/* * CDDL HEADER START * * Copyright(c) 2007-2009 Intel Corporation. All rights reserved. * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at: * http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When using or redistributing this file, you may do so under the * License only. No other modification of this header is permitted. * * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include "igb_sw.h" static char ident[] = "Intel 1Gb Ethernet"; static char igb_version[] = "igb 1.1.9"; /* * Local function protoypes */ static int igb_register_mac(igb_t *); static int igb_identify_hardware(igb_t *); static int igb_regs_map(igb_t *); static void igb_init_properties(igb_t *); static int igb_init_driver_settings(igb_t *); static void igb_init_locks(igb_t *); static void igb_destroy_locks(igb_t *); static int igb_init_mac_address(igb_t *); static int igb_init(igb_t *); static int igb_init_adapter(igb_t *); static void igb_stop_adapter(igb_t *); static int igb_reset(igb_t *); static void igb_tx_clean(igb_t *); static boolean_t igb_tx_drain(igb_t *); static boolean_t igb_rx_drain(igb_t *); static int igb_alloc_rings(igb_t *); static void igb_free_rings(igb_t *); static void igb_setup_rings(igb_t *); static void igb_setup_rx(igb_t *); static void igb_setup_tx(igb_t *); static void igb_setup_rx_ring(igb_rx_ring_t *); static void igb_setup_tx_ring(igb_tx_ring_t *); static void igb_setup_rss(igb_t *); static void igb_setup_mac_rss_classify(igb_t *); static void igb_setup_mac_classify(igb_t *); static void igb_init_unicst(igb_t *); static void igb_setup_multicst(igb_t *); static void igb_get_phy_state(igb_t *); static void igb_get_conf(igb_t *); static int igb_get_prop(igb_t *, char *, int, int, int); static boolean_t igb_is_link_up(igb_t *); static boolean_t igb_link_check(igb_t *); static void igb_local_timer(void *); static void igb_arm_watchdog_timer(igb_t *); static void igb_start_watchdog_timer(igb_t *); static void igb_restart_watchdog_timer(igb_t *); static void igb_stop_watchdog_timer(igb_t *); static void igb_disable_adapter_interrupts(igb_t *); static void igb_enable_adapter_interrupts_82575(igb_t *); static void igb_enable_adapter_interrupts_82576(igb_t *); static void igb_enable_adapter_interrupts_82580(igb_t *); static boolean_t is_valid_mac_addr(uint8_t *); static boolean_t igb_stall_check(igb_t *); static boolean_t igb_set_loopback_mode(igb_t *, uint32_t); static void igb_set_external_loopback(igb_t *); static void igb_set_internal_mac_loopback(igb_t *); static void igb_set_internal_phy_loopback(igb_t *); static void igb_set_internal_serdes_loopback(igb_t *); static boolean_t igb_find_mac_address(igb_t *); static int igb_alloc_intrs(igb_t *); static int igb_alloc_intr_handles(igb_t *, int); static int igb_add_intr_handlers(igb_t *); static void igb_rem_intr_handlers(igb_t *); static void igb_rem_intrs(igb_t *); static int igb_enable_intrs(igb_t *); static int igb_disable_intrs(igb_t *); static void igb_setup_msix_82575(igb_t *); static void igb_setup_msix_82576(igb_t *); static void igb_setup_msix_82580(igb_t *); static uint_t igb_intr_legacy(void *, void *); static uint_t igb_intr_msi(void *, void *); static uint_t igb_intr_rx(void *, void *); static uint_t igb_intr_tx(void *, void *); static uint_t igb_intr_tx_other(void *, void *); static void igb_intr_rx_work(igb_rx_ring_t *); static void igb_intr_tx_work(igb_tx_ring_t *); static void igb_intr_link_work(igb_t *); static void igb_get_driver_control(struct e1000_hw *); static void igb_release_driver_control(struct e1000_hw *); static int igb_attach(dev_info_t *, ddi_attach_cmd_t); static int igb_detach(dev_info_t *, ddi_detach_cmd_t); static int igb_resume(dev_info_t *); static int igb_suspend(dev_info_t *); static int igb_quiesce(dev_info_t *); static void igb_unconfigure(dev_info_t *, igb_t *); static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *, const void *); static void igb_fm_init(igb_t *); static void igb_fm_fini(igb_t *); static void igb_release_multicast(igb_t *); static struct cb_ops igb_cb_ops = { nulldev, /* cb_open */ nulldev, /* cb_close */ nodev, /* cb_strategy */ nodev, /* cb_print */ nodev, /* cb_dump */ nodev, /* cb_read */ nodev, /* cb_write */ nodev, /* cb_ioctl */ nodev, /* cb_devmap */ nodev, /* cb_mmap */ nodev, /* cb_segmap */ nochpoll, /* cb_chpoll */ ddi_prop_op, /* cb_prop_op */ NULL, /* cb_stream */ D_MP | D_HOTPLUG, /* cb_flag */ CB_REV, /* cb_rev */ nodev, /* cb_aread */ nodev /* cb_awrite */ }; static struct dev_ops igb_dev_ops = { DEVO_REV, /* devo_rev */ 0, /* devo_refcnt */ NULL, /* devo_getinfo */ nulldev, /* devo_identify */ nulldev, /* devo_probe */ igb_attach, /* devo_attach */ igb_detach, /* devo_detach */ nodev, /* devo_reset */ &igb_cb_ops, /* devo_cb_ops */ NULL, /* devo_bus_ops */ ddi_power, /* devo_power */ igb_quiesce, /* devo_quiesce */ }; static struct modldrv igb_modldrv = { &mod_driverops, /* Type of module. This one is a driver */ ident, /* Discription string */ &igb_dev_ops, /* driver ops */ }; static struct modlinkage igb_modlinkage = { MODREV_1, &igb_modldrv, NULL }; /* Access attributes for register mapping */ ddi_device_acc_attr_t igb_regs_acc_attr = { DDI_DEVICE_ATTR_V1, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC, DDI_FLAGERR_ACC }; #define IGB_M_CALLBACK_FLAGS (MC_IOCTL | MC_GETCAPAB) static mac_callbacks_t igb_m_callbacks = { IGB_M_CALLBACK_FLAGS, igb_m_stat, igb_m_start, igb_m_stop, igb_m_promisc, igb_m_multicst, NULL, NULL, igb_m_ioctl, igb_m_getcapab }; /* * Initialize capabilities of each supported adapter type */ static adapter_info_t igb_82575_cap = { /* limits */ 4, /* maximum number of rx queues */ 1, /* minimum number of rx queues */ 4, /* default number of rx queues */ 4, /* maximum number of tx queues */ 1, /* minimum number of tx queues */ 4, /* default number of tx queues */ 65535, /* maximum interrupt throttle rate */ 0, /* minimum interrupt throttle rate */ 200, /* default interrupt throttle rate */ /* function pointers */ igb_enable_adapter_interrupts_82575, igb_setup_msix_82575, /* capabilities */ (IGB_FLAG_HAS_DCA | /* capability flags */ IGB_FLAG_VMDQ_POOL), 0xffc00000 /* mask for RXDCTL register */ }; static adapter_info_t igb_82576_cap = { /* limits */ 16, /* maximum number of rx queues */ 1, /* minimum number of rx queues */ 4, /* default number of rx queues */ 16, /* maximum number of tx queues */ 1, /* minimum number of tx queues */ 4, /* default number of tx queues */ 65535, /* maximum interrupt throttle rate */ 0, /* minimum interrupt throttle rate */ 200, /* default interrupt throttle rate */ /* function pointers */ igb_enable_adapter_interrupts_82576, igb_setup_msix_82576, /* capabilities */ (IGB_FLAG_HAS_DCA | /* capability flags */ IGB_FLAG_VMDQ_POOL | IGB_FLAG_NEED_CTX_IDX), 0xffe00000 /* mask for RXDCTL register */ }; static adapter_info_t igb_82580_cap = { /* limits */ 8, /* maximum number of rx queues */ 1, /* minimum number of rx queues */ 4, /* default number of rx queues */ 8, /* maximum number of tx queues */ 1, /* minimum number of tx queues */ 4, /* default number of tx queues */ 65535, /* maximum interrupt throttle rate */ 0, /* minimum interrupt throttle rate */ 200, /* default interrupt throttle rate */ /* function pointers */ igb_enable_adapter_interrupts_82580, igb_setup_msix_82580, /* capabilities */ (IGB_FLAG_HAS_DCA | /* capability flags */ IGB_FLAG_VMDQ_POOL | IGB_FLAG_NEED_CTX_IDX), 0xffe00000 /* mask for RXDCTL register */ }; /* * Module Initialization Functions */ int _init(void) { int status; mac_init_ops(&igb_dev_ops, MODULE_NAME); status = mod_install(&igb_modlinkage); if (status != DDI_SUCCESS) { mac_fini_ops(&igb_dev_ops); } return (status); } int _fini(void) { int status; status = mod_remove(&igb_modlinkage); if (status == DDI_SUCCESS) { mac_fini_ops(&igb_dev_ops); } return (status); } int _info(struct modinfo *modinfop) { int status; status = mod_info(&igb_modlinkage, modinfop); return (status); } /* * igb_attach - driver attach * * This function is the device specific initialization entry * point. This entry point is required and must be written. * The DDI_ATTACH command must be provided in the attach entry * point. When attach() is called with cmd set to DDI_ATTACH, * all normal kernel services (such as kmem_alloc(9F)) are * available for use by the driver. * * The attach() function will be called once for each instance * of the device on the system with cmd set to DDI_ATTACH. * Until attach() succeeds, the only driver entry points which * may be called are open(9E) and getinfo(9E). */ static int igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) { igb_t *igb; struct igb_osdep *osdep; struct e1000_hw *hw; int instance; /* * Check the command and perform corresponding operations */ switch (cmd) { default: return (DDI_FAILURE); case DDI_RESUME: return (igb_resume(devinfo)); case DDI_ATTACH: break; } /* Get the device instance */ instance = ddi_get_instance(devinfo); /* Allocate memory for the instance data structure */ igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP); igb->dip = devinfo; igb->instance = instance; hw = &igb->hw; osdep = &igb->osdep; hw->back = osdep; osdep->igb = igb; /* Attach the instance pointer to the dev_info data structure */ ddi_set_driver_private(devinfo, igb); /* Initialize for fma support */ igb->fm_capabilities = igb_get_prop(igb, "fm-capable", 0, 0x0f, DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); igb_fm_init(igb); igb->attach_progress |= ATTACH_PROGRESS_FMINIT; /* * Map PCI config space registers */ if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) { igb_error(igb, "Failed to map PCI configurations"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG; /* * Identify the chipset family */ if (igb_identify_hardware(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to identify hardware"); goto attach_fail; } /* * Map device registers */ if (igb_regs_map(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to map device registers"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP; /* * Initialize driver parameters */ igb_init_properties(igb); igb->attach_progress |= ATTACH_PROGRESS_PROPS; /* * Allocate interrupts */ if (igb_alloc_intrs(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to allocate interrupts"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR; /* * Allocate rx/tx rings based on the ring numbers. * The actual numbers of rx/tx rings are decided by the number of * allocated interrupt vectors, so we should allocate the rings after * interrupts are allocated. */ if (igb_alloc_rings(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to allocate rx/tx rings or groups"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS; /* * Add interrupt handlers */ if (igb_add_intr_handlers(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to add interrupt handlers"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR; /* * Initialize driver parameters */ if (igb_init_driver_settings(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize driver settings"); goto attach_fail; } if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) { ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST); goto attach_fail; } /* * Initialize mutexes for this device. * Do this before enabling the interrupt handler and * register the softint to avoid the condition where * interrupt handler can try using uninitialized mutex */ igb_init_locks(igb); igb->attach_progress |= ATTACH_PROGRESS_LOCKS; /* * Allocate DMA resources */ if (igb_alloc_dma(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to allocate DMA resources"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_ALLOC_DMA; /* * Initialize the adapter and setup the rx/tx rings */ if (igb_init(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize adapter"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER; /* * Initialize statistics */ if (igb_init_stats(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize statistics"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_STATS; /* * Initialize NDD parameters */ if (igb_nd_init(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize ndd"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_NDD; /* * Register the driver to the MAC */ if (igb_register_mac(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to register MAC"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_MAC; /* * Now that mutex locks are initialized, and the chip is also * initialized, enable interrupts. */ if (igb_enable_intrs(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to enable DDI interrupts"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR; igb_log(igb, "%s", igb_version); igb->igb_state |= IGB_INITIALIZED; return (DDI_SUCCESS); attach_fail: igb_unconfigure(devinfo, igb); return (DDI_FAILURE); } /* * igb_detach - driver detach * * The detach() function is the complement of the attach routine. * If cmd is set to DDI_DETACH, detach() is used to remove the * state associated with a given instance of a device node * prior to the removal of that instance from the system. * * The detach() function will be called once for each instance * of the device for which there has been a successful attach() * once there are no longer any opens on the device. * * Interrupts routine are disabled, All memory allocated by this * driver are freed. */ static int igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) { igb_t *igb; /* * Check detach command */ switch (cmd) { default: return (DDI_FAILURE); case DDI_SUSPEND: return (igb_suspend(devinfo)); case DDI_DETACH: break; } /* * Get the pointer to the driver private data structure */ igb = (igb_t *)ddi_get_driver_private(devinfo); if (igb == NULL) return (DDI_FAILURE); /* * Unregister MAC. If failed, we have to fail the detach */ if (mac_unregister(igb->mac_hdl) != 0) { igb_error(igb, "Failed to unregister MAC"); return (DDI_FAILURE); } igb->attach_progress &= ~ATTACH_PROGRESS_MAC; /* * If the device is still running, it needs to be stopped