left here. If it exceeds the * threshold value, the chip is assumed to have stalled and * is put into the ERROR state. The factotum will then reset * it on the next pass. * * All of which should ensure that we don't get into a state * where packets are left pending indefinitely! */ if (rgep->resched_needed) (void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL); dogval = rge_atomic_shl32(&rgep->watchdog, 1); if (dogval < rge_watchdog_count) return (B_FALSE); RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval)); return (B_TRUE); } /* * The factotum is woken up when there's something to do that we'd rather * not do from inside a hardware interrupt handler or high-level cyclic. * Its two main tasks are: * reset & restart the chip after an error * check the link status whenever necessary */ uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2); #pragma no_inline(rge_chip_factotum) uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2) { rge_t *rgep; uint_t result; boolean_t error; boolean_t linkchg; rgep = (rge_t *)arg1; _NOTE(ARGUNUSED(arg2)) if (rgep->factotum_flag == 0) return (DDI_INTR_UNCLAIMED); rgep->factotum_flag = 0; result = DDI_INTR_CLAIMED; error = B_FALSE; linkchg = B_FALSE; mutex_enter(rgep->genlock); switch (rgep->rge_chip_state) { default: break; case RGE_CHIP_RUNNING: linkchg = rge_factotum_link_check(rgep); error = rge_factotum_stall_check(rgep); break; case RGE_CHIP_ERROR: error = B_TRUE; break; case RGE_CHIP_FAULT: /* * Fault detected, time to reset ... */ if (rge_autorecover) { RGE_REPORT((rgep, "automatic recovery activated")); rge_restart(rgep); } break; } /* * If an error is detected, stop the chip now, marking it as * faulty, so that it will be reset next time through ... */ if (error) rge_chip_stop(rgep, B_TRUE); mutex_exit(rgep->genlock); /* * If the link state changed, tell the world about it. * Note: can't do this while still holding the mutex. */ if (linkchg) mac_link_update(rgep->mh, rgep->param_link_up); return (result); } /* * High-level cyclic handler * * This routine schedules a (low-level) softint callback to the * factotum, and prods the chip to update the status block (which * will cause a hardware interrupt when complete). */ void rge_chip_cyclic(void *arg); #pragma no_inline(rge_chip_cyclic) void rge_chip_cyclic(void *arg) { rge_t *rgep; rgep = arg; switch (rgep->rge_chip_state) { default: return; case RGE_CHIP_RUNNING: rge_phy_check(rgep); break; case RGE_CHIP_FAULT: case RGE_CHIP_ERROR: break; } rge_wake_factotum(rgep); } /* * ========== Ioctl subfunctions ========== */ #undef RGE_DBG #define RGE_DBG RGE_DBG_PPIO /* debug flag for this code */ #if RGE_DEBUGGING || RGE_DO_PPIO static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd); #pragma no_inline(rge_chip_peek_cfg) static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd) { uint64_t regval; uint64_t regno; RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)", (void *)rgep, (void *)ppd)); regno = ppd->pp_acc_offset; switch (ppd->pp_acc_size) { case 1: regval = pci_config_get8(rgep->cfg_handle, regno); break; case 2: regval = pci_config_get16(rgep->cfg_handle, regno); break; case 4: regval = pci_config_get32(rgep->cfg_handle, regno); break; case 8: regval = pci_config_get64(rgep->cfg_handle, regno); break; } ppd->pp_acc_data = regval; } static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd); #pragma no_inline(rge_chip_poke_cfg) static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd) { uint64_t regval; uint64_t regno; RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)", (void *)rgep, (void *)ppd)); regno = ppd->pp_acc_offset; regval = ppd->pp_acc_data; switch (ppd->pp_acc_size) { case 1: pci_config_put8(rgep->cfg_handle, regno, regval); break; case 2: pci_config_put16(rgep->cfg_handle, regno, regval); break; case 4: pci_config_put32(rgep->cfg_handle, regno, regval); break; case 8: pci_config_put64(rgep->cfg_handle, regno, regval); break; } } static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd); #pragma