/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990 Mentat Inc. */ #pragma ident "%Z%%M% %I% %E% SMI" const char tcp_version[] = "%Z%%M% %I% %E% SMI"; #include #include #include #include #include #include #include #define _SUN_TPI_VERSION 2 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) * * (Read the detailed design doc in PSARC case directory) * * The entire tcp state is contained in tcp_t and conn_t structure * which are allocated in tandem using ipcl_conn_create() and passing * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect * the references on the tcp_t. The tcp_t structure is never compressed * and packets always land on the correct TCP perimeter from the time * eager is created till the time tcp_t dies (as such the old mentat * TCP global queue is not used for detached state and no IPSEC checking * is required). The global queue is still allocated to send out resets * for connection which have no listeners and IP directly calls * tcp_xmit_listeners_reset() which does any policy check. * * Protection and Synchronisation mechanism: * * The tcp data structure does not use any kind of lock for protecting * its state but instead uses 'squeues' for mutual exclusion from various * read and write side threads. To access a tcp member, the thread should * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or * squeue_fill). Since the squeues allow a direct function call, caller * can pass any tcp function having prototype of edesc_t as argument * (different from traditional STREAMs model where packets come in only * designated entry points). The list of functions that can be directly * called via squeue are listed before the usual function prototype. * * Referencing: * * TCP is MT-Hot and we use a reference based scheme to make sure that the * tcp structure doesn't disappear when its needed. When the application * creates an outgoing connection or accepts an incoming connection, we * start out with 2 references on 'conn_ref'. One for TCP and one for IP. * The IP reference is just a symbolic reference since ip_tcpclose() * looks at tcp structure after tcp_close_output() returns which could * have dropped the last TCP reference. So as long as the connection is * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the * conn_t. The classifier puts its own reference when the connection is * inserted in listen or connected hash. Anytime a thread needs to enter * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr * on write side or by doing a classify on read side and then puts a * reference on the conn before doing squeue_enter/tryenter/fill. For * read side, the classifier itself puts the reference under fanout lock * to make sure that tcp can't disappear before it gets processed. The * squeue will drop this reference automatically so the called function * doesn't have to do a DEC_REF. * * Opening a new connection: * * The outgoing connection open is pretty simple. ip_tcpopen() does the * work in creating the conn/tcp structure and initializing it. The * squeue assignment is done based on the CPU the application * is running on. So for outbound connections, processing is always done * on application CPU which might be different from the incoming CPU * being interrupted by the NIC. An optimal way would be to figure out * the NIC <-> CPU binding at listen time, and assign the outgoing * connection to the squeue attached to the CPU that will be interrupted * for incoming packets (we know the NIC based on the bind IP address). * This might seem like a problem if more data is going out but the * fact is that in most cases the transmit is ACK driven transmit where * the outgoing data normally sits on TCP's xmit queue waiting to be * transmitted. * * Accepting a connection: * * This is a more interesting case because of various races involved in * establishing a eager in its own perimeter. Read the meta comment on * top of tcp_conn_request(). But briefly, the squeue is picked by * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. * * Closing a connection: * * The close is fairly straight forward. tcp_close() calls tcp_close_output() * via squeue to do the close and mark the tcp as detached if the connection * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its * reference but tcp_close() drop IP's reference always. So if tcp was * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP * and 1 because it is in classifier's connected hash. This is the condition * we use to determine that its OK to clean up the tcp outside of squeue * when time wait expires (check the ref under fanout and conn_lock and * if it is 2, remove it from fanout hash and kill it). * * Although close just drops the necessary references and marks the * tcp_detached state, tcp_close needs to know the tcp_detached has been * set (under squeue) before letting the STREAM go away (because a * inbound packet might attempt to go up the STREAM while the close * has happened and tcp_detached is not set). So a special lock and * flag is used along with a condition variable (tcp_closelock, tcp_closed, * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked * tcp_detached. * * Special provisions and fast paths: * * We make special provision for (AF_INET, SOCK_STREAM) sockets which * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY * check to send packets directly to tcp_rput_data via squeue. Everyone * else comes through tcp_input() on the read side. * * We also make special provisions for sockfs by marking tcp_issocket * whenever we have only sockfs on top of TCP. This allows us to skip * putting the tcp in acceptor hash since a sockfs listener can never * become acceptor and also avoid allocating a tcp_t for acceptor STREAM * since eager has already been allocated and the accept now happens * on acceptor STREAM. There is a big blob of comment on top of * tcp_conn_request explaining the new accept. When socket is POP'd, * sockfs sends us an ioctl to mark the fact and we go back to old * behaviour. Once tcp_issocket is unset, its never set for the * life of that connection. * * IPsec notes : * * Since a packet is always executed on the correct TCP perimeter * all IPsec processing is defered to IP including checking new * connections and setting IPSEC policies for new connection. The * only exception is tcp_xmit_listeners_reset() which is called * directly from IP and needs to policy check to see if TH_RST * can be sent out. */ extern major_t TCP6_MAJ; /* * Values for squeue switch: * 1: squeue_enter_nodrain * 2: squeue_enter * 3: squeue_fill */ int tcp_squeue_close = 2; int tcp_squeue_wput = 2; squeue_func_t tcp_squeue_close_proc; squeue_func_t tcp_squeue_wput_proc; /* * This controls how tiny a write must be before we try to copy it * into the the mblk on the tail of the transmit queue. Not much * speedup is observed for values larger than sixteen. Zero will * disable the optimisation. */ int tcp_tx_pull_len = 16; /* * TCP Statistics. * * How TCP statistics work. * * There are two types of statistics invoked by two macros. * * TCP_STAT(name) does non-atomic increment of a named stat counter. It is * supposed to be used in non MT-hot paths of the code. * * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is * supposed to be used for DEBUG purposes and may be used on a hot path. * * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat * (use "kstat tcp" to get them). * * There is also additional debugging facility that marks tcp_clean_death() * instances and saves them in tcp_t structure. It is triggered by * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for * tcp_clean_death() calls that counts the number of times each tag was hit. It * is triggered by TCP_CLD_COUNTERS define. * * How to add new counters. * * 1) Add a field in the tcp_stat structure describing your counter. * 2) Add a line in tcp_statistics with the name of the counter. * * IMPORTANT!! - make sure that both are in sync !! * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. * * Please avoid using private counters which are not kstat-exported. * * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances * in tcp_t structure. * * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. */ #ifndef TCP_DEBUG_COUNTER #ifdef DEBUG #define TCP_DEBUG_COUNTER 1 #else #define TCP_DEBUG_COUNTER 0 #endif #endif #define TCP_CLD_COUNTERS 0 #define TCP_TAG_CLEAN_DEATH 1 #define TCP_MAX_CLEAN_DEATH_TAG 32 #ifdef lint static int _lint_dummy_; #endif #if TCP_CLD_COUNTERS static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ #elif defined(lint) #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); #else #define TCP_CLD_STAT(x) #endif #if TCP_DEBUG_COUNTER #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) #elif defined(lint) #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); #else #define TCP_DBGSTAT(x) #endif tcp_stat_t tcp_statistics = { { "tcp_time_wait", KSTAT_DATA_UINT64 }, { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, { "tcp_ip_output", KSTAT_DATA_UINT64 }, { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, { "tcp_eager_err1", KSTAT_DATA_UINT64 }, { "tcp_eager_err2", KSTAT_DATA_UINT64 }, { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, { "tcp_no_listener", KSTAT_DATA_UINT64 }, { "tcp_found_eager", KSTAT_DATA_UINT64 }, { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, { "tcp_open_alloc", KSTAT_DATA_UINT64 }, { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, { "tcp_listendrop", KSTAT_DATA_UINT64 }, { "tcp_listendropq0", KSTAT_DATA_UINT64 }, { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, { "tcp_ire_null1", KSTAT_DATA_UINT64 }, { "tcp_ire_null", KSTAT_DATA_UINT64 }, { "tcp_ip_send", KSTAT_DATA_UINT64 }, { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, }; static kstat_t *tcp_kstat; /* * Call either ip_output or ip_output_v6. This replaces putnext() calls on the * tcp write side. */ #define CALL_IP_WPUT(connp, q, mp) { \ ASSERT(((q)->q_flag & QREADR) == 0); \ TCP_DBGSTAT(tcp_ip_output); \ connp->conn_send(connp, (mp), (q), IP_WPUT); \ } /* Macros for timestamp comparisons */ #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) /* * Parameters for TCP Initial Send Sequence number (ISS) generation. When * tcp_strong_iss is set to 1, which is the default, the ISS is calculated * by adding three components: a time component which grows by 1 every 4096 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); * a per-connection component which grows by 125000 for every new connection; * and an "extra" component that grows by a random amount centered * approximately on 64000. This causes the the ISS generator to cycle every * 4.89 hours if no TCP connections are made, and faster if connections are * made. * * When tcp_strong_iss is set to 0, ISS is calculated by adding two * components: a time component which grows by 250000 every second; and * a per-connection component which grows by 125000 for every new connections. * * A third method, when tcp_strong_iss is set to 2, for generating ISS is * prescribed by Steve Bellovin. This involves adding time, the 125000 per * connection, and a one-way hash (MD5) of the connection ID , a "truly" random (per RFC 1750) number, and a console-entered * password. */ #define ISS_INCR 250000 #define ISS_NSEC_SHT 12 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ static kmutex_t tcp_iss_key_lock; static MD5_CTX tcp_iss_key; static sin_t sin_null; /* Zero address for quick clears */ static sin6_t sin6_null; /* Zero address for quick clears */ /* Packet dropper for TCP IPsec policy drops. */ static ipdropper_t tcp_dropper; /* * This implementation follows the 4.3BSD interpretation of the urgent * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause * incompatible changes in protocols like telnet and rlogin. */ #define TCP_OLD_URP_INTERPRETATION 1 #define TCP_IS_DETACHED_NONEAGER(tcp) \ (TCP_IS_DETACHED(tcp) && \ (!(tcp)->tcp_hard_binding)) /* * TCP reassembly macros. We hide starting and ending sequence numbers in * b_next and b_prev of messages on the reassembly queue. The messages are * chained using b_cont. These macros are used in tcp_reass() so we don't * have to see the ugly casts and assignments. */ #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ (mblk_t *)(uintptr_t)(u)) #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ (mblk_t *)(uintptr_t)(u)) /* * Implementation of TCP Timers. * ============================= * * INTERFACE: * * There are two basic functions dealing with tcp timers: * * timeout_id_t tcp_timeout(connp, func, time) * clock_t tcp_timeout_cancel(connp, timeout_id) * TCP_TIMER_RESTART(tcp, intvl) * * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' * after 'time' ticks passed. The function called by timeout() must adhere to * the same restrictions as a driver soft interrupt handler - it must not sleep * or call other functions that might sleep. The value returned is the opaque * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to * cancel the request. The call to tcp_timeout() may fail in which case it * returns zero. This is different from the timeout(9F) function which never * fails. * * The call-back function 'func' always receives 'connp' as its single * argument. It is always executed in the squeue corresponding to the tcp * structure. The tcp structure is guaranteed to be present at the time the * call-back is called. * * NOTE: The call-back function 'func' is never called if tcp is in * the TCPS_CLOSED state. * * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() * request. locks acquired by the call-back routine should not be held across * the call to tcp_timeout_cancel() or a deadlock may result. * * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. * Otherwise, it returns an integer value greater than or equal to 0. In * particular, if the call-back function is already placed on the squeue, it can * not be canceled. * * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called * within squeue context corresponding to the tcp instance. Since the * call-back is also called via the same squeue, there are no race * conditions described in untimeout(9F) manual page since all calls are * strictly serialized. * * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout * stored in tcp_timer_tid and starts a new one using * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid * field. * * NOTE: since the timeout cancellation is not guaranteed, the cancelled * call-back may still be called, so it is possible tcp_timer() will be * called several times. This should not be a problem since tcp_timer() * should always check the tcp instance state. * * * IMPLEMENTATION: * * TCP timers are implemented using three-stage process. The call to * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function * when the timer expires. The tcp_timer_callback() arranges the call of the * tcp_timer_handler() function via squeue corresponding to