first. * This check is necessary because under some specific circumstances, * the detach routine can be called without stopping the interface * first. */ mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_STARTED) { igb->igb_state &= ~IGB_STARTED; igb_stop(igb); mutex_exit(&igb->gen_lock); /* Disable and stop the watchdog timer */ igb_disable_watchdog_timer(igb); } else mutex_exit(&igb->gen_lock); /* * Check if there are still rx buffers held by the upper layer. * If so, fail the detach. */ if (!igb_rx_drain(igb)) return (DDI_FAILURE); /* * Do the remaining unconfigure routines */ igb_unconfigure(devinfo, igb); return (DDI_SUCCESS); } /* * quiesce(9E) entry point. * * This function is called when the system is single-threaded at high * PIL with preemption disabled. Therefore, this function must not be * blocked. * * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure. * DDI_FAILURE indicates an error condition and should almost never happen. */ static int igb_quiesce(dev_info_t *devinfo) { igb_t *igb; struct e1000_hw *hw; igb = (igb_t *)ddi_get_driver_private(devinfo); if (igb == NULL) return (DDI_FAILURE); hw = &igb->hw; /* * Disable the adapter interrupts */ igb_disable_adapter_interrupts(igb); /* Tell firmware driver is no longer in control */ igb_release_driver_control(hw); /* * Reset the chipset */ (void) e1000_reset_hw(hw); /* * Reset PHY if possible */ if (e1000_check_reset_block(hw) == E1000_SUCCESS) (void) e1000_phy_hw_reset(hw); return (DDI_SUCCESS); } /* * igb_unconfigure - release all resources held by this instance */ static void igb_unconfigure(dev_info_t *devinfo, igb_t *igb) { /* * Disable interrupt */ if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) { (void) igb_disable_intrs(igb); } /* * Unregister MAC */ if (igb->attach_progress & ATTACH_PROGRESS_MAC) { (void) mac_unregister(igb->mac_hdl); } /* * Free ndd parameters */ if (igb->attach_progress & ATTACH_PROGRESS_NDD) { igb_nd_cleanup(igb); } /* * Free statistics */ if (igb->attach_progress & ATTACH_PROGRESS_STATS) { kstat_delete((kstat_t *)igb->igb_ks); } /* * Remove interrupt handlers */ if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) { igb_rem_intr_handlers(igb); } /* * Remove interrupts */ if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) { igb_rem_intrs(igb); } /* * Remove driver properties */ if (igb->attach_progress & ATTACH_PROGRESS_PROPS) { (void) ddi_prop_remove_all(devinfo); } /* * Release the DMA resources of rx/tx rings */ if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_DMA) { igb_free_dma(igb); } /* * Stop the adapter */ if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) { mutex_enter(&igb->gen_lock); igb_stop_adapter(igb); mutex_exit(&igb->gen_lock); if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED); } /* * Free multicast table */ igb_release_multicast(igb); /* * Free register handle */ if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) { if (igb->osdep.reg_handle != NULL) ddi_regs_map_free(&igb->osdep.reg_handle); } /* * Free PCI config handle */ if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) { if (igb->osdep.cfg_handle != NULL) pci_config_teardown(&igb->osdep.cfg_handle); } /* * Free locks */ if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) { igb_destroy_locks(igb); } /* * Free the rx/tx rings */ if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) { igb_free_rings(igb); } /* * Remove FMA */ if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) { igb_fm_fini(igb); } /* * Free the driver data structure */ kmem_free(igb, sizeof (igb_t)); ddi_set_driver_private(devinfo, NULL); } /* * igb_register_mac - Register the driver and its function pointers with * the GLD interface */ static int igb_register_mac(igb_t *igb) { struct e1000_hw *hw = &igb->hw; mac_register_t *mac; int status; if ((mac = mac_alloc(MAC_VERSION)) == NULL) return (IGB_FAILURE); mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER; mac->m_driver = igb; mac->m_dip = igb->dip; mac->m_src_addr = hw->mac.addr; mac->m_callbacks = &igb_m_callbacks; mac->m_min_sdu = 0; mac->m_max_sdu = igb->max_frame_size - sizeof (struct ether_vlan_header) - ETHERFCSL; mac->m_margin = VLAN_TAGSZ; mac->m_v12n = MAC_VIRT_LEVEL1; status = mac_register(mac, &igb->mac_hdl); mac_free(mac); return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE); } /* * igb_identify_hardware - Identify the type of the chipset */ static int igb_identify_hardware(igb_t *igb) { struct e1000_hw *hw = &igb->hw; struct igb_osdep *osdep = &igb->osdep; /* * Get the device id */ hw->vendor_id = pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID); hw->device_id = pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID); hw->revision_id = pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID); hw->subsystem_device_id = pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID); hw->subsystem_vendor_id = pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID); /* * Set the mac type of the adapter based on the device id */ if (e1000_set_mac_type(hw) != E1000_SUCCESS) { return (IGB_FAILURE); } /* * Install adapter capabilities based on mac type */ switch (hw->mac.type) { case e1000_82575: igb->capab = &igb_82575_cap; break; case e1000_82576: igb->capab = &igb_82576_cap; break; case e1000_82580: igb->capab = &igb_82580_cap; break; default: return (IGB_FAILURE); } return (IGB_SUCCESS); } /* * igb_regs_map - Map the device registers */ static int igb_regs_map(igb_t *igb) { dev_info_t *devinfo = igb->dip; struct e1000_hw *hw = &igb->hw; struct igb_osdep *osdep = &igb->osdep; off_t mem_size; /* * First get the size of device registers to be mapped. */ if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) != DDI_SUCCESS) { return (IGB_FAILURE); } /* * Call ddi_regs_map_setup() to map registers */ if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET, (caddr_t *)&hw->hw_addr, 0, mem_size, &igb_regs_acc_attr, &osdep->reg_handle)) != DDI_SUCCESS) { return (IGB_FAILURE); } return (IGB_SUCCESS); } /* * igb_init_properties - Initialize driver properties */ static void igb_init_properties(igb_t *igb) { /* * Get conf file properties, including link settings * jumbo frames, ring number, descriptor number, etc. */ igb_get_conf(igb); } /* * igb_init_driver_settings - Initialize driver settings * * The settings include hardware function pointers, bus information, * rx/tx rings settings, link state, and any other parameters that * need to be setup during driver initialization. */ static int igb_init_driver_settings(igb_t *igb) { struct e1000_hw *hw = &igb->hw; igb_rx_ring_t *rx_ring; igb_tx_ring_t *tx_ring; uint32_t rx_size; uint32_t tx_size; int i; /* * Initialize chipset specific hardware function pointers */ if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) { return (IGB_FAILURE); } /* * Get bus information */ if (e1000_get_bus_info(hw) != E1000_SUCCESS) { return (IGB_FAILURE); } /* * Get the system page size */ igb->page_size = ddi_ptob(igb->dip, (ulong_t)1); /* * Set rx buffer size * The IP header alignment room is counted in the calculation. * The rx buffer size is in unit of 1K that is required by the * chipset hardware. */ rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM; igb->rx_buf_size = ((rx_size >> 10) + ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10; /* * Set tx buffer size */ tx_size = igb->max_frame_size; igb->tx_buf_size = ((tx_size >> 10) + ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10; /* * Initialize rx/tx rings parameters */ for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; rx_ring->index = i; rx_ring->igb = igb; rx_ring->ring_size = igb->rx_ring_size; rx_ring->free_list_size = igb->rx_ring_size; rx_ring->copy_thresh = igb->rx_copy_thresh; rx_ring->limit_per_intr = igb->rx_limit_per_intr; } for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; tx_ring->index = i; tx_ring->igb = igb; if (igb->tx_head_wb_enable) tx_ring->tx_recycle = igb_tx_recycle_head_wb; else tx_ring->tx_recycle = igb_tx_recycle_legacy; tx_ring->ring_size = igb->tx_ring_size; tx_ring->free_list_size = igb->tx_ring_size + (igb->tx_ring_size >> 1); tx_ring->copy_thresh = igb->tx_copy_thresh; tx_ring->recycle_thresh = igb->tx_recycle_thresh; tx_ring->overload_thresh = igb->tx_overload_thresh; tx_ring->resched_thresh = igb->tx_resched_thresh; } /* * Initialize values of interrupt throttling rates */ for (i = 1; i < MAX_NUM_EITR; i++) igb->intr_throttling[i] = igb->intr_throttling[0]; /* * The initial link state should be "unknown" */ igb->link_state = LINK_STATE_UNKNOWN; return (IGB_SUCCESS); } /* * igb_init_locks - Initialize locks */ static void igb_init_locks(igb_t *igb) { igb_rx_ring_t *rx_ring; igb_tx_ring_t *tx_ring; int i; for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; mutex_init(&rx_ring->rx_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&rx_ring->recycle_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); } for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; mutex_init(&tx_ring->tx_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&tx_ring->recycle_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&tx_ring->tcb_head_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&tx_ring->tcb_tail_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); } mutex_init(&igb->gen_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&igb->watchdog_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); } /* * igb_destroy_locks - Destroy locks */ static void igb_destroy_locks(igb_t *igb) { igb_rx_ring_t *rx_ring; igb_tx_ring_t *tx_ring; int i; for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; mutex_destroy(&rx_ring->rx_lock); mutex_destroy(&rx_ring->recycle_lock); } for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; mutex_destroy(&tx_ring->tx_lock); mutex_destroy(&tx_ring->recycle_lock); mutex_destroy(&tx_ring->tcb_head_lock); mutex_destroy(&tx_ring->tcb_tail_lock); } mutex_destroy(&igb->gen_lock); mutex_destroy(&igb->watchdog_lock); } static int igb_resume(dev_info_t *devinfo) { igb_t *igb; igb = (igb_t *)ddi_get_driver_private(devinfo); if (igb == NULL) return (DDI_FAILURE); mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_STARTED) { if (igb_start(igb) != IGB_SUCCESS) { mutex_exit(&igb->gen_lock); return (DDI_FAILURE); } /* * Enable and start the watchdog timer */ igb_enable_watchdog_timer(igb); } igb->igb_state &= ~IGB_SUSPENDED; mutex_exit(&igb->gen_lock); return (DDI_SUCCESS); } static int igb_suspend(dev_info_t *devinfo) { igb_t *igb; igb = (igb_t *)ddi_get_driver_private(devinfo); if (igb == NULL) return (DDI_FAILURE); mutex_enter(&igb->gen_lock); igb->igb_state |= IGB_SUSPENDED; if (!(igb->igb_state & IGB_STARTED)) { mutex_exit(&igb->gen_lock); return (DDI_SUCCESS); } igb_stop(igb); mutex_exit(&igb->gen_lock); /* * Disable and stop the watchdog timer */ igb_disable_watchdog_timer(igb); return (DDI_SUCCESS); } static int igb_init(igb_t *igb) { int i; mutex_enter(&igb->gen_lock); /* * Initilize the adapter */ if (igb_init_adapter(igb) != IGB_SUCCESS) { mutex_exit(&igb->gen_lock); igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE); ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST); return (IGB_FAILURE); } /* * Setup the rx/tx rings */ for (i = 0; i < igb->num_rx_rings; i++) mutex_enter(&igb->rx_rings[i].rx_lock); for (i = 0; i < igb->num_tx_rings; i++) mutex_enter(&igb->tx_rings[i].tx_lock); igb_setup_rings(igb); for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); mutex_exit(&igb->gen_lock); return (IGB_SUCCESS); } /* * igb_init_mac_address - Initialize the default MAC address * * On success, the MAC address is entered in the igb->hw.mac.addr * and hw->mac.perm_addr fields and the adapter's RAR(0) receive * address register. * * Important side effects: * 1. adapter is reset - this is required to put it in a known state. * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where * MAC address and all default settings are stored, so a valid checksum * is required. */ static int igb_init_mac_address(igb_t *igb) { struct e1000_hw *hw = &igb->hw; ASSERT(mutex_owned(&igb->gen_lock)); /* * Reset chipset to put the hardware in a known state * before we try to get MAC address from NVM. */ if (e1000_reset_hw(hw) != E1000_SUCCESS) { igb_error(igb, "Adapter reset failed."); goto init_mac_fail; } /* * NVM validation */ if (e1000_validate_nvm_checksum(hw) < 0) { /* * Some PCI-E parts fail the first check due to * the link being in sleep state. Call it again, * if it fails a second time its a real issue. */ if (e1000_validate_nvm_checksum(hw) < 0) { igb_error(igb, "Invalid NVM checksum. Please contact " "the vendor to update the NVM."); goto init_mac_fail; } } /* * Get the mac address * This function should handle SPARC case correctly. */ if (!igb_find_mac_address(igb)) { igb_error(igb, "Failed to get the mac address"); goto init_mac_fail; } /* Validate mac address */ if (!is_valid_mac_addr(hw->mac.addr)) { igb_error(igb, "Invalid mac address"); goto init_mac_fail; } return (IGB_SUCCESS); init_mac_fail: return (IGB_FAILURE); } /* * igb_init_adapter - Initialize the adapter */ static int igb_init_adapter(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t pba; uint32_t high_water; int i; ASSERT(mutex_owned(&igb->gen_lock)); /* * In order to obtain the default MAC address, this will reset the * adapter and validate the NVM that the address and many other * default settings come from. */ if (igb_init_mac_address(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize MAC address"); goto init_adapter_fail; } /* * Setup flow control * * These parameters set thresholds for the adapter's generation(Tx) * and response(Rx) to Ethernet PAUSE frames. These are just threshold * settings. Flow control is enabled or disabled in the configuration * file. * High-water mark is set down from the top of the rx fifo (not * sensitive to max_frame_size) and low-water is set just below * high-water mark. * The high water mark must be low enough to fit one full frame above * it in the rx