no_inline(rge_chip_peek_reg) static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd) { uint64_t regval; void *regaddr; RGE_TRACE(("rge_chip_peek_reg($%p, $%p)", (void *)rgep, (void *)ppd)); regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset); switch (ppd->pp_acc_size) { case 1: regval = ddi_get8(rgep->io_handle, regaddr); break; case 2: regval = ddi_get16(rgep->io_handle, regaddr); break; case 4: regval = ddi_get32(rgep->io_handle, regaddr); break; case 8: regval = ddi_get64(rgep->io_handle, regaddr); break; } ppd->pp_acc_data = regval; } static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd); #pragma no_inline(rge_chip_peek_reg) static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd) { uint64_t regval; void *regaddr; RGE_TRACE(("rge_chip_poke_reg($%p, $%p)", (void *)rgep, (void *)ppd)); regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset); regval = ppd->pp_acc_data; switch (ppd->pp_acc_size) { case 1: ddi_put8(rgep->io_handle, regaddr, regval); break; case 2: ddi_put16(rgep->io_handle, regaddr, regval); break; case 4: ddi_put32(rgep->io_handle, regaddr, regval); break; case 8: ddi_put64(rgep->io_handle, regaddr, regval); break; } } static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd); #pragma no_inline(rge_chip_peek_mii) static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd) { RGE_TRACE(("rge_chip_peek_mii($%p, $%p)", (void *)rgep, (void *)ppd)); ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2); } static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd); #pragma no_inline(rge_chip_poke_mii) static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd) { RGE_TRACE(("rge_chip_poke_mii($%p, $%p)", (void *)rgep, (void *)ppd)); rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data); } static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd); #pragma no_inline(rge_chip_peek_mem) static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd) { uint64_t regval; void *vaddr; RGE_TRACE(("rge_chip_peek_rge($%p, $%p)", (void *)rgep, (void *)ppd)); vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; switch (ppd->pp_acc_size) { case 1: regval = *(uint8_t *)vaddr; break; case 2: regval = *(uint16_t *)vaddr; break; case 4: regval = *(uint32_t *)vaddr; break; case 8: regval = *(uint64_t *)vaddr; break; } RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p", (void *)rgep, (void *)ppd, regval, vaddr)); ppd->pp_acc_data = regval; } static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd); #pragma no_inline(rge_chip_poke_mem) static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd) { uint64_t regval; void *vaddr; RGE_TRACE(("rge_chip_poke_mem($%p, $%p)", (void *)rgep, (void *)ppd)); vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; regval = ppd->pp_acc_data; RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p", (void *)rgep, (void *)ppd, regval, vaddr)); switch (ppd->pp_acc_size) { case 1: *(uint8_t *)vaddr = (uint8_t)regval; break; case 2: *(uint16_t *)vaddr = (uint16_t)regval; break; case 4: *(uint32_t *)vaddr = (uint32_t)regval; break; case 8: *(uint64_t *)vaddr = (uint64_t)regval; break; } } static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(rge_pp_ioctl) static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp) { void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd); rge_peekpoke_t *ppd; dma_area_t *areap; uint64_t sizemask; uint64_t mem_va; uint64_t maxoff; boolean_t peek; switch (cmd) { default: /* NOTREACHED */ rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case RGE_PEEK: peek = B_TRUE; break; case RGE_POKE: peek = B_FALSE; break; } /* * Validate format of ioctl */ if (iocp->ioc_count != sizeof (rge_peekpoke_t)) return (IOC_INVAL); if (mp->b_cont == NULL) return (IOC_INVAL); ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr; /* * Validate request parameters */ switch (ppd->pp_acc_space) { default: return (IOC_INVAL); case RGE_PP_SPACE_CFG: /* * Config space */ sizemask = 8|4|2|1; mem_va = 0; maxoff = PCI_CONF_HDR_SIZE; ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg; break; case RGE_PP_SPACE_REG: /* * Memory-mapped I/O space */ sizemask = 8|4|2|1; mem_va = 0; maxoff = RGE_REGISTER_MAX; ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg; break; case RGE_PP_SPACE_MII: /* * PHY's MII registers * NB: all PHY registers are two bytes, but the * addresses increment in ones (word addressing). * So we scale the address here, then undo the * transformation inside the peek/poke functions. */ ppd->pp_acc_offset *= 2; sizemask = 2; mem_va = 0; maxoff = (MII_MAXREG+1)*2; ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii; break; case RGE_PP_SPACE_RGE: /* * RGE data structure! */ sizemask = 8|4|2|1; mem_va = (uintptr_t)rgep; maxoff = sizeof (*rgep); ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem; break; case RGE_PP_SPACE_STATISTICS: case RGE_PP_SPACE_TXDESC: case RGE_PP_SPACE_TXBUFF: case RGE_PP_SPACE_RXDESC: case RGE_PP_SPACE_RXBUFF: /* * Various DMA_AREAs */ switch (ppd->pp_acc_space) { case RGE_PP_SPACE_TXDESC: areap = &rgep->dma_area_txdesc; break; case RGE_PP_SPACE_RXDESC: areap = &rgep->dma_area_rxdesc; break; case RGE_PP_SPACE_STATISTICS: areap = &rgep->dma_area_stats; break; } sizemask = 8|4|2|1; mem_va = (uintptr_t)areap->mem_va; maxoff = areap->alength; ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem; break; } switch (ppd->pp_acc_size) { default: return (IOC_INVAL); case 8: case 4: case 2: case 1: if ((ppd->pp_acc_size & sizemask) == 0) return (IOC_INVAL); break; } if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0) return (IOC_INVAL); if (ppd->pp_acc_offset >= maxoff) return (IOC_INVAL); if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff) return (IOC_INVAL); /* * All OK - go do it! */ ppd->pp_acc_offset += mem_va; (*ppfn)(rgep, ppd); return (peek ? IOC_REPLY : IOC_ACK); } static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(rge_diag_ioctl) static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp) { ASSERT(mutex_owned(rgep->genlock)); switch (cmd) { default: /* NOTREACHED */ rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case RGE_DIAG: /* * Currently a no-op */ return (IOC_ACK); case RGE_PEEK: case RGE_POKE: return (rge_pp_ioctl(rgep, cmd, mp, iocp)); case RGE_PHY_RESET: return (IOC_RESTART_ACK); case RGE_SOFT_RESET: case RGE_HARD_RESET: /* * Reset and reinitialise the 570x hardware */ rge_restart(rgep); return (IOC_ACK); } /* NOTREACHED */ } #endif /* RGE_DEBUGGING || RGE_DO_PPIO */ static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(rge_mii_ioctl) static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp) { struct rge_mii_rw *miirwp; /* * Validate format of ioctl */ if (iocp->ioc_count != sizeof (struct rge_mii_rw)) return (IOC_INVAL); if (mp->b_cont == NULL) return (IOC_INVAL); miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr; /* * Validate request parameters ... */ if (miirwp->mii_reg > MII_MAXREG) return (IOC_INVAL); switch (cmd) { default: /* NOTREACHED */ rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case RGE_MII_READ: miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg); return (IOC_REPLY); case RGE_MII_WRITE: rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data); return (IOC_ACK); } /* NOTREACHED */ } enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(rge_chip_ioctl) enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) { int cmd; RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)", (void *)rgep, (void *)wq, (void *)mp, (void *)iocp)); ASSERT(mutex_owned(rgep->genlock)); cmd = iocp->ioc_cmd; switch (cmd) { default: /* NOTREACHED */ rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case RGE_DIAG: case RGE_PEEK: case RGE_POKE: case RGE_PHY_RESET: case RGE_SOFT_RESET: case RGE_HARD_RESET: #if RGE_DEBUGGING || RGE_DO_PPIO return (rge_diag_ioctl(rgep, cmd, mp, iocp)); #else return (IOC_INVAL); #endif /* RGE_DEBUGGING || RGE_DO_PPIO */ case RGE_MII_READ: case RGE_MII_WRITE: return (rge_mii_ioctl(rgep, cmd, mp, iocp)); } /* NOTREACHED */ }