/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * driver for accessing kernel devinfo tree. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG static int di_debug; #define dcmn_err(args) if (di_debug >= 1) cmn_err args #define dcmn_err2(args) if (di_debug >= 2) cmn_err args #define dcmn_err3(args) if (di_debug >= 3) cmn_err args #else #define dcmn_err(args) /* nothing */ #define dcmn_err2(args) /* nothing */ #define dcmn_err3(args) /* nothing */ #endif /* * We partition the space of devinfo minor nodes equally between the full and * unprivileged versions of the driver. The even-numbered minor nodes are the * full version, while the odd-numbered ones are the read-only version. */ static int di_max_opens = 32; #define DI_FULL_PARENT 0 #define DI_READONLY_PARENT 1 #define DI_NODE_SPECIES 2 #define DI_UNPRIVILEGED_NODE(x) (((x) % 2) != 0) #define IOC_IDLE 0 /* snapshot ioctl states */ #define IOC_SNAP 1 /* snapshot in progress */ #define IOC_DONE 2 /* snapshot done, but not copied out */ #define IOC_COPY 3 /* copyout in progress */ /* * Keep max alignment so we can move snapshot to different platforms */ #define DI_ALIGN(addr) ((addr + 7l) & ~7l) /* * To avoid wasting memory, make a linked list of memory chunks. * Size of each chunk is buf_size. */ struct di_mem { struct di_mem *next; /* link to next chunk */ char *buf; /* contiguous kernel memory */ size_t buf_size; /* size of buf in bytes */ devmap_cookie_t cook; /* cookie from ddi_umem_alloc */ }; /* * This is a stack for walking the tree without using recursion. * When the devinfo tree height is above some small size, one * gets watchdog resets on sun4m. */ struct di_stack { void *offset[MAX_TREE_DEPTH]; struct dev_info *dip[MAX_TREE_DEPTH]; int circ[MAX_TREE_DEPTH]; int depth; /* depth of current node to be copied */ }; #define TOP_OFFSET(stack) \ ((di_off_t *)(stack)->offset[(stack)->depth - 1]) #define TOP_NODE(stack) \ ((stack)->dip[(stack)->depth - 1]) #define PARENT_OFFSET(stack) \ ((di_off_t *)(stack)->offset[(stack)->depth - 2]) #define EMPTY_STACK(stack) ((stack)->depth == 0) #define POP_STACK(stack) { \ ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \ (stack)->circ[(stack)->depth - 1]); \ ((stack)->depth--); \ } #define PUSH_STACK(stack, node, offp) { \ ASSERT(node != NULL); \ ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \ (stack)->dip[(stack)->depth] = (node); \ (stack)->offset[(stack)->depth] = (void *)(offp); \ ((stack)->depth)++; \ } #define DI_ALL_PTR(s) ((struct di_all *)di_mem_addr((s), 0)) /* * With devfs, the device tree has no global locks. The device tree is * dynamic and dips may come and go if they are not locked locally. Under * these conditions, pointers are no longer reliable as unique IDs. * Specifically, these pointers cannot be used as keys for hash tables * as the same devinfo structure may be freed in one part of the tree only * to be allocated as the structure for a different device in another * part of the tree. This can happen if DR and the snapshot are * happening concurrently. * The following data structures act as keys for devinfo nodes and * pathinfo nodes. */ enum di_ktype { DI_DKEY = 1, DI_PKEY = 2 }; struct di_dkey { dev_info_t *dk_dip; major_t dk_major; int dk_inst; dnode_t dk_nodeid; }; struct di_pkey { mdi_pathinfo_t *pk_pip; char *pk_path_addr; dev_info_t *pk_client; dev_info_t *pk_phci; }; struct di_key { enum di_ktype k_type; union { struct di_dkey dkey; struct di_pkey pkey; } k_u; }; struct i_lnode; typedef struct i_link { /* * If a di_link struct representing this i_link struct makes it * into the snapshot, then self will point to the offset of * the di_link struct in the snapshot */ di_off_t self; int spec_type; /* block or char access type */ struct i_lnode *src_lnode; /* src i_lnode */ struct i_lnode *tgt_lnode; /* tgt i_lnode */ struct i_link *src_link_next; /* next src i_link /w same i_lnode */ struct i_link *tgt_link_next; /* next tgt i_link /w same i_lnode */ } i_link_t; typedef struct i_lnode { /* * If a di_lnode struct representing this i_lnode struct makes it * into the snapshot, then self will point to the offset of * the di_lnode struct in the snapshot */ di_off_t self; /* * used for hashing and comparing i_lnodes */ int modid; /* * public information describing a link endpoint */ struct di_node *di_node; /* di_node in snapshot */ dev_t devt; /* devt */ /* * i_link ptr to links coming into this i_lnode node * (this i_lnode is the target of these i_links) */ i_link_t *link_in; /* * i_link ptr to links going out of this i_lnode node * (this i_lnode is the source of these i_links) */ i_link_t *link_out; } i_lnode_t; /* * Soft state associated with each instance of driver open. */ static struct di_state { di_off_t mem_size; /* total # bytes in memlist */ struct di_mem *memlist; /* head of memlist */ uint_t command; /* command from ioctl */ int di_iocstate; /* snapshot ioctl state */ mod_hash_t *reg_dip_hash; mod_hash_t *reg_pip_hash; int lnode_count; int link_count; mod_hash_t *lnode_hash; mod_hash_t *link_hash; } **di_states; static kmutex_t di_lock; /* serialize instance assignment */ typedef enum { DI_QUIET = 0, /* DI_QUIET must always be 0 */ DI_ERR, DI_INFO, DI_TRACE, DI_TRACE1, DI_TRACE2 } di_cache_debug_t; static uint_t di_chunk = 32; /* I/O chunk size in pages */ #define DI_CACHE_LOCK(c) (mutex_enter(&(c).cache_lock)) #define DI_CACHE_UNLOCK(c) (mutex_exit(&(c).cache_lock)) #define DI_CACHE_LOCKED(c) (mutex_owned(&(c).cache_lock)) #define CACHE_DEBUG(args) \ { if (di_cache_debug != DI_QUIET) di_cache_print args; } static int di_open(dev_t *, int, int, cred_t *); static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); static int di_close(dev_t, int, int, cred_t *); static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **); static int di_attach(dev_info_t *, ddi_attach_cmd_t); static int di_detach(dev_info_t *, ddi_detach_cmd_t); static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int); static di_off_t di_snapshot(struct di_state *); static di_off_t di_copydevnm(di_off_t *, struct di_state *); static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *); static di_off_t di_copynode(struct di_stack *, struct di_state *); static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t, struct di_state *); static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *); static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *); static di_off_t di_getprop(struct ddi_prop *, di_off_t *, struct di_state *, struct dev_info *, int); static void di_allocmem(struct di_state *, size_t); static void di_freemem(struct di_state *); static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz); static di_off_t di_checkmem(struct di_state *, di_off_t, size_t); static caddr_t di_mem_addr(struct di_state *, di_off_t); static int di_setstate(struct di_state *, int); static void di_register_dip(struct di_state *, dev_info_t *, di_off_t); static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t); static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t, struct di_state *, int); static di_off_t di_getlink_data(di_off_t, struct di_state *); static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p); static int cache_args_valid(struct di_state *st, int *error); static int snapshot_is_cacheable(struct di_state *st); static int di_cache_lookup(struct di_state *st); static int di_cache_update(struct di_state *st); static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...); static struct cb_ops di_cb_ops = { di_open, /* open */ di_close, /* close */ nodev, /* strategy */ nodev, /* print */ nodev, /* dump */ nodev, /* read */ nodev, /* write */ di_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* prop_op */ NULL, /* streamtab */ D_NEW | D_MP /* Driver compatibility flag */ }; static struct dev_ops di_ops = { DEVO_REV, /* devo_rev, */ 0, /* refcnt */ di_info, /* info */ nulldev, /* identify */ nulldev, /* probe */ di_attach, /* attach */ di_detach, /* detach */ nodev, /* reset */ &di_cb_ops, /* driver operations */ NULL /* bus operations */ }; /* * Module linkage information for the kernel. */ static struct modldrv modldrv = { &mod_driverops, "DEVINFO Driver %I%", &di_ops }; static struct modlinkage modlinkage = { MODREV_1, &modldrv, NULL }; int _init(void) { int error; mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL); error = mod_install(&modlinkage); if (error != 0) { mutex_destroy(&di_lock); return (error); } return (0); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } int _fini(void) { int error; error = mod_remove(&modlinkage); if (error != 0) { return (error); } mutex_destroy(&di_lock); return (0); } static dev_info_t *di_dip; /*ARGSUSED*/ static int di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { int error = DDI_FAILURE; switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = (void *)di_dip; error = DDI_SUCCESS; break; case DDI_INFO_DEVT2INSTANCE: /* * All dev_t's map to the same, single instance. */ *result = (void *)0; error = DDI_SUCCESS; break; default: break; } return (error); } static int di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { int error = DDI_FAILURE; switch (cmd) { case DDI_ATTACH: di_states = kmem_zalloc( di_max_opens * sizeof (struct di_state *), KM_SLEEP); if (ddi_create_minor_node(dip, "devinfo", S_IFCHR, DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE || ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR, DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) { kmem_free(di_states, di_max_opens * sizeof (struct di_state *)); ddi_remove_minor_node(dip, NULL); error = DDI_FAILURE; } else { di_dip = dip; ddi_report_dev(dip); error = DDI_SUCCESS; } break; default: error = DDI_FAILURE; break; } return (error); } static int di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { int error = DDI_FAILURE; switch (cmd) { case DDI_DETACH: ddi_remove_minor_node(dip, NULL); di_dip = NULL; kmem_free(di_states, di_max_opens * sizeof (struct di_state *)); error = DDI_SUCCESS; break; default: error = DDI_FAILURE; break; } return (error); } /* * Allow multiple opens by tweaking the dev_t such that it looks like each * open is getting a different minor device. Each minor gets a separate * entry in the di_states[] table. Based on the original minor number, we * discriminate opens of the full and read-only nodes. If all of the instances * of the selected minor node are currently open, we return EAGAIN. */ /*ARGSUSED*/ static int di_open(dev_t *devp, int flag, int otyp, cred_t *credp) { int