FIFO. Should be the lower of: * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full * frame. */ /* * The default setting of PBA is correct for 82575 and other supported * adapters do not have the E1000_PBA register, so PBA value is only * used for calculation here and is never written to the adapter. */ if (hw->mac.type == e1000_82575) { pba = E1000_PBA_34K; } else { pba = E1000_PBA_64K; } high_water = min(((pba << 10) * 9 / 10), ((pba << 10) - igb->max_frame_size)); if (hw->mac.type == e1000_82575) { /* 8-byte granularity */ hw->fc.high_water = high_water & 0xFFF8; hw->fc.low_water = hw->fc.high_water - 8; } else { /* 16-byte granularity */ hw->fc.high_water = high_water & 0xFFF0; hw->fc.low_water = hw->fc.high_water - 16; } hw->fc.pause_time = E1000_FC_PAUSE_TIME; hw->fc.send_xon = B_TRUE; (void) e1000_validate_mdi_setting(hw); /* * Reset the chipset hardware the second time to put PBA settings * into effect. */ if (e1000_reset_hw(hw) != E1000_SUCCESS) { igb_error(igb, "Second reset failed"); goto init_adapter_fail; } /* * Don't wait for auto-negotiation to complete */ hw->phy.autoneg_wait_to_complete = B_FALSE; /* * Copper options */ if (hw->phy.media_type == e1000_media_type_copper) { hw->phy.mdix = 0; /* AUTO_ALL_MODES */ hw->phy.disable_polarity_correction = B_FALSE; hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */ } /* * Initialize link settings */ (void) igb_setup_link(igb, B_FALSE); /* * Configure/Initialize hardware */ if (e1000_init_hw(hw) != E1000_SUCCESS) { igb_error(igb, "Failed to initialize hardware"); goto init_adapter_fail; } /* * Disable wakeup control by default */ E1000_WRITE_REG(hw, E1000_WUC, 0); /* * Record phy info in hw struct */ (void) e1000_get_phy_info(hw); /* * Make sure driver has control */ igb_get_driver_control(hw); /* * Restore LED settings to the default from EEPROM * to meet the standard for Sun platforms. */ (void) e1000_cleanup_led(hw); /* * Setup MSI-X interrupts */ if (igb->intr_type == DDI_INTR_TYPE_MSIX) igb->capab->setup_msix(igb); /* * Initialize unicast addresses. */ igb_init_unicst(igb); /* * Setup and initialize the mctable structures. */ igb_setup_multicst(igb); /* * Set interrupt throttling rate */ for (i = 0; i < igb->intr_cnt; i++) E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]); /* * Save the state of the phy */ igb_get_phy_state(igb); return (IGB_SUCCESS); init_adapter_fail: /* * Reset PHY if possible */ if (e1000_check_reset_block(hw) == E1000_SUCCESS) (void) e1000_phy_hw_reset(hw); return (IGB_FAILURE); } /* * igb_stop_adapter - Stop the adapter */ static void igb_stop_adapter(igb_t *igb) { struct e1000_hw *hw = &igb->hw; ASSERT(mutex_owned(&igb->gen_lock)); /* Tell firmware driver is no longer in control */ igb_release_driver_control(hw); /* * Reset the chipset */ if (e1000_reset_hw(hw) != E1000_SUCCESS) { igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE); ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST); } /* * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient */ } /* * igb_reset - Reset the chipset and restart the driver. * * It involves stopping and re-starting the chipset, * and re-configuring the rx/tx rings. */ static int igb_reset(igb_t *igb) { int i; mutex_enter(&igb->gen_lock); ASSERT(igb->igb_state & IGB_STARTED); /* * Disable the adapter interrupts to stop any rx/tx activities * before draining pending data and resetting hardware. */ igb_disable_adapter_interrupts(igb); /* * Drain the pending transmit packets */ (void) igb_tx_drain(igb); for (i = 0; i < igb->num_rx_rings; i++) mutex_enter(&igb->rx_rings[i].rx_lock); for (i = 0; i < igb->num_tx_rings; i++) mutex_enter(&igb->tx_rings[i].tx_lock); /* * Stop the adapter */ igb_stop_adapter(igb); /* * Clean the pending tx data/resources */ igb_tx_clean(igb); /* * Start the adapter */ if (igb_init_adapter(igb) != IGB_SUCCESS) { igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE); goto reset_failure; } /* * Setup the rx/tx rings */ igb_setup_rings(igb); /* * Enable adapter interrupts * The interrupts must be enabled after the driver state is START */ igb->capab->enable_intr(igb); if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) goto reset_failure; if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) goto reset_failure; for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); mutex_exit(&igb->gen_lock); return (IGB_SUCCESS); reset_failure: for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); mutex_exit(&igb->gen_lock); ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST); return (IGB_FAILURE); } /* * igb_tx_clean - Clean the pending transmit packets and DMA resources */ static void igb_tx_clean(igb_t *igb) { igb_tx_ring_t *tx_ring; tx_control_block_t *tcb; link_list_t pending_list; uint32_t desc_num; int i, j; LINK_LIST_INIT(&pending_list); for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; mutex_enter(&tx_ring->recycle_lock); /* * Clean the pending tx data - the pending packets in the * work_list that have no chances to be transmitted again. * * We must ensure the chipset is stopped or the link is down * before cleaning the transmit packets. */ desc_num = 0; for (j = 0; j < tx_ring->ring_size; j++) { tcb = tx_ring->work_list[j]; if (tcb != NULL) { desc_num += tcb->desc_num; tx_ring->work_list[j] = NULL; igb_free_tcb(tcb); LIST_PUSH_TAIL(&pending_list, &tcb->link); } } if (desc_num > 0) { atomic_add_32(&tx_ring->tbd_free, desc_num); ASSERT(tx_ring->tbd_free == tx_ring->ring_size); /* * Reset the head and tail pointers of the tbd ring; * Reset the head write-back if it is enabled. */ tx_ring->tbd_head = 0; tx_ring->tbd_tail = 0; if (igb->tx_head_wb_enable) *tx_ring->tbd_head_wb = 0; E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0); E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0); } mutex_exit(&tx_ring->recycle_lock); /* * Add the tx control blocks in the pending list to * the free list. */ igb_put_free_list(tx_ring, &pending_list); } } /* * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted */ static boolean_t igb_tx_drain(igb_t *igb) { igb_tx_ring_t *tx_ring; boolean_t done; int i, j; /* * Wait for a specific time to allow pending tx packets * to be transmitted. * * Check the counter tbd_free to see if transmission is done. * No lock protection is needed here. * * Return B_TRUE if all pending packets have been transmitted; * Otherwise return B_FALSE; */ for (i = 0; i < TX_DRAIN_TIME; i++) { done = B_TRUE; for (j = 0; j < igb->num_tx_rings; j++) { tx_ring = &igb->tx_rings[j]; done = done && (tx_ring->tbd_free == tx_ring->ring_size); } if (done) break; msec_delay(1); } return (done); } /* * igb_rx_drain - Wait for all rx buffers to be released by upper layer */ static boolean_t igb_rx_drain(igb_t *igb) { igb_rx_ring_t *rx_ring; boolean_t done; int i, j; /* * Polling the rx free list to check if those rx buffers held by * the upper layer are released. * * Check the counter rcb_free to see if all pending buffers are * released. No lock protection is needed here. * * Return B_TRUE if all pending buffers have been released; * Otherwise return B_FALSE; */ for (i = 0; i < RX_DRAIN_TIME; i++) { done = B_TRUE; for (j = 0; j < igb->num_rx_rings; j++) { rx_ring = &igb->rx_rings[j]; done = done && (rx_ring->rcb_free == rx_ring->free_list_size); } if (done) break; msec_delay(1); } return (done); } /* * igb_start - Start the driver/chipset */ int igb_start(igb_t *igb) { int i; ASSERT(mutex_owned(&igb->gen_lock)); for (i = 0; i < igb->num_rx_rings; i++) mutex_enter(&igb->rx_rings[i].rx_lock); for (i = 0; i < igb->num_tx_rings; i++) mutex_enter(&igb->tx_rings[i].tx_lock); /* * Start the adapter */ if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) { if (igb_init_adapter(igb) != IGB_SUCCESS) { igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE); goto start_failure; } igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER; /* * Setup the rx/tx rings */ igb_setup_rings(igb); } /* * Enable adapter interrupts * The interrupts must be enabled after the driver state is START */ igb->capab->enable_intr(igb); if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) goto start_failure; if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) goto start_failure; for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); return (IGB_SUCCESS); start_failure: for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST); return (IGB_FAILURE); } /* * igb_stop - Stop the driver/chipset */ void igb_stop(igb_t *igb) { int i; ASSERT(mutex_owned(&igb->gen_lock)); igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER; /* * Disable the adapter interrupts */ igb_disable_adapter_interrupts(igb); /* * Drain the pending tx packets */ (void) igb_tx_drain(igb); for (i = 0; i < igb->num_rx_rings; i++) mutex_enter(&igb->rx_rings[i].rx_lock); for (i = 0; i < igb->num_tx_rings; i++) mutex_enter(&igb->tx_rings[i].tx_lock); /* * Stop the adapter */ igb_stop_adapter(igb); /* * Clean the pending tx data/resources */ igb_tx_clean(igb); for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST); } /* * igb_alloc_rings - Allocate memory space for rx/tx rings */ static int igb_alloc_rings(igb_t *igb) { /* * Allocate memory space for rx rings */ igb->rx_rings = kmem_zalloc( sizeof (igb_rx_ring_t) * igb->num_rx_rings, KM_NOSLEEP); if (igb->rx_rings == NULL) { return (IGB_FAILURE); } /* * Allocate memory space for tx rings */ igb->tx_rings = kmem_zalloc( sizeof (igb_tx_ring_t) * igb->num_tx_rings, KM_NOSLEEP); if (igb->tx_rings == NULL) { kmem_free(igb->rx_rings, sizeof (igb_rx_ring_t) * igb->num_rx_rings); igb->rx_rings = NULL; return (IGB_FAILURE); } /* * Allocate memory space for rx ring groups */ igb->rx_groups = kmem_zalloc( sizeof (igb_rx_group_t) * igb->num_rx_groups, KM_NOSLEEP); if (igb->rx_groups == NULL) { kmem_free(igb->rx_rings, sizeof (igb_rx_ring_t) * igb->num_rx_rings); kmem_free(igb->tx_rings, sizeof (igb_tx_ring_t) * igb->num_tx_rings); igb->rx_rings = NULL; igb->tx_rings = NULL; return (IGB_FAILURE); } return (IGB_SUCCESS); } /* * igb_free_rings - Free the memory space of rx/tx rings. */ static void igb_free_rings(igb_t *igb) { if (igb->rx_rings != NULL) { kmem_free(igb->rx_rings, sizeof (igb_rx_ring_t) * igb->num_rx_rings); igb->rx_rings = NULL; } if (igb->tx_rings != NULL) { kmem_free(igb->tx_rings, sizeof (igb_tx_ring_t) * igb->num_tx_rings); igb->tx_rings = NULL; } if (igb->rx_groups != NULL) { kmem_free(igb->rx_groups, sizeof (igb_rx_group_t) * igb->num_rx_groups); igb->rx_groups = NULL; } } /* * igb_setup_rings - Setup rx/tx rings */ static void igb_setup_rings(igb_t *igb) { /* * Setup the rx/tx rings, including the following: * * 1. Setup the descriptor ring and the control block buffers; * 2. Initialize necessary registers for receive/transmit; * 3. Initialize software pointers/parameters for receive/transmit; */ igb_setup_rx(igb); igb_setup_tx(igb); if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST); } static void igb_setup_rx_ring(igb_rx_ring_t *rx_ring) { igb_t *igb = rx_ring->igb; struct e1000_hw *hw = &igb->hw; rx_control_block_t *rcb; union e1000_adv_rx_desc *rbd; uint32_t size; uint32_t buf_low; uint32_t buf_high; uint32_t rxdctl; int i; ASSERT(mutex_owned(&rx_ring->rx_lock)); ASSERT(mutex_owned(&igb->gen_lock)); /* * Initialize descriptor ring with buffer addresses */ for (i = 0; i < igb->rx_ring_size; i++) { rcb = rx_ring->work_list[i]; rbd = &rx_ring->rbd_ring[i]; rbd->read.pkt_addr = rcb->rx_buf.dma_address; rbd->read.hdr_addr = NULL; } /* * Initialize the base address registers */ buf_low = (uint32_t)rx_ring->rbd_area.dma_address; buf_high = (uint32_t)(rx_ring->rbd_area.dma_address >> 32); E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high); E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low); /* * Initialize the length register */ size = rx_ring->ring_size * sizeof (union e1000_adv_rx_desc); E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size); /* * Initialize buffer size & descriptor type */ E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index), ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) | E1000_SRRCTL_DESCTYPE_ADV_ONEBUF)); /* * Setup the Receive Descriptor Control Register (RXDCTL) */ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index)); rxdctl &= igb->capab->rxdctl_mask; rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; rxdctl |= 16; /* pthresh */ rxdctl |= 8 << 8; /* hthresh */ rxdctl |= 1 << 16; /* wthresh */ E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl); rx_ring->rbd_next = 0; /* * Note: Considering the case that the chipset is being reset * and there are still some buffers held by the upper layer, * we should not reset the values of rcb_head, rcb_tail and * rcb_free; */ if (igb->igb_state == IGB_UNKNOWN) { rx_ring->rcb_head = 0; rx_ring->rcb_tail = 0; rx_ring->rcb_free = rx_ring->free_list_size; } } static void igb_setup_rx(igb_t *igb) { igb_rx_ring_t *rx_ring; igb_rx_group_t *rx_group; struct e1000_hw *hw = &igb->hw; uint32_t rctl, rxcsum; uint32_t ring_per_group; int i; /* * Setup the Receive Control Register (RCTL), and enable the * receiver. The initial configuration is to: enable the receiver, * accept broadcasts, discard bad packets, accept long packets, * disable VLAN filter checking, and set receive buffer size to * 2k. For 82575, also set the receive descriptor minimum * threshold size to 1/2 the ring. */ rctl = E1000_READ_REG(hw, E1000_RCTL); /* * Clear the field used for wakeup control. This driver doesn't do * wakeup but leave this here for completeness. */ rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); rctl |= (E1000_RCTL_EN | /* Enable Receive Unit */ E1000_RCTL_BAM | /* Accept Broadcast Packets */ E1000_RCTL_LPE | /* Large Packet Enable */ /* Multicast filter offset */ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) | E1000_RCTL_RDMTS_HALF | /* rx descriptor threshold */ E1000_RCTL_SECRC); /* Strip Ethernet CRC */ for (i = 0; i < igb->num_rx_groups; i++) { rx_group = &igb->rx_groups[i]; rx_group->index = i; rx_group->igb = igb; } /* * Set up all rx descriptor rings - must be called before receive unit * enabled. */ ring_per_group = igb->num_rx_rings / igb->num_rx_groups; for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; igb_setup_rx_ring(rx_ring); /* * Map a ring to a group by assigning a group index */ rx_ring->group_index = i / ring_per_group; } /* * Setup the Rx Long Packet Max Length register */ E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size); /* * Hardware checksum settings */ if (igb->rx_hcksum_enable) { rxcsum = E1000_RXCSUM_TUOFL | /* TCP/UDP checksum */ E1000_RXCSUM_IPOFL; /* IP checksum */ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); } /* * Setup classify and RSS for multiple receive queues */ switch (igb->vmdq_mode) { case E1000_VMDQ_OFF: /* * One ring group, only RSS is needed when more than * one ring enabled. */ if (igb->num_rx_rings > 1) igb_setup_rss(igb); break; case E1000_VMDQ_MAC: /* * Multiple groups, each group has one ring, * only the MAC classification is needed. */ igb_setup_mac_classify(igb); break; case E1000_VMDQ_MAC_RSS: /* * Multiple groups and multiple rings, both * MAC classification and RSS are needed. */ igb_setup_mac_rss_classify(igb); break; } /* * Enable the receive unit - must be done after all * the rx setup above. */ E1000_WRITE_REG(hw, E1000_RCTL, rctl); /* * Initialize all adapter ring head & tail pointers - must * be done after receive unit is enabled */ for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; E1000_WRITE_REG(hw, E1000_RDH(i), 0); E1000_WRITE_REG(hw, E1000_RDT(i), rx_ring->ring_size - 1); } /* * 82575 with manageability enabled needs a special flush to make * sure the fifos start clean. */ if ((hw->mac.type == e1000_82575) && (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) { e1000_rx_fifo_flush_82575(hw); } } static void igb_setup_tx_ring(igb_tx_ring_t *tx_ring) { igb_t *igb = tx_ring->igb; struct e1000_hw *hw = &igb->hw; uint32_t size; uint32_t buf_low; uint32_t buf_high; uint32_t reg_val; ASSERT(mutex_owned(&tx_ring->tx_lock)); ASSERT(mutex_owned(&igb->gen_lock)); /* * Initialize the length register */ size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc); E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size); /* * Initialize the base address registers */ buf_low = (uint32_t)tx_ring->tbd_area.dma_address; buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32); E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low); E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high); /* * Setup head & tail pointers */ E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0); E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0); /* * Setup head write-back */ if (igb->tx_head_wb_enable) { /* * The memory of the head write-back is allocated using * the extra tbd beyond the tail of the tbd ring. */ tx_ring->tbd_head_wb = (uint32_t *) ((uintptr_t)tx_ring->tbd_area.address + size); *tx_ring->tbd_head_wb = 0; buf_low = (uint32_t) (tx_ring->tbd_area.dma_address + size); buf_high = (uint32_t) ((tx_ring->tbd_area.dma_address + size) >> 32); /* Set the head write-back enable bit */ buf_low |= E1000_TX_HEAD_WB_ENABLE; E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low); E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high); /* * Turn off relaxed ordering for head write back or it will * cause problems with the tx recycling */ reg_val = E1000_READ_REG(hw, E1000_DCA_TXCTRL(tx_ring->index)); reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(tx_ring->index), reg_val); } else { tx_ring->tbd_head_wb = NULL; } tx_ring->tbd_head = 0; tx_ring->tbd_tail = 0; tx_ring->tbd_free = tx_ring->ring_size; /* * Note: for the case that the chipset is being reset, we should not * reset the values of tcb_head, tcb_tail. And considering there might * still be some packets kept in the pending_list, we should not assert * (tcb_free == free_list_size) here. */ if (igb->igb_state == IGB_UNKNOWN) { tx_ring->tcb_head = 0; tx_ring->tcb_tail = 0; tx_ring->tcb_free = tx_ring->free_list_size; } /* * Enable TXDCTL per queue */ reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index)); reg_val |= E1000_TXDCTL_QUEUE_ENABLE; E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val); /* * Initialize hardware checksum offload settings */ bzero(&tx_ring->tx_context, sizeof (tx_context_t)); } static void igb_setup_tx(igb_t *igb) { igb_tx_ring_t *tx_ring; struct e1000_hw *hw = &igb->hw; uint32_t reg_val; int i; for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; igb_setup_tx_ring(tx_ring); } /* * Setup the Transmit Control Register (TCTL) */ reg_val = E1000_READ_REG(hw, E1000_TCTL); reg_val &= ~E1000_TCTL_CT; reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); /* Enable transmits */ reg_val |= E1000_TCTL_EN; E1000_WRITE_REG(hw, E1000_TCTL, reg_val); } /* * igb_setup_rss - Setup receive-side scaling feature */ static void igb_setup_rss(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t i, mrqc, rxcsum; int shift = 0; uint32_t random; union e1000_reta { uint32_t dword; uint8_t bytes[4]; } reta; /* Setup the Redirection Table */ if (hw->mac.type == e1000_82576) { shift = 3; } else if (hw->mac.type == e1000_82575) { shift = 6; } for (i = 0; i < (32 * 4); i++) { reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift; if ((i & 3) == 3) { E1000_WRITE_REG(hw, (E1000_RETA(0) + (i & ~3)), reta.dword); } } /* Fill out hash function seeds */ for (i = 0; i < 10; i++) { (void) random_get_pseudo_bytes((uint8_t *)&random, sizeof (uint32_t)); E1000_WRITE_REG(hw, E1000_RSSRK(i), random); } /* Setup the Multiple Receive Queue Control register */ mrqc = E1000_MRQC_ENABLE_RSS_4Q; mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP | E1000_MRQC_RSS_FIELD_IPV6 | E1000_MRQC_RSS_FIELD_IPV6_TCP | E1000_MRQC_RSS_FIELD_IPV4_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); E1000_WRITE_REG(hw, E1000_MRQC, mrqc); /* * Disable Packet Checksum to enable RSS for multiple receive queues. * * The Packet Checksum is not ethernet CRC. It is another kind of * checksum offloading provided by the 82575 chipset besides the IP * header checksum offloading and the TCP/UDP checksum offloading. * The Packet Checksum is by default computed over the entire packet * from the first byte of the DA through the last byte of the CRC, * including the Ethernet and IP headers. * * It is a hardware limitation that Packet Checksum is mutually * exclusive with RSS. */ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); rxcsum |= E1000_RXCSUM_PCSD; E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); } /* * igb_setup_mac_rss_classify - Setup MAC classification and rss */ static void igb_setup_mac_rss_classify(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t i, mrqc, vmdctl, rxcsum; uint32_t ring_per_group; int shift_group0, shift_group1; uint32_t random; union e1000_reta { uint32_t dword; uint8_t bytes[4]; } reta; ring_per_group = igb->num_rx_rings / igb->num_rx_groups; /* Setup the Redirection Table, it is shared between two groups */ shift_group0 = 2; shift_group1 = 6; for (i = 0; i < (32 * 4); i++) { reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) | ((ring_per_group + (i % ring_per_group)) << shift_group1); if ((i & 3) == 3) { E1000_WRITE_REG(hw, (E1000_RETA(0) + (i & ~3)), reta.dword); } } /* Fill out hash function seeds */ for (i = 0; i < 10; i++) { (void) random_get_pseudo_bytes((uint8_t *)&random, sizeof (uint32_t)); E1000_WRITE_REG(hw, E1000_RSSRK(i), random); } /* * Setup the Multiple Receive Queue Control register, * enable VMDq based on packet destination MAC address and RSS. */ mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP; mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP | E1000_MRQC_RSS_FIELD_IPV6 | E1000_MRQC_RSS_FIELD_IPV6_TCP | E1000_MRQC_RSS_FIELD_IPV4_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); E1000_WRITE_REG(hw, E1000_MRQC, mrqc); /* Define the default group and default queues */ vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE; E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl); /* * Disable Packet Checksum to enable RSS for multiple receive queues. * * The Packet Checksum is not ethernet CRC. It is another kind of * checksum offloading provided by the 82575 chipset besides the IP * header checksum offloading and the TCP/UDP checksum offloading. * The Packet Checksum is by default computed over the entire packet * from the first byte of the DA through the last byte of the CRC, * including the Ethernet and IP headers. * * It is a hardware limitation that Packet Checksum is mutually * exclusive with RSS. */ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); rxcsum |= E1000_RXCSUM_PCSD; E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); } /* * igb_setup_mac_classify - Setup MAC classification feature */ static void igb_setup_mac_classify(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t mrqc, rxcsum; /* * Setup the Multiple Receive Queue Control register, * enable VMDq based on packet destination MAC address. */ mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP; E1000_WRITE_REG(hw, E1000_MRQC, mrqc); /* * Disable Packet Checksum to enable RSS for multiple receive queues. * * The Packet Checksum is not ethernet CRC. It is another kind of * checksum offloading provided by the 82575 chipset besides the IP * header checksum offloading and the TCP/UDP checksum offloading. * The Packet Checksum is by default computed over the entire packet * from the first byte of the DA through the last byte of the CRC, * including the Ethernet and IP headers. * * It is a hardware limitation that Packet Checksum is mutually * exclusive with RSS. */ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); rxcsum |= E1000_RXCSUM_PCSD; E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); } /* * igb_init_unicst - Initialize the unicast addresses */ static void igb_init_unicst(igb_t *igb) { struct e1000_hw *hw = &igb->hw; int slot; /* * Here we should consider two situations: * * 1. Chipset is initialized the first time * Initialize the multiple unicast addresses, and * save the default MAC address. * * 2. Chipset is reset * Recover the multiple unicast addresses from the * software data structure to the RAR registers. */ /* * Clear the default MAC address in the RAR0 rgister, * which is loaded from EEPROM when system boot or chipreset, * this will cause the conficts with add_mac/rem_mac entry * points when VMDq is enabled. For this reason, the RAR0 * must be cleared for both cases mentioned above. */ e1000_rar_clear(hw, 0); if (!igb->unicst_init) { /* Initialize the multiple unicast addresses */ igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES; igb->unicst_avail = igb->unicst_total; for (slot = 0; slot < igb->unicst_total; slot++) igb->unicst_addr[slot].mac.set = 0; igb->unicst_init = B_TRUE; } else { /* Re-configure the RAR registers */ for (slot = 0; slot < igb->unicst_total; slot++) { e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr, slot, igb->vmdq_mode, igb->unicst_addr[slot].mac.group_index); } } if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED); } /* * igb_unicst_find - Find the slot for the specified unicast address */ int igb_unicst_find(igb_t *igb, const uint8_t *mac_addr) { int slot; ASSERT(mutex_owned(&igb->gen_lock)); for (slot = 0; slot < igb->unicst_total; slot++) { if (bcmp(igb->unicst_addr[slot].mac.addr, mac_addr, ETHERADDRL) == 0) return (slot); } return (-1); } /* * igb_unicst_set - Set the unicast address to the specified slot */ int igb_unicst_set(igb_t *igb, const uint8_t *mac_addr, int slot) { struct e1000_hw *hw = &igb->hw; ASSERT(mutex_owned(&igb->gen_lock)); /* * Save the unicast address in the software data structure */ bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL); /* * Set the unicast address to the RAR register */ e1000_rar_set(hw, (uint8_t *)mac_addr, slot); if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) { ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED); return (EIO); } return (0); } /* * igb_multicst_add - Add a multicst address */ int igb_multicst_add(igb_t *igb, const uint8_t *multiaddr) { struct ether_addr *new_table; size_t new_len; size_t old_len; ASSERT(mutex_owned(&igb->gen_lock)); if ((multiaddr[0] & 01) == 0) { igb_error(igb, "Illegal multicast address"); return (EINVAL); } if (igb->mcast_count >= igb->mcast_max_num) { igb_error(igb, "Adapter requested more than %d mcast addresses", igb->mcast_max_num); return (ENOENT); } if (igb->mcast_count == igb->mcast_alloc_count) { old_len = igb->mcast_alloc_count * sizeof (struct ether_addr); new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) * sizeof (struct ether_addr); new_table = kmem_alloc(new_len, KM_NOSLEEP); if (new_table == NULL) { igb_error(igb, "Not enough memory to alloc mcast table"); return (ENOMEM); } if (igb->mcast_table != NULL) { bcopy(igb->mcast_table, new_table, old_len); kmem_free(igb->mcast_table, old_len); } igb->mcast_alloc_count += MCAST_ALLOC_COUNT; igb->mcast_table = new_table; } bcopy(multiaddr, &igb->mcast_table[igb->mcast_count], ETHERADDRL); igb->mcast_count++; /* * Update the multicast table in the hardware */ igb_setup_multicst(igb); if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) { ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED); return (EIO); } return (0); } /* * igb_multicst_remove - Remove a multicst address */ int igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr) { struct ether_addr *new_table; size_t new_len; size_t old_len; int i; ASSERT(mutex_owned(&igb->gen_lock)); for (i = 0; i < igb->mcast_count; i++) { if (bcmp(multiaddr, &igb->mcast_table[i], ETHERADDRL) == 0) { for (i++; i < igb->mcast_count; i++) { igb->mcast_table[i - 1] = igb->mcast_table[i]; } igb->mcast_count--; break; } } if ((igb->mcast_alloc_count - igb->mcast_count) > MCAST_ALLOC_COUNT) { old_len = igb->mcast_alloc_count * sizeof (struct ether_addr); new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) * sizeof (struct ether_addr); new_table = kmem_alloc(new_len, KM_NOSLEEP); if (new_table != NULL) { bcopy(igb->mcast_table, new_table, new_len); kmem_free(igb->mcast_table, old_len); igb->mcast_alloc_count -= MCAST_ALLOC_COUNT; igb->mcast_table = new_table; } } /* * Update the multicast table in the hardware */ igb_setup_multicst(igb); if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) { ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED); return (EIO); } return (0); } static void igb_release_multicast(igb_t *igb) { if (igb->mcast_table != NULL) { kmem_free(igb->mcast_table, igb->mcast_alloc_count * sizeof (struct ether_addr)); igb->mcast_table = NULL; } } /* * igb_setup_multicast - setup multicast data structures * * This routine initializes all of the multicast related structures * and save them in the hardware registers. */ static void igb_setup_multicst(igb_t *igb) { uint8_t *mc_addr_list; uint32_t mc_addr_count; struct e1000_hw *hw = &igb->hw; ASSERT(mutex_owned(&igb->gen_lock)); ASSERT(igb->mcast_count <= igb->mcast_max_num); mc_addr_list = (uint8_t *)igb->mcast_table; mc_addr_count = igb->mcast_count; /* * Update the multicase addresses to the MTA registers */ e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count); } /* * igb_get_conf - Get driver configurations set in driver.conf * * This routine gets user-configured values out of the configuration * file igb.conf. * * For each configurable value, there is a minimum, a maximum, and a * default. * If user does not configure a value, use the default. * If user configures below the minimum, use the minumum. * If user configures above the maximum, use the maxumum. */ static void igb_get_conf(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t default_mtu; uint32_t flow_control; uint32_t ring_per_group; int i; /* * igb driver supports the following user configurations: * * Link configurations: * adv_autoneg_cap * adv_1000fdx_cap * adv_100fdx_cap * adv_100hdx_cap * adv_10fdx_cap * adv_10hdx_cap * Note: 1000hdx is not supported. * * Jumbo frame configuration: * default_mtu * * Ethernet flow control configuration: * flow_control * * Multiple rings configurations: * tx_queue_number * tx_ring_size * rx_queue_number * rx_ring_size * * Call igb_get_prop() to get the value for a specific * configuration parameter. */ /* * Link configurations */ igb->param_adv_autoneg_cap = igb_get_prop(igb, PROP_ADV_AUTONEG_CAP, 0, 1, 1); igb->param_adv_1000fdx_cap = igb_get_prop(igb, PROP_ADV_1000FDX_CAP, 0, 1, 1); igb->param_adv_100fdx_cap = igb_get_prop(igb, PROP_ADV_100FDX_CAP, 0, 1, 1); igb->param_adv_100hdx_cap = igb_get_prop(igb, PROP_ADV_100HDX_CAP, 0, 1, 1); igb->param_adv_10fdx_cap = igb_get_prop(igb, PROP_ADV_10FDX_CAP, 0, 1, 1); igb->param_adv_10hdx_cap = igb_get_prop(igb, PROP_ADV_10HDX_CAP, 0, 1, 1); /* * Jumbo frame configurations */ default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU, MIN_MTU, MAX_MTU, DEFAULT_MTU); igb->max_frame_size = default_mtu + sizeof (struct ether_vlan_header) + ETHERFCSL; /* * Ethernet flow control configuration */ flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL, e1000_fc_none, 4, e1000_fc_full); if (flow_control == 4) flow_control = e1000_fc_default; hw->fc.requested_mode = flow_control; /* * Multiple rings configurations */ igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE, MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE); igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE, MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE); igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0); igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM, MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM); /* * Currently we do not support VMDq for 82576 and 82580. * If it is e1000_82576, set num_rx_groups to 1. */ if (hw->mac.type >= e1000_82576) igb->num_rx_groups = 1; if (igb->mr_enable) { igb->num_tx_rings = igb->capab->def_tx_que_num; igb->num_rx_rings = igb->capab->def_rx_que_num; } else { igb->num_tx_rings = 1; igb->num_rx_rings = 1; if (igb->num_rx_groups > 1) { igb_error(igb, "Invalid rx groups number. Please enable multiple " "rings first"); igb->num_rx_groups = 1; } } /* * Check the divisibility between rx rings and rx groups. */ for (i = igb->num_rx_groups; i > 0; i--) { if ((igb->num_rx_rings % i) == 0) break; } if (i != igb->num_rx_groups) { igb_error(igb, "Invalid rx groups number. Downgrade the rx group " "number to %d.", i); igb->num_rx_groups = i; } /* * Get the ring number per group. */ ring_per_group = igb->num_rx_rings / igb->num_rx_groups; if (igb->num_rx_groups == 1) { /* * One rx ring group, the rx ring number is num_rx_rings. */ igb->vmdq_mode = E1000_VMDQ_OFF; } else if (ring_per_group == 1) { /* * Multiple rx groups, each group has one rx ring. */ igb->vmdq_mode = E1000_VMDQ_MAC; } else { /* * Multiple groups and multiple rings. */ igb->vmdq_mode = E1000_VMDQ_MAC_RSS; } /* * Tunable used to force an interrupt type. The only use is * for testing of the lesser interrupt types. * 0 = don't force interrupt type * 1 = force interrupt type MSIX * 2 = force interrupt type MSI * 3 = force interrupt type Legacy */ igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE, IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE); igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE, 0, 1, 1); igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE, 0, 1, 1); igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE, 0, 1, 1); igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE, 0, 1, 1); /* * igb LSO needs the tx h/w checksum support. * Here LSO will be disabled if tx h/w checksum has been disabled. */ if (igb->tx_hcksum_enable == B_FALSE) igb->lso_enable = B_FALSE; igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD, MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD, DEFAULT_TX_COPY_THRESHOLD); igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD, MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD, DEFAULT_TX_RECYCLE_THRESHOLD); igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD, MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD, DEFAULT_TX_OVERLOAD_THRESHOLD); igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD, MIN_TX_RESCHED_THRESHOLD, MAX_TX_RESCHED_THRESHOLD, DEFAULT_TX_RESCHED_THRESHOLD); igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD, MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD, DEFAULT_RX_COPY_THRESHOLD); igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR, MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR, DEFAULT_RX_LIMIT_PER_INTR); igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING, igb->capab->min_intr_throttle, igb->capab->max_intr_throttle, igb->capab->def_intr_throttle); /* * Max number of multicast addresses */ igb->mcast_max_num = igb_get_prop(igb, PROP_MCAST_MAX_NUM, MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM); } /* * igb_get_prop - Get a property value out of the configuration file igb.conf * * Caller provides the name of the property, a default value, a minimum * value, and a maximum value. * * Return configured value of the property, with default, minimum and * maximum properly applied. */ static int igb_get_prop(igb_t *igb, char *propname, /* name of the property */ int minval, /* minimum acceptable value */ int maxval, /* maximim acceptable value */ int defval) /* default value */ { int value; /* * Call ddi_prop_get_int() to read the conf settings */ value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip, DDI_PROP_DONTPASS, propname, defval); if (value > maxval) value = maxval; if (value < minval) value = minval; return (value); } /* * igb_setup_link - Using the link properties to setup the link */ int igb_setup_link(igb_t *igb, boolean_t setup_hw) { struct e1000_mac_info *mac; struct e1000_phy_info *phy; boolean_t invalid; mac = &igb->hw.mac; phy = &igb->hw.phy; invalid = B_FALSE; if (igb->param_adv_autoneg_cap == 1) { mac->autoneg = B_TRUE; phy->autoneg_advertised = 0; /* * 1000hdx is not supported for autonegotiation */ if (igb->param_adv_1000fdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_1000_FULL; if (igb->param_adv_100fdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_100_FULL; if (igb->param_adv_100hdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_100_HALF; if (igb->param_adv_10fdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_10_FULL; if (igb->param_adv_10hdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_10_HALF; if (phy->autoneg_advertised == 0) invalid = B_TRUE; } else { mac->autoneg = B_FALSE; /* * 1000fdx and 1000hdx are not supported for forced link */ if (igb->param_adv_100fdx_cap == 1) mac->forced_speed_duplex = ADVERTISE_100_FULL; else if (igb->param_adv_100hdx_cap == 1) mac->forced_speed_duplex = ADVERTISE_100_HALF; else if (igb->param_adv_10fdx_cap == 1) mac->forced_speed_duplex = ADVERTISE_10_FULL; else if (igb->param_adv_10hdx_cap == 1) mac->forced_speed_duplex = ADVERTISE_10_HALF; else invalid = B_TRUE; } if (invalid) { igb_notice(igb, "Invalid link settings. Setup link to " "autonegotiation with full link capabilities."); mac->autoneg = B_TRUE; phy->autoneg_advertised = ADVERTISE_1000_FULL | ADVERTISE_100_FULL | ADVERTISE_100_HALF | ADVERTISE_10_FULL | ADVERTISE_10_HALF; } if (setup_hw) { if (e1000_setup_link(&igb->hw) != E1000_SUCCESS) return (IGB_FAILURE); } return (IGB_SUCCESS); } /* * igb_is_link_up - Check if the link is up */ static boolean_t igb_is_link_up(igb_t *igb) { struct e1000_hw *hw = &igb->hw; boolean_t link_up = B_FALSE; ASSERT(mutex_owned(&igb->gen_lock)); /* * get_link_status is set in the interrupt handler on link-status-change * or rx sequence error interrupt. get_link_status will stay * false until the e1000_check_for_link establishes link only * for copper adapters. */ switch (hw->phy.media_type) { case e1000_media_type_copper: if (hw->mac.get_link_status) { (void) e1000_check_for_link(hw); link_up = !hw->mac.get_link_status; } else { link_up = B_TRUE; } break; case e1000_media_type_fiber: (void) e1000_check_for_link(hw); link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); break; case e1000_media_type_internal_serdes: (void) e1000_check_for_link(hw); link_up = hw->mac.serdes_has_link; break; } return (link_up); } /* * igb_link_check - Link status processing */ static boolean_t igb_link_check(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint16_t speed = 0, duplex = 0; boolean_t link_changed = B_FALSE; ASSERT(mutex_owned(&igb->gen_lock)); if (igb_is_link_up(igb)) { /* * The Link is up, check whether it was marked as down earlier */ if (igb->link_state != LINK_STATE_UP) { (void) e1000_get_speed_and_duplex(hw, &speed, &duplex); igb->link_speed = speed; igb->link_duplex = duplex; igb->link_state = LINK_STATE_UP; igb->link_down_timeout = 0; link_changed = B_TRUE; } } else { if (igb->link_state != LINK_STATE_DOWN) { igb->link_speed = 0; igb->link_duplex = 0; igb->link_state = LINK_STATE_DOWN; link_changed = B_TRUE; } if (igb->igb_state & IGB_STARTED) { if (igb->link_down_timeout < MAX_LINK_DOWN_TIMEOUT) { igb->link_down_timeout++; } else if (igb->link_down_timeout == MAX_LINK_DOWN_TIMEOUT) { igb_tx_clean(igb); igb->link_down_timeout++; } } } if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED); return (link_changed); } /* * igb_local_timer - driver watchdog function * * This function will handle the hardware stall check, link status * check and other routines. */ static void igb_local_timer(void *arg) { igb_t *igb = (igb_t *)arg; boolean_t link_changed = B_FALSE; if (igb_stall_check(igb)) igb->igb_state |= IGB_STALL; if (igb->igb_state & IGB_STALL) { igb_fm_ereport(igb, DDI_FM_DEVICE_STALL); ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST); igb->reset_count++; igb->igb_state &= ~IGB_STALL; if (igb_reset(igb) == IGB_SUCCESS) ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED); } mutex_enter(&igb->gen_lock); if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED)) link_changed = igb_link_check(igb); mutex_exit(&igb->gen_lock); if (link_changed) mac_link_update(igb->mac_hdl, igb->link_state); if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED); igb_restart_watchdog_timer(igb); } /* * igb_stall_check - check for transmit stall * * This function checks if the adapter is stalled (in transmit). * * It is called each time the watchdog timeout is invoked. * If the transmit descriptor reclaim continuously fails, * the watchdog value will increment by 1. If the watchdog * value exceeds the threshold, the igb is assumed to * have stalled and need to be reset. */ static boolean_t igb_stall_check(igb_t *igb) { igb_tx_ring_t *tx_ring; struct e1000_hw *hw = &igb->hw; boolean_t result; int i; if (igb->link_state != LINK_STATE_UP) return (B_FALSE); /* * If any tx ring is stalled, we'll reset the chipset */ result = B_FALSE; for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; if (tx_ring->recycle_fail > 0) tx_ring->stall_watchdog++; else tx_ring->stall_watchdog = 0; if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) { result = B_TRUE; if (hw->mac.type == e1000_82580) { hw->dev_spec._82575.global_device_reset = B_TRUE; } break; } } if (result) { tx_ring->stall_watchdog = 0; tx_ring->recycle_fail = 0; } return (result); } /* * is_valid_mac_addr - Check if the mac address is valid */ static boolean_t is_valid_mac_addr(uint8_t *mac_addr) { const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 }; const uint8_t addr_test2[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) || !