the tcp * instance. The tcp_timer_handler() calls actual requested timeout call-back * and passes tcp instance as an argument to it. Information is passed between * stages using the tcp_timer_t structure which contains the connp pointer, the * tcp call-back to call and the timeout id returned by the timeout(9F). * * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() * returns the pointer to this mblk. * * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It * looks like a normal mblk without actual dblk attached to it. * * To optimize performance each tcp instance holds a small cache of timer * mblocks. In the current implementation it caches up to two timer mblocks per * tcp instance. The cache is preserved over tcp frees and is only freed when * the whole tcp structure is destroyed by its kmem destructor. Since all tcp * timer processing happens on a corresponding squeue, the cache manipulation * does not require any locks. Experiments show that majority of timer mblocks * allocations are satisfied from the tcp cache and do not involve kmem calls. * * The tcp_timeout() places a refhold on the connp instance which guarantees * that it will be present at the time the call-back function fires. The * tcp_timer_handler() drops the reference after calling the call-back, so the * call-back function does not need to manipulate the references explicitly. */ typedef struct tcp_timer_s { conn_t *connp; void (*tcpt_proc)(void *); timeout_id_t tcpt_tid; } tcp_timer_t; static kmem_cache_t *tcp_timercache; kmem_cache_t *tcp_sack_info_cache; kmem_cache_t *tcp_iphc_cache; /* * For scalability, we must not run a timer for every TCP connection * in TIME_WAIT state. To see why, consider (for time wait interval of * 4 minutes): * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's * * This list is ordered by time, so you need only delete from the head * until you get to entries which aren't old enough to delete yet. * The list consists of only the detached TIME_WAIT connections. * * Note that the timer (tcp_time_wait_expire) is started when the tcp_t * becomes detached TIME_WAIT (either by changing the state and already * being detached or the other way around). This means that the TIME_WAIT * state can be extended (up to doubled) if the connection doesn't become * detached for a long time. * * The list manipulations (including tcp_time_wait_next/prev) * are protected by the tcp_time_wait_lock. The content of the * detached TIME_WAIT connections is protected by the normal perimeters. */ typedef struct tcp_squeue_priv_s { kmutex_t tcp_time_wait_lock; /* Protects the next 3 globals */ timeout_id_t tcp_time_wait_tid; tcp_t *tcp_time_wait_head; tcp_t *tcp_time_wait_tail; tcp_t *tcp_free_list; uint_t tcp_free_list_cnt; } tcp_squeue_priv_t; /* * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. * Running it every 5 seconds seems to give the best results. */ #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) /* * To prevent memory hog, limit the number of entries in tcp_free_list * to 1% of available memory / number of cpus */ uint_t tcp_free_list_max_cnt = 0; #define TCP_XMIT_LOWATER 4096 #define TCP_XMIT_HIWATER 49152 #define TCP_RECV_LOWATER 2048 #define TCP_RECV_HIWATER 49152 /* * PAWS needs a timer for 24 days. This is the number of ticks in 24 days */ #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) #define TIDUSZ 4096 /* transport interface data unit size */ /* * Bind hash list size and has function. It has to be a power of 2 for * hashing. */ #define TCP_BIND_FANOUT_SIZE 512 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) /* * Size of listen and acceptor hash list. It has to be a power of 2 for * hashing. */ #define TCP_FANOUT_SIZE 256 #ifdef _ILP32 #define TCP_ACCEPTOR_HASH(accid) \ (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) #else #define TCP_ACCEPTOR_HASH(accid) \ ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) #endif /* _ILP32 */ #define IP_ADDR_CACHE_SIZE 2048 #define IP_ADDR_CACHE_HASH(faddr) \ (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ #define TCP_HSP_HASH_SIZE 256 #define TCP_HSP_HASH(addr) \ (((addr>>24) ^ (addr >>16) ^ \ (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) /* * TCP options struct returned from tcp_parse_options. */ typedef struct tcp_opt_s { uint32_t tcp_opt_mss; uint32_t tcp_opt_wscale; uint32_t tcp_opt_ts_val; uint32_t tcp_opt_ts_ecr; tcp_t *tcp; } tcp_opt_t; /* * RFC1323-recommended phrasing of TSTAMP option, for easier parsing */ #ifdef _BIG_ENDIAN #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ (TCPOPT_TSTAMP << 8) | 10) #else #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ (TCPOPT_NOP << 8) | TCPOPT_NOP) #endif /* * Flags returned from tcp_parse_options. */ #define TCP_OPT_MSS_PRESENT 1 #define TCP_OPT_WSCALE_PRESENT 2 #define TCP_OPT_TSTAMP_PRESENT 4 #define TCP_OPT_SACK_OK_PRESENT 8 #define TCP_OPT_SACK_PRESENT 16 /* TCP option length */ #define TCPOPT_NOP_LEN 1 #define TCPOPT_MAXSEG_LEN 4 #define TCPOPT_WS_LEN 3 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) #define TCPOPT_TSTAMP_LEN 10 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) #define TCPOPT_SACK_OK_LEN 2 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) #define TCPOPT_REAL_SACK_LEN 4 #define TCPOPT_MAX_SACK_LEN 36 #define TCPOPT_HEADER_LEN 2 /* TCP cwnd burst factor. */ #define TCP_CWND_INFINITE 65535 #define TCP_CWND_SS 3 #define TCP_CWND_NORMAL 5 /* Maximum TCP initial cwin (start/restart). */ #define TCP_MAX_INIT_CWND 8 /* * Initialize cwnd according to RFC 3390. def_max_init_cwnd is * either tcp_slow_start_initial or tcp_slow_start_after idle * depending on the caller. If the upper layer has not used the * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. * If the upper layer has changed set the tcp_init_cwnd, just use * it to calculate the tcp_cwnd. */ #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ { \ if ((tcp)->tcp_init_cwnd == 0) { \ (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ } else { \ (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ } \ tcp->tcp_cwnd_cnt = 0; \ } /* TCP Timer control structure */ typedef struct tcpt_s { pfv_t tcpt_pfv; /* The routine we are to call */ tcp_t *tcpt_tcp; /* The parameter we are to pass in */ } tcpt_t; /* Host Specific Parameter structure */ typedef struct tcp_hsp { struct tcp_hsp *tcp_hsp_next; in6_addr_t tcp_hsp_addr_v6; in6_addr_t tcp_hsp_subnet_v6; uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ int32_t tcp_hsp_sendspace; int32_t tcp_hsp_recvspace; int32_t tcp_hsp_tstamp; } tcp_hsp_t; #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) /* * Functions called directly via squeue having a prototype of edesc_t. */ void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); void tcp_input(void *arg, mblk_t *mp, void *arg2); void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); void tcp_output(void *arg, mblk_t *mp, void *arg2); static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); /* Prototype for TCP functions */ static void tcp_random_init(void); int tcp_random(void); static void tcp_accept(tcp_t *tcp, mblk_t *mp); static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager); static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, boolean_t user_specified); static void tcp_closei_local(tcp_t *tcp); static void tcp_close_detached(tcp_t *tcp); static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, mblk_t **defermp); static void tcp_connect(tcp_t *tcp, mblk_t *mp); static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, uint_t srcid); static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id); static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); static char *tcp_display(tcp_t *tcp, char *, char); static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); static void tcp_eager_unlink(tcp_t *tcp); static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, int unixerr); static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, int tlierr, int unixerr); static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int tcp_tpistate(tcp_t *tcp); static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, int caller_holds_lock); static void tcp_bind_hash_remove(tcp_t *tcp); static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); static void tcp_acceptor_hash_remove(tcp_t *tcp); static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); static void tcp_info_req(tcp_t *tcp, mblk_t *mp); static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); static int tcp_header_init_ipv4(tcp_t *tcp); static int tcp_header_init_ipv6(tcp_t *tcp); int tcp_init(tcp_t *tcp, queue_t *q); static int tcp_init_values(tcp_t *tcp); static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length); static void tcp_ip_ire_mark_advice(tcp_t *tcp); static void tcp_ip_notify(tcp_t *tcp); static mblk_t *tcp_ire_mp(mblk_t *mp); static void tcp_iss_init(tcp_t *tcp); static void tcp_keepalive_killer(void *arg); static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); static void tcp_mss_set(tcp_t *tcp, uint32_t size); static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, int *t_errorp, int *sys_errorp); static boolean_t tcp_allow_connopt_set(int level, int name); int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); static int tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr); int tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk); static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len); static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static void tcp_iss_key_init(uint8_t *phrase, int len); static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); static void tcp_reinit(tcp_t *tcp); static void tcp_reinit_values(tcp_t *tcp); static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, cred_t *cr); static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); static boolean_t tcp_send_rst_chk(void); static void tcp_ss_rexmit(tcp_t *tcp); static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); static void tcp_process_options(tcp_t *, tcph_t *); static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); static void tcp_rsrv(queue_t *q); static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); static int tcp_snmp_state(tcp_t *tcp); static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static void tcp_timer(void *arg); static void tcp_timer_callback(void *); static in_port_t tcp_update_next_port(in_port_t port, boolean_t random); static in_port_t tcp_get_next_priv_port(void); static void tcp_wput_sock(queue_t *q, mblk_t *mp); void tcp_wput_accept(queue_t *q, mblk_t *mp); static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, const int mdt_thres); static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, const int mdt_thres); static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk); static void tcp_wsrv(queue_t *q); static int tcp_xmit_end(tcp_t *tcp); void tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len); static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); static void tcp_ack_timer(void *arg); static mblk_t *tcp_ack_mp(tcp_t *tcp); static void tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl); static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); static int setmaxps(queue_t *q, int maxpsz); static void tcp_set_rto(tcp_t *, time_t); static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, boolean_t, boolean_t); static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl); static boolean_t tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen); static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, void *src, uint_t srclen); static void tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, void *src, uint_t srclen); static mblk_t *tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen); static int tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *); static int tcp_build_hdrs(queue_t *, tcp_t *); static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcph_t *tcph); boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); boolean_t tcp_reserved_port_del(in_port_t, in_port_t); boolean_t tcp_reserved_port_check(in_port_t); static tcp_t *tcp_alloc_temp_tcp(in_port_t); static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); static mblk_t *tcp_mdt_info_mp(mblk_t *); static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, const boolean_t, const uint32_t, const uint32_t, const uint32_t, const uint32_t); static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, const uint_t, const uint_t, boolean_t *); static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); extern mblk_t *tcp_timermp_alloc(int); extern void tcp_timermp_free(tcp_t *); static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); static void tcp_stop_lingering(tcp_t *tcp); static void tcp_close_linger_timeout(void *arg); void tcp_ddi_init(void); void tcp_ddi_destroy(void); static void tcp_kstat_init(void); static void tcp_kstat_fini(void); static int tcp_kstat_update(kstat_t *kp, int rw); void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, tcph_t *tcph, uint_t ipvers, mblk_t *idmp); static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, tcph_t *tcph, mblk_t *idmp); static squeue_func_t tcp_squeue_switch(int); static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); static int tcp_close(queue_t *, int); static int tcpclose_accept(queue_t *); static int tcp_modclose(queue_t *); static void tcp_wput_mod(queue_t *, mblk_t *); static void tcp_squeue_add(squeue_t *); static boolean_t tcp_zcopy_check(tcp_t *); static void tcp_zcopy_notify(tcp_t *); static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); extern void tcp_kssl_input(tcp_t *, mblk_t *); /* * Routines related to the TCP_IOC_ABORT_CONN ioctl command. * * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure * (defined in tcp.h) needs to be filled in and passed into the kernel * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t * structure contains the four-tuple of a TCP connection and a range of TCP * states (specified by ac_start and ac_end). The use of wildcard addresses * and ports is allowed. Connections with a matching four tuple and a state * within the specified range will be aborted. The valid states for the * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, * inclusive. * * An application which has its connection aborted by this ioctl will receive * an error that is dependent on the connection state at the time of the abort. * If the connection state is < TCPS_TIME_WAIT, an application should behave as * though a RST packet has been received. If the connection state is equal to * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel * and all resources associated with the connection will be freed. */ static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, boolean_t); static struct module_info tcp_rinfo = { TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER }; static struct module_info tcp_winfo = { TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 }; /* * Entry points for TCP as a module. It only allows SNMP requests * to pass through. */ struct qinit tcp_mod_rinit = { (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, }; struct qinit tcp_mod_winit = { (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo }; /* * Entry points for TCP as a device. The normal case which supports * the TCP functionality. */ struct qinit tcp_rinit = { NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo }; struct qinit tcp_winit = { (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo }; /* Initial entry point for TCP in socket mode. */ struct qinit tcp_sock_winit = { (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo }; /* * Entry points for TCP as a acceptor STREAM opened by sockfs when doing * an accept. Avoid allocating data structures since eager has already * been created. */ struct qinit tcp_acceptor_rinit = { NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo }; struct qinit tcp_acceptor_winit = { (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo }; /* * Entry points for TCP loopback (read side only) */ struct qinit tcp_loopback_rinit = { (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD }; struct streamtab tcpinfo = { &tcp_rinit, &tcp_winit }; extern squeue_func_t tcp_squeue_wput_proc; extern squeue_func_t tcp_squeue_timer_proc; /* Protected by tcp_g_q_lock */ static queue_t *tcp_g_q; /* Default queue used during detached closes */ kmutex_t tcp_g_q_lock; /* Protected by tcp_hsp_lock */ /* * XXX The host param mechanism should go away and instead we should use * the metrics associated with the routes to determine the default sndspace * and rcvspace. */ static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ krwlock_t tcp_hsp_lock; /* * Extra privileged ports. In host byte order. * Protected by tcp_epriv_port_lock. */ #define TCP_NUM_EPRIV_PORTS 64 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; kmutex_t tcp_epriv_port_lock; /* * The smallest anonymous port in the priviledged port range which TCP * looks for free port. Use in the option TCP_ANONPRIVBIND. */ static in_port_t tcp_min_anonpriv_port = 512; /* Only modified during _init and _fini thus no locking is needed. */ static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ /* Hint not protected by any lock */ static uint_t tcp_next_port_to_try; /* TCP bind hash list - all tcp_t with state >= BOUND. */ tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; /* * TCP has a private interface for other kernel modules to reserve a * port range for them to use. Once reserved, TCP will not use any ports * in the range. This interface relies on the TCP_EXCLBIND feature. If * the semantics of TCP_EXCLBIND is changed, implementation of this interface * has to be verified. * * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port * range is [port a, port b] inclusive. And each port range is between * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. * * Note that the default anonymous port range starts from 32768. There is * no port "collision" between that and the reserved port range. If there * is port collision (because the default smallest anonymous port is lowered * or some apps specifically bind to ports in the reserved port range), the * system may not be able to reserve a port range even there are enough * unbound ports as a reserved port range contains consecutive ports . */ #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 #define TCP_SMALLEST_RESERVED_PORT 10240 #define TCP_LARGEST_RESERVED_PORT 20480 /* Structure to represent those reserved port ranges. */ typedef struct tcp_rport_s { in_port_t lo_port; in_port_t hi_port; tcp_t **temp_tcp_array; } tcp_rport_t; /* The reserved port array. */ static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; /* Locks to protect the tcp_reserved_ports array. */ static krwlock_t tcp_reserved_port_lock; /* The number of ranges in the array. */ uint32_t tcp_reserved_port_array_size = 0; /* * MIB-2 stuff for SNMP * Note: tcpInErrs {tcp 15} is accumulated in ip.c */ mib2_tcp_t tcp_mib; /* SNMP fixed size info */ kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ boolean_t tcp_icmp_source_quench = B_FALSE; /* * Following assumes TPI alignment requirements stay along 32 bit * boundaries */ #define ROUNDUP32(x) \ (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) /* Template for response to info request. */ static struct T_info_ack tcp_g_t_info_ack = { T_INFO_ACK, /* PRIM_type */ 0, /* TSDU_size */ T_INFINITE, /* ETSDU_size */ T_INVALID, /* CDATA_size */ T_INVALID, /* DDATA_size */ sizeof (sin_t), /* ADDR_size */ 0, /* OPT_size - not initialized here */ TIDUSZ, /* TIDU_size */ T_COTS_ORD, /* SERV_type */ TCPS_IDLE, /* CURRENT_state */ (XPG4_1|EXPINLINE) /* PROVIDER_flag */ }; static struct T_info_ack tcp_g_t_info_ack_v6 = { T_INFO_ACK, /* PRIM_type */ 0, /* TSDU_size */ T_INFINITE, /* ETSDU_size */ T_INVALID, /* CDATA_size */ T_INVALID, /* DDATA_size */ sizeof (sin6_t), /* ADDR_size */ 0, /* OPT_size - not initialized here */ TIDUSZ, /* TIDU_size */ T_COTS_ORD, /* SERV_type */ TCPS_IDLE, /* CURRENT_state */ (XPG4_1|EXPINLINE) /* PROVIDER_flag */ }; #define MS 1L #define SECONDS (1000 * MS) #define MINUTES (60 * SECONDS) #define HOURS (60 * MINUTES) #define DAYS (24 * HOURS) #define PARAM_MAX (~(uint32_t)0) /* Max size IP datagram is 64k - 1 */ #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) /* Max of the above */ #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 /* Largest TCP port number */ #define TCP_MAX_PORT (64 * 1024 - 1) /* * tcp_wroff_xtra is the extra space in front of TCP/IP header for link * layer header. It has to be a multiple of 4. */ static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val /* * All of these are alterable, within the min/max values given, at run time. * Note that the default value of "tcp_time_wait_interval" is four minutes, * per the TCP spec. */ /* BEGIN CSTYLED */ tcpparam_t tcp_param_arr[] = { /*min max value name */ { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, { 1, 1024, 1, "tcp_conn_req_min" }, { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, { 0, 10, 0, "tcp_debug" }, { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, { 1, 255, 64, "tcp_ipv4_ttl"}, { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, { 0, 100, 10, "tcp_maxpsz_multiplier" }, { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, { 0, 16, 0, "tcp_snd_lowat_fraction" }, { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, { 0, 128000, 0, "tcp_sth_rcv_lowat" }, { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, { 0, 1, 0, "tcp_ignore_path_mtu" }, { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, /* * Question: What default value should I set for tcp_strong_iss? */ { 0, 2, 1, "tcp_strong_iss"}, { 0, 65536, 20, "tcp_rtt_updates"}, { 0, 1, 1, "tcp_wscale_always"}, { 0, 1, 0, "tcp_tstamp_always"}, { 0, 1, 1, "tcp_tstamp_if_wscale"}, { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, { 0, 16, 2, "tcp_deferred_acks_max"}, { 1, 16384, 4, "tcp_slow_start_after_idle"}, { 1, 4, 4, "tcp_slow_start_initial"}, { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, { 0, 2, 2, "tcp_sack_permitted"}, { 0, 1, 0, "tcp_trace"}, { 0, 1, 1, "tcp_compression_enabled"}, { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, { 0, 1, 0, "tcp_rev_src_routes"}, { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, { 0, 16, 8, "tcp_local_dacks_max"}, { 0, 2, 1, "tcp_ecn_permitted"}, { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, }; /* END CSTYLED */ /* * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of * each header fragment in the header buffer. Each parameter value has * to be a multiple of 4 (32-bit aligned). */ static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val /* * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out * the maximum number of payload buffers associated per Multidata. */ static tcpparam_t tcp_mdt_max_pbufs_param = { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val /* Round up the value to the nearest mss. */ #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) /* * Set ECN capable transport (ECT) code point in IP header. * * Note that there are 2 ECT code points '01' and '10', which are called * ECT(1) and ECT(0) respectively. Here we follow the original ECT code * point ECT(0) for TCP as described in RFC 2481. */ #define SET_ECT(tcp, iph) \ if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ /* We need to clear the code point first. */ \ ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ } else { \ ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ } /* * The format argument to pass to tcp_display(). * DISP_PORT_ONLY means that the returned string has only port info. * DISP_ADDR_AND_PORT means that the returned string also contains the * remote and local IP address. */ #define DISP_PORT_ONLY 1 #define DISP_ADDR_AND_PORT 2 /* * This controls the rate some ndd info report functions can be used * by non-priviledged users. It stores the last time such info is * requested. When those report functions are called again, this * is checked with the current time and compare with the ndd param * tcp_ndd_get_info_interval. */ static clock_t tcp_last_ndd_get_info_time = 0; #define NDD_TOO_QUICK_MSG \ "ndd get info rate too high for non-priviledged users, try again " \ "later.\n" #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" #define IS_VMLOANED_MBLK(mp) \ (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) /* * These two variables control the rate for TCP to generate RSTs in * response to segments not belonging to any connections. We limit * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in * each 1 second interval. This is to protect TCP against DoS attack. */ static clock_t tcp_last_rst_intrvl; static uint32_t tcp_rst_cnt; /* The number of RST not sent because of the rate limit. */ static uint32_t tcp_rst_unsent; /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ boolean_t tcp_mdt_chain = B_TRUE; /* * MDT threshold in the form of effective send MSS multiplier; we take * the MDT path if the amount of unsent data exceeds the threshold value * (default threshold is 1*SMSS). */ uint_t tcp_mdt_smss_threshold = 1; uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ /* * Forces all connections to obey the value of the tcp_maxpsz_multiplier * tunable settable via NDD. Otherwise, the per-connection behavior is * determined dynamically during tcp_adapt_ire(), which is the default. */ boolean_t tcp_static_maxpsz = B_FALSE; /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ uint32_t tcp_random_anon_port = 1; /* * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent * data, TCP will not respond with an ACK. RFC 793 requires that * TCP responds with an ACK for such a bogus ACK. By not following * the RFC, we prevent TCP from getting into an ACK storm if somehow * an attacker successfully spoofs an acceptable segment to our * peer; or when our peer is "confused." */ uint32_t tcp_drop_ack_unsent_cnt = 10; /* * Hook functions to enable cluster networking * On non-clustered systems these vectors must always be NULL. */ void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport) = NULL; void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport) = NULL; void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport, uint8_t *faddrp, in_port_t fport) = NULL; void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport, uint8_t *faddrp, in_port_t fport) = NULL; /* * The following are defined in ip.c */ extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp); extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp); #define CL_INET_CONNECT(tcp) { \ if (cl_inet_connect != NULL) { \ /* \ * Running in cluster mode - register active connection \ * information \ */ \ if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ if ((tcp)->tcp_ipha->ipha_src != 0) { \ (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ (in_port_t)(tcp)->tcp_lport, \ (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ (in_port_t)(tcp)->tcp_fport); \ } \ } else { \ if (!IN6_IS_ADDR_UNSPECIFIED( \ &(tcp)->tcp_ip6h->ip6_src)) {\ (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ (in_port_t)(tcp)->tcp_lport, \ (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ (in_port_t)(tcp)->tcp_fport); \ } \ } \ } \ } #define CL_INET_DISCONNECT(tcp) { \ if (cl_inet_disconnect != NULL) { \ /* \ * Running in cluster mode - deregister active \ * connection information \ */ \ if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ if ((tcp)->tcp_ip_src != 0) { \ (*cl_inet_disconnect)(IPPROTO_TCP, \ AF_INET, \ (uint8_t *)(&((tcp)->tcp_ip_src)),\ (in_port_t)(tcp)->tcp_lport, \ (uint8_t *) \ (&((tcp)->tcp_ipha->ipha_dst)),\ (in_port_t)(tcp)->tcp_fport); \ } \ } else { \ if (!IN6_IS_ADDR_UNSPECIFIED( \ &(tcp)->tcp_ip_src_v6)) { \ (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ (in_port_t)(tcp)->tcp_lport, \ (uint8_t *) \ (&((tcp)->tcp_ip6h->ip6_dst)),\ (in_port_t)(tcp)->tcp_fport); \ } \ } \ } \ } /* * Cluster networking hook for traversing current connection list. * This routine is used to extract the current list of live connections * which must continue to to be dispatched to this node. */ int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); /* * Figure out the value of window scale opton. Note that the rwnd is * ASSUMED to be rounded up to the nearest MSS before the calculation. * We cannot find the scale value and then do a round up of tcp_rwnd * because the scale value may not be correct after that. * * Set the compiler flag to make this function inline. */ static void tcp_set_ws_value(tcp_t *tcp) { int i; uint32_t rwnd = tcp->tcp_rwnd; for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; i++, rwnd >>= 1) ; tcp->tcp_rcv_ws = i; } /* * Remove a connection from the list of detached TIME_WAIT connections. */ static void tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) { boolean_t locked = B_FALSE; if (tcp_time_wait == NULL) { tcp_time_wait = *((tcp_squeue_priv_t **) squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); mutex_enter(&tcp_time_wait->tcp_time_wait_lock); locked = B_TRUE; } if (tcp->tcp_time_wait_expire == 0) { ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); if (locked) mutex_exit(&tcp_time_wait->tcp_time_wait_lock); return; } ASSERT(TCP_IS_DETACHED(tcp)); ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); if (tcp == tcp_time_wait->tcp_time_wait_head) { ASSERT(tcp->tcp_time_wait_prev == NULL); tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; if (tcp_time_wait->tcp_time_wait_head != NULL) { tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = NULL; } else { tcp_time_wait->tcp_time_wait_tail = NULL; } } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); ASSERT(tcp->tcp_time_wait_next == NULL); tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; } else { ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); tcp->tcp_time_wait_prev->tcp_time_wait_next = tcp->tcp_time_wait_next; tcp->tcp_time_wait_next->tcp_time_wait_prev = tcp->tcp_time_wait_prev; } tcp->tcp_time_wait_next = NULL; tcp->tcp_time_wait_prev = NULL; tcp->tcp_time_wait_expire = 0; if (locked) mutex_exit(&tcp_time_wait->tcp_time_wait_lock); } /* * Add a connection to the list of detached TIME_WAIT connections * and set its time to expire. */ static void tcp_time_wait_append(tcp_t *tcp) { tcp_squeue_priv_t *tcp_time_wait = *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); tcp_timers_stop(tcp); /* Freed above */ ASSERT(tcp->tcp_timer_tid == 0); ASSERT(tcp->tcp_ack_tid == 0); /* must have happened at the time of detaching the tcp */ ASSERT(tcp->tcp_ptpahn == NULL); ASSERT(tcp->tcp_flow_stopped == 0); ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == NULL); ASSERT(tcp->tcp_listener == NULL); tcp->tcp_time_wait_expire = ddi_get_lbolt(); /* * The value computed below in tcp->tcp_time_wait_expire may * appear negative or wrap around. That is ok since our * interest is only in the difference between the current lbolt * value and tcp->tcp_time_wait_expire. But the value should not * be zero, since it means the tcp is not in the TIME_WAIT list. * The corresponding comparison in tcp_time_wait_collector() uses * modular arithmetic. */ tcp->tcp_time_wait_expire += drv_usectohz(tcp_time_wait_interval * 1000); if (tcp->tcp_time_wait_expire == 0) tcp->tcp_time_wait_expire = 1; ASSERT(TCP_IS_DETACHED(tcp)); ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); TCP_DBGSTAT(tcp_time_wait); mutex_enter(&tcp_time_wait->tcp_time_wait_lock); if (tcp_time_wait->tcp_time_wait_head == NULL) { ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); tcp_time_wait->tcp_time_wait_head = tcp; } else { ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == TCPS_TIME_WAIT); tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; } tcp_time_wait->tcp_time_wait_tail = tcp; mutex_exit(&tcp_time_wait->tcp_time_wait_lock); } /* ARGSUSED */ void tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; ASSERT(tcp != NULL); if (tcp->tcp_state == TCPS_CLOSED) { return; } ASSERT((tcp->tcp_family == AF_INET && tcp->tcp_ipversion == IPV4_VERSION) || (tcp->tcp_family == AF_INET6 && (tcp->tcp_ipversion == IPV4_VERSION || tcp->tcp_ipversion == IPV6_VERSION))); ASSERT(!tcp->tcp_listener); TCP_STAT(tcp_time_wait_reap); ASSERT(TCP_IS_DETACHED(tcp)); /* * Because they have no upstream client to rebind or tcp_close() * them later, we axe the connection here and now. */ tcp_close_detached(tcp); } void tcp_cleanup(tcp_t *tcp) { mblk_t *mp; char *tcp_iphc; int tcp_iphc_len; int tcp_hdr_grown; tcp_sack_info_t *tcp_sack_info; conn_t *connp = tcp->tcp_connp; tcp_bind_hash_remove(tcp); tcp_free(tcp); /* Release any SSL context */ if (tcp->tcp_kssl_ent != NULL) { kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); tcp->tcp_kssl_ent = NULL; } if (tcp->tcp_kssl_ctx != NULL) { kssl_release_ctx(tcp->tcp_kssl_ctx); tcp->tcp_kssl_ctx = NULL; } tcp->tcp_kssl_pending = B_FALSE; conn_delete_ire(connp, NULL); if (connp->conn_flags & IPCL_TCPCONN) { if (connp->conn_latch != NULL) IPLATCH_REFRELE(connp->conn_latch); if (connp->conn_policy != NULL) IPPH_REFRELE(connp->conn_policy); } /* * Since we will bzero the entire structure, we need to * remove it and reinsert it in global hash list. We * know the walkers can't get to this conn because we * had set CONDEMNED flag earlier and checked reference * under conn_lock so walker won't pick it and when we * go the ipcl_globalhash_remove() below, no walker * can get to it. */ ipcl_globalhash_remove(connp); /* Save some state */ mp = tcp->tcp_timercache; tcp_sack_info = tcp->tcp_sack_info; tcp_iphc = tcp->tcp_iphc; tcp_iphc_len = tcp->tcp_iphc_len; tcp_hdr_grown = tcp->tcp_hdr_grown; bzero(connp, sizeof (conn_t)); bzero(tcp, sizeof (tcp_t)); /* restore the state */ tcp->tcp_timercache = mp; tcp->tcp_sack_info = tcp_sack_info; tcp->tcp_iphc = tcp_iphc; tcp->tcp_iphc_len = tcp_iphc_len; tcp->tcp_hdr_grown = tcp_hdr_grown; tcp->tcp_connp = connp; connp->conn_tcp = tcp; connp->conn_flags = IPCL_TCPCONN; connp->conn_state_flags = CONN_INCIPIENT; connp->conn_ulp = IPPROTO_TCP; connp->conn_ref = 1; ipcl_globalhash_insert(connp); } /* * Blows away all tcps whose TIME_WAIT has expired. List traversal * is done forwards from the head. */ /* ARGSUSED */ void tcp_time_wait_collector(void *arg) { tcp_t *tcp; clock_t now; mblk_t *mp; conn_t *connp; kmutex_t *lock; squeue_t *sqp = (squeue_t *)arg; tcp_squeue_priv_t *tcp_time_wait = *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); mutex_enter(&tcp_time_wait->tcp_time_wait_lock); tcp_time_wait->tcp_time_wait_tid = 0; if (tcp_time_wait->tcp_free_list != NULL && tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { TCP_STAT(tcp_freelist_cleanup); while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; CONN_DEC_REF(tcp->tcp_connp); } tcp_time_wait->tcp_free_list_cnt = 0; } /* * In order to reap time waits reliably, we should use a * source of time that is not adjustable by the user -- hence * the call to ddi_get_lbolt(). */ now = ddi_get_lbolt(); while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { /* * Compare times using modular arithmetic, since * lbolt can wrapover. */ if ((now - tcp->tcp_time_wait_expire) < 0) { break; } tcp_time_wait_remove(tcp, tcp_time_wait); connp = tcp->tcp_connp; ASSERT(connp->conn_fanout != NULL); lock = &connp->conn_fanout->connf_lock; /* * This is essentially a TW reclaim fast path optimization for * performance where the timewait collector checks under the * fanout lock (so that no one else can get access to the * conn_t) that the refcnt is 2 i.e. one for TCP and one for * the classifier hash list. If ref count is indeed 2, we can * just remove the conn under the fanout lock and avoid * cleaning up the conn under the squeue, provided that * clustering callbacks are not enabled. If clustering is * enabled, we need to make the clustering callback before * setting the CONDEMNED flag and after dropping all locks and * so we forego this optimization and fall back to the slow * path. Also please see the comments in tcp_closei_local * regarding the refcnt logic. * * Since we are holding the tcp_time_wait_lock, its better * not to block on the fanout_lock because other connections * can't add themselves to time_wait list. So we do a * tryenter instead of mutex_enter. */ if (mutex_tryenter(lock)) { mutex_enter(&connp->conn_lock); if ((connp->conn_ref == 2) && (cl_inet_disconnect == NULL)) { ipcl_hash_remove_locked(connp, connp->conn_fanout); /* * Set the CONDEMNED flag now itself so that * the refcnt cannot increase due to any * walker. But we have still not cleaned up * conn_ire_cache. This is still ok since * we are going to clean it up in tcp_cleanup * immediately and any interface unplumb * thread will wait till the ire is blown away */ connp->conn_state_flags |= CONN_CONDEMNED; mutex_exit(lock); mutex_exit(&connp->conn_lock); if (tcp_time_wait->tcp_free_list_cnt < tcp_free_list_max_cnt) { /* Add to head of tcp_free_list */ mutex_exit( &tcp_time_wait->tcp_time_wait_lock); tcp_cleanup(tcp); mutex_enter( &tcp_time_wait->tcp_time_wait_lock); tcp->tcp_time_wait_next = tcp_time_wait->tcp_free_list; tcp_time_wait->tcp_free_list = tcp; tcp_time_wait->tcp_free_list_cnt++; continue; } else { /* Do not add to tcp_free_list */ mutex_exit( &tcp_time_wait->tcp_time_wait_lock); tcp_bind_hash_remove(tcp); conn_delete_ire(tcp->tcp_connp, NULL); CONN_DEC_REF(tcp->tcp_connp); } } else { CONN_INC_REF_LOCKED(connp); mutex_exit(lock); mutex_exit(&tcp_time_wait->tcp_time_wait_lock); mutex_exit(&connp->conn_lock); /* * We can reuse the closemp here since conn has * detached (otherwise we wouldn't even be in * time_wait list). */ mp = &tcp->tcp_closemp; squeue_fill(connp->conn_sqp, mp, tcp_timewait_output, connp, SQTAG_TCP_TIMEWAIT); } } else { mutex_enter(&connp->conn_lock); CONN_INC_REF_LOCKED(connp); mutex_exit(&tcp_time_wait->tcp_time_wait_lock); mutex_exit(&connp->conn_lock); /* * We can reuse the closemp here since conn has * detached (otherwise we wouldn't even be in * time_wait list). */ mp = &tcp->tcp_closemp; squeue_fill(connp->conn_sqp, mp, tcp_timewait_output, connp, 0); } mutex_enter(&tcp_time_wait->tcp_time_wait_lock); } if (tcp_time_wait->tcp_free_list != NULL) tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); mutex_exit(&tcp_time_wait->tcp_time_wait_lock); } /* * Reply to a clients T_CONN_RES TPI message. This function * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES * on the acceptor STREAM and processed in tcp_wput_accept(). * Read the block comment on top of tcp_conn_request(). */ static void tcp_accept(tcp_t *listener, mblk_t *mp) { tcp_t *acceptor; tcp_t *eager; tcp_t *tcp; struct T_conn_res *tcr; t_uscalar_t acceptor_id; t_scalar_t seqnum; mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ mblk_t *ok_mp; mblk_t *mp1; if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { tcp_err_ack(listener, mp, TPROTO, 0); return; } tcr = (struct T_conn_res *)mp->b_rptr; /* * Under ILP32 the stream head points tcr->ACCEPTOR_id at the * read side queue of the streams device underneath us i.e. the * read side queue of 'ip'. Since we can't deference QUEUE_ptr we * look it up in the queue_hash. Under LP64 it sends down the * minor_t of the accepting endpoint. * * Once the acceptor/eager are modified (in tcp_accept_swap) the * fanout hash lock is held. * This prevents any thread from entering the acceptor queue from * below (since it has not been hard bound yet i.e. any inbound * packets will arrive on the listener or default tcp queue and * go through tcp_lookup). * The CONN_INC_REF will prevent the acceptor from closing. * * XXX It is still possible for a tli application to send down data * on the accepting stream while another thread calls t_accept. * This should not be a problem for well-behaved applications since * the T_OK_ACK is sent after the queue swapping is completed. * * If the accepting fd is the same as the listening fd, avoid * queue hash lookup since that will return an eager listener in a * already established state. */ acceptor_id = tcr->ACCEPTOR_id; mutex_enter(&listener->tcp_eager_lock); if (listener->tcp_acceptor_id == acceptor_id) { eager = listener->tcp_eager_next_q; /* only count how many T_CONN_INDs so don't count q0 */ if ((listener->tcp_conn_req_cnt_q != 1) || (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TBADF, 0); return; } if (listener->tcp_conn_req_cnt_q0 != 0) { /* Throw away all the eagers on q0. */ tcp_eager_cleanup(listener, 1); } if (listener->tcp_syn_defense) { listener->tcp_syn_defense = B_FALSE; if (listener->tcp_ip_addr_cache != NULL) { kmem_free(listener->tcp_ip_addr_cache, IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); listener->tcp_ip_addr_cache = NULL; } } /* * Transfer tcp_conn_req_max to the eager so that when * a disconnect occurs we can revert the endpoint to the * listen state. */ eager->tcp_conn_req_max = listener->tcp_conn_req_max; ASSERT(listener->tcp_conn_req_cnt_q0 == 0); /* * Get a reference on the acceptor just like the * tcp_acceptor_hash_lookup below. */ acceptor = listener; CONN_INC_REF(acceptor->tcp_connp); } else { acceptor = tcp_acceptor_hash_lookup(acceptor_id); if (acceptor == NULL) { if (listener->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_accept: did not find acceptor 0x%x\n", acceptor_id); } mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TPROVMISMATCH, 0); return; } /* * Verify acceptor state. The acceptable states for an acceptor * include TCPS_IDLE and TCPS_BOUND. */ switch (acceptor->tcp_state) { case TCPS_IDLE: /* FALLTHRU */ case TCPS_BOUND: break; default: CONN_DEC_REF(acceptor->tcp_connp); mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TOUTSTATE, 0); return; } } /* The listener must be in TCPS_LISTEN */ if (listener->tcp_state != TCPS_LISTEN) { CONN_DEC_REF(acceptor->tcp_connp); mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TOUTSTATE, 0); return; } /* * Rendezvous with an eager connection request packet hanging off * 'tcp' that has the 'seqnum' tag. We tagged the detached open * tcp structure when the connection packet arrived in * tcp_conn_request(). */ seqnum = tcr->SEQ_number; eager = listener; do { eager = eager->tcp_eager_next_q; if (eager == NULL) { CONN_DEC_REF(acceptor->tcp_connp); mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TBADSEQ, 0); return; } } while (eager->tcp_conn_req_seqnum != seqnum); mutex_exit(&listener->tcp_eager_lock); /* * At this point, both acceptor and listener have 2 ref * that they begin with. Acceptor has one additional ref * we placed in lookup while listener has 3 additional * ref for being behind the squeue (tcp_accept() is * done on listener's squeue); being in classifier hash; * and eager's ref on listener. */ ASSERT(listener->tcp_connp->conn_ref >= 5); ASSERT(acceptor->tcp_connp->conn_ref >= 3); /* * The eager at this point is set in its own squeue and * could easily have been killed (tcp_accept_finish will * deal with that) because of a TH_RST so we can only * ASSERT for a single ref. */ ASSERT(eager->tcp_connp->conn_ref >= 1); /* Pre allocate the stroptions mblk also */ opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); if (opt_mp == NULL) { CONN_DEC_REF(acceptor->tcp_connp); CONN_DEC_REF(eager->tcp_connp); tcp_err_ack(listener, mp, TSYSERR, ENOMEM); return; } DB_TYPE(opt_mp) = M_SETOPTS; opt_mp->b_wptr += sizeof (struct stroptions); /* * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO * from listener to acceptor. The message is chained on opt_mp * which will be sent onto eager's squeue. */ if (listener->tcp_bound_if != 0) { /* allocate optmgmt req */ mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, sizeof (int)); if (mp1 != NULL) linkb(opt_mp, mp1); } if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { uint_t on = 1; /* allocate optmgmt req */ mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); if (mp1 != NULL) linkb(opt_mp, mp1); } /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ if ((mp1 = copymsg(mp)) == NULL) { CONN_DEC_REF(acceptor->tcp_connp); CONN_DEC_REF(eager->tcp_connp); freemsg(opt_mp); tcp_err_ack(listener, mp, TSYSERR, ENOMEM); return; } tcr = (struct T_conn_res *)mp1->b_rptr; /* * This is an expanded version of mi_tpi_ok_ack_alloc() * which allocates a larger mblk and appends the new * local address to the ok_ack. The address is copied by * soaccept() for getsockname(). */ { int extra; extra = (eager->tcp_family == AF_INET) ? sizeof (sin_t) : sizeof (sin6_t); /* * Try to re-use mp, if possible. Otherwise, allocate * an mblk and return it as ok_mp. In any case, mp * is no longer usable upon return. */ if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { CONN_DEC_REF(acceptor->tcp_connp); CONN_DEC_REF(eager->tcp_connp); freemsg(opt_mp); /* Original mp has been freed by now, so use mp1 */ tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); return; } mp = NULL; /* We should never use mp after this point */ switch (extra) { case sizeof (sin_t): { sin_t *sin = (sin_t *)ok_mp->b_wptr; ok_mp->b_wptr += extra; sin->sin_family = AF_INET; sin->sin_port = eager->tcp_lport; sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; break; } case sizeof (sin6_t): { sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; ok_mp->b_wptr += extra; sin6->sin6_family = AF_INET6; sin6->sin6_port = eager->tcp_lport; if (eager->tcp_ipversion == IPV4_VERSION) { sin6->sin6_flowinfo = 0; IN6_IPADDR_TO_V4MAPPED( eager->tcp_ipha->ipha_src, &sin6->sin6_addr); } else { ASSERT(eager->tcp_ip6h != NULL); sin6->sin6_flowinfo = eager->tcp_ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; sin6->sin6_addr = eager->tcp_ip6h->ip6_src; } break; } default: break; } ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); } /* * If there are no options we know that the T_CONN_RES will * succeed. However, we can't send the T_OK_ACK upstream until * the tcp_accept_swap is done since it would be dangerous to * let the application start using the new fd prior to the swap. */ tcp_accept_swap(listener, acceptor, eager); /* * tcp_accept_swap unlinks eager from listener but does not drop * the eager's reference on the listener. */ ASSERT(eager->tcp_listener == NULL); ASSERT(listener->tcp_connp->conn_ref >= 5); /* * The eager is now associated with its own queue. Insert in * the hash so that the connection can be reused for a future * T_CONN_RES. */ tcp_acceptor_hash_insert(acceptor_id, eager); /* * We now do the processing of options with T_CONN_RES. * We delay till now since we wanted to have queue to pass to * option processing routines that points back to the right * instance structure which does not happen until after * tcp_accept_swap(). * * Note: * The sanity of the logic here assumes that whatever options * are appropriate to inherit from listner=>eager are done * before this point, and whatever were to be overridden (or not) * in transfer logic from eager=>acceptor in tcp_accept_swap(). * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it * before its ACCEPTOR_id comes down in T_CONN_RES ] * This may not be true at this point in time but can be fixed * independently. This option processing code starts with * the instantiated acceptor instance and the final queue at * this point. */ if (tcr->OPT_length != 0) { /* Options to process */ int t_error = 0; int sys_error = 0; int do_disconnect = 0; if (tcp_conprim_opt_process(eager, mp1, &do_disconnect, &t_error, &sys_error) < 0) { eager->tcp_accept_error = 1; if (do_disconnect) { /* * An option failed which does not allow * connection to be accepted. * * We allow T_CONN_RES to succeed and * put a T_DISCON_IND on the eager queue. */ ASSERT(t_error == 0 && sys_error == 0); eager->tcp_send_discon_ind = 1; } else { ASSERT(t_error != 0); freemsg(ok_mp); /* * Original mp was either freed or set * to ok_mp above, so use mp1 instead. */ tcp_err_ack(listener, mp1, t_error, sys_error); goto finish; } } /* * Most likely success in setting options (except if * eager->tcp_send_discon_ind set). * mp1 option buffer represented by OPT_length/offset * potentially modified and contains results of setting * options at this point */ } /* We no longer need mp1, since all options processing has passed */ freemsg(mp1); putnext(listener->tcp_rq, ok_mp); mutex_enter(&listener->tcp_eager_lock); if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { tcp_t *tail; mblk_t *conn_ind; /* * This path should not be executed if listener and * acceptor streams are the same. */ ASSERT(listener != acceptor); tcp = listener->tcp_eager_prev_q0; /* * listener->tcp_eager_prev_q0 points to the TAIL of the * deferred T_conn_ind queue. We need to get to the head of * the queue in order to send up T_conn_ind the same order as * how the 3WHS is completed. */ while (tcp != listener) { if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) break; else tcp = tcp->tcp_eager_prev_q0; } ASSERT(tcp != listener); conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; ASSERT(conn_ind != NULL); tcp->tcp_conn.tcp_eager_conn_ind = NULL; /* Move from q0 to q */ ASSERT(listener->tcp_conn_req_cnt_q0 > 0); listener->tcp_conn_req_cnt_q0--; listener->tcp_conn_req_cnt_q++; tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; tcp->tcp_eager_prev_q0 = NULL; tcp->tcp_eager_next_q0 = NULL; tcp->tcp_conn_def_q0 = B_FALSE; /* * Insert at end of the queue because sockfs sends * down T_CONN_RES in chronological order. Leaving * the older conn indications at front of the queue * helps reducing search time. */ tail = listener->tcp_eager_last_q; if (tail != NULL) tail->tcp_eager_next_q = tcp; else listener->tcp_eager_next_q = tcp; listener->tcp_eager_last_q = tcp; tcp->tcp_eager_next_q = NULL; mutex_exit(&listener->tcp_eager_lock); putnext(tcp->tcp_rq, conn_ind); } else { mutex_exit(&listener->tcp_eager_lock); } /* * Done with the acceptor - free it * * Note: from this point on, no access to listener should be made * as listener can be equal to acceptor. */ finish: ASSERT(acceptor->tcp_detached); acceptor->tcp_rq = tcp_g_q; acceptor->tcp_wq = WR(tcp_g_q); (void) tcp_clean_death(acceptor, 0, 2); CONN_DEC_REF(acceptor->tcp_connp); /* * In case we already received a FIN we have to make tcp_rput send * the ordrel_ind. This will also send up a window update if the window * has opened up. * * In the normal case of a successful connection acceptance * we give the O_T_BIND_REQ to the read side put procedure as an * indication that this was just accepted. This tells tcp_rput to * pass up any data queued in tcp_rcv_list. * * In the fringe case where options sent with T_CONN_RES failed and * we required, we would be indicating a T_DISCON_IND to blow * away this connection. */ /* * XXX: we currently have a problem if XTI application closes the * acceptor stream in between. This problem exists in on10-gate also * and is well know but nothing can be done short of major rewrite * to fix it. Now it is possible to take care of it by assigning TLI/XTI * eager same squeue as listener (we can distinguish non socket * listeners at the time of handling a SYN in tcp_conn_request) * and do most of the work that tcp_accept_finish does here itself * and then get behind the acceptor squeue to access the acceptor * queue. */ /* * We already have a ref on tcp so no need to do one before squeue_fill */ squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); } /* * Swap information between the eager and acceptor for a TLI/XTI client. * The sockfs accept is done on the acceptor stream and control goes * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not * called. In either case, both the eager and listener are in their own * perimeter (squeue) and the code has to deal with potential race. * * See the block comment on top of tcp_accept() and tcp_wput_accept(). */ static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) { conn_t *econnp, *aconnp; ASSERT(eager->tcp_rq == listener->tcp_rq); ASSERT(eager->tcp_detached && !acceptor->tcp_detached); ASSERT(!eager->tcp_hard_bound); ASSERT(!TCP_IS_SOCKET(acceptor)); ASSERT(!TCP_IS_SOCKET(eager)); ASSERT(!TCP_IS_SOCKET(listener)); acceptor->tcp_detached = B_TRUE; /* * To permit stream re-use by TLI/XTI, the eager needs a copy of * the acceptor id. */ eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; /* remove eager from listen list... */ mutex_enter(&listener->tcp_eager_lock); tcp_eager_unlink(eager); ASSERT(eager->tcp_eager_next_q == NULL && eager->tcp_eager_last_q == NULL); ASSERT(eager->tcp_eager_next_q0 == NULL && eager->tcp_eager_prev_q0 == NULL); mutex_exit(&listener->tcp_eager_lock); eager->tcp_rq = acceptor->tcp_rq; eager->tcp_wq = acceptor->tcp_wq; econnp = eager->tcp_connp; aconnp = acceptor->tcp_connp; eager->tcp_rq->q_ptr = econnp; eager->tcp_wq->q_ptr = econnp; eager->tcp_detached = B_FALSE; ASSERT(eager->tcp_ack_tid == 0); econnp->conn_dev = aconnp->conn_dev; eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; econnp->conn_zoneid = aconnp->conn_zoneid; aconnp->conn_cred = NULL; /* Do the IPC initialization */ CONN_INC_REF(econnp); econnp->conn_multicast_loop = aconnp->conn_multicast_loop; econnp->conn_af_isv6 = aconnp->conn_af_isv6; econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; econnp->conn_ulp = aconnp->conn_ulp; /* Done with old IPC. Drop its ref on its connp */ CONN_DEC_REF(aconnp); } /* * Adapt to the information, such as rtt and rtt_sd, provided from the * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. * * Checks for multicast and broadcast destination address. * Returns zero on failure; non-zero if ok. * * Note that the MSS calculation here is based on the info given in * the IRE. We do not do any calculation based on TCP options. They * will be handled in tcp_rput_other() and tcp_rput_data() when TCP * knows which options to use. * * Note on how TCP gets its parameters for a connection. * * When a tcp_t structure is allocated, it gets all the default parameters. * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, * spipe, rpipe, ... from the route metrics. Route metric overrides the * default. But if there is an associated tcp_host_param, it will override * the metrics. * * An incoming SYN with a multicast or broadcast destination address, is dropped * in 1 of 2 places. * * 1. If the packet was received over the wire it is dropped in * ip_rput_process_broadcast() * * 2. If the packet was received through internal IP loopback, i.e. the packet * was generated and received on the same machine, it is dropped in * ip_wput_local() * * An incoming SYN with a multicast or broadcast source address is always * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to * reject an attempt to connect to a broadcast or multicast (destination) * address. */ static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) { tcp_hsp_t *hsp; ire_t *ire; ire_t *sire = NULL; iulp_t *ire_uinfo = NULL; uint32_t mss_max; uint32_t mss; boolean_t tcp_detached = TCP_IS_DETACHED(tcp); conn_t *connp = tcp->tcp_connp; boolean_t ire_cacheable = B_FALSE; zoneid_t zoneid = connp->conn_zoneid; ill_t *ill = NULL; boolean_t incoming = (ire_mp == NULL); ASSERT(connp->conn_ire_cache == NULL); if (tcp->tcp_ipversion == IPV4_VERSION) { if (CLASSD(tcp->tcp_connp->conn_rem)) { BUMP_MIB(&ip_mib, ipInDiscards); return (0); } /* * If IP_NEXTHOP is set, then look for an IRE_CACHE * for the destination with the nexthop as gateway. * ire_ctable_lookup() is used because this particular * ire, if it exists, will be marked private. * If that is not available, use the interface ire * for the nexthop. */ if (tcp->tcp_connp->conn_nexthop_set) { ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); if (ire == NULL) { ire = ire_ftable_lookup( tcp->tcp_connp->conn_nexthop_v4, 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, MATCH_IRE_TYPE); if (ire == NULL) return (0); } else { ire_uinfo = &ire->ire_uinfo; } } else { ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, zoneid); if (ire != NULL) { ire_cacheable = B_TRUE; ire_uinfo = (ire_mp != NULL) ? &((ire_t *)ire_mp->b_rptr)->ire_uinfo: &ire->ire_uinfo; } else { if (ire_mp == NULL) { ire = ire_ftable_lookup( tcp->tcp_connp->conn_rem, 0, 0, 0, NULL, &sire, zoneid, 0, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); if (ire == NULL) return (0); ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : &ire->ire_uinfo; } else { ire = (ire_t *)ire_mp->b_rptr; ire_uinfo = &((ire_t *) ire_mp->b_rptr)->ire_uinfo; } } } ASSERT(ire != NULL); if ((ire->ire_src_addr == INADDR_ANY) || (ire->ire_type & IRE_BROADCAST)) { /* * ire->ire_mp is non null when ire_mp passed in is used * ire->ire_mp is set in ip_bind_insert_ire[_v6](). */ if (ire->ire_mp == NULL) ire_refrele(ire); if (sire != NULL) ire_refrele(sire); return (0); } if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { ipaddr_t src_addr; /* * ip_bind_connected() has stored the correct source * address in conn_src. */ src_addr = tcp->tcp_connp->conn_src; tcp->tcp_ipha->ipha_src = src_addr; /* * Copy of the src addr. in tcp_t is needed * for the lookup funcs. */ IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); } /* * Set the fragment bit so that IP will tell us if the MTU * should change. IP tells us the latest setting of * ip_path_mtu_discovery through ire_frag_flag. */ if (ip_path_mtu_discovery) { tcp->tcp_ipha->ipha_fragment_offset_and_flags = htons(IPH_DF); } /* * If ire_uinfo is NULL, this is the IRE_INTERFACE case * for IP_NEXTHOP. No cache ire has been found for the * destination and we are working with the nexthop's * interface ire. Since we need to forward all packets * to the nexthop first, we "blindly" set tcp_localnet * to false, eventhough the destination may also be * onlink. */ if (ire_uinfo == NULL) tcp->tcp_localnet = 0; else tcp->tcp_localnet = (ire->ire_gateway_addr == 0); } else { /* * For incoming connection ire_mp = NULL * For outgoing connection ire_mp != NULL * Technically we should check conn_incoming_ill * when ire_mp is NULL and conn_outgoing_ill when * ire_mp is non-NULL. But this is performance * critical path and for IPV*_BOUND_IF, outgoing * and incoming ill are always set to the same value. */ ill_t *dst_ill = NULL; ipif_t *dst_ipif = NULL; int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT; ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); if (connp->conn_outgoing_ill != NULL) { /* Outgoing or incoming path */ int err; dst_ill = conn_get_held_ill(connp, &connp->conn_outgoing_ill, &err); if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); return (0); } match_flags |= MATCH_IRE_ILL; dst_ipif = dst_ill->ill_ipif; } ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 0, 0, dst_ipif, zoneid, match_flags); if (ire != NULL) { ire_cacheable = B_TRUE; ire_uinfo = (ire_mp != NULL) ? &((ire_t *)ire_mp->b_rptr)->ire_uinfo: &ire->ire_uinfo; } else { if (ire_mp == NULL) { ire = ire_ftable_lookup_v6( &tcp->tcp_connp->conn_remv6, 0, 0, 0, dst_ipif, &sire, zoneid, 0, match_flags); if (ire == NULL) { if (dst_ill != NULL) ill_refrele(dst_ill); return (0); } ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : &ire->ire_uinfo; } else { ire = (ire_t *)ire_mp->b_rptr; ire_uinfo = &((ire_t *)ire_mp->b_rptr)->ire_uinfo; } } if (dst_ill != NULL) ill_refrele(dst_ill); ASSERT(ire != NULL); ASSERT(ire_uinfo != NULL); if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { /* * ire->ire_mp is non null when ire_mp passed in is used * ire->ire_mp is set in ip_bind_insert_ire[_v6](). */ if (ire->ire_mp == NULL) ire_refrele(ire); if (sire != NULL) ire_refrele(sire); return (0); } if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { in6_addr_t src_addr; /* * ip_bind_connected_v6() has stored the correct source * address per IPv6 addr. selection policy in * conn_src_v6. */ src_addr = tcp->tcp_connp->conn_srcv6; tcp->tcp_ip6h->ip6_src = src_addr; /* * Copy of the src addr. in tcp_t is needed * for the lookup funcs. */ tcp->tcp_ip_src_v6 = src_addr; ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, &connp->conn_srcv6)); } tcp->tcp_localnet = IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); } /* * This allows applications to fail quickly when connections are made * to dead hosts. Hosts can be labeled dead by adding a reject route * with both the RTF_REJECT and RTF_PRIVATE flags set. */ if ((ire->ire_flags & RTF_REJECT) && (ire->ire_flags & RTF_PRIVATE)) goto error; /* * Make use of the cached rtt and rtt_sd values to calculate the * initial RTO. Note that they are already initialized in * tcp_init_values(). * If ire_uinfo is NULL, i.e., we do not have a cache ire for * IP_NEXTHOP, but instead are using the interface ire for the * nexthop, then we do not use the ire_uinfo from that ire to * do any initializations. */ if (ire_uinfo != NULL) { if (ire_uinfo->iulp_rtt != 0) { clock_t rto; tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); if (rto > tcp_rexmit_interval_max) { tcp->tcp_rto = tcp_rexmit_interval_max; } else if (rto < tcp_rexmit_interval_min) { tcp->tcp_rto = tcp_rexmit_interval_min; } else { tcp->tcp_rto = rto; } } if (ire_uinfo->iulp_ssthresh != 0) tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; else tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; if (ire_uinfo->iulp_spipe > 0) { tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, tcp_max_buf); if (tcp_snd_lowat_fraction != 0) tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / tcp_snd_lowat_fraction; (void) tcp_maxpsz_set(tcp, B_TRUE); } /* * Note that up till now, acceptor always inherits receive * window from the listener. But if there is a metrics * associated with a host, we should use that instead of * inheriting it from listener. Thus we need to pass this * info back to the caller. */ if (ire_uinfo->iulp_rpipe > 0) { tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); } if (ire_uinfo->iulp_rtomax > 0) { tcp->tcp_second_timer_threshold = ire_uinfo->iulp_rtomax; } /* * Use the metric option settings, iulp_tstamp_ok and * iulp_wscale_ok, only for active open. What this means * is that if the other side uses timestamp or window * scale option, TCP will also use those options. That * is for passive open. If the application sets a * large window, window scale is enabled regardless of * the value in iulp_wscale_ok. This is the behavior * since 2.6. So we keep it. * The only case left in passive open processing is the * check for SACK. * For ECN, it should probably be like SACK. But the * current value is binary, so we treat it like the other * cases. The metric only controls active open.For passive * open, the ndd param, tcp_ecn_permitted, controls the * behavior. */ if (!tcp_detached) { /* * The if check means that the following can only * be turned on by the metrics only IRE, but not off. */ if (ire_uinfo->iulp_tstamp_ok) tcp->tcp_snd_ts_ok = B_TRUE; if (ire_uinfo->iulp_wscale_ok) tcp->tcp_snd_ws_ok = B_TRUE; if (ire_uinfo->iulp_sack == 2) tcp->tcp_snd_sack_ok = B_TRUE; if (ire_uinfo->iulp_ecn_ok) tcp->tcp_ecn_ok = B_TRUE; } else { /* * Passive open. * * As above, the if check means that SACK can only be * turned on by the metric only IRE. */ if (ire_uinfo->iulp_sack > 0) { tcp->tcp_snd_sack_ok = B_TRUE; } } } /* * XXX: Note that currently, ire_max_frag can be as small as 68 * because of PMTUd. So tcp_mss may go to negative if combined * length of all those options exceeds 28 bytes. But because * of the tcp_mss_min check below, we may not have a problem if * tcp_mss_min is of a reasonable value. The default is 1 so * the negative problem still exists. And the check defeats PMTUd. * In fact, if PMTUd finds that the MSS should be smaller than * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min * value. * * We do not deal with that now. All those problems related to * PMTUd will be fixed later. */ ASSERT(ire->ire_max_frag != 0); mss = tcp->tcp_if_mtu = ire->ire_max_frag; if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { mss = MIN(mss, IPV6_MIN_MTU); } } /* Sanity check for MSS value. */ if (tcp->tcp_ipversion == IPV4_VERSION) mss_max = tcp_mss_max_ipv4; else mss_max = tcp_mss_max_ipv6; if (tcp->tcp_ipversion == IPV6_VERSION && (ire->ire_frag_flag & IPH_FRAG_HDR)) { /* * After receiving an ICMPv6 "packet too big" message with a * MTU < 1280, and for multirouted IPv6 packets, the IP layer * will insert a 8-byte fragment header in every packet; we * reduce the MSS by that amount here. */ mss -= sizeof (ip6_frag_t); } if (tcp->tcp_ipsec_overhead == 0) tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); mss -= tcp->tcp_ipsec_overhead; if (mss < tcp_mss_min) mss = tcp_mss_min; if (mss > mss_max) mss = mss_max; /* Note that this is the maximum MSS, excluding all options. */ tcp->tcp_mss = mss; /* * Initialize the ISS here now that we have the full connection ID. * The RFC 1948 method of initial sequence number generation requires * knowledge of the full connection ID before setting the ISS. */ tcp_iss_init(tcp); if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) tcp->tcp_loopback = B_TRUE; if (tcp->tcp_ipversion == IPV4_VERSION) { hsp = tcp_hsp_lookup(tcp->tcp_remote); } else { hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); } if (hsp != NULL) { /* Only modify if we're going to make them bigger */ if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; if (tcp_snd_lowat_fraction != 0) tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / tcp_snd_lowat_fraction; } if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; } /* Copy timestamp flag only for active open */ if (!tcp_detached) tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; } if (sire != NULL) IRE_REFRELE(sire); /* * If we got an IRE_CACHE and an ILL, go through their properties; * otherwise, this is deferred until later when we have an IRE_CACHE. */ if (tcp->tcp_loopback || (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { /* * For incoming, see if this tcp may be MDT-capable. For * outgoing, this process has been taken care of through * tcp_rput_other. */ tcp_ire_ill_check(tcp, ire, ill, incoming); tcp->tcp_ire_ill_check_done = B_TRUE; } mutex_enter(&connp->conn_lock); /* * Make sure that conn is not marked incipient * for incoming connections. A blind * removal of incipient flag is cheaper than * check and removal. */ connp->conn_state_flags &= ~CONN_INCIPIENT; /* Must not cache forwarding table routes. */ if (ire_cacheable) { rw_enter(&ire->ire_bucket->irb_lock, RW_READER); if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { connp->conn_ire_cache = ire; IRE_UNTRACE_REF(ire); rw_exit(&ire->ire_bucket->irb_lock); mutex_exit(&connp->conn_lock); return (1); } rw_exit(&ire->ire_bucket->irb_lock); } mutex_exit(&connp->conn_lock); if (ire->ire_mp == NULL) ire_refrele(ire); return (1); error: if (ire->ire_mp == NULL) ire_refrele(ire); if (sire != NULL) ire_refrele(sire); return (0); } /* * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a * O_T_BIND_REQ/T_BIND_REQ message. */ static void tcp_bind(tcp_t *tcp, mblk_t *mp) { sin_t *sin; sin6_t *sin6; mblk_t *mp1; in_port_t requested_port; in_port_t allocated_port; struct T_bind_req *tbr; boolean_t bind_to_req_port_only; boolean_t backlog_update = B_FALSE; boolean_t user_specified; in6_addr_t v6addr; ipaddr_t v4addr; uint_t origipversion; int err; queue_t *q = tcp->tcp_wq; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: bad req, len %u", (uint_t)(mp->b_wptr - mp->b_rptr)); } tcp_err_ack(tcp, mp, TPROTO, 0); return; } /* Make sure the largest address fits */ mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); if (mp1 == NULL) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } mp = mp1; tbr = (struct T_bind_req *)mp->b_rptr; if (tcp->tcp_state >= TCPS_BOUND) { if ((tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN) && tcp->tcp_conn_req_max != tbr->CONIND_number && tbr->CONIND_number > 0) { /* * Handle listen() increasing CONIND_number. * This is more "liberal" then what the TPI spec * requires but is needed to avoid a t_unbind * when handling listen() since the port number * might be "stolen" between the unbind and bind. */ backlog_update = B_TRUE; goto do_bind; } if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: bad state, %d", tcp->tcp_state); } tcp_err_ack(tcp, mp, TOUTSTATE, 0); return; } origipversion = tcp->tcp_ipversion; switch (tbr->ADDR_length) { case 0: /* request for a generic port */ tbr->ADDR_offset = sizeof (struct T_bind_req); if (tcp->tcp_family == AF_INET) { tbr->ADDR_length = sizeof (sin_t); sin = (sin_t *)&tbr[1]; *sin = sin_null; sin->sin_family = AF_INET; mp->b_wptr = (uchar_t *)&sin[1]; tcp->tcp_ipversion = IPV4_VERSION; IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); } else { ASSERT(tcp->tcp_family == AF_INET6); tbr->ADDR_length = sizeof (sin6_t); sin6 = (sin6_t *)&tbr[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; mp->b_wptr = (uchar_t *)&sin6[1]; tcp->tcp_ipversion = IPV6_VERSION; V6_SET_ZERO(v6addr); } requested_port = 0; break; case sizeof (sin_t): /* Complete IPv4 address */ sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin_t)); if (sin == NULL || !OK_32PTR((char *)sin)) { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: bad address parameter, " "offset %d, len %d", tbr->ADDR_offset, tbr->ADDR_length); } tcp_err_ack(tcp, mp, TPROTO, 0); return; } /* * With sockets sockfs will accept bogus sin_family in * bind() and replace it with the family used in the socket * call. */ if (sin->sin_family != AF_INET || tcp->tcp_family != AF_INET) { tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); return; } requested_port = ntohs(sin->sin_port); tcp->tcp_ipversion = IPV4_VERSION; v4addr = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); break; case sizeof (sin6_t): /* Complete IPv6 address */ sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin6_t)); if (sin6 == NULL || !OK_32PTR((char *)sin6)) { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: bad IPv6 address parameter, " "offset %d, len %d", tbr->ADDR_offset, tbr->ADDR_length); } tcp_err_ack(tcp, mp, TSYSERR, EINVAL); return; } if (sin6->sin6_family != AF_INET6 || tcp->tcp_family != AF_INET6) { tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); return; } requested_port = ntohs(sin6->sin6_port); tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? IPV4_VERSION : IPV6_VERSION; v6addr = sin6->sin6_addr; break; default: if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: bad address length, %d", tbr->ADDR_length); } tcp_err_ack(tcp, mp, TBADADDR, 0); return; } tcp->tcp_bound_source_v6 = v6addr; /* Check for change in ipversion */ if (origipversion != tcp->tcp_ipversion) { ASSERT(tcp->tcp_family == AF_INET6); err = tcp->tcp_ipversion == IPV6_VERSION ? tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); if (err) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } } /* * Initialize family specific fields. Copy of the src addr. * in tcp_t is needed for the lookup funcs. */ if (tcp->tcp_ipversion == IPV6_VERSION) { tcp->tcp_ip6h->ip6_src = v6addr; } else { IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); } tcp->tcp_ip_src_v6 = v6addr; /* * For O_T_BIND_REQ: * Verify that the target port/addr is available, or choose * another. * For T_BIND_REQ: * Verify that the target port/addr is available or fail. * In both cases when it succeeds the tcp is inserted in the * bind hash table. This ensures that the operation is atomic * under the lock on the hash bucket. */ bind_to_req_port_only = requested_port != 0 && tbr->PRIM_type != O_T_BIND_REQ; /* * Get a valid port (within the anonymous range and should not * be a privileged one) to use if the user has not given a port. * If multiple threads are here, they may all start with * with the same initial port. But, it should be fine as long as * tcp_bindi will ensure that no two threads will be assigned * the same port. * * NOTE: XXX If a privileged process asks for an anonymous port, we * still check for ports only in the range > tcp_smallest_non_priv_port, * unless TCP_ANONPRIVBIND option is set. */ if (requested_port == 0) { requested_port = tcp->tcp_anon_priv_bind ? tcp_get_next_priv_port() : tcp_update_next_port(tcp_next_port_to_try, B_TRUE); user_specified = B_FALSE; } else { int i; boolean_t priv = B_FALSE; /* * If the requested_port is in the well-known privileged range, * verify that the stream was opened by a privileged user. * Note: No locks are held when inspecting tcp_g_*epriv_ports * but instead the code relies on: * - the fact that the address of the array and its size never * changes * - the atomic assignment of the elements of the array */ if (requested_port < tcp_smallest_nonpriv_port) { priv = B_TRUE; } else { for (i = 0; i < tcp_g_num_epriv_ports; i++) { if (requested_port == tcp_g_epriv_ports[i]) { priv = B_TRUE; break; } } } if (priv) { cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); if (secpolicy_net_privaddr(cr, requested_port) != 0) { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: no priv for port %d", requested_port); } tcp_err_ack(tcp, mp, TACCES, 0); return; } } user_specified = B_TRUE; } allocated_port = tcp_bindi(tcp, requested_port, &v6addr, tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); if (allocated_port == 0) { if (bind_to_req_port_only) { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: requested addr busy"); } tcp_err_ack(tcp, mp, TADDRBUSY, 0); } else { /* If we are out of ports, fail the bind. */ if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: out of ports?"); } tcp_err_ack(tcp, mp, TNOADDR, 0); } return; } ASSERT(tcp->tcp_state == TCPS_BOUND); do_bind: if (!backlog_update) { if (tcp->tcp_family == AF_INET) sin->sin_port = htons(allocated_port); else sin6->sin6_port = htons(allocated_port); } if (tcp->tcp_family == AF_INET) { if (tbr->CONIND_number != 0) { mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, sizeof (sin_t)); } else { /* Just verify the local IP address */ mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); } } else { if (tbr->CONIND_number != 0) { mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, sizeof (sin6_t)); } else { /* Just verify the local IP address */ mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IPV6_ADDR_LEN); } } if (!mp1) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } tbr->PRIM_type = T_BIND_ACK; mp->b_datap->db_type = M_PCPROTO; /* Chain in the reply mp for tcp_rput() */ mp1->b_cont = mp; mp = mp1; tcp->tcp_conn_req_max = tbr->CONIND_number; if (tcp->tcp_conn_req_max) { if (tcp->tcp_conn_req_max < tcp_conn_req_min) tcp->tcp_conn_req_max = tcp_conn_req_min; if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) tcp->tcp_conn_req_max = tcp_conn_req_max_q; /* * If this is a listener, do not reset the eager list * and other stuffs. Note that we don't check if the * existing eager list meets the new tcp_conn_req_max * requirement. */ if (tcp->tcp_state != TCPS_LISTEN) { tcp->tcp_state = TCPS_LISTEN; /* Initialize the chain. Don't need the eager_lock */ tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; tcp->tcp_second_ctimer_threshold = tcp_ip_abort_linterval; } } /* * We can call ip_bind directly which returns a T_BIND_ACK mp. The * processing continues in tcp_rput_other(). */ if (tcp->tcp_family == AF_INET6) { ASSERT(tcp->tcp_connp->conn_af_isv6); mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); } else { ASSERT(!tcp->tcp_connp->conn_af_isv6); mp = ip_bind_v4(q, mp, tcp->tcp_connp); } /* * If the bind cannot complete immediately * IP will arrange to call tcp_rput_other * when the bind completes. */ if (mp != NULL) { tcp_rput_other(tcp, mp); } else { /* * Bind will be resumed later. Need to ensure * that conn doesn't disappear when that happens. * This will be decremented in ip_resume_tcp_bind(). */ CONN_INC_REF(tcp->tcp_connp); } } /* * If the "bind_to_req_port_only" parameter is set, if the requested port * number is available, return it, If not return 0 * * If "bind_to_req_port_only" parameter is not set and * If the requested port number is available, return it. If not, return * the first anonymous port we happen across. If no anonymous ports are * available, return 0. addr is the requested local address, if any. * * In either case, when succeeding update the tcp_t to record the port number * and insert it in the bind hash table. * * Note that TCP over IPv4 and IPv6 sockets can use the same port number * without setting SO_REUSEADDR. This is needed so that they * can be viewed as two independent transport protocols. */ static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, boolean_t user_specified) { /* number of times we have run around the loop */ int count = 0; /* maximum number of times to run around the loop */ int loopmax; zoneid_t zoneid = tcp->tcp_connp->conn_zoneid; /* * Lookup for free addresses is done in a loop and "loopmax" * influences how long we spin in the loop */ if (bind_to_req_port_only) { /* * If the requested port is busy, don't bother to look * for a new one. Setting loop maximum count to 1 has * that effect. */ loopmax = 1; } else { /* * If the requested port is busy, look for a free one * in the anonymous port range. * Set loopmax appropriately so that one does not look * forever in the case all of the anonymous ports are in use. */ if (tcp->tcp_anon_priv_bind) { /* * loopmax = * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 */ loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; } else { loopmax = (tcp_largest_anon_port - tcp_smallest_anon_port + 1); } } do { uint16_t lport; tf_t *tbf; tcp_t *ltcp; lport = htons(port); /* * Ensure that the tcp_t is not currently in the bind hash. * Hold the lock on the hash bucket to ensure that * the duplicate check plus the insertion is an atomic * operation. * * This function does an inline lookup on the bind hash list * Make sure that we access only members of tcp_t * and that we don't look at tcp_tcp, since we are not * doing a CONN_INC_REF. */ tcp_bind_hash_remove(tcp); tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; mutex_enter(&tbf->tf_lock); for (ltcp = tbf->tf_tcp; ltcp != NULL; ltcp = ltcp->tcp_bind_hash) { if (lport != ltcp->tcp_lport || ltcp->tcp_connp->conn_zoneid != zoneid) { continue; } /* * If TCP_EXCLBIND is set for either the bound or * binding endpoint, the semantics of bind * is changed according to the following. * * spec = specified address (v4 or v6) * unspec = unspecified address (v4 or v6) * A = specified addresses are different for endpoints * * bound bind to allowed * ------------------------------------- * unspec unspec no * unspec spec no * spec unspec no * spec spec yes if A * * Note: * * 1. Because of TLI semantics, an endpoint can go * back from, say TCP_ESTABLISHED to TCPS_LISTEN or * TCPS_BOUND, depending on whether it is originally * a listener or not. That is why we need to check * for states greater than or equal to TCPS_BOUND * here. * * 2. Ideally, we should only check for state equals * to TCPS_LISTEN. And the following check should be * added. * * if (ltcp->tcp_state == TCPS_LISTEN || * !reuseaddr || !ltcp->tcp_reuseaddr) { * ... * } * * The semantics will be changed to this. If the * endpoint on the list is in state not equal to * TCPS_LISTEN and both endpoints have SO_REUSEADDR * set, let the bind succeed. * * But because of (1), we cannot do that now. If * in future, we can change this going back semantics, * we can add the above check. */ if (ltcp->tcp_exclbind || tcp->tcp_exclbind) { if (V6_OR_V4_INADDR_ANY( ltcp->tcp_bound_source_v6) || V6_OR_V4_INADDR_ANY(*laddr) || IN6_ARE_ADDR_EQUAL(laddr, <cp->tcp_bound_source_v6)) { break; } continue; } /* * Check ipversion to allow IPv4 and IPv6 sockets to * have disjoint port number spaces, if *_EXCLBIND * is not set and only if the application binds to a * specific port. We use the same autoassigned port * number space for IPv4 and IPv6 sockets. */ if (tcp->tcp_ipversion != ltcp->tcp_ipversion && bind_to_req_port_only) continue; /* * Ideally, we should make sure that the source * address, remote address, and remote port in the * four tuple for this tcp-connection is unique. * However, trying to find out the local source * address would require too much code duplication * with IP, since IP needs needs to have that code * to support userland TCP implementations. */ if (quick_connect && (ltcp->tcp_state > TCPS_LISTEN) && ((tcp->tcp_fport != ltcp->tcp_fport) || !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, <cp->tcp_remote_v6))) continue; if (!reuseaddr) { /* * No socket option SO_REUSEADDR. * If existing port is bound to * a non-wildcard IP address * and the requesting stream is * bound to a distinct * different IP addresses * (non-wildcard, also), keep * going. */ if (!V6_OR_V4_INADDR_ANY(*laddr) && !V6_OR_V4_INADDR_ANY( ltcp->tcp_bound_source_v6) && !IN6_ARE_ADDR_EQUAL(laddr, <cp->tcp_bound_source_v6)) continue; if (ltcp->tcp_state >= TCPS_BOUND) { /* * This port is being used and * its state is >= TCPS_BOUND, * so we can't bind to it. */ break; } } else { /* * socket option SO_REUSEADDR is set on the * binding tcp_t. * * If two streams are bound to * same IP address or both addr * and bound source are wildcards * (INADDR_ANY), we want to stop * searching. * We have found a match of IP source * address and source port, which is * refused regardless of the * SO_REUSEADDR setting, so we break. */ if (IN6_ARE_ADDR_EQUAL(laddr, <cp->tcp_bound_source_v6) && (ltcp->tcp_state == TCPS_LISTEN || ltcp->tcp_state == TCPS_BOUND)) break; } } if (ltcp != NULL) { /* The port number is busy */ mutex_exit(&tbf->tf_lock); } else { /* * This port is ours. Insert in fanout and mark as * bound to prevent others from getting the port * number. */ tcp->tcp_state = TCPS_BOUND; tcp->tcp_lport = htons(port); *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( tcp->tcp_lport)] == tbf); tcp_bind_hash_insert(tbf, tcp, 1); mutex_exit(&tbf->tf_lock); /* * We don't want tcp_next_port_to_try to "inherit" * a port number supplied by the user in a bind. */ if (user_specified) return (port); /* * This is the only place where tcp_next_port_to_try * is updated. After the update, it may or may not * be in the valid range. */ if (!tcp->tcp_anon_priv_bind) tcp_next_port_to_try = port + 1; return (port); } if (tcp->tcp_anon_priv_bind) { port = tcp_get_next_priv_port(); } else { if (count == 0 && user_specified) { /* * We may have to return an anonymous port. So * get one to start with. */ port = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); user_specified = B_FALSE; } else { port = tcp_update_next_port(port + 1, B_FALSE); } } /* * Don't let this loop run forever in the case where * all of the anonymous ports are in use. */ } while (++count < loopmax); return (0); } /* * We are dying for some reason. Try to do it gracefully. (May be called * as writer.) * * Return -1 if the structure was not cleaned up (if the cleanup had to be * done by a service procedure). * TBD - Should the return value distinguish between the tcp_t being * freed and it being reinitialized? */ static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) { mblk_t *mp; queue_t *q; TCP_CLD_STAT(tag); #if TCP_TAG_CLEAN_DEATH tcp->tcp_cleandeathtag = tag; #endif if (tcp->tcp_linger_tid != 0 && TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { tcp_stop_lingering(tcp); } ASSERT(tcp != NULL); ASSERT((tcp->tcp_family == AF_INET && tcp->tcp_ipversion == IPV4_VERSION) || (tcp->tcp_family == AF_INET6 && (tcp->tcp_ipversion == IPV4_VERSION || tcp->tcp_ipversion == IPV6_VERSION))); if (TCP_IS_DETACHED(tcp)) { if (tcp->tcp_hard_binding) { /* * Its an eager that we are dealing with. We close the * eager but in case a conn_ind has already gone to the * listener, let tcp_accept_finish() send a discon_ind * to the listener and drop the last reference. If the * listener doesn't even know about the eager i.e. the * conn_ind hasn't gone up, blow away the eager and drop * the last reference as well. If the conn_ind has gone * up, state should be BOUND. tcp_accept_finish * will figure out that the connection has received a * RST and will send a DISCON_IND to the application. */ tcp_closei_local(tcp); if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { CONN_DEC_REF(tcp->tcp_connp); } else { tcp->tcp_state = TCPS_BOUND; } } else { tcp_close_detached(tcp); } return (0); } TCP_STAT(tcp_clean_death_nondetached); /* * If T_ORDREL_IND has not been sent yet (done when service routine * is run) postpone cleaning up the endpoint until service routine * has sent up the T_ORDREL_IND. Avoid clearing out an existing * client_errno since tcp_close uses the client_errno field. */ if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { if (err != 0) tcp->tcp_client_errno = err; tcp->tcp_deferred_clean_death = B_TRUE; return (-1); } q = tcp->tcp_rq; /* Trash all inbound data */ flushq(q, FLUSHALL); /* * If we are at least part way open and there is error * (err==0 implies no error) * notify our client by a T_DISCON_IND. */ if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { if (tcp->tcp_state >= TCPS_ESTABLISHED && !TCP_IS_SOCKET(tcp)) { /* * Send M_FLUSH according to TPI. Because sockets will * (and must) ignore FLUSHR we do that only for TPI * endpoints and sockets in STREAMS mode. */ (void) putnextctl1(q, M_FLUSH, FLUSHR); } if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_clean_death: discon err %d", err); } mp = mi_tpi_discon_ind(NULL, err, 0); if (mp != NULL) { putnext(q, mp); } else { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_clean_death, sending M_ERROR"); } (void) putnextctl1(q, M_ERROR, EPROTO); } if (tcp->tcp_state <= TCPS_SYN_RCVD) { /* SYN_SENT or SYN_RCVD */ BUMP_MIB(&tcp_mib, tcpAttemptFails); } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { /* ESTABLISHED or CLOSE_WAIT */ BUMP_MIB(&tcp_mib, tcpEstabResets); } } tcp_reinit(tcp); return (-1); } /* * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout * to expire, stop the wait and finish the close. */ static void tcp_stop_lingering(tcp_t *tcp) { clock_t delta = 0; tcp->tcp_linger_tid = 0; if (tcp->tcp_state > TCPS_LISTEN) { tcp_acceptor_hash_remove(tcp); if (tcp->tcp_flow_stopped) { tcp_clrqfull(tcp); } if (tcp->tcp_timer_tid != 0) { delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); tcp->tcp_timer_tid = 0; } /* * Need to cancel those timers which will not be used when * TCP is detached. This has to be done before the tcp_wq * is set to the global queue. */ tcp_timers_stop(tcp); tcp->tcp_detached = B_TRUE; tcp->tcp_rq = tcp_g_q; tcp->tcp_wq = WR(tcp_g_q); if (tcp->tcp_state == TCPS_TIME_WAIT) { tcp_time_wait_append(tcp); TCP_DBGSTAT(tcp_detach_time_wait); goto finish; } /* * If delta is zero the timer event wasn't executed and was * successfully canceled. In this case we need to restart it * with the minimal delta possible. */ if (delta >= 0) { tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, delta ? delta : 1); } } else { tcp_closei_local(tcp); CONN_DEC_REF(tcp->tcp_connp); } finish: /* Signal closing thread that it can complete close */ mutex_enter(&tcp->tcp_closelock); tcp->tcp_detached = B_TRUE; tcp->tcp_rq = tcp_g_q; tcp->tcp_wq = WR(tcp_g_q); tcp->tcp_closed = 1; cv_signal(&tcp->tcp_closecv); mutex_exit(&tcp->tcp_closelock); } /* * Handle lingering timeouts. This function is called when the SO_LINGER timeout * expires. */ static void tcp_close_linger_timeout(void *arg) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; tcp->tcp_client_errno = ETIMEDOUT; tcp_stop_lingering(tcp); } static int tcp_close(queue_t *q, int flags) { conn_t *connp = Q_TO_CONN(q); tcp_t *tcp = connp->conn_tcp; mblk_t *mp = &tcp->tcp_closemp; boolean_t conn_ioctl_cleanup_reqd = B_FALSE; ASSERT(WR(q)->q_next == NULL); ASSERT(connp->conn_ref >= 2); ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); /* * We are being closed as /dev/tcp or /dev/tcp6. * * Mark the conn as closing. ill_pending_mp_add will not * add any mp to the pending mp list, after this conn has * started closing. Same for sq_pending_mp_add */ mutex_enter(&connp->conn_lock); connp->conn_state_flags |= CONN_CLOSING; if (connp->conn_oper_pending_ill != NULL) conn_ioctl_cleanup_reqd = B_TRUE; CONN_INC_REF_LOCKED(connp); mutex_exit(&connp->conn_lock); tcp->tcp_closeflags = (uint8_t)flags; ASSERT(connp->conn_ref >= 3); (*tcp_squeue_close_proc)(connp->conn_sqp, mp, tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); mutex_enter(&tcp->tcp_closelock); while (!tcp->tcp_closed) cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); mutex_exit(&tcp->tcp_closelock); /* * In the case of listener streams that have eagers in the q or q0 * we wait for the eagers to drop their reference to us. tcp_rq and * tcp_wq of the eagers point to our queues. By waiting for the * refcnt to drop to 1, we are sure that the eagers have cleaned * up their queue pointers and also dropped their references to us. */ if (tcp->tcp_wait_for_eagers) { mutex_enter(&connp->conn_lock); while (connp->conn_ref != 1) { cv_wait(&connp->conn_cv, &connp->conn_lock); } mutex_exit(&connp->conn_lock); } /* * ioctl cleanup. The mp is queued in the * ill_pending_mp or in the sq_pending_mp. */ if (conn_ioctl_cleanup_reqd) conn_ioctl_cleanup(connp); qprocsoff(q); inet_minor_free(ip_minor_arena, connp->conn_dev); ASSERT(connp->conn_cred != NULL); crfree(connp->conn_cred); tcp->tcp_cred = connp->conn_cred = NULL; tcp->tcp_cpid = -1; /* * Drop IP's reference on the conn. This is the last reference * on the connp if the state was less than established. If the * connection has gone into timewait state, then we will have * one ref for the TCP and one more ref (total of two) for the * classifier connected hash list (a timewait connections stays * in connected hash till closed). * * We can't assert the references because there might be other * transient reference places because of some walkers or queued * packets in squeue for the timewait state. */ CONN_DEC_REF(connp); q->q_ptr = WR(q)->q_ptr = NULL; return (0); } static int tcpclose_accept(queue_t *q) { ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); /* * We had opened an acceptor STREAM for sockfs which is * now being closed due to some error. */ qprocsoff(q); inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); q->q_ptr = WR(q)->q_ptr = NULL; return (0); } /* * Called by streams close routine via squeues when our client blows off her * descriptor, we take this to mean: "close the stream state NOW, close the tcp * connection politely" When SO_LINGER is set (with a non-zero linger time and * it is not a nonblocking socket) then this routine sleeps until the FIN is * acked. * * NOTE: tcp_close potentially returns error when lingering. * However, the stream head currently does not pass these errors * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK * errors to the application (from tsleep()) and not errors * like ECONNRESET caused by receiving a reset packet. */ /* ARGSUSED */ static void tcp_close_output(void *arg, mblk_t *mp, void *arg2) { char *msg; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; clock_t delta = 0; ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); /* Cancel any pending timeout */ if (tcp->tcp_ordrelid != 0) { if (tcp->tcp_timeout) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); } tcp->tcp_ordrelid = 0; tcp->tcp_timeout = B_FALSE; } mutex_enter(&tcp->tcp_eager_lock); if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { /* Cleanup for listener */ tcp_eager_cleanup(tcp, 0); tcp->tcp_wait_for_eagers = 1; } mutex_exit(&tcp->tcp_eager_lock); connp->conn_mdt_ok = B_FALSE; tcp->tcp_mdt = B_FALSE; msg = NULL; switch (tcp->tcp_state) { case TCPS_CLOSED: case TCPS_IDLE: case TCPS_BOUND: case TCPS_LISTEN: break; case TCPS_SYN_SENT: msg = "tcp_close, during connect"; break; case TCPS_SYN_RCVD: /* * Close during the connect 3-way handshake * but here there may or may not be pending data * already on queue. Process almost same as in * the ESTABLISHED state. */ /* FALLTHRU */ default: if (tcp->tcp_fused) tcp_unfuse(tcp); /* * If SO_LINGER has set a zero linger time, abort the * connection with a reset. */ if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { msg = "tcp_close, zero lingertime"; break; } ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); /* * Abort connection if there is unread data queued. */ if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { msg = "tcp_close, unread data"; break; } /* * tcp_hard_bound is now cleared thus all packets go through * tcp_lookup. This fact is used by tcp_detach below. * * We have done a qwait() above which could have possibly * drained more messages in turn causing transition to a * different state. Check whether we have to do the rest * of the processing or not. */ if (tcp->tcp_state <= TCPS_LISTEN) break; /* * Transmit the FIN before detaching the tcp_t. * After tcp_detach returns this queue/perimeter * no longer owns the tcp_t thus others can modify it. */ (void) tcp_xmit_end(tcp); /* * If lingering on close then wait until the fin is acked, * the SO_LINGER time passes, or a reset is sent/received. */ if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && !(tcp->tcp_fin_acked) && tcp->tcp_state >= TCPS_ESTABLISHED) { if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { tcp->tcp_client_errno = EWOULDBLOCK; } else if (tcp->tcp_client_errno == 0) { ASSERT(tcp->tcp_linger_tid == 0); tcp->tcp_linger_tid = TCP_TIMER(tcp, tcp_close_linger_timeout, tcp->tcp_lingertime * hz); /* tcp_close_linger_timeout will finish close */ if (tcp->tcp_linger_tid == 0) tcp->tcp_client_errno = ENOSR; else return; } /* * Check if we need to detach or just close * the instance. */ if (tcp->tcp_state <= TCPS_LISTEN) break; } /* * Make sure that no other thread will access the tcp_rq of * this instance (through lookups etc.) as tcp_rq will go * away shortly. */ tcp_acceptor_hash_remove(tcp); if (tcp->tcp_flow_stopped) { tcp_clrqfull(tcp); } if (tcp->tcp_timer_tid != 0) { delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); tcp->tcp_timer_tid = 0; } /* * Need to cancel those timers which will not be used when * TCP is detached. This has to be done before the tcp_wq * is set to the global queue. */ tcp_timers_stop(tcp); tcp->tcp_detached = B_TRUE; if (tcp->tcp_state == TCPS_TIME_WAIT) { tcp_time_wait_append(tcp); TCP_DBGSTAT(tcp_detach_time_wait); ASSERT(connp->conn_ref >= 3); goto finish; } /* * If delta is zero the timer event wasn't executed and was * successfully canceled. In this case we need to restart it * with the minimal delta possible. */ if (delta >= 0) tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, delta ? delta : 1); ASSERT(connp->conn_ref >= 3); goto finish; } /* Detach did not complete. Still need to remove q from stream. */ if (msg) { if (tcp->tcp_state == TCPS_ESTABLISHED || tcp->tcp_state == TCPS_CLOSE_WAIT) BUMP_MIB(&tcp_mib, tcpEstabResets); if (tcp->tcp_state == TCPS_SYN_SENT || tcp->tcp_state == TCPS_SYN_RCVD) BUMP_MIB(&tcp_mib, tcpAttemptFails); tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); } tcp_closei_local(tcp); CONN_DEC_REF(connp); ASSERT(connp->conn_ref >= 2); finish: /* * Although packets are always processed on the correct * tcp's perimeter and access is serialized via squeue's, * IP still needs a queue when sending packets in time_wait * state so use WR(tcp_g_q) till ip_output() can be * changed to deal with just connp. For read side, we * could have set tcp_rq to NULL but there are some cases * in tcp_rput_data() from early days of this code which * do a putnext without checking if tcp is closed. Those * need to be identified before both tcp_rq and tcp_wq * can be set to NULL and tcp_q_q can disappear forever. */ mutex_enter(&tcp->tcp_closelock); /* * Don't change the queues in the case of a listener that has * eagers in its q or q0. It could surprise the eagers. * Instead wait for the eagers outside the squeue. */ if (!tcp->tcp_wait_for_eagers) { tcp->tcp_detached = B_TRUE; tcp->tcp_rq = tcp_g_q; tcp->tcp_wq = WR(tcp_g_q); } /* Signal tcp_close() to finish closing. */ tcp->tcp_closed = 1; cv_signal(&tcp->tcp_closecv); mutex_exit(&tcp->tcp_closelock); } /* * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. * Some stream heads get upset if they see these later on as anything but NULL. */ static void tcp_close_mpp(mblk_t **mpp) { mblk_t *mp; if ((mp = *mpp) != NULL) { do { mp->b_next = NULL; mp->b_prev = NULL; } while ((mp = mp->b_cont) != NULL); mp = *mpp; *mpp = NULL; freemsg(mp); } } /* Do detached close. */ static void tcp_close_detached(tcp_t *tcp) { if (tcp->tcp_fused) tcp_unfuse(tcp); /* * Clustering code serializes TCP disconnect callbacks and * cluster tcp list walks by blocking a TCP disconnect callback * if a cluster tcp list walk is in progress. This ensures * accurate accounting of TCPs in the cluster code even though * the TCP list walk itself is not atomic. */ tcp_closei_local(tcp); CONN_DEC_REF(tcp->tcp_connp); } /* * Stop all TCP timers, and free the timer mblks if requested. */ void tcp_timers_stop(tcp_t *tcp) { if (tcp->tcp_timer_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); tcp->tcp_timer_tid = 0; } if (tcp->tcp_ka_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); tcp->tcp_ka_tid = 0; } if (tcp->tcp_ack_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); tcp->tcp_ack_tid = 0; } if (tcp->tcp_push_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); tcp->tcp_push_tid = 0; } } /* * The tcp_t is going away. Remove it from all lists and set it * to TCPS_CLOSED. The freeing up of memory is deferred until * tcp_inactive. This is needed since a thread in tcp_rput might have * done a CONN_INC_REF on this structure before it was removed from the * hashes. */ static void tcp_closei_local(tcp_t *tcp) { ire_t *ire; conn_t *connp = tcp->tcp_connp; if (!TCP_IS_SOCKET(tcp)) tcp_acceptor_hash_remove(tcp); UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); tcp->tcp_ibsegs = 0; UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); tcp->tcp_obsegs = 0; /* * If we are an eager connection hanging off a listener that * hasn't formally accepted the connection yet, get off his * list and blow off any data that we have accumulated. */ if (tcp->tcp_listener != NULL) { tcp_t *listener = tcp->tcp_listener; mutex_enter(&listener->tcp_eager_lock); /* * tcp_eager_conn_ind == NULL means that the * conn_ind has already gone to listener. At * this point, eager will be closed but we * leave it in listeners eager list so that * if listener decides to close without doing * accept, we can clean this up. In tcp_wput_accept * we take case of the case of accept on closed * eager. */ if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { tcp_eager_unlink(tcp); mutex_exit(&listener->tcp_eager_lock); /* * We don't want to have any pointers to the * listener queue, after we have released our * reference on the listener */ tcp->tcp_rq = tcp_g_q; tcp->tcp_wq = WR(tcp_g_q); CONN_DEC_REF(listener->tcp_connp); } else { mutex_exit(&listener->tcp_eager_lock); } } /* Stop all the timers */ tcp_timers_stop(tcp); if (tcp->tcp_state == TCPS_LISTEN) { if (tcp->tcp_ip_addr_cache) { kmem_free((void *)tcp->tcp_ip_addr_cache, IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); tcp->tcp_ip_addr_cache = NULL; } } if (tcp->tcp_flow_stopped) tcp_clrqfull(tcp); tcp_bind_hash_remove(tcp); /* * If the tcp_time_wait_collector (which runs outside the squeue) * is trying to remove this tcp from the time wait list, we will * block in tcp_time_wait_remove while trying to acquire the * tcp_time_wait_lock. The logic in tcp_time_wait_collector also * requires the ipcl_hash_remove to be ordered after the * tcp_time_wait_remove for the refcnt checks to work correctly. */ if (tcp->tcp_state == TCPS_TIME_WAIT) tcp_time_wait_remove(tcp, NULL); CL_INET_DISCONNECT(tcp); ipcl_hash_remove(connp); /* * Delete the cached ire in conn_ire_cache and also mark * the conn as CONDEMNED */ mutex_enter(&connp->conn_lock); connp->conn_state_flags |= CONN_CONDEMNED; ire = connp->conn_ire_cache; connp->conn_ire_cache = NULL; mutex_exit(&connp->conn_lock); if (ire != NULL) IRE_REFRELE_NOTR(ire); /* Need to cleanup any pending ioctls */ ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == 0); tcp->tcp_state = TCPS_CLOSED; /* Release any SSL context */ if (tcp->tcp_kssl_ent != NULL) { kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); tcp->tcp_kssl_ent = NULL; } if (tcp->tcp_kssl_ctx != NULL) { kssl_release_ctx(tcp->tcp_kssl_ctx); tcp->tcp_kssl_ctx = NULL; } tcp->tcp_kssl_pending = B_FALSE; } /* * tcp is dying (called from ipcl_conn_destroy and error cases). * Free the tcp_t in either case. */ void tcp_free(tcp_t *tcp) { mblk_t *mp; ip6_pkt_t *ipp; ASSERT(tcp != NULL); ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); tcp->tcp_rq = NULL; tcp->tcp_wq = NULL; tcp_close_mpp(&tcp->tcp_xmit_head); tcp_close_mpp(&tcp->tcp_reass_head); if (tcp->tcp_rcv_list != NULL) { /* Free b_next chain */ tcp_close_mpp(&tcp->tcp_rcv_list); } if ((mp = tcp->tcp_urp_mp) != NULL) { freemsg(mp); } if ((mp = tcp->tcp_urp_mark_mp) != NULL) { freemsg(mp); } if (tcp->tcp_fused_sigurg_mp != NULL) { freeb(tcp->tcp_fused_sigurg_mp); tcp->tcp_fused_sigurg_mp = NULL; } if (tcp->tcp_sack_info != NULL) { if (tcp->tcp_notsack_list != NULL) { TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); } bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); } if (tcp->tcp_hopopts != NULL) { mi_free(tcp->tcp_hopopts); tcp->tcp_hopopts = NULL; tcp->tcp_hopoptslen = 0; } ASSERT(tcp->tcp_hopoptslen == 0); if (tcp->tcp_dstopts != NULL) { mi_free(tcp->tcp_dstopts); tcp->tcp_dstopts = NULL; tcp->tcp_dstoptslen = 0; } ASSERT(tcp->tcp_dstoptslen == 0); if (tcp->tcp_rtdstopts != NULL) { mi_free(tcp->tcp_rtdstopts); tcp->tcp_rtdstopts = NULL; tcp->tcp_rtdstoptslen = 0; } ASSERT(tcp->tcp_rtdstoptslen == 0); if (tcp->tcp_rthdr != NULL) { mi_free(tcp->tcp_rthdr); tcp->tcp_rthdr = NULL; tcp->tcp_rthdrlen = 0; } ASSERT(tcp->tcp_rthdrlen == 0); ipp = &tcp->tcp_sticky_ipp; if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | IPPF_RTHDR)) != 0) { if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); ipp->ipp_hopopts = NULL; ipp->ipp_hopoptslen = 0; } if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); ipp->ipp_rtdstopts = NULL; ipp->ipp_rtdstoptslen = 0; } if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); ipp->ipp_dstopts = NULL; ipp->ipp_dstoptslen = 0; } if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); ipp->ipp_rthdr = NULL; ipp->ipp_rthdrlen = 0; } ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | IPPF_RTHDR); } /* * Free memory associated with the tcp/ip header template. */ if (tcp->tcp_iphc != NULL) bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); /* * Following is really a blowing away a union. * It happens to have exactly two members of identical size * the following code is enough. */ tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); if (tcp->tcp_tracebuf != NULL) { kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); tcp->tcp_tracebuf = NULL; } } /* * Put a connection confirmation message upstream built from the * address information within 'iph' and 'tcph'. Report our success or failure. */ static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, mblk_t **defermp) { sin_t sin; sin6_t sin6; mblk_t *mp; char *optp = NULL; int optlen = 0; cred_t *cr; if (defermp != NULL) *defermp = NULL; if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { /* * Return in T_CONN_CON results of option negotiation through * the T_CONN_REQ. Note: If there is an real end-to-end option * negotiation, then what is received from remote end needs * to be taken into account but there is no such thing (yet?) * in our TCP/IP. * Note: We do not use mi_offset_param() here as * tcp_opts_conn_req contents do not directly come from * an application and are either generated in kernel or * from user input that was already verified. */ mp = tcp->tcp_conn.tcp_opts_conn_req; optp = (char *)(mp->b_rptr + ((struct T_conn_req *)mp->b_rptr)->OPT_offset); optlen = (int) ((struct T_conn_req *)mp->b_rptr)->OPT_length; } if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { ipha_t *ipha = (ipha_t *)iphdr; /* packet is IPv4 */ if (tcp->tcp_family == AF_INET) { sin = sin_null; sin.sin_addr.s_addr = ipha->ipha_src; sin.sin_port = *(uint16_t *)tcph->th_lport; sin.sin_family = AF_INET; mp = mi_tpi_conn_con(NULL, (char *)&sin, (int)sizeof (sin_t), optp, optlen); } else { sin