m; minor_t minor_parent = getminor(*devp); if (minor_parent != DI_FULL_PARENT && minor_parent != DI_READONLY_PARENT) return (ENXIO); mutex_enter(&di_lock); for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) { if (di_states[m] != NULL) continue; di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP); break; /* It's ours. */ } if (m >= di_max_opens) { /* * maximum open instance for device reached */ mutex_exit(&di_lock); dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached")); return (EAGAIN); } mutex_exit(&di_lock); ASSERT(m < di_max_opens); *devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES)); dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n", (void *)curthread, m + DI_NODE_SPECIES)); return (0); } /*ARGSUSED*/ static int di_close(dev_t dev, int flag, int otype, cred_t *cred_p) { struct di_state *st; int m = (int)getminor(dev) - DI_NODE_SPECIES; if (m < 0) { cmn_err(CE_WARN, "closing non-existent devinfo minor %d", m + DI_NODE_SPECIES); return (ENXIO); } st = di_states[m]; ASSERT(m < di_max_opens && st != NULL); di_freemem(st); kmem_free(st, sizeof (struct di_state)); /* * empty slot in state table */ mutex_enter(&di_lock); di_states[m] = NULL; dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n", (void *)curthread, m + DI_NODE_SPECIES)); mutex_exit(&di_lock); return (0); } /*ARGSUSED*/ static int di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) { int rv, error; di_off_t off; struct di_all *all; struct di_state *st; int m = (int)getminor(dev) - DI_NODE_SPECIES; major_t i; char *drv_name; size_t map_size, size; struct di_mem *dcp; int ndi_flags; if (m < 0 || m >= di_max_opens) { return (ENXIO); } st = di_states[m]; ASSERT(st != NULL); dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd)); switch (cmd) { case DINFOIDENT: /* * This is called from di_init to verify that the driver * opened is indeed devinfo. The purpose is to guard against * sending ioctl to an unknown driver in case of an * unresolved major number conflict during bfu. */ *rvalp = DI_MAGIC; return (0); case DINFOLODRV: /* * Hold an installed driver and return the result */ if (DI_UNPRIVILEGED_NODE(m)) { /* * Only the fully enabled instances may issue * DINFOLDDRV. */ return (EACCES); } drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) { kmem_free(drv_name, MAXNAMELEN); return (EFAULT); } /* * Some 3rd party driver's _init() walks the device tree, * so we load the driver module before configuring driver. */ i = ddi_name_to_major(drv_name); if (ddi_hold_driver(i) == NULL) { kmem_free(drv_name, MAXNAMELEN); return (ENXIO); } ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT; /* * i_ddi_load_drvconf() below will trigger a reprobe * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't * needed here. */ modunload_disable(); (void) i_ddi_load_drvconf(i); (void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i); kmem_free(drv_name, MAXNAMELEN); ddi_rele_driver(i); rv = i_ddi_devs_attached(i); modunload_enable(); i_ddi_di_cache_invalidate(KM_SLEEP); return ((rv == DDI_SUCCESS)? 0 : ENXIO); case DINFOUSRLD: /* * The case for copying snapshot to userland */ if (di_setstate(st, IOC_COPY) == -1) return (EBUSY); map_size = ((struct di_all *)di_mem_addr(st, 0))->map_size; if (map_size == 0) { (void) di_setstate(st, IOC_DONE); return (EFAULT); } /* * copyout the snapshot */ map_size = (map_size + PAGEOFFSET) & PAGEMASK; /* * Return the map size, so caller may do a sanity * check against the return value of snapshot ioctl() */ *rvalp = (int)map_size; /* * Copy one chunk at a time */ off = 0; dcp = st->memlist; while (map_size) { size = dcp->buf_size; if (map_size <= size) { size = map_size; } if (ddi_copyout(di_mem_addr(st, off), (void *)(arg + off), size, mode) != 0) { (void) di_setstate(st, IOC_DONE); return (EFAULT); } map_size -= size; off += size; dcp = dcp->next; } di_freemem(st); (void) di_setstate(st, IOC_IDLE); return (0); default: if ((cmd & ~DIIOC_MASK) != DIIOC) { /* * Invalid ioctl command */ return (ENOTTY); } /* * take a snapshot */ st->command = cmd & DIIOC_MASK; /*FALLTHROUGH*/ } /* * Obtain enough memory to hold header + rootpath. We prevent kernel * memory exhaustion by freeing any previously allocated snapshot and * refusing the operation; otherwise we would be allowing ioctl(), * ioctl(), ioctl(), ..., panic. */ if (di_setstate(st, IOC_SNAP) == -1) return (EBUSY); size = sizeof (struct di_all) + sizeof (((struct dinfo_io *)(NULL))->root_path); if (size < PAGESIZE) size = PAGESIZE; di_allocmem(st, size); all = (struct di_all *)di_mem_addr(st, 0); all->devcnt = devcnt; all->command = st->command; all->version = DI_SNAPSHOT_VERSION; /* * Note the endianness in case we need to transport snapshot * over the network. */ #if defined(_LITTLE_ENDIAN) all->endianness = DI_LITTLE_ENDIAN; #else all->endianness = DI_BIG_ENDIAN; #endif /* Copyin ioctl args, store in the snapshot. */ if (copyinstr((void *)arg, all->root_path, sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) { di_freemem(st); (void) di_setstate(st, IOC_IDLE); return (EFAULT); } error = 0; if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) { di_freemem(st); (void) di_setstate(st, IOC_IDLE); return (error); } off = DI_ALIGN(sizeof (struct di_all) + size); /* * Only the fully enabled version may force load drivers or read * the parent private data from a driver. */ if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 && DI_UNPRIVILEGED_NODE(m)) { di_freemem(st); (void) di_setstate(st, IOC_IDLE); return (EACCES); } /* Do we need private data? */ if (st->command & DINFOPRIVDATA) { arg += sizeof (((struct dinfo_io *)(NULL))->root_path); #ifdef _MULTI_DATAMODEL switch (ddi_model_convert_from(mode & FMODELS)) { case DDI_MODEL_ILP32: { /* * Cannot copy private data from 64-bit kernel * to 32-bit app */ di_freemem(st); (void) di_setstate(st, IOC_IDLE); return (EINVAL); } case DDI_MODEL_NONE: if ((off = di_copyformat(off, st, arg, mode)) == 0) { di_freemem(st); (void) di_setstate(st, IOC_IDLE); return (EFAULT); } break; } #else /* !_MULTI_DATAMODEL */ if ((off = di_copyformat(off, st, arg, mode)) == 0) { di_freemem(st); (void) di_setstate(st, IOC_IDLE); return (EFAULT); } #endif /* _MULTI_DATAMODEL */ } all->top_devinfo = DI_ALIGN(off); /* * For cache lookups we reallocate memory from scratch, * so the value of "all" is no longer valid. */ all = NULL; if (st->command & DINFOCACHE) { *rvalp = di_cache_lookup(st); } else if (snapshot_is_cacheable(st)) { DI_CACHE_LOCK(di_cache); *rvalp = di_cache_update(st); DI_CACHE_UNLOCK(di_cache); } else { modunload_disable(); *rvalp = di_snapshot(st); modunload_enable(); } if (*rvalp) { DI_ALL_PTR(st)->map_size = *rvalp; (void) di_setstate(st, IOC_DONE); } else { di_freemem(st); (void) di_setstate(st, IOC_IDLE); } return (0); } /* * Get a chunk of memory >= size, for the snapshot */ static void di_allocmem(struct di_state *st, size_t size) { struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem), KM_SLEEP); /* * Round up size to nearest power of 2. If it is less * than st->mem_size, set it to st->mem_size (i.e., * the mem_size is doubled every time) to reduce the * number of memory allocations. */ size_t tmp = 1; while (tmp < size) { tmp <<= 1; } size = (tmp > st->mem_size) ? tmp : st->mem_size; mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook); mem->buf_size = size; dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size)); if (st->mem_size == 0) { /* first chunk */ st->memlist = mem; } else { /* * locate end of linked list and add a chunk at the end */ struct di_mem *dcp = st->memlist; while (dcp->next != NULL) { dcp = dcp->next; } dcp->next = mem; } st->mem_size += size; } /* * Copy upto bufsiz bytes of the memlist to buf */ static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz) { struct di_mem *dcp; size_t copysz; if (st->mem_size == 0) { ASSERT(st->memlist == NULL); return; } copysz = 0; for (dcp = st->memlist; dcp; dcp = dcp->next) { ASSERT(bufsiz > 0); if (bufsiz <= dcp->buf_size) copysz = bufsiz; else copysz = dcp->buf_size; bcopy(dcp->buf, buf, copysz); buf += copysz; bufsiz -= copysz; if (bufsiz == 0) break; } } /* * Free all memory for the snapshot */ static void di_freemem(struct di_state *st) { struct di_mem *dcp, *tmp; dcmn_err2((CE_CONT, "di_freemem\n")); if (st->mem_size) { dcp = st->memlist; while (dcp) { /* traverse the linked list */ tmp = dcp; dcp = dcp->next; ddi_umem_free(tmp->cook); kmem_free(tmp, sizeof (struct di_mem)); } st->mem_size = 0; st->memlist = NULL; } ASSERT(st->mem_size == 0); ASSERT(st->memlist == NULL); } /* * Copies cached data to the di_state structure. * Returns: * - size of data copied, on SUCCESS * - 0 on failure */ static int di_cache2mem(struct di_cache *cache, struct di_state *st) { caddr_t pa; ASSERT(st->mem_size == 0); ASSERT(st->memlist == NULL); ASSERT(!servicing_interrupt()); ASSERT(DI_CACHE_LOCKED(*cache)); if (cache->cache_size == 0) { ASSERT(cache->cache_data == NULL); CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy")); return (0); } ASSERT(cache->cache_data); di_allocmem(st, cache->cache_size); pa = di_mem_addr(st, 0); ASSERT(pa); /* * Verify that di_allocmem() allocates contiguous memory, * so that it is safe to do straight bcopy() */ ASSERT(st->memlist != NULL); ASSERT(st->memlist->next == NULL); bcopy(cache->cache_data, pa, cache->cache_size); return (cache->cache_size); } /* * Copies a snapshot from di_state to the cache * Returns: * - 0 on failure * - size of copied data on success */ static int di_mem2cache(struct di_state *st, struct di_cache *cache) { size_t map_size; ASSERT(cache->cache_size == 0); ASSERT(cache->cache_data == NULL); ASSERT(!servicing_interrupt()); ASSERT(DI_CACHE_LOCKED(*cache)); if (st->mem_size == 0) { ASSERT(st->memlist == NULL); CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy")); return (0); } ASSERT(st->memlist); /* * The size of the memory list may be much larger than the * size of valid data (map_size). Cache only the valid data */ map_size = DI_ALL_PTR(st)->map_size; if (map_size == 0 || map_size < sizeof (struct di_all) || map_size > st->mem_size) { CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size)); return (0); } cache->cache_data = kmem_alloc(map_size, KM_SLEEP); cache->cache_size = map_size; di_copymem(st, cache->cache_data, cache->cache_size); return (map_size); } /* * Make sure there is at least "size" bytes memory left before * going on. Otherwise, start on a new chunk. */ static di_off_t di_checkmem(struct di_state *st, di_off_t off, size_t size) { dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n", off, (int)size)); /* * di_checkmem() shouldn't be called with a size of zero. * But in case it is, we want to make sure we return a valid * offset within the memlist and not an offset that points us * at the end of the memlist. */ if (size == 0) { dcmn_err((CE_WARN, "di_checkmem: invalid zero size used")); size = 1; } off = DI_ALIGN(off); if ((st->mem_size - off) < size) { off = st->mem_size; di_allocmem(st, size); } return (off); } /* * Copy the private data format from ioctl arg. * On success, the ending offset is returned. On error 0 is returned. */ static di_off_t di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode) { di_off_t size; struct di_priv_data *priv; struct di_all *all = (struct di_all *)di_mem_addr(st, 0); dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n", off, (void *)arg, mode)); /* * Copyin data and check version. * We only handle private data version 0. */ priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP); if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data), mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) { kmem_free(priv, sizeof (struct di_priv_data)); return (0); } /* * Save di_priv_data copied from userland in snapshot. */ all->pd_version = priv->version; all->n_ppdata = priv->n_parent; all->n_dpdata = priv->n_driver; /* * copyin private data format, modify offset accordingly */ if (all->n_ppdata) { /* parent private data format */ /* * check memory */ size = all->n_ppdata * sizeof (struct di_priv_format); off = di_checkmem(st, off, size); all->ppdata_format = off; if (ddi_copyin(priv->parent, di_mem_addr(st, off), size, mode) != 0) { kmem_free(priv, sizeof (struct di_priv_data)); return (0); } off += size; } if (all->n_dpdata) { /* driver private data format */ /* * check memory */ size = all->n_dpdata * sizeof (struct di_priv_format); off = di_checkmem(st, off, size); all->dpdata_format = off; if (ddi_copyin(priv->driver, di_mem_addr(st, off), size, mode) != 0) { kmem_free(priv, sizeof (struct di_priv_data)); return (0); } off += size; } kmem_free(priv, sizeof (struct di_priv_data)); return (off); } /* * Return the real address based on the offset (off) within snapshot */ static caddr_t di_mem_addr(struct di_state *st, di_off_t off) { struct di_mem *dcp = st->memlist; dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n", (void *)dcp, off)); ASSERT(off < st->mem_size); while (off >= dcp->buf_size) { off -= dcp->buf_size; dcp = dcp->next; } dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n", off, (void *)(dcp->buf + off))); return (dcp->buf + off); } /* * Ideally we would use the whole key to derive the hash * value. However, the probability that two keys will * have the same dip (or pip) is very low, so * hashing by dip (or pip) pointer should suffice. */ static uint_t di_hash_byptr(void *arg, mod_hash_key_t key) { struct di_key *dik = key; size_t rshift; void *ptr; ASSERT(arg == NULL); switch (dik->k_type) { case DI_DKEY: ptr = dik->k_u.dkey.dk_dip; rshift = highbit(sizeof (struct dev_info)); break; case DI_PKEY: ptr = dik->k_u.pkey.pk_pip; rshift = highbit(sizeof (struct mdi_pathinfo)); break; default: panic("devinfo: unknown key type"); /*NOTREACHED*/ } return (mod_hash_byptr((void *)rshift, ptr)); } static void di_key_dtor(mod_hash_key_t key) { char *path_addr; struct di_key *dik = key; switch (dik->k_type) { case DI_DKEY: break; case DI_PKEY: path_addr = dik->k_u.pkey.pk_path_addr; if (path_addr) kmem_free(path_addr, strlen(path_addr) + 1); break; default: panic("devinfo: unknown key type"); /*NOTREACHED*/ } kmem_free(dik, sizeof (struct di_key)); } static int di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2) { if (dk1->dk_dip != dk2->dk_dip) return (dk1->dk_dip > dk2->dk_dip ? 1 : -1); if (dk1->dk_major != -1 && dk2->dk_major != -1) { if (dk1->dk_major != dk2->dk_major) return (dk1->dk_major > dk2->dk_major ? 1 : -1); if (dk1->dk_inst != dk2->dk_inst) return (dk1->dk_inst > dk2->dk_inst ? 1 : -1); } if (dk1->dk_nodeid != dk2->dk_nodeid) return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1); return (0); } static int di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2) { char *p1, *p2; int rv; if (pk1->pk_pip != pk2->pk_pip) return (pk1->pk_pip > pk2->pk_pip ? 1 : -1); p1 = pk1->pk_path_addr; p2 = pk2->pk_path_addr; p1 = p1 ? p1 : ""; p2 = p2 ? p2 : ""; rv = strcmp(p1, p2); if (rv) return (rv > 0 ? 1 : -1); if (pk1->pk_client != pk2->pk_client) return (pk1->pk_client > pk2->pk_client ? 1 : -1); if (pk1->pk_phci != pk2->pk_phci) return (pk1->pk_phci > pk2->pk_phci ? 1 : -1); return (0); } static int di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2) { struct di_key *dik1, *dik2; dik1 = key1; dik2 = key2; if (dik1->k_type != dik2->k_type) { panic("devinfo: mismatched keys"); /*NOTREACHED*/ } switch (dik1->k_type) { case DI_DKEY: return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey))); case DI_PKEY: return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey))); default: panic("devinfo: unknown key type"); /*NOTREACHED*/ } } /* * This is the main function that takes a snapshot */ static di_off_t di_snapshot(struct di_state *st) { di_off_t off; struct di_all *all; dev_info_t *rootnode; char buf[80]; all = (struct di_all *)di_mem_addr(st, 0); dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n")); /* * Hold the devinfo node referred by the path. */ rootnode = e_ddi_hold_devi_by_path(all->root_path, 0); if (rootnode == NULL) { dcmn_err((CE_CONT, "Devinfo node %s not found\n", all->root_path)); return (0); } (void) snprintf(buf, sizeof (buf), "devinfo registered dips (statep=%p)", (void *)st); st->reg_dip_hash = mod_hash_create_extended(buf, 64, di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, NULL, di_key_cmp, KM_SLEEP); (void) snprintf(buf, sizeof (buf), "devinfo registered pips (statep=%p)", (void *)st); st->reg_pip_hash = mod_hash_create_extended(buf, 64, di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, NULL, di_key_cmp, KM_SLEEP); /* * copy the device tree */ off = di_copytree(DEVI(rootnode), &all->top_devinfo, st); ddi_release_devi(rootnode); /* * copy the devnames array */ all->devnames = off; off = di_copydevnm(&all->devnames, st); /* initialize the hash tables */ st->lnode_count = 0; st->link_count = 0; if (DINFOLYR & st->command) { off = di_getlink_data(off, st); } /* * Free up hash tables */ mod_hash_destroy_hash(st->reg_dip_hash); mod_hash_destroy_hash(st->reg_pip_hash); /* * Record the timestamp now that we are done with snapshot. * * We compute the checksum later and then only if we cache * the snapshot, since checksumming adds some overhead. * The checksum is checked later if we read the cache file. * from disk. * * Set checksum field to 0 as CRC is calculated with that * field set to 0. */ all->snapshot_time = ddi_get_time(); all->cache_checksum = 0; return (off); } /* * Assumes all devinfo nodes in device tree have been snapshotted */ static void snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p) { struct dev_info *node; struct di_node *me; di_off_t off; ASSERT(mutex_owned(&dnp->dn_lock)); node = DEVI(dnp->dn_head); for (; node; node = node->devi_next) { if (di_dip_find(st, (dev_info_t *)node, &off) != 0) continue; ASSERT(off > 0); me = (struct di_node *)di_mem_addr(st, off); ASSERT(me->next == 0 || me->next == -1); /* * Only nodes which were BOUND when they were * snapshotted will be added to per-driver list. */ if (me->next != -1) continue; *poff_p = off; poff_p = &me->next; } *poff_p = 0; } /* * Copy the devnames array, so we have a list of drivers in the snapshot. * Also makes it possible to locate the per-driver devinfo nodes. */ static di_off_t di_copydevnm(di_off_t *off_p, struct di_state *st) { int i; di_off_t off; size_t size; struct di_devnm *dnp; dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p)); /* * make sure there is some allocated memory */ size = devcnt * sizeof (struct di_devnm); off = di_checkmem(st, *off_p, size); *off_p = off; dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n", devcnt, off)); dnp = (struct di_devnm *)di_mem_addr(st, off); off += size; for (i = 0; i < devcnt; i++) { if (devnamesp[i].dn_name == NULL) { continue; } /* * dn_name is not freed during driver unload or removal. * * There is a race condition when make_devname() changes * dn_name during our strcpy. This should be rare since * only add_drv does this. At any rate, we never had a * problem with ddi_name_to_major(), which should have * the same problem. */ dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n", devnamesp[i].dn_name, devnamesp[i].dn_instance, off)); off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1); dnp[i].name = off; (void) strcpy((char *)di_mem_addr(st, off), devnamesp[i].dn_name); off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1); mutex_enter(&devnamesp[i].dn_lock); /* * Snapshot per-driver node list */ snap_driver_list(st, &devnamesp[i], &dnp[i].head); /* * This is not used by libdevinfo, leave it for now */ dnp[i].flags = devnamesp[i].dn_flags; dnp[i].instance = devnamesp[i].dn_instance; /* * get global properties */ if ((DINFOPROP & st->command) && devnamesp[i].dn_global_prop_ptr) { dnp[i].global_prop = off; off = di_getprop( devnamesp[i].dn_global_prop_ptr->prop_list, &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST); } /* * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str */ if (CB_DRV_INSTALLED(devopsp[i])) { if (devopsp[i]->devo_cb_ops) { dnp[i].ops |= DI_CB_OPS; if (devopsp[i]->devo_cb_ops->cb_str) dnp[i].ops |= DI_STREAM_OPS; } if (NEXUS_DRV(devopsp[i])) { dnp[i].ops |= DI_BUS_OPS; } } mutex_exit(&devnamesp[i].dn_lock); } dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off)); return (off); } /* * Copy the kernel devinfo tree. The tree and the devnames array forms * the entire snapshot (see also di_copydevnm). */ static di_off_t di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st) { di_off_t off; struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP); dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n", (void *)root, *off_p)); /* force attach drivers */ if ((i_ddi_node_state((dev_info_t *)root) == DS_READY) && (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) { (void) ndi_devi_config((dev_info_t *)root, NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT | NDI_DRV_CONF_REPROBE); } /* * Push top_devinfo onto a stack * * The stack is necessary to avoid recursion, which