(bcmp(addr_test2, mac_addr, ETHERADDRL))) return (B_FALSE); return (B_TRUE); } static boolean_t igb_find_mac_address(igb_t *igb) { struct e1000_hw *hw = &igb->hw; #ifdef __sparc uchar_t *bytes; struct ether_addr sysaddr; uint_t nelts; int err; boolean_t found = B_FALSE; /* * The "vendor's factory-set address" may already have * been extracted from the chip, but if the property * "local-mac-address" is set we use that instead. * * We check whether it looks like an array of 6 * bytes (which it should, if OBP set it). If we can't * make sense of it this way, we'll ignore it. */ err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts); if (err == DDI_PROP_SUCCESS) { if (nelts == ETHERADDRL) { while (nelts--) hw->mac.addr[nelts] = bytes[nelts]; found = B_TRUE; } ddi_prop_free(bytes); } /* * Look up the OBP property "local-mac-address?". If the user has set * 'local-mac-address? = false', use "the system address" instead. */ if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0, "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) { if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) { if (localetheraddr(NULL, &sysaddr) != 0) { bcopy(&sysaddr, hw->mac.addr, ETHERADDRL); found = B_TRUE; } } ddi_prop_free(bytes); } /* * Finally(!), if there's a valid "mac-address" property (created * if we netbooted from this interface), we must use this instead * of any of the above to ensure that the NFS/install server doesn't * get confused by the address changing as Solaris takes over! */ err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts); if (err == DDI_PROP_SUCCESS) { if (nelts == ETHERADDRL) { while (nelts--) hw->mac.addr[nelts] = bytes[nelts]; found = B_TRUE; } ddi_prop_free(bytes); } if (found) { bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL); return (B_TRUE); } #endif /* * Read the device MAC address from the EEPROM */ if (e1000_read_mac_addr(hw) != E1000_SUCCESS) return (B_FALSE); return (B_TRUE); } #pragma inline(igb_arm_watchdog_timer) static void igb_arm_watchdog_timer(igb_t *igb) { /* * Fire a watchdog timer */ igb->watchdog_tid = timeout(igb_local_timer, (void *)igb, 1 * drv_usectohz(1000000)); } /* * igb_enable_watchdog_timer - Enable and start the driver watchdog timer */ void igb_enable_watchdog_timer(igb_t *igb) { mutex_enter(&igb->watchdog_lock); if (!igb->watchdog_enable) { igb->watchdog_enable = B_TRUE; igb->watchdog_start = B_TRUE; igb_arm_watchdog_timer(igb); } mutex_exit(&igb->watchdog_lock); } /* * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer */ void igb_disable_watchdog_timer(igb_t *igb) { timeout_id_t tid; mutex_enter(&igb->watchdog_lock); igb->watchdog_enable = B_FALSE; igb->watchdog_start = B_FALSE; tid = igb->watchdog_tid; igb->watchdog_tid = 0; mutex_exit(&igb->watchdog_lock); if (tid != 0) (void) untimeout(tid); } /* * igb_start_watchdog_timer - Start the driver watchdog timer */ static void igb_start_watchdog_timer(igb_t *igb) { mutex_enter(&igb->watchdog_lock); if (igb->watchdog_enable) { if (!igb->watchdog_start) { igb->watchdog_start = B_TRUE; igb_arm_watchdog_timer(igb); } } mutex_exit(&igb->watchdog_lock); } /* * igb_restart_watchdog_timer - Restart the driver watchdog timer */ static void igb_restart_watchdog_timer(igb_t *igb) { mutex_enter(&igb->watchdog_lock); if (igb->watchdog_start) igb_arm_watchdog_timer(igb); mutex_exit(&igb->watchdog_lock); } /* * igb_stop_watchdog_timer - Stop the driver watchdog timer */ static void igb_stop_watchdog_timer(igb_t *igb) { timeout_id_t tid; mutex_enter(&igb->watchdog_lock); igb->watchdog_start = B_FALSE; tid = igb->watchdog_tid; igb->watchdog_tid = 0; mutex_exit(&igb->watchdog_lock); if (tid != 0) (void) untimeout(tid); } /* * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts */ static void igb_disable_adapter_interrupts(igb_t *igb) { struct e1000_hw *hw = &igb->hw; /* * Set the IMC register to mask all the interrupts, * including the tx interrupts. */ E1000_WRITE_REG(hw, E1000_IMC, ~0); E1000_WRITE_REG(hw, E1000_IAM, 0); /* * Additional disabling for MSI-X */ if (igb->intr_type == DDI_INTR_TYPE_MSIX) { E1000_WRITE_REG(hw, E1000_EIMC, ~0); E1000_WRITE_REG(hw, E1000_EIAC, 0); E1000_WRITE_REG(hw, E1000_EIAM, 0); } E1000_WRITE_FLUSH(hw); } /* * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580 */ static void igb_enable_adapter_interrupts_82580(igb_t *igb) { struct e1000_hw *hw = &igb->hw; /* Clear any pending interrupts */ (void) E1000_READ_REG(hw, E1000_ICR); igb->ims_mask |= E1000_IMS_DRSTA; if (igb->intr_type == DDI_INTR_TYPE_MSIX) { /* Interrupt enabling for MSI-X */ E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask); E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask); igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA); E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask); } else { /* Interrupt enabling for MSI and legacy */ E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID); igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE; igb->ims_mask |= E1000_IMS_DRSTA; E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask); } /* Disable auto-mask for ICR interrupt bits */ E1000_WRITE_REG(hw, E1000_IAM, 0); E1000_WRITE_FLUSH(hw); } /* * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576 */ static void igb_enable_adapter_interrupts_82576(igb_t *igb) { struct e1000_hw *hw = &igb->hw; /* Clear any pending interrupts */ (void) E1000_READ_REG(hw, E1000_ICR); if (igb->intr_type == DDI_INTR_TYPE_MSIX) { /* Interrupt enabling for MSI-X */ E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask); E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask); igb->ims_mask = E1000_IMS_LSC; E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); } else { /* Interrupt enabling for MSI and legacy */ E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID); igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE; E1000_WRITE_REG(hw, E1000_IMS, (IMS_ENABLE_MASK | E1000_IMS_TXQE)); } /* Disable auto-mask for ICR interrupt bits */ E1000_WRITE_REG(hw, E1000_IAM, 0); E1000_WRITE_FLUSH(hw); } /* * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575 */ static void igb_enable_adapter_interrupts_82575(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t reg; /* Clear any pending interrupts */ (void) E1000_READ_REG(hw, E1000_ICR); if (igb->intr_type == DDI_INTR_TYPE_MSIX) { /* Interrupt enabling for MSI-X */ E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask); E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask); igb->ims_mask = E1000_IMS_LSC; E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); /* Enable MSI-X PBA support */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg |= E1000_CTRL_EXT_PBA_CLR; /* Non-selective interrupt clear-on-read */ reg |= E1000_CTRL_EXT_IRCA; /* Called NSICR in the EAS */ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); } else { /* Interrupt enabling for MSI and legacy */ igb->ims_mask = IMS_ENABLE_MASK; E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); } E1000_WRITE_FLUSH(hw); } /* * Loopback Support */ static lb_property_t lb_normal = { normal, "normal", IGB_LB_NONE }; static lb_property_t lb_external = { external, "External", IGB_LB_EXTERNAL }; static lb_property_t lb_mac = { internal, "MAC", IGB_LB_INTERNAL_MAC }; static lb_property_t lb_phy = { internal, "PHY", IGB_LB_INTERNAL_PHY }; static lb_property_t lb_serdes = { internal, "SerDes", IGB_LB_INTERNAL_SERDES }; enum ioc_reply igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp) { lb_info_sz_t *lbsp; lb_property_t *lbpp; struct e1000_hw *hw; uint32_t *lbmp; uint32_t size; uint32_t value; hw = &igb->hw; if (mp->b_cont == NULL) return (IOC_INVAL); switch (iocp->ioc_cmd) { default: return (IOC_INVAL); case LB_GET_INFO_SIZE: size = sizeof (lb_info_sz_t); if (iocp->ioc_count != size) return (IOC_INVAL); value = sizeof (lb_normal); value += sizeof (lb_mac); if (hw->phy.media_type == e1000_media_type_copper) value += sizeof (lb_phy); else value += sizeof (lb_serdes); value += sizeof (lb_external); lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr; *lbsp = value; break; case LB_GET_INFO: value = sizeof (lb_normal); value += sizeof (lb_mac); if (hw->phy.media_type == e1000_media_type_copper) value += sizeof (lb_phy); else value += sizeof (lb_serdes); value += sizeof (lb_external); size = value; if (iocp->ioc_count != size) return (IOC_INVAL); value = 0; lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr; lbpp[value++] = lb_normal; lbpp[value++] = lb_mac; if (hw->phy.media_type == e1000_media_type_copper) lbpp[value++] = lb_phy; else lbpp[value++] = lb_serdes; lbpp[value++] = lb_external; break; case LB_GET_MODE: size = sizeof (uint32_t); if (iocp->ioc_count != size) return (IOC_INVAL); lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr; *lbmp = igb->loopback_mode; break; case LB_SET_MODE: size = 0; if (iocp->ioc_count != sizeof (uint32_t)) return (IOC_INVAL); lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr; if (!igb_set_loopback_mode(igb, *lbmp)) return (IOC_INVAL); break; } iocp->ioc_count = size; iocp->ioc_error = 0; if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) { ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED); return (IOC_INVAL); } return (IOC_REPLY); } /* * igb_set_loopback_mode - Setup loopback based on the loopback mode */ static boolean_t igb_set_loopback_mode(igb_t *igb, uint32_t mode) { struct e1000_hw *hw; if (mode == igb->loopback_mode) return (B_TRUE); hw = &igb->hw; igb->loopback_mode = mode; if (mode == IGB_LB_NONE) { /* Reset the chip */ hw->phy.autoneg_wait_to_complete = B_TRUE; (void) igb_reset(igb); hw->phy.autoneg_wait_to_complete = B_FALSE; return (B_TRUE); } mutex_enter(&igb->gen_lock); switch (mode) { default: mutex_exit(&igb->gen_lock); return (B_FALSE); case IGB_LB_EXTERNAL: igb_set_external_loopback(igb); break; case IGB_LB_INTERNAL_MAC: igb_set_internal_mac_loopback(igb); break; case IGB_LB_INTERNAL_PHY: igb_set_internal_phy_loopback(igb); break; case IGB_LB_INTERNAL_SERDES: igb_set_internal_serdes_loopback(igb); break; } mutex_exit(&igb->gen_lock); return (B_TRUE); } /* * igb_set_external_loopback - Set the external loopback mode */ static void igb_set_external_loopback(igb_t *igb) { struct e1000_hw *hw; hw = &igb->hw; /* Set phy to known state */ (void) e1000_phy_hw_reset(hw); (void) e1000_write_phy_reg(hw, 0x0, 0x0140); (void) e1000_write_phy_reg(hw, 0x9, 0x1b00); (void) e1000_write_phy_reg(hw, 0x12, 0x1610); (void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c); } /* * igb_set_internal_mac_loopback - Set the internal MAC loopback mode */ static void igb_set_internal_mac_loopback(igb_t *igb) { struct e1000_hw *hw; uint32_t ctrl; uint32_t rctl; uint32_t ctrl_ext; uint16_t phy_ctrl; uint16_t phy_status; hw = &igb->hw; (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); phy_ctrl &= ~MII_CR_AUTO_NEG_EN; (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl); (void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status); /* Set link mode to PHY (00b) in the Extended Control register */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); /* Set the Device Control register */ ctrl = E1000_READ_REG(hw, E1000_CTRL); if (!(phy_status & MII_SR_LINK_STATUS)) ctrl |= E1000_CTRL_ILOS; /* Set ILOS when the link is down */ ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ ctrl |= (E1000_CTRL_SLU | /* Force link up */ E1000_CTRL_FRCSPD | /* Force speed */ E1000_CTRL_FRCDPX | /* Force duplex */ E1000_CTRL_SPD_1000 | /* Force speed to 1000 */ E1000_CTRL_FD); /* Force full duplex */ E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Set the Receive Control register */ rctl = E1000_READ_REG(hw, E1000_RCTL); rctl &= ~E1000_RCTL_LBM_TCVR; rctl |= E1000_RCTL_LBM_MAC; E1000_WRITE_REG(hw, E1000_RCTL, rctl); } /* * igb_set_internal_phy_loopback - Set the internal PHY loopback mode */ static void igb_set_internal_phy_loopback(igb_t *igb) { struct e1000_hw *hw; uint32_t ctrl_ext; uint16_t phy_ctrl; uint16_t phy_pconf; hw = &igb->hw; /* Set link mode to PHY (00b) in the Extended Control register */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); /* * Set PHY control register (0x4140): * Set full duplex mode * Set loopback bit * Clear auto-neg enable bit * Set PHY speed */ phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK; (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl); /* Set the link disable bit in the Port Configuration register */ (void) e1000_read_phy_reg(hw, 0x10, &phy_pconf); phy_pconf |= (uint16_t)1 << 14; (void) e1000_write_phy_reg(hw, 0x10, phy_pconf); } /* * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode */ static void igb_set_internal_serdes_loopback(igb_t *igb) { struct e1000_hw *hw; uint32_t ctrl_ext; uint32_t ctrl; uint32_t pcs_lctl; uint32_t connsw; hw = &igb->hw; /* Set link mode to SerDes (11b) in the Extended Control register */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); /* Configure the SerDes to loopback */ E1000_WRITE_REG(hw, E1000_SCTL, 0x410); /* Set Device Control register */ ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= (E1000_CTRL_FD | /* Force full duplex */ E1000_CTRL_SLU); /* Force link up */ ctrl &= ~(E1000_CTRL_RFCE | /* Disable receive flow control */ E1000_CTRL_TFCE | /* Disable transmit flow control */ E1000_CTRL_LRST); /* Clear link reset */ E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Set PCS Link Control register */ pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL); pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK | E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FDV_FULL | E1000_PCS_LCTL_FLV_LINK_UP); pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE; E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl); /* Set the Copper/Fiber Switch Control - CONNSW register */ connsw = E1000_READ_REG(hw, E1000_CONNSW); connsw &= ~E1000_CONNSW_ENRGSRC; E1000_WRITE_REG(hw, E1000_CONNSW, connsw); } #pragma inline(igb_intr_rx_work) /* * igb_intr_rx_work - rx processing of ISR */ static void igb_intr_rx_work(igb_rx_ring_t *rx_ring) { mblk_t *mp; mutex_enter(&rx_ring->rx_lock); mp = igb_rx(rx_ring, IGB_NO_POLL); mutex_exit(&rx_ring->rx_lock); if (mp != NULL) mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp, rx_ring->ring_gen_num); } #pragma inline(igb_intr_tx_work) /* * igb_intr_tx_work - tx processing of ISR */ static void igb_intr_tx_work(igb_tx_ring_t *tx_ring) { /* Recycle the tx descriptors */ tx_ring->tx_recycle(tx_ring); /* Schedule the re-transmit */ if (tx_ring->reschedule && (tx_ring->tbd_free >= tx_ring->resched_thresh)) { tx_ring->reschedule = B_FALSE; mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle); IGB_DEBUG_STAT(tx_ring->stat_reschedule); } } #pragma inline(igb_intr_link_work) /* * igb_intr_link_work - link-status-change processing of ISR */ static void igb_intr_link_work(igb_t *igb) { boolean_t link_changed; igb_stop_watchdog_timer(igb); mutex_enter(&igb->gen_lock); /* * Because we got a link-status-change interrupt, force * e1000_check_for_link() to look at phy */ igb->hw.mac.get_link_status = B_TRUE; /* igb_link_check takes care of link status change */ link_changed = igb_link_check(igb); /* Get new phy state */ igb_get_phy_state(igb); mutex_exit(&igb->gen_lock); if (link_changed) mac_link_update(igb->mac_hdl, igb->link_state); igb_start_watchdog_timer(igb); } /* * igb_intr_legacy - Interrupt handler for legacy interrupts */ static uint_t igb_intr_legacy(void *arg1, void *arg2) { igb_t *igb = (igb_t *)arg1; igb_tx_ring_t *tx_ring; uint32_t icr; mblk_t *mp; boolean_t tx_reschedule; boolean_t link_changed; uint_t result; _NOTE(ARGUNUSED(arg2)); mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (DDI_INTR_UNCLAIMED); } mp = NULL; tx_reschedule = B_FALSE; link_changed = B_FALSE; icr = E1000_READ_REG(&igb->hw, E1000_ICR); if (icr & E1000_ICR_INT_ASSERTED) { /* * E1000_ICR_INT_ASSERTED bit was set: * Read(Clear) the ICR, claim this interrupt, * look for work to do. */ ASSERT(igb->num_rx_rings == 1); ASSERT(igb->num_tx_rings == 1); /* Make sure all interrupt causes cleared */ (void) E1000_READ_REG(&igb->hw, E1000_EICR); if (icr & E1000_ICR_RXT0) { mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL); } if (icr & E1000_ICR_TXDW) { tx_ring = &igb->tx_rings[0]; /* Recycle the tx descriptors */ tx_ring->tx_recycle(tx_ring); /* Schedule the re-transmit */ tx_reschedule = (tx_ring->reschedule && (tx_ring->tbd_free >= tx_ring->resched_thresh)); } if (icr & E1000_ICR_LSC) { /* * Because we got a link-status-change interrupt, force * e1000_check_for_link() to look at phy */ igb->hw.mac.get_link_status = B_TRUE; /* igb_link_check takes care of link status change */ link_changed = igb_link_check(igb); /* Get new phy state */ igb_get_phy_state(igb); } if (icr & E1000_ICR_DRSTA) { /* 82580 Full Device Reset needed */ igb->igb_state |= IGB_STALL; } result = DDI_INTR_CLAIMED; } else { /* * E1000_ICR_INT_ASSERTED bit was not set: * Don't claim this interrupt. */ result = DDI_INTR_UNCLAIMED; } mutex_exit(&igb->gen_lock); /* * Do the following work outside of the gen_lock */ if (mp != NULL) mac_rx(igb->mac_hdl, NULL, mp); if (tx_reschedule) { tx_ring->reschedule = B_FALSE; mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle); IGB_DEBUG_STAT(tx_ring->stat_reschedule); } if (link_changed) mac_link_update(igb->mac_hdl, igb->link_state); return (result); } /* * igb_intr_msi - Interrupt handler for MSI */ static uint_t igb_intr_msi(void *arg1, void *arg2) { igb_t *igb = (igb_t *)arg1; uint32_t icr; _NOTE(ARGUNUSED(arg2)); icr = E1000_READ_REG(&igb->hw, E1000_ICR); /* Make sure all interrupt causes cleared */ (void) E1000_READ_REG(&igb->hw, E1000_EICR); /* * For MSI interrupt, we have only one vector, * so we have only one rx ring and one tx ring enabled. */ ASSERT(igb->num_rx_rings == 1); ASSERT(igb->num_tx_rings == 1); if (icr & E1000_ICR_RXT0) { igb_intr_rx_work(&igb->rx_rings[0]); } if (icr & E1000_ICR_TXDW) { igb_intr_tx_work(&igb->tx_rings[0]); } if (icr & E1000_ICR_LSC) { igb_intr_link_work(igb); } if (icr & E1000_ICR_DRSTA) { /* 82580 Full Device Reset needed */ igb->igb_state |= IGB_STALL; } return (DDI_INTR_CLAIMED); } /* * igb_intr_rx - Interrupt handler for rx */ static uint_t igb_intr_rx(void *arg1, void *arg2) { igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1; _NOTE(ARGUNUSED(arg2)); /* * Only used via MSI-X vector so don't check cause bits * and only clean the given ring. */ igb_intr_rx_work(rx_ring); return (DDI_INTR_CLAIMED); } /* * igb_intr_tx - Interrupt handler for tx */ static uint_t igb_intr_tx(void *arg1, void *arg2) { igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1; _NOTE(ARGUNUSED(arg2)); /* * Only used via MSI-X vector so don't check cause bits * and only clean the given ring. */ igb_intr_tx_work(tx_ring); return (DDI_INTR_CLAIMED); } /* * igb_intr_tx_other - Interrupt handler for both tx and other * */ static uint_t igb_intr_tx_other(void *arg1, void *arg2) { igb_t *igb = (igb_t *)arg1; uint32_t icr; _NOTE(ARGUNUSED(arg2)); icr = E1000_READ_REG(&igb->hw, E1000_ICR); /* * Look for tx reclaiming work first. Remember, in the * case of only interrupt sharing, only one tx ring is * used */ igb_intr_tx_work(&igb->tx_rings[0]); /* * Check for "other" causes. */ if (icr & E1000_ICR_LSC) { igb_intr_link_work(igb); } /* * The DOUTSYNC bit indicates a tx packet dropped because * DMA engine gets "out of sync". There isn't a real fix * for this. The Intel recommendation is to count the number * of occurrences so user can detect when it is happening. * The issue is non-fatal and there's no recovery action * available. */ if (icr & E1000_ICR_DOUTSYNC) { IGB_STAT(igb->dout_sync); } if (icr & E1000_ICR_DRSTA) { /* 82580 Full Device Reset needed */ igb->igb_state |= IGB_STALL; } return (DDI_INTR_CLAIMED); } /* * igb_alloc_intrs - Allocate interrupts for the driver * * Normal sequence is to try MSI-X; if not sucessful, try MSI; * if not successful, try Legacy. * igb->intr_force can be used to force sequence to start with * any of the 3 types. * If MSI-X is not used, number of tx/rx rings is forced to 1. */ static int igb_alloc_intrs(igb_t *igb) { dev_info_t *devinfo; int intr_types; int rc; devinfo = igb->dip; /* Get supported interrupt types */ rc = ddi_intr_get_supported_types(devinfo, &intr_types); if (rc != DDI_SUCCESS) { igb_log(igb, "Get supported interrupt types failed: %d", rc); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types); igb->intr_type = 0; /* Install MSI-X interrupts */ if ((intr_types & DDI_INTR_TYPE_MSIX) && (igb->intr_force <= IGB_INTR_MSIX)) { rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX); if (rc == IGB_SUCCESS) return (IGB_SUCCESS); igb_log(igb, "Allocate MSI-X failed, trying MSI interrupts..."); } /* MSI-X not used, force rings to 1 */ igb->num_rx_rings = 1; igb->num_tx_rings = 1; igb_log(igb, "MSI-X not used, force rx and tx queue number to 1"); /* Install MSI interrupts */ if ((intr_types & DDI_INTR_TYPE_MSI) && (igb->intr_force <= IGB_INTR_MSI)) { rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI); if (rc == IGB_SUCCESS) return (IGB_SUCCESS); igb_log(igb, "Allocate MSI failed, trying Legacy interrupts..."); } /* Install legacy interrupts */ if (intr_types & DDI_INTR_TYPE_FIXED) { rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED); if (rc == IGB_SUCCESS) return (IGB_SUCCESS); igb_log(igb, "Allocate Legacy interrupts failed"); } /* If none of the 3 types succeeded, return failure */ return (IGB_FAILURE); } /* * igb_alloc_intr_handles - Allocate interrupt handles. * * For legacy and MSI, only 1 handle is needed. For MSI-X, * if fewer than 2 handles are available, return failure. * Upon success, this sets the number of Rx rings to a number that * matches the handles available for Rx interrupts. */ static int igb_alloc_intr_handles(igb_t *igb, int intr_type) { dev_info_t *devinfo; int orig, request, count, avail, actual; int diff, minimum; int rc; devinfo = igb->dip; switch (intr_type) { case DDI_INTR_TYPE_FIXED: request = 1; /* Request 1 legacy interrupt handle */ minimum = 1; IGB_DEBUGLOG_0(igb, "interrupt type: legacy"); break; case DDI_INTR_TYPE_MSI: request = 1; /* Request 1 MSI interrupt handle */ minimum = 1; IGB_DEBUGLOG_0(igb, "interrupt type: MSI"); break; case DDI_INTR_TYPE_MSIX: /* * Number of vectors for the adapter is * # rx rings + # tx rings * One of tx vectors is for tx & other */ request = igb->num_rx_rings + igb->num_tx_rings; orig = request; minimum = 2; IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X"); break; default: igb_log(igb, "invalid call to igb_alloc_intr_handles(): %d\n", intr_type); return (IGB_FAILURE); } IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d minimum: %d", request, minimum); /* * Get number of supported interrupts */ rc = ddi_intr_get_nintrs(devinfo, intr_type, &count); if ((rc != DDI_SUCCESS) || (count < minimum)) { igb_log(igb, "Get supported interrupt number failed. " "Return: %d, count: %d", rc, count); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count); /* * Get number of available interrupts */ rc = ddi_intr_get_navail(devinfo, intr_type, &avail); if ((rc != DDI_SUCCESS) || (avail < minimum)) { igb_log(igb, "Get available interrupt number failed. " "Return: %d, available: %d", rc, avail); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail); if (avail < request) { igb_log(igb, "Request %d handles, %d available", request, avail); request = avail; } actual = 0; igb->intr_cnt = 0; /* * Allocate an array of interrupt handles */ igb->intr_size = request * sizeof (ddi_intr_handle_t); igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP); rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0, request, &actual, DDI_INTR_ALLOC_NORMAL); if (rc != DDI_SUCCESS) { igb_log(igb, "Allocate interrupts failed. " "return: %d, request: %d, actual: %d", rc, request, actual); goto alloc_handle_fail; } IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual); igb->intr_cnt = actual; if (actual < minimum) { igb_log(igb, "Insufficient interrupt handles allocated: %d", actual); goto alloc_handle_fail; } /* * For MSI-X, actual might force us to reduce number of tx & rx rings */ if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) { diff = orig - actual; if (diff < igb->num_tx_rings) { igb_log(igb, "MSI-X vectors force Tx queue number to %d", igb->num_tx_rings - diff); igb->num_tx_rings -= diff; } else { igb_log(igb, "MSI-X vectors force Tx queue number to 1"); igb->num_tx_rings = 1; igb_log(igb, "MSI-X vectors force Rx queue number to %d", actual - 1); igb->num_rx_rings = actual - 1; } } /* * Get priority for first vector, assume remaining are all the same */ rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri); if (rc != DDI_SUCCESS) { igb_log(igb, "Get interrupt priority failed: %d", rc); goto alloc_handle_fail; } rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap); if (rc != DDI_SUCCESS) { igb_log(igb, "Get interrupt cap failed: %d", rc); goto alloc_handle_fail; } igb->intr_type = intr_type; return (IGB_SUCCESS); alloc_handle_fail: igb_rem_intrs(igb); return (IGB_FAILURE); } /* * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type * * Before adding the interrupt handlers, the interrupt vectors have * been allocated, and the rx/tx rings have also been allocated. */ static int igb_add_intr_handlers(igb_t *igb) { igb_rx_ring_t *rx_ring; igb_tx_ring_t *tx_ring; int vector; int rc; int i; vector = 0; switch (igb->intr_type) { case DDI_INTR_TYPE_MSIX: /* Add interrupt handler for tx + other */ tx_ring = &igb->tx_rings[0]; rc = ddi_intr_add_handler(igb->htable[vector], (ddi_intr_handler_t *)igb_intr_tx_other, (void *)igb, NULL); if (rc != DDI_SUCCESS) { igb_log(igb, "Add tx/other interrupt handler failed: %d", rc); return (IGB_FAILURE); } tx_ring->intr_vector = vector; vector++; /* Add interrupt handler for each rx ring */ for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; rc = ddi_intr_add_handler(igb->htable[vector], (ddi_intr_handler_t *)igb_intr_rx, (void *)rx_ring, NULL); if (rc != DDI_SUCCESS) { igb_log(igb, "Add rx interrupt handler failed. " "return: %d, rx ring: %d", rc, i); for (vector--; vector >= 0; vector--) { (void) ddi_intr_remove_handler( igb->htable[vector]); } return (IGB_FAILURE); } rx_ring->intr_vector = vector; vector++; } /* Add interrupt handler for each tx ring from 2nd ring */ for (i = 1; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; rc = ddi_intr_add_handler(igb->htable[vector], (ddi_intr_handler_t *)igb_intr_tx, (void *)tx_ring, NULL); if (rc != DDI_SUCCESS) { igb_log(igb, "Add tx interrupt handler failed. " "return: %d, tx ring: %d", rc, i); for (vector--; vector >= 0; vector--) { (void) ddi_intr_remove_handler( igb->htable[vector]); } return (IGB_FAILURE); } tx_ring->intr_vector = vector; vector++; } break; case DDI_INTR_TYPE_MSI: /* Add interrupt handlers for the only vector */ rc = ddi_intr_add_handler(igb->htable[vector], (ddi_intr_handler_t *)igb_intr_msi, (void *)igb, NULL); if (rc != DDI_SUCCESS) { igb_log(igb, "Add MSI interrupt handler failed: %d", rc); return (IGB_FAILURE); } rx_ring = &igb->rx_rings[0]; rx_ring->intr_vector = vector; vector++; break; case DDI_INTR_TYPE_FIXED: /* Add interrupt handlers for the only vector */ rc = ddi_intr_add_handler(igb->htable[vector], (ddi_intr_handler_t *)igb_intr_legacy, (void *)igb, NULL); if (rc != DDI_SUCCESS) { igb_log(igb, "Add legacy interrupt handler failed: %d", rc); return (IGB_FAILURE); } rx_ring = &igb->rx_rings[0]; rx_ring->intr_vector = vector; vector++; break; default: return (IGB_FAILURE); } ASSERT(vector == igb->intr_cnt); return (IGB_SUCCESS); } /* * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts * * For each vector enabled on the adapter, Set the MSIXBM register accordingly */ static void igb_setup_msix_82575(igb_t *igb) { uint32_t eims = 0; int i, vector; struct e1000_hw *hw = &igb->hw; /* * Set vector for tx ring 0 and other causes. * NOTE assumption that it is vector 0. */ vector = 0; igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER; E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask); vector++; for (i = 0; i < igb->num_rx_rings; i++) { /* * Set vector for each rx ring */ eims = (E1000_EICR_RX_QUEUE0 << i); E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims); /* * Accumulate bits to enable in * igb_enable_adapter_interrupts_82575() */ igb->eims_mask |= eims; vector++; } for (i = 1; i < igb->num_tx_rings; i++) { /* * Set vector for each tx ring from 2nd tx ring */ eims = (E1000_EICR_TX_QUEUE0 << i); E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims); /* * Accumulate