can overrun * the kernel stack. */ PUSH_STACK(dsp, root, off_p); /* * As long as there is a node on the stack, copy the node. * di_copynode() is responsible for pushing and popping * child and sibling nodes on the stack. */ while (!EMPTY_STACK(dsp)) { off = di_copynode(dsp, st); } /* * Free the stack structure */ kmem_free(dsp, sizeof (struct di_stack)); return (off); } /* * This is the core function, which copies all data associated with a single * node into the snapshot. The amount of information is determined by the * ioctl command. */ static di_off_t di_copynode(struct di_stack *dsp, struct di_state *st) { di_off_t off; struct di_node *me; struct dev_info *node; dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth)); node = TOP_NODE(dsp); ASSERT(node != NULL); /* * check memory usage, and fix offsets accordingly. */ off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node)); *(TOP_OFFSET(dsp)) = off; me = DI_NODE(di_mem_addr(st, off)); dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n", node->devi_node_name, node->devi_instance, off)); /* * Node parameters: * self -- offset of current node within snapshot * nodeid -- pointer to PROM node (tri-valued) * state -- hot plugging device state * node_state -- devinfo node state (CF1, CF2, etc.) */ me->self = off; me->instance = node->devi_instance; me->nodeid = node->devi_nodeid; me->node_class = node->devi_node_class; me->attributes = node->devi_node_attributes; me->state = node->devi_state; me->node_state = node->devi_node_state; me->user_private_data = NULL; /* * Get parent's offset in snapshot from the stack * and store it in the current node */ if (dsp->depth > 1) { me->parent = *(PARENT_OFFSET(dsp)); } /* * Save the offset of this di_node in a hash table. * This is used later to resolve references to this * dip from other parts of the tree (per-driver list, * multipathing linkages, layered usage linkages). * The key used for the hash table is derived from * information in the dip. */ di_register_dip(st, (dev_info_t *)node, me->self); /* * increment offset */ off += sizeof (struct di_node); #ifdef DEVID_COMPATIBILITY /* check for devid as property marker */ if (node->devi_devid) { ddi_devid_t devid; char *devidstr; int devid_size; /* * The devid is now represented as a property. * For micro release compatibility with di_devid interface * in libdevinfo we must return it as a binary structure in' * the snapshot. When di_devid is removed from libdevinfo * in a future release (and devi_devid is deleted) then * code related to DEVID_COMPATIBILITY can be removed. */ ASSERT(node->devi_devid == DEVID_COMPATIBILITY); /* XXX should be DDI_DEV_T_NONE! */ if (ddi_prop_lookup_string(DDI_DEV_T_ANY, (dev_info_t *)node, DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) == DDI_PROP_SUCCESS) { if (ddi_devid_str_decode(devidstr, &devid, NULL) == DDI_SUCCESS) { devid_size = ddi_devid_sizeof(devid); off = di_checkmem(st, off, devid_size); me->devid = off; bcopy(devid, di_mem_addr(st, off), devid_size); off += devid_size; ddi_devid_free(devid); } ddi_prop_free(devidstr); } } #endif /* DEVID_COMPATIBILITY */ if (node->devi_node_name) { off = di_checkmem(st, off, strlen(node->devi_node_name) + 1); me->node_name = off; (void) strcpy(di_mem_addr(st, off), node->devi_node_name); off += strlen(node->devi_node_name) + 1; } if (node->devi_compat_names && (node->devi_compat_length > 1)) { off = di_checkmem(st, off, node->devi_compat_length); me->compat_names = off; me->compat_length = node->devi_compat_length; bcopy(node->devi_compat_names, di_mem_addr(st, off), node->devi_compat_length); off += node->devi_compat_length; } if (node->devi_addr) { off = di_checkmem(st, off, strlen(node->devi_addr) + 1); me->address = off; (void) strcpy(di_mem_addr(st, off), node->devi_addr); off += strlen(node->devi_addr) + 1; } if (node->devi_binding_name) { off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1); me->bind_name = off; (void) strcpy(di_mem_addr(st, off), node->devi_binding_name); off += strlen(node->devi_binding_name) + 1; } me->drv_major = node->devi_major; /* * If the dip is BOUND, set the next pointer of the * per-instance list to -1, indicating that it is yet to be resolved. * This will be resolved later in snap_driver_list(). */ if (me->drv_major != -1) { me->next = -1; } else { me->next = 0; } /* * An optimization to skip mutex_enter when not needed. */ if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) { goto priv_data; } /* * Grab current per dev_info node lock to * get minor data and properties. */ mutex_enter(&(node->devi_lock)); if (!(DINFOMINOR & st->command)) { goto path; } if (node->devi_minor) { /* minor data */ me->minor_data = DI_ALIGN(off); off = di_getmdata(node->devi_minor, &me->minor_data, me->self, st); } path: if (!(DINFOPATH & st->command)) { goto property; } if (MDI_CLIENT(node)) { me->multipath_client = DI_ALIGN(off); off = di_getpath_data((dev_info_t *)node, &me->multipath_client, me->self, st, 1); dcmn_err((CE_WARN, "me->multipath_client = %x for node %p " "component type = %d. off=%d", me->multipath_client, (void *)node, node->devi_mdi_component, off)); } if (MDI_PHCI(node)) { me->multipath_phci = DI_ALIGN(off); off = di_getpath_data((dev_info_t *)node, &me->multipath_phci, me->self, st, 0); dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p " "component type = %d. off=%d", me->multipath_phci, (void *)node, node->devi_mdi_component, off)); } property: if (!(DINFOPROP & st->command)) { goto unlock; } if (node->devi_drv_prop_ptr) { /* driver property list */ me->drv_prop = DI_ALIGN(off); off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st, node, DI_PROP_DRV_LIST); } if (node->devi_sys_prop_ptr) { /* system property list */ me->sys_prop = DI_ALIGN(off); off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st, node, DI_PROP_SYS_LIST); } if (node->devi_hw_prop_ptr) { /* hardware property list */ me->hw_prop = DI_ALIGN(off); off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st, node, DI_PROP_HW_LIST); } if (node->devi_global_prop_list == NULL) { me->glob_prop = (di_off_t)-1; /* not global property */ } else { /* * Make copy of global property list if this devinfo refers * global properties different from what's on the devnames * array. It can happen if there has been a forced * driver.conf update. See mod_drv(1M). */ ASSERT(me->drv_major != -1); if (node->devi_global_prop_list != devnamesp[me->drv_major].dn_global_prop_ptr) { me->glob_prop = DI_ALIGN(off); off = di_getprop(node->devi_global_prop_list->prop_list, &me->glob_prop, st, node, DI_PROP_GLB_LIST); } } unlock: /* * release current per dev_info node lock */ mutex_exit(&(node->devi_lock)); priv_data: if (!(DINFOPRIVDATA & st->command)) { goto pm_info; } if (ddi_get_parent_data((dev_info_t *)node) != NULL) { me->parent_data = DI_ALIGN(off); off = di_getppdata(node, &me->parent_data, st); } if (ddi_get_driver_private((dev_info_t *)node) != NULL) { me->driver_data = DI_ALIGN(off); off = di_getdpdata(node, &me->driver_data, st); } pm_info: /* NOT implemented */ subtree: if (!(DINFOSUBTREE & st->command)) { POP_STACK(dsp); return (DI_ALIGN(off)); } child: /* * If there is a child--push child onto stack. * Hold the parent busy while doing so. */ if (node->devi_child) { me->child = DI_ALIGN(off); PUSH_STACK(dsp, node->devi_child, &me->child); return (me->child); } sibling: /* * no child node, unroll the stack till a sibling of * a parent node is found or root node is reached */ POP_STACK(dsp); while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) { node = TOP_NODE(dsp); me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp)))); POP_STACK(dsp); } if (!EMPTY_STACK(dsp)) { /* * a sibling is found, replace top of stack by its sibling */ me->sibling = DI_ALIGN(off); PUSH_STACK(dsp, node->devi_sibling, &me->sibling); return (me->sibling); } /* * DONE with all nodes */ return (DI_ALIGN(off)); } static i_lnode_t * i_lnode_alloc(int modid) { i_lnode_t *i_lnode; i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP); ASSERT(modid != -1); i_lnode->modid = modid; return (i_lnode); } static void i_lnode_free(i_lnode_t *i_lnode) { kmem_free(i_lnode, sizeof (i_lnode_t)); } static void i_lnode_check_free(i_lnode_t *i_lnode) { /* This lnode and its dip must have been snapshotted */ ASSERT(i_lnode->self > 0); ASSERT(i_lnode->di_node->self > 0); /* at least 1 link (in or out) must exist for this lnode */ ASSERT(i_lnode->link_in || i_lnode->link_out); i_lnode_free(i_lnode); } static i_link_t * i_link_alloc(int spec_type) { i_link_t *i_link; i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP); i_link->spec_type = spec_type; return (i_link); } static void i_link_check_free(i_link_t *i_link) { /* This link must have been snapshotted */ ASSERT(i_link->self > 0); /* Both endpoint lnodes must exist for this link */ ASSERT(i_link->src_lnode); ASSERT(i_link->tgt_lnode); kmem_free(i_link, sizeof (i_link_t)); } /*ARGSUSED*/ static uint_t i_lnode_hashfunc(void *arg, mod_hash_key_t key) { i_lnode_t *i_lnode = (i_lnode_t *)key; struct di_node *ptr; dev_t dev; dev = i_lnode->devt; if (dev != DDI_DEV_T_NONE) return (i_lnode->modid + getminor(dev) + getmajor(dev)); ptr = i_lnode->di_node; ASSERT(ptr->self > 0); if (ptr) { uintptr_t k = (uintptr_t)ptr; k >>= (int)highbit(sizeof (struct di_node)); return ((uint_t)k); } return (i_lnode->modid); } static int i_lnode_cmp(void *arg1, void *arg2) { i_lnode_t *i_lnode1 = (i_lnode_t *)arg1; i_lnode_t *i_lnode2 = (i_lnode_t *)arg2; if (i_lnode1->modid != i_lnode2->modid) { return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1); } if (i_lnode1->di_node != i_lnode2->di_node) return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1); if (i_lnode1->devt != i_lnode2->devt) return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1); return (0); } /* * An lnode represents a {dip, dev_t} tuple. A link represents a * {src_lnode, tgt_lnode, spec_type} tuple. * The following callback assumes that LDI framework ref-counts the * src_dip and tgt_dip while invoking this callback. */ static int di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg) { struct di_state *st = (struct di_state *)arg; i_lnode_t *src_lnode, *tgt_lnode, *i_lnode; i_link_t **i_link_next, *i_link; di_off_t soff, toff; mod_hash_val_t nodep = NULL; int res; /* * if the source or target of this device usage information doesn't * corrospond to a device node then we don't report it via * libdevinfo so return. */ if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL)) return (LDI_USAGE_CONTINUE); ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip)); ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip)); /* * Skip the ldi_usage if either src or tgt dip is not in the * snapshot. This saves us from pruning bad lnodes/links later. */ if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0) return (LDI_USAGE_CONTINUE); if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0) return (LDI_USAGE_CONTINUE); ASSERT(soff > 0); ASSERT(toff > 0); /* * allocate an i_lnode and add it to the lnode hash * if it is not already present. For this particular * link the lnode is a source, but it may * participate as tgt or src in any number of layered * operations - so it may already be in the hash. */ i_lnode = i_lnode_alloc(ldi_usage->src_modid); i_lnode->di_node = (struct di_node *)di_mem_addr(st, soff); i_lnode->devt = ldi_usage->src_devt; res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); if (res == MH_ERR_NOTFOUND) { /* * new i_lnode * add it to the hash and increment the lnode count */ res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); ASSERT(res == 0); st->lnode_count++; src_lnode = i_lnode; } else { /* this i_lnode already exists in the lnode_hash */ i_lnode_free(i_lnode); src_lnode = (i_lnode_t *)nodep; } /* * allocate a tgt i_lnode and add it to the lnode hash */ i_lnode = i_lnode_alloc(ldi_usage->tgt_modid); i_lnode->di_node = (struct di_node *)di_mem_addr(st, toff); i_lnode->devt = ldi_usage->tgt_devt; res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); if (res == MH_ERR_NOTFOUND) { /* * new i_lnode * add it to the hash and increment the lnode count */ res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); ASSERT(res == 0); st->lnode_count++; tgt_lnode = i_lnode; } else { /* this i_lnode already exists in the lnode_hash */ i_lnode_free(i_lnode); tgt_lnode = (i_lnode_t *)nodep; } /* * allocate a i_link */ i_link = i_link_alloc(ldi_usage->tgt_spec_type); i_link->src_lnode = src_lnode; i_link->tgt_lnode = tgt_lnode; /* * add this link onto the src i_lnodes outbound i_link list */ i_link_next = &(src_lnode->link_out); while (*i_link_next != NULL) { if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) && (i_link->spec_type == (*i_link_next)->spec_type)) { /* this link already exists */ kmem_free(i_link, sizeof (i_link_t)); return (LDI_USAGE_CONTINUE); } i_link_next = &((*i_link_next)->src_link_next); } *i_link_next = i_link; /* * add this link onto the tgt i_lnodes inbound i_link list */ i_link_next = &(tgt_lnode->link_in); while (*i_link_next != NULL) { ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0); i_link_next = &((*i_link_next)->tgt_link_next); } *i_link_next = i_link; /* * add this i_link to the link hash */ res = mod_hash_insert(st->link_hash, i_link, i_link); ASSERT(res == 0); st->link_count++; return (LDI_USAGE_CONTINUE); } struct i_layer_data { struct di_state *st; int lnode_count; int link_count; di_off_t lnode_off; di_off_t link_off; }; /*ARGSUSED*/ static uint_t i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) { i_link_t *i_link = (i_link_t *)key; struct i_layer_data *data = arg; struct di_link *me; struct di_lnode *melnode; struct di_node *medinode; ASSERT(i_link->self == 0); i_link->self = data->link_off + (data->link_count * sizeof (struct di_link)); data->link_count++; ASSERT(data->link_off > 0 && data->link_count > 0); ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */ ASSERT(data->link_count <= data->st->link_count); /* fill in fields for the di_link snapshot */ me = (struct di_link *)di_mem_addr(data->st, i_link->self); me->self = i_link->self; me->spec_type = i_link->spec_type; /* * The src_lnode and tgt_lnode i_lnode_t for this i_link_t * are created during the LDI table walk. Since we are * walking the link hash, the lnode hash has already been * walked and the lnodes have been snapshotted. Save lnode * offsets. */ me->src_lnode = i_link->src_lnode->self; me->tgt_lnode = i_link->tgt_lnode->self; /* * Save this link's offset in the src_lnode snapshot's link_out * field */ melnode = (struct di_lnode *)di_mem_addr(data->st, me->src_lnode); me->src_link_next = melnode->link_out; melnode->link_out = me->self; /* * Put this link on the tgt_lnode's link_in field */ melnode = (struct di_lnode *)di_mem_addr(data->st, me->tgt_lnode); me->tgt_link_next = melnode->link_in; melnode->link_in = me->self; /* * An i_lnode_t is only created if the corresponding dip exists * in the snapshot. A pointer to the di_node is saved in the * i_lnode_t when it is allocated. For this link, get the di_node * for the source lnode. Then put the link on the di_node's list * of src links */ medinode = i_link->src_lnode->di_node; me->src_node_next = medinode->src_links; medinode->src_links = me->self; /* * Put this link on the tgt_links list of the target * dip. */ medinode = i_link->tgt_lnode->di_node; me->tgt_node_next = medinode->tgt_links; medinode->tgt_links = me->self; return (MH_WALK_CONTINUE); } /*ARGSUSED*/ static uint_t i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) { i_lnode_t *i_lnode = (i_lnode_t *)key; struct i_layer_data *data = arg; struct di_lnode *me; struct di_node *medinode; ASSERT(i_lnode->self == 0); i_lnode->self = data->lnode_off + (data->lnode_count * sizeof (struct di_lnode)); data->lnode_count++; ASSERT(data->lnode_off > 0 && data->lnode_count > 0); ASSERT(data->link_count == 0); /* links not done yet */ ASSERT(data->lnode_count <= data->st->lnode_count); /* fill in fields for the di_lnode snapshot */ me = (struct di_lnode *)di_mem_addr(data->st, i_lnode->self); me->self = i_lnode->self; if (i_lnode->devt == DDI_DEV_T_NONE) { me->dev_major = (major_t)-1; me->dev_minor = (minor_t)-1; } else { me->dev_major = getmajor(i_lnode->devt); me->dev_minor = getminor(i_lnode->devt); } /* * The dip corresponding to this lnode must exist in * the snapshot or we wouldn't have created the i_lnode_t * during LDI walk. Save the offset of the dip. */ ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0); me->node = i_lnode->di_node->self; /* * There must be at least one link in or out of this lnode * or we wouldn't have created it. These fields will be set * during the link hash walk. */ ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL)); /* * set the offset of the devinfo node associated with this * lnode. Also update the node_next next pointer. this pointer * is set if there are multiple lnodes associated with the same * devinfo node. (could occure when multiple minor nodes * are open for one device, etc.) */ medinode = i_lnode->di_node; me->node_next = medinode->lnodes; medinode->lnodes = me->self; return (MH_WALK_CONTINUE); } static di_off_t di_getlink_data(di_off_t off, struct di_state *st) { struct i_layer_data data = {0}; size_t size; dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off)); st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32, mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free, i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP); st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32, (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t)); /* get driver layering information */ (void) ldi_usage_walker(st, di_ldi_callback); /* check if there is any link data to include in the snapshot */ if (st->lnode_count == 0) { ASSERT(st->link_count == 0); goto out; } ASSERT(st->link_count != 0); /* get a pointer to snapshot memory for all the di_lnodes */ size = sizeof (struct di_lnode) * st->lnode_count; data.lnode_off = off = di_checkmem(st, off, size); off += DI_ALIGN(size); /* get a pointer to snapshot memory for all the di_links */ size = sizeof (struct di_link) * st->link_count; data.link_off = off = di_checkmem(st, off, size); off += DI_ALIGN(size); data.lnode_count = data.link_count = 0; data.st = st; /* * We have lnodes and links that will go into the * snapshot, so let's walk the respective hashes * and snapshot them. The various linkages are * also set up during the walk. */ mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data); ASSERT(data.lnode_count == st->lnode_count); mod_hash_walk(st->link_hash, i_link_walker, (void *)&data); ASSERT(data.link_count == st->link_count); out: /* free up the i_lnodes and i_links used to create the snapshot */ mod_hash_destroy_hash(st->lnode_hash); mod_hash_destroy_hash(st->link_hash); st->lnode_count = 0; st->link_count = 0; return (off); } /* * Copy all minor data nodes attached to a devinfo node into the snapshot. * It is called from di_copynode with devi_lock held. */ static di_off_t di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node, struct di_state *st) { di_off_t off; struct di_minor *me; dcmn_err2((CE_CONT, "di_getmdata:\n")); /* * check memory first */ off = di_checkmem(st, *off_p, sizeof (struct di_minor)); *off_p = off; do { me = (struct di_minor *)di_mem_addr(st, off); me->self = off; me->type = mnode->type; me->node = node; me->user_private_data = NULL; off += DI_ALIGN(sizeof (struct di_minor)); /* * Split dev_t to major/minor, so it works for * both ILP32 and LP64 model */ me->dev_major = getmajor(mnode->ddm_dev); me->dev_minor = getminor(mnode->ddm_dev); me->spec_type = mnode->ddm_spec_type; if (mnode->ddm_name) { off = di_checkmem(st, off, strlen(mnode->ddm_name) + 1); me->name = off; (void) strcpy(di_mem_addr(st, off), mnode->ddm_name); off += DI_ALIGN(strlen(mnode->ddm_name) + 1); } if (mnode->ddm_node_type) { off = di_checkmem(st, off, strlen(mnode->ddm_node_type) + 1); me->node_type = off; (void) strcpy(di_mem_addr(st, off), mnode->ddm_node_type); off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1); } off = di_checkmem(st, off, sizeof (struct di_minor)); me->next = off; mnode = mnode->next; } while (mnode); me->next = 0; return (off); } /* * di_register_dip(), di_find_dip(): The dip must be protected * from deallocation when using these routines - this can either * be a reference count, a busy hold or a per-driver lock. */ static void di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off) { struct dev_info *node = DEVI(dip); struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); struct di_dkey *dk; ASSERT(dip); ASSERT(off > 0); key->k_type = DI_DKEY; dk = &(key->k_u.dkey); dk->dk_dip = dip; dk->dk_major = node->devi_major; dk->dk_inst = node->devi_instance; dk->dk_nodeid = node->devi_nodeid; if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key, (mod_hash_val_t)(uintptr_t)off) != 0) { panic( "duplicate devinfo (%p) registered during device " "tree walk", (void *)dip); } } static int di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p) { /* * uintptr_t must be used because it matches the size of void *; * mod_hash expects clients to place results into pointer-size * containers; since di_off_t is always a 32-bit offset, alignment * would otherwise be broken on 64-bit kernels. */ uintptr_t offset; struct di_key key = {0}; struct di_dkey *dk; ASSERT(st->reg_dip_hash); ASSERT(dip); ASSERT(off_p); key.k_type = DI_DKEY; dk = &(key.k_u.dkey); dk->dk_dip = dip; dk->dk_major = DEVI(dip)->devi_major; dk->dk_inst = DEVI(dip)->devi_instance; dk->dk_nodeid = DEVI(dip)->devi_nodeid; if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key, (mod_hash_val_t *)&offset) == 0) { *off_p = (di_off_t)offset; return (0); } else { return (-1); } } /* * di_register_pip(), di_find_pip(): The pip must be protected from deallocation * when using these routines. The caller must do this by protecting the * client(or phci)<->pip linkage while traversing the list and then holding the * pip when it is found in the list. */ static void di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off) { struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); char *path_addr; struct di_pkey *pk; ASSERT(pip); ASSERT(off > 0); key->k_type = DI_PKEY; pk = &(key->k_u.pkey); pk->pk_pip = pip; path_addr = mdi_pi_get_addr(pip); if (path_addr) pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP); pk->pk_client = mdi_pi_get_client(pip); pk->pk_phci = mdi_pi_get_phci(pip); if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key, (mod_hash_val_t)(uintptr_t)off) != 0) { panic( "duplicate pathinfo (%p) registered during device " "tree walk", (void *)pip); } } /* * As with di_register_pip, the caller must hold or lock the pip */ static int di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p) { /* * uintptr_t must be used because it matches the size of void *; * mod_hash expects clients to place results into pointer-size * containers; since di_off_t is always a 32-bit offset, alignment * would otherwise be broken on 64-bit kernels. */ uintptr_t offset; struct di_key key = {0}; struct di_pkey *pk; ASSERT(st->reg_pip_hash); ASSERT(off_p); if (pip == NULL) { *off_p = 0; return (0); } key.k_type = DI_PKEY; pk = &(key.k_u.pkey); pk->pk_pip = pip; pk->pk_path_addr = mdi_pi_get_addr(pip); pk->pk_client = mdi_pi_get_client(pip); pk->pk_phci = mdi_pi_get_phci(pip); if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key, (mod_hash_val_t *)&offset) == 0) { *off_p = (di_off_t)offset; return (0); } else { return (-1); } } static di_path_state_t path_state_convert(mdi_pathinfo_state_t st) { switch (st) { case MDI_PATHINFO_STATE_ONLINE: return (DI_PATH_STATE_ONLINE); case MDI_PATHINFO_STATE_STANDBY: return (DI_PATH_STATE_STANDBY); case MDI_PATHINFO_STATE_OFFLINE: return (DI_PATH_STATE_OFFLINE); case MDI_PATHINFO_STATE_FAULT: return (DI_PATH_STATE_FAULT); default: return (DI_PATH_STATE_UNKNOWN); } } static di_off_t di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p, struct di_state *st) { nvpair_t *prop = NULL; struct di_path_prop *me; if (mdi_pi_get_next_prop(pip, NULL) == NULL) { *off_p = 0; return (off); } off = di_checkmem(st, off, sizeof (struct di_path_prop)); *off_p = off; while (prop = mdi_pi_get_next_prop(pip, prop)) { int delta = 0; me = (struct di_path_prop *)di_mem_addr(st, off); me->self = off; off += sizeof (struct di_path_prop); /* * property name */ off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1); me->prop_name = off; (void) strcpy(di_mem_addr(st, off), nvpair_name(prop)); off += strlen(nvpair_name(prop)) + 1; switch (nvpair_type(prop)) { case DATA_TYPE_BYTE: case DATA_TYPE_INT16: case DATA_TYPE_UINT16: case DATA_TYPE_INT32: case DATA_TYPE_UINT32: delta = sizeof (int32_t); me->prop_type = DDI_PROP_TYPE_INT; off = di_checkmem(st, off, delta); (void) nvpair_value_int32(prop, (int32_t *)di_mem_addr(st, off)); break; case DATA_TYPE_INT64: case DATA_TYPE_UINT64: delta = sizeof (int64_t); me->prop_type = DDI_PROP_TYPE_INT64; off = di_checkmem(st, off, delta); (void) nvpair_value_int64(prop, (int64_t *)di_mem_addr(st, off)); break; case DATA_TYPE_STRING: { char *str; (void) nvpair_value_string(prop, &str); delta = strlen(str) + 1; me->prop_type = DDI_PROP_TYPE_STRING; off = di_checkmem(st, off, delta); (void) strcpy(di_mem_addr(st, off), str); break; } case DATA_TYPE_BYTE_ARRAY: case DATA_TYPE_INT16_ARRAY: case DATA_TYPE_UINT16_ARRAY: case DATA_TYPE_INT32_ARRAY: case DATA_TYPE_UINT32_ARRAY: case DATA_TYPE_INT64_ARRAY: case DATA_TYPE_UINT64_ARRAY: { uchar_t *buf; uint_t nelems; (void) nvpair_value_byte_array(prop, &buf, &nelems); delta = nelems; me->prop_type = DDI_PROP_TYPE_BYTE; if (nelems != 0) { off = di_checkmem(st, off, delta); bcopy(buf, di_mem_addr(st, off), nelems); } break; } default: /* Unknown or unhandled type; skip it */ delta = 0; break; } if (delta > 0) { me->prop_data = off; } me->prop_len = delta; off += delta; off = di_checkmem(st, off, sizeof (struct di_path_prop)); me->prop_next = off; } me->prop_next = 0; return (off); } static void di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp, int get_client) { if (get_client) { ASSERT(me->path_client == 0); me->path_client = noff; ASSERT(me->path_c_link == 0); *off_pp = &me->path_c_link; me->path_snap_state &= ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK); } else { ASSERT(me->path_phci == 0); me->path_phci = noff; ASSERT(me->path_p_link == 0); *off_pp = &me->path_p_link; me->path_snap_state &= ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK); } } /* * poff_p: pointer to the linkage field. This links pips along the client|phci * linkage list. * noff : Offset for the endpoint dip snapshot. */ static di_off_t di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff, struct di_state *st, int get_client) { di_off_t off; mdi_pathinfo_t *pip; struct di_path *me; mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *); dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client)); /* * The naming of the following mdi_xyz() is unfortunately * non-intuitive. mdi_get_next_phci_path() follows the * client_link i.e. the list of pip's belonging to the * given client dip. */ if (get_client) next_pip = &mdi_get_next_phci_path; else next_pip = &mdi_get_next_client_path; off = *poff_p; pip = NULL; while (pip = (*next_pip)(dip, pip)) { mdi_pathinfo_state_t state; di_off_t stored_offset; dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip)); mdi_pi_lock(pip); if (di_pip_find(st, pip, &stored_offset) != -1) { /* * We've already seen this pathinfo node so we need to * take care not to snap it again; However, one endpoint * and linkage will be set here. The other endpoint * and linkage has already been set when the pip was * first snapshotted i.e. when the other endpoint dip * was snapshotted. */ me = (struct di_path *)di_mem_addr(st, stored_offset); *poff_p = stored_offset; di_path_one_endpoint(me, noff, &poff_p, get_client); /* * The other endpoint and linkage were set when this * pip was snapshotted. So we are done with both * endpoints and linkages. */ ASSERT(!(me->path_snap_state & (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI))); ASSERT(!(me->path_snap_state & (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK))); mdi_pi_unlock(pip); continue; } /* * Now that we need to snapshot this pip, check memory */ off = di_checkmem(st, off, sizeof (struct di_path)); me = (struct di_path *)di_mem_addr(st, off); me->self = off; *poff_p = off; off += sizeof (struct di_path); me->path_snap_state = DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK; me->path_snap_state |= DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI; /* * Zero out fields as di_checkmem() doesn't guarantee * zero-filled memory */ me->path_client = me->path_phci = 0; me->path_c_link = me->path_p_link = 0; di_path_one_endpoint(me, noff, &poff_p, get_client); /* * Note the existence of this pathinfo */ di_register_pip(st, pip, me->self); state = mdi_pi_get_state(pip); me->path_state = path_state_convert(state); /* * Get intermediate addressing info. */ off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1); me->path_addr = off; (void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip)); off += strlen(mdi_pi_get_addr(pip)) + 1; /* * Get path properties if props are to be included in the * snapshot */ if (DINFOPROP & st->command) { off = di_path_getprop(pip, off, &me->path_prop, st); } else { me->path_prop = 0; } mdi_pi_unlock(pip); } *poff_p = 0; return (off); } /* * Copy a list of properties attached to a devinfo node. Called from * di_copynode with devi_lock held. The major number is passed in case * we need to call driver's prop_op entry. The value of list indicates * which list we are copying. Possible values are: * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST */ static di_off_t di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st, struct dev_info *dip, int list) { dev_t dev; int (*prop_op)(); int off, need_prop_op = 0; int prop_op_fail = 0; ddi_prop_t *propp = NULL; struct di_prop *pp; struct dev_ops *ops = NULL; int prop_len; caddr_t prop_val; dcmn_err2((CE_CONT, "di_getprop:\n")); ASSERT(st != NULL); dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop)); /* * Figure out if we need to call driver's prop_op entry point. * The conditions are: * -- driver property list * -- driver must be attached and held * -- driver's cb_prop_op != ddi_prop_op * or parent's bus_prop_op != ddi_bus_prop_op */ if (list != DI_PROP_DRV_LIST) { goto getprop; } /* * If driver is not attached or if major is -1, we ignore * the driver property list. No one should rely on such * properties. */ if (i_ddi_node_state((dev_info_t *)dip) < DS_ATTACHED) { off = *off_p; *off_p = 0; return (off); } /* * Now we have a driver which is held. We can examine entry points * and check the condition listed above. */ ops = dip->devi_ops; /* * Some nexus drivers incorrectly set cb_prop_op to nodev, * nulldev or even NULL. */ if (ops && ops->devo_cb_ops && (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) && (ops->devo_cb_ops->cb_prop_op != nodev) && (ops->devo_cb_ops->cb_prop_op != nulldev) && (ops->devo_cb_ops->cb_prop_op != NULL)) { need_prop_op = 1; } getprop: /* * check memory availability */ off = di_checkmem(st, *off_p, sizeof (struct di_prop)); *off_p = off; /* * Now copy properties */ do { pp = (struct di_prop *)di_mem_addr(st, off); pp->self = off; /* * Split dev_t to major/minor, so it works for * both ILP32 and LP64 model */ pp->dev_major = getmajor(prop->prop_dev); pp->dev_minor = getminor(prop->prop_dev); pp->prop_flags = prop->prop_flags; pp->prop_list = list; /* * property name */ off += sizeof (struct di_prop); if (prop->prop_name) { off = di_checkmem(st, off, strlen(prop->prop_name) + 1); pp->prop_name = off; (void) strcpy(di_mem_addr(st, off), prop->prop_name); off += strlen(prop->prop_name) + 1; } /* * Set prop_len here. This may change later * if cb_prop_op returns a different length. */ pp->prop_len = prop->prop_len; if (!need_prop_op) { if (prop->prop_val == NULL) { dcmn_err((CE_WARN, "devinfo: property fault at %p", (void *)prop)); pp->prop_data = -1; } else if (prop->prop_len != 0) { off = di_checkmem(st, off, prop->prop_len); pp->prop_data = off; bcopy(prop->prop_val, di_mem_addr(st, off), prop->prop_len); off += DI_ALIGN(pp->prop_len); } } off = di_checkmem(st, off, sizeof (struct di_prop)); pp->next = off; prop = prop->prop_next; } while (prop); pp->next = 0; if (!need_prop_op) { dcmn_err((CE_CONT, "finished property " "list at offset 0x%x\n", off)); return (off); } /* * If there is a need to call driver's prop_op entry, * we must release driver's devi_lock, because the * cb_prop_op entry point will grab it. * * The snapshot memory has already been allocated above, * which means the length of an active property should * remain fixed for this implementation to work. */ prop_op = ops->devo_cb_ops->cb_prop_op; pp = (struct di_prop *)di_mem_addr(st, *off_p); mutex_exit(&dip->devi_lock); do { int err; struct di_prop *tmp; if (pp->next) { tmp = (struct di_prop *) di_mem_addr(st, pp->next); } else { tmp = NULL; } /* * call into driver's prop_op entry point * * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY */ dev = makedevice(pp->dev_major, pp->dev_minor); if (dev == DDI_DEV_T_NONE) dev = DDI_DEV_T_ANY; dcmn_err((CE_CONT, "call prop_op" "(%lx, %p, PROP_LEN_AND_VAL_BUF, " "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n", dev, (void *)dip, (char *)di_mem_addr(st, pp->prop_name), (void *)di_mem_addr(st, pp->prop_data), pp->prop_len)); if ((err = (*prop_op)(dev, (dev_info_t)dip, PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS, (char *)di_mem_addr(st, pp->prop_name), &prop_val, &prop_len)) != DDI_PROP_SUCCESS) { if ((propp = i_ddi_prop_search(dev, (char *)di_mem_addr(st, pp->prop_name), (uint_t)pp->prop_flags, &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) { pp->prop_len = propp->prop_len; if (pp->prop_len != 0) { off = di_checkmem(st, off, pp->prop_len); pp->prop_data = off; bcopy(propp->prop_val, di_mem_addr(st, pp->prop_data), propp->prop_len); off += DI_ALIGN(pp->prop_len); } } else { prop_op_fail = 1; } } else if (prop_len != 0) { pp->prop_len = prop_len; off = di_checkmem(st, off, prop_len); pp->prop_data = off; bcopy(prop_val, di_mem_addr(st, off), prop_len); off += DI_ALIGN(prop_len); kmem_free(prop_val, prop_len); } if (prop_op_fail) { pp->prop_data = -1; dcmn_err((CE_WARN, "devinfo: prop_op failure " "for \"%s\" err %d", di_mem_addr(st, pp->prop_name), err)); } pp = tmp; } while (pp); mutex_enter(&dip->devi_lock); dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off)); return (off); } /* * find private data format attached to a dip * parent = 1 to match driver name of parent dip (for parent private data) * 0 to match driver name of current dip (for driver private data) */ #define DI_MATCH_DRIVER 0 #define DI_MATCH_PARENT 1 struct di_priv_format * di_match_drv_name(struct dev_info *node, struct di_state *st, int match) { int i, count, len; char *drv_name; major_t major; struct di_all *all; struct di_priv_format *form; dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n", node->devi_node_name, match)); if (match == DI_MATCH_PARENT) { node = DEVI(node->devi_parent); } if (node == NULL) { return (NULL); } major = ddi_name_to_major(node->devi_binding_name); if (major == (major_t)(-1)) { return (NULL); } /* * Match the driver name. */ drv_name = ddi_major_to_name(major); if ((drv_name == NULL) || *drv_name == '\0') { return (NULL); } /* Now get the di_priv_format array */ all = (struct di_all *)di_mem_addr(st, 0); if (match == DI_MATCH_PARENT) { count = all->n_ppdata; form = (struct di_priv_format *) (di_mem_addr(st, 0) + all->ppdata_format); } else { count = all->n_dpdata; form = (struct di_priv_format *) ((caddr_t)all + all->dpdata_format); } len = strlen(drv_name); for (i = 0; i < count; i++) { char *tmp; tmp = form[i].drv_name; while (tmp && (*tmp != '\0')) { if (strncmp(drv_name, tmp, len) == 0) { return (&form[i]); } /* * Move to next driver name, skipping a white space */ if (tmp = strchr(tmp, ' ')) { tmp++; } } } return (NULL); } /* * The following functions copy data as specified by the format passed in. * To prevent invalid format from panicing the system, we call on_fault(). * A return value of 0 indicates an error. Otherwise, the total offset * is returned. */ #define DI_MAX_PRIVDATA (PAGESIZE >> 1) /* max private data size */ static di_off_t di_getprvdata(struct di_priv_format *pdp, void *data, di_off_t *off_p, struct di_state *st) { caddr_t pa; void *ptr; int i, size, repeat; di_off_t off, off0, *tmp; label_t ljb; dcmn_err2((CE_CONT, "di_getprvdata:\n")); /* * check memory availability. Private data size is * limited to DI_MAX_PRIVDATA. */ off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA); if ((pdp->bytes <= 0) || pdp->bytes > DI_MAX_PRIVDATA) { goto failure; } if (!on_fault(&ljb)) { /* copy the struct */ bcopy(data, di_mem_addr(st, off), pdp->bytes); off0 = DI_ALIGN(pdp->bytes); /* dereferencing pointers */ for (i = 0; i < MAX_PTR_IN_PRV; i++) { if (pdp->ptr[i].size == 0) { goto success; /* no more ptrs */ } /* * first, get the pointer content */ if ((pdp->ptr[i].offset < 0) || (pdp->ptr[i].offset > pdp->bytes - sizeof (char *))) goto failure; /* wrong offset */ pa = di_mem_addr(st, off + pdp->ptr[i].offset); tmp = (di_off_t *)pa; /* to store off_t later */ ptr = *((void **) pa); /* get pointer value */ if (ptr == NULL) { /* if NULL pointer, go on */ continue; } /* * next, find the repeat count (array dimension) */ repeat = pdp->ptr[i].len_offset; /* * Positive value indicates a fixed sized array. * 0 or negative value indicates variable sized array. * * For variable sized array, the variable must be * an int member of the structure, with an offset * equal to the absolution value of struct member. */ if (repeat > pdp->bytes - sizeof (int)) { goto failure; /* wrong offset */ } if (repeat >= 0) { repeat = *((int *)((caddr_t)data + repeat)); } else { repeat = -repeat; } /* * next, get the size of the object to be copied */ size = pdp->ptr[i].size * repeat; /* * Arbitrarily limit the total size of object to be * copied (1 byte to 1/4 page). */ if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) { goto failure; /* wrong size or too big */ } /* * Now copy the data */ *tmp = off0; bcopy(ptr, di_mem_addr(st, off + off0), size); off0 += DI_ALIGN(size); } } else { goto failure; } success: /* * success if reached here */ no_fault(); *off_p = off; return (off + off0); /*NOTREACHED*/ failure: /* * fault occurred */ no_fault(); cmn_err(CE_WARN, "devinfo: fault in private data at %p", data); *off_p = -1; /* set private data to indicate error */ return (off); } /* * get parent private data; on error, returns original offset */ static di_off_t di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) { int off; struct di_priv_format *ppdp; dcmn_err2((CE_CONT, "di_getppdata:\n")); /* find the parent data format */ if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) { off = *off_p; *off_p = 0; /* set parent data to none */ return (off); } return (di_getprvdata(ppdp, ddi_get_parent_data((dev_info_t *)node), off_p, st)); } /* * get parent private data; returns original offset */ static di_off_t di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) { int off; struct di_priv_format *dpdp; dcmn_err2((CE_CONT, "di_getdpdata:")); /* find the parent data format */ if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) { off = *off_p; *off_p = 0; /* set driver data to none */ return (off); } return (di_getprvdata(dpdp, ddi_get_driver_private((dev_info_t *)node), off_p, st)); } /* * The driver is stateful across DINFOCPYALL and DINFOUSRLD. * This function encapsulates the state machine: * * -> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY -> * | SNAPSHOT USRLD | * -------------------------------------------------- * * Returns 0 on success and -1 on failure */ static int di_setstate(struct di_state *st, int new_state) { int ret = 0; mutex_enter(&di_lock); switch (new_state) { case IOC_IDLE: case IOC_DONE: break; case IOC_SNAP: if (st->di_iocstate != IOC_IDLE) ret = -1; break; case IOC_COPY: if (st->di_iocstate != IOC_DONE) ret = -1; break; default: ret = -1; } if (ret == 0) st->di_iocstate = new_state; else cmn_err(CE_NOTE, "incorrect state transition from %d to %d", st->di_iocstate, new_state); mutex_exit(&di_lock); return (ret); } /* * We cannot assume the presence of the entire * snapshot in this routine. All we are guaranteed * is the di_all struct + 1 byte (for root_path) */ static int header_plus_one_ok(struct di_all *all) { /* * Refuse to read old versions */ if (all->version != DI_SNAPSHOT_VERSION) { CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version)); return (0); } if (all->cache_magic != DI_CACHE_MAGIC) { CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic)); return (0); } if (all->snapshot_time <= 0) { CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time)); return (0); } if (all->top_devinfo == 0) { CACHE_DEBUG((DI_ERR, "NULL top devinfo")); return (0); } if (all->map_size < sizeof (*all) + 1) { CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size)); return (0); } if (all->root_path[0] != '/' || all->root_path[1] != '\0') { CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c", all->root_path[0], all->root_path[1])); return (0); } /* * We can't check checksum here as we just have the header */ return (1); } static int chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len) { rlim64_t rlimit; ssize_t resid; int error = 0; rlimit = RLIM64_INFINITY; while (len) { resid = 0; error = vn_rdwr(UIO_WRITE, vp, buf, len, off, UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid); if (error || resid < 0) { error = error ? error : EIO; CACHE_DEBUG((DI_ERR, "write error: %d", error)); break; } /* * Check if we are making progress */ if (resid >= len) { error = ENOSPC; break; } buf += len - resid; off += len - resid; len = resid; } return (error); } extern int modrootloaded; static void di_cache_write(struct di_cache *cache) { struct di_all *all; struct vnode *vp; int oflags; size_t map_size; size_t chunk; offset_t off; int error; char *buf; ASSERT(DI_CACHE_LOCKED(*cache)); ASSERT(!servicing_interrupt()); if (cache->cache_size == 0) { ASSERT(cache->cache_data == NULL); CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write")); return; } ASSERT(cache->cache_size > 0); ASSERT(cache->cache_data); if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) { CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write")); return; } all = (struct di_all *)cache->cache_data; if (!header_plus_one_ok(all)) { CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write")); return; } ASSERT(strcmp(all->root_path, "/") == 0); /* * The cache_size is the total allocated memory for the cache. * The map_size is the actual size of valid data in the cache. * map_size may be smaller than cache_size but cannot exceed * cache_size. */ if (all->map_size > cache->cache_size) { CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)." " Skipping write", all->map_size, cache->cache_size)); return; } /* * First unlink the temp file */ error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE); if (error && error != ENOENT) { CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d", DI_CACHE_TEMP, error)); } if (error == EROFS) { CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write")); return; } vp = NULL; oflags = (FCREAT|FWRITE); if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags, DI_CACHE_PERMS, &vp, CRCREAT, 0)) { CACHE_DEBUG((DI_ERR, "%s: create failed: %d", DI_CACHE_TEMP, error)); return; } ASSERT(vp); /* * Paranoid: Check if the file is on a read-only FS */ if (vn_is_readonly(vp)) { CACHE_DEBUG((DI_ERR, "cannot write: readonly FS")); goto fail; } /* * Note that we only write map_size bytes to disk - this saves * space as the actual cache size may be larger than size of * valid data in the cache. * Another advantage is that it makes verification of size * easier when the file is read later. */ map_size = all->map_size; off = 0; buf = cache->cache_data; while (map_size) { ASSERT(map_size > 0); /* * Write in chunks so that VM system * is not overwhelmed */ if (map_size > di_chunk * PAGESIZE) chunk = di_chunk * PAGESIZE; else chunk = map_size; error = chunk_write(vp, off, buf, chunk); if (error) { CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d", off, error)); goto fail; } off += chunk; buf += chunk; map_size -= chunk; /* Give pageout a chance to run */ delay(1); } /* * Now sync the file and close it */ if (error = VOP_FSYNC(vp, FSYNC, kcred)) { CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error)); } if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred)) { CACHE_DEBUG((DI_ERR, "close() failed: %d", error)); VN_RELE(vp); return; } VN_RELE(vp); /* * Now do the rename */ if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) { CACHE_DEBUG((DI_ERR, "rename failed: %d", error)); return; } CACHE_DEBUG((DI_INFO, "Cache write successful.")); return; fail: (void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred); VN_RELE(vp); } /* * Since we could be called early in boot, * use kobj_read_file() */ static void di_cache_read(struct di_cache *cache) { struct _buf *file; struct di_all *all; int n; size_t map_size, sz, chunk; offset_t off; caddr_t buf; uint32_t saved_crc, crc; ASSERT(modrootloaded); ASSERT(DI_CACHE_LOCKED(*cache)); ASSERT(cache->cache_data == NULL); ASSERT(cache->cache_size == 0); ASSERT(!servicing_interrupt()); file = kobj_open_file(DI_CACHE_FILE); if (file == (struct _buf *)-1) { CACHE_DEBUG((DI_ERR, "%s: open failed: %d", DI_CACHE_FILE, ENOENT)); return; } /* * Read in the header+root_path first. The root_path must be "/" */ all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP); n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0); if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) { kmem_free(all, sizeof (*all) + 1); kobj_close_file(file); CACHE_DEBUG((DI_ERR, "cache header: read error or invalid")); return; } map_size = all->map_size; kmem_free(all, sizeof (*all) + 1); ASSERT(map_size >= sizeof (*all) + 1); buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP); sz = map_size; off = 0; while (sz) { /* Don't overload VM with large reads */ chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz; n = kobj_read_file(file, buf, chunk, off); if (n != chunk) { CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld", DI_CACHE_FILE, off)); goto fail; } off += chunk; buf += chunk; sz -= chunk; } ASSERT(off == map_size); /* * Read past expected EOF to verify size. */ if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) { CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE)); goto fail; } all = (struct di_all *)di_cache.cache_data; if (!header_plus_one_ok(all)) { CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE)); goto fail; } /* * Compute CRC with checksum field in the cache data set to 0 */ saved_crc = all->cache_checksum; all->cache_checksum = 0; CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table); all->cache_checksum = saved_crc; if (crc != all->cache_checksum) { CACHE_DEBUG((DI_ERR, "%s: checksum error: expected=0x%x actual=0x%x", DI_CACHE_FILE, all->cache_checksum, crc)); goto fail; } if (all->map_size != map_size) { CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE)); goto fail; } kobj_close_file(file); di_cache.cache_size = map_size; return; fail: kmem_free(di_cache.cache_data, map_size); kobj_close_file(file); di_cache.cache_data = NULL; di_cache.cache_size = 0; } /* * Checks if arguments are valid for using the cache. */ static int cache_args_valid(struct di_state *st, int *error) { ASSERT(error); ASSERT(st->mem_size > 0); ASSERT(st->memlist != NULL); if (!modrootloaded || !i_ddi_io_initialized()) { CACHE_DEBUG((DI_ERR, "cache lookup failure: I/O subsystem not inited")); *error = ENOTACTIVE; return (0); } /* * No other flags allowed with DINFOCACHE */ if (st->command != (DINFOCACHE & DIIOC_MASK)) { CACHE_DEBUG((DI_ERR, "cache lookup failure: bad flags: 0x%x", st->command)); *error = EINVAL; return (0); } if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { CACHE_DEBUG((DI_ERR, "cache lookup failure: bad root: %s", DI_ALL_PTR(st)->root_path)); *error = EINVAL; return (0); } CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command)); *error = 0; return (1); } static int snapshot_is_cacheable(struct di_state *st) { ASSERT(st->mem_size > 0); ASSERT(st->memlist != NULL); if (st->command != (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) { CACHE_DEBUG((DI_INFO, "not cacheable: incompatible flags: 0x%x", st->command)); return (0); } if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { CACHE_DEBUG((DI_INFO, "not cacheable: incompatible root path: %s", DI_ALL_PTR(st)->root_path)); return (0); } CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command)); return (1); } static int di_cache_lookup(struct di_state *st) { size_t rval; int cache_valid; ASSERT(cache_args_valid(st, &cache_valid)); ASSERT(modrootloaded); DI_CACHE_LOCK(di_cache); /* * The following assignment determines the validity * of the cache as far as this snapshot is concerned. */ cache_valid = di_cache.cache_valid; if (cache_valid && di_cache.cache_data == NULL) { di_cache_read(&di_cache); /* check for read or file error */ if (di_cache.cache_data == NULL) cache_valid = 0; } if (cache_valid) { /* * Ok, the cache was valid as of this particular * snapshot. Copy the cached snapshot. This is safe * to do as the cache cannot be freed (we hold the * cache lock). Free the memory allocated in di_state * up until this point - we will simply copy everything * in the cache. */ ASSERT(di_cache.cache_data != NULL); ASSERT(di_cache.cache_size > 0); di_freemem(st); rval = 0; if (di_cache2mem(&di_cache, st) > 0) { ASSERT(DI_ALL_PTR(st)); /* * map_size is size of valid data in the * cached snapshot and may be less than * size of the cache. */ rval = DI_ALL_PTR(st)->map_size; ASSERT(rval >= sizeof (struct di_all)); ASSERT(rval <= di_cache.cache_size); } } else { /* * The cache isn't valid, we need to take a snapshot. * Set the command flags appropriately */ ASSERT(st->command == (DINFOCACHE & DIIOC_MASK)); st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK); rval = di_cache_update(st); st->command = (DINFOCACHE & DIIOC_MASK); } DI_CACHE_UNLOCK(di_cache); /* * For cached snapshots, the devinfo driver always returns * a snapshot rooted at "/". */ ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0); return (rval); } /* * This is a forced update of the cache - the previous state of the cache * may be: * - unpopulated * - populated and invalid * - populated and valid */ static int di_cache_update(struct di_state *st) { int rval; uint32_t crc; struct di_all *all; ASSERT(DI_CACHE_LOCKED(di_cache)); ASSERT(snapshot_is_cacheable(st)); /* * Free the in-core cache and the on-disk file (if they exist) */ i_ddi_di_cache_free(&di_cache); /* * Set valid flag before taking the snapshot, * so that any invalidations that arrive * during or after the snapshot are not * removed by us. */ atomic_or_32(&di_cache.cache_valid, 1); modunload_disable(); rval = di_snapshot(st); modunload_enable(); if (rval == 0) { CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot")); return (0); } DI_ALL_PTR(st)->map_size = rval; if (di_mem2cache(st, &di_cache) == 0) { CACHE_DEBUG((DI_ERR, "can't update cache: copy failed")); return (0); } ASSERT(di_cache.cache_data); ASSERT(di_cache.cache_size > 0); /* * Now that we have cached the snapshot, compute its checksum. * The checksum is only computed over the valid data in the * cache, not the entire cache. * Also, set all the fields (except checksum) before computing * checksum. */ all = (struct di_all *)di_cache.cache_data; all->cache_magic = DI_CACHE_MAGIC; all->map_size = rval; ASSERT(all->cache_checksum == 0); CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table); all->cache_checksum = crc; di_cache_write(&di_cache); return (rval); } static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...) { va_list ap; if (di_cache_debug <= DI_QUIET) return; if (di_cache_debug < msglevel) return; switch (msglevel) { case DI_ERR: msglevel = CE_WARN; break; case DI_INFO: case DI_TRACE: default: msglevel = CE_NOTE; break; } va_start(ap, fmt); vcmn_err(msglevel, fmt, ap); va_end(ap); }