bits to enable in * igb_enable_adapter_interrupts_82575() */ igb->eims_mask |= eims; vector++; } ASSERT(vector == igb->intr_cnt); /* * Disable IAM for ICR interrupt bits */ E1000_WRITE_REG(hw, E1000_IAM, 0); E1000_WRITE_FLUSH(hw); } /* * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts * * 82576 uses a table based method for assigning vectors. Each queue has a * single entry in the table to which we write a vector number along with a * "valid" bit. The entry is a single byte in a 4-byte register. Vectors * take a different position in the 4-byte register depending on whether * they are numbered above or below 8. */ static void igb_setup_msix_82576(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t ivar, index, vector; int i; /* must enable msi-x capability before IVAR settings */ E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR)); /* * Set vector for tx ring 0 and other causes. * NOTE assumption that it is vector 0. * This is also interdependent with installation of interrupt service * routines in igb_add_intr_handlers(). */ /* assign "other" causes to vector 0 */ vector = 0; ivar = ((vector | E1000_IVAR_VALID) << 8); E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); /* assign tx ring 0 to vector 0 */ ivar = ((vector | E1000_IVAR_VALID) << 8); E1000_WRITE_REG(hw, E1000_IVAR0, ivar); /* prepare to enable tx & other interrupt causes */ igb->eims_mask = (1 << vector); vector ++; for (i = 0; i < igb->num_rx_rings; i++) { /* * Set vector for each rx ring */ index = (i & 0x7); ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); if (i < 8) { /* vector goes into low byte of register */ ivar = ivar & 0xFFFFFF00; ivar |= (vector | E1000_IVAR_VALID); } else { /* vector goes into third byte of register */ ivar = ivar & 0xFF00FFFF; ivar |= ((vector | E1000_IVAR_VALID) << 16); } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); /* Accumulate interrupt-cause bits to enable */ igb->eims_mask |= (1 << vector); vector ++; } for (i = 1; i < igb->num_tx_rings; i++) { /* * Set vector for each tx ring from 2nd tx ring. * Note assumption that tx vectors numericall follow rx vectors. */ index = (i & 0x7); ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); if (i < 8) { /* vector goes into second byte of register */ ivar = ivar & 0xFFFF00FF; ivar |= ((vector | E1000_IVAR_VALID) << 8); } else { /* vector goes into fourth byte of register */ ivar = ivar & 0x00FFFFFF; ivar |= (vector | E1000_IVAR_VALID) << 24; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); /* Accumulate interrupt-cause bits to enable */ igb->eims_mask |= (1 << vector); vector ++; } ASSERT(vector == igb->intr_cnt); } /* * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts * * 82580 uses same table approach at 82576 but has fewer entries. Each * queue has a single entry in the table to which we write a vector number * along with a "valid" bit. Vectors take a different position in the * register depending on * whether * they are numbered above or below 4. */ static void igb_setup_msix_82580(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t ivar, index, vector; int i; /* must enable msi-x capability before IVAR settings */ E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME)); /* * Set vector for tx ring 0 and other causes. * NOTE assumption that it is vector 0. * This is also interdependent with installation of interrupt service * routines in igb_add_intr_handlers(). */ /* assign "other" causes to vector 0 */ vector = 0; ivar = ((vector | E1000_IVAR_VALID) << 8); E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); /* assign tx ring 0 to vector 0 */ ivar = ((vector | E1000_IVAR_VALID) << 8); E1000_WRITE_REG(hw, E1000_IVAR0, ivar); /* prepare to enable tx & other interrupt causes */ igb->eims_mask = (1 << vector); vector ++; for (i = 0; i < igb->num_rx_rings; i++) { /* * Set vector for each rx ring */ index = (i >> 1); ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); if (i & 1) { /* vector goes into third byte of register */ ivar = ivar & 0xFF00FFFF; ivar |= ((vector | E1000_IVAR_VALID) << 16); } else { /* vector goes into low byte of register */ ivar = ivar & 0xFFFFFF00; ivar |= (vector | E1000_IVAR_VALID); } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); /* Accumulate interrupt-cause bits to enable */ igb->eims_mask |= (1 << vector); vector ++; } for (i = 1; i < igb->num_tx_rings; i++) { /* * Set vector for each tx ring from 2nd tx ring. * Note assumption that tx vectors numericall follow rx vectors. */ index = (i >> 1); ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); if (i & 1) { /* vector goes into high byte of register */ ivar = ivar & 0x00FFFFFF; ivar |= ((vector | E1000_IVAR_VALID) << 24); } else { /* vector goes into second byte of register */ ivar = ivar & 0xFFFF00FF; ivar |= (vector | E1000_IVAR_VALID) << 8; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); /* Accumulate interrupt-cause bits to enable */ igb->eims_mask |= (1 << vector); vector ++; } ASSERT(vector == igb->intr_cnt); } /* * igb_rem_intr_handlers - remove the interrupt handlers */ static void igb_rem_intr_handlers(igb_t *igb) { int i; int rc; for (i = 0; i < igb->intr_cnt; i++) { rc = ddi_intr_remove_handler(igb->htable[i]); if (rc != DDI_SUCCESS) { IGB_DEBUGLOG_1(igb, "Remove intr handler failed: %d", rc); } } } /* * igb_rem_intrs - remove the allocated interrupts */ static void igb_rem_intrs(igb_t *igb) { int i; int rc; for (i = 0; i < igb->intr_cnt; i++) { rc = ddi_intr_free(igb->htable[i]); if (rc != DDI_SUCCESS) { IGB_DEBUGLOG_1(igb, "Free intr failed: %d", rc); } } kmem_free(igb->htable, igb->intr_size); igb->htable = NULL; } /* * igb_enable_intrs - enable all the ddi interrupts */ static int igb_enable_intrs(igb_t *igb) { int i; int rc; /* Enable interrupts */ if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) { /* Call ddi_intr_block_enable() for MSI */ rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt); if (rc != DDI_SUCCESS) { igb_log(igb, "Enable block intr failed: %d", rc); return (IGB_FAILURE); } } else { /* Call ddi_intr_enable() for Legacy/MSI non block enable */ for (i = 0; i < igb->intr_cnt; i++) { rc = ddi_intr_enable(igb->htable[i]); if (rc != DDI_SUCCESS) { igb_log(igb, "Enable intr failed: %d", rc); return (IGB_FAILURE); } } } return (IGB_SUCCESS); } /* * igb_disable_intrs - disable all the ddi interrupts */ static int igb_disable_intrs(igb_t *igb) { int i; int rc; /* Disable all interrupts */ if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) { rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt); if (rc != DDI_SUCCESS) { igb_log(igb, "Disable block intr failed: %d", rc); return (IGB_FAILURE); } } else { for (i = 0; i < igb->intr_cnt; i++) { rc = ddi_intr_disable(igb->htable[i]); if (rc != DDI_SUCCESS) { igb_log(igb, "Disable intr failed: %d", rc); return (IGB_FAILURE); } } } return (IGB_SUCCESS); } /* * igb_get_phy_state - Get and save the parameters read from PHY registers */ static void igb_get_phy_state(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint16_t phy_ctrl; uint16_t phy_status; uint16_t phy_an_adv; uint16_t phy_an_exp; uint16_t phy_ext_status; uint16_t phy_1000t_ctrl; uint16_t phy_1000t_status; uint16_t phy_lp_able; ASSERT(mutex_owned(&igb->gen_lock)); (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); (void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status); (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv); (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp); (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status); (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl); (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_1000t_status); (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able); igb->param_autoneg_cap = (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0; igb->param_pause_cap = (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0; igb->param_asym_pause_cap = (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0; igb->param_1000fdx_cap = ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) || (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0; igb->param_1000hdx_cap = ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) || (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0; igb->param_100t4_cap = (phy_status & MII_SR_100T4_CAPS) ? 1 : 0; igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) || (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0; igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) || (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0; igb->param_10fdx_cap = (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0; igb->param_10hdx_cap = (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0; igb->param_rem_fault = (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0; igb->param_adv_autoneg_cap = hw->mac.autoneg; igb->param_adv_pause_cap = (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0; igb->param_adv_asym_pause_cap = (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0; igb->param_adv_1000hdx_cap = (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0; igb->param_adv_100t4_cap = (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0; igb->param_adv_rem_fault = (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0; if (igb->param_adv_autoneg_cap == 1) { igb->param_adv_1000fdx_cap = (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0; igb->param_adv_100fdx_cap = (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0; igb->param_adv_100hdx_cap = (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0; igb->param_adv_10fdx_cap = (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0; igb->param_adv_10hdx_cap = (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0; } igb->param_lp_autoneg_cap = (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0; igb->param_lp_pause_cap = (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0; igb->param_lp_asym_pause_cap = (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0; igb->param_lp_1000fdx_cap = (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0; igb->param_lp_1000hdx_cap = (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0; igb->param_lp_100t4_cap = (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0; igb->param_lp_100fdx_cap = (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0; igb->param_lp_100hdx_cap = (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0; igb->param_lp_10fdx_cap = (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0; igb->param_lp_10hdx_cap = (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0; igb->param_lp_rem_fault = (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0; } /* * igb_get_driver_control */ static void igb_get_driver_control(struct e1000_hw *hw) { uint32_t ctrl_ext; /* Notify firmware that driver is in control of device */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); } /* * igb_release_driver_control */ static void igb_release_driver_control(struct e1000_hw *hw) { uint32_t ctrl_ext; /* Notify firmware that driver is no longer in control of device */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); } /* * igb_atomic_reserve - Atomic decrease operation */ int igb_atomic_reserve(uint32_t *count_p, uint32_t n) { uint32_t oldval; uint32_t newval; /* ATOMICALLY */ do { oldval = *count_p; if (oldval < n) return (-1); newval = oldval - n; } while (atomic_cas_32(count_p, oldval, newval) != oldval); return (newval); } /* * FMA support */ int igb_check_acc_handle(ddi_acc_handle_t handle) { ddi_fm_error_t de; ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION); ddi_fm_acc_err_clear(handle, DDI_FME_VERSION); return (de.fme_status); } int igb_check_dma_handle(ddi_dma_handle_t handle) { ddi_fm_error_t de; ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION); return (de.fme_status); } /* * The IO fault service error handling callback function */ /*ARGSUSED*/ static int igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) { /* * as the driver can always deal with an error in any dma or * access handle, we can just return the fme_status value. */ pci_ereport_post(dip, err, NULL); return (err->fme_status); } static void igb_fm_init(igb_t *igb) { ddi_iblock_cookie_t iblk; int fma_dma_flag; /* Only register with IO Fault Services if we have some capability */ if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) { igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC; } else { igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC; } if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) { fma_dma_flag = 1; } else { fma_dma_flag = 0; } (void) igb_set_fma_flags(fma_dma_flag); if (igb->fm_capabilities) { /* Register capabilities with IO Fault Services */ ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk); /* * Initialize pci ereport capabilities if ereport capable */ if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) || DDI_FM_ERRCB_CAP(igb->fm_capabilities)) pci_ereport_setup(igb->dip); /* * Register error callback if error callback capable */ if (DDI_FM_ERRCB_CAP(igb->fm_capabilities)) ddi_fm_handler_register(igb->dip, igb_fm_error_cb, (void*) igb); } } static void igb_fm_fini(igb_t *igb) { /* Only unregister FMA capabilities if we registered some */ if (igb->fm_capabilities) { /* * Release any resources allocated by pci_ereport_setup() */ if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) || DDI_FM_ERRCB_CAP(igb->fm_capabilities)) pci_ereport_teardown(igb->dip); /* * Un-register error callback if error callback capable */ if (DDI_FM_ERRCB_CAP(igb->fm_capabilities)) ddi_fm_handler_unregister(igb->dip); /* Unregister from IO Fault Services */ ddi_fm_fini(igb->dip); } } void igb_fm_ereport(igb_t *igb, char *detail) { uint64_t ena; char buf[FM_MAX_CLASS]; (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail); ena = fm_ena_generate(0, FM_ENA_FMT1); if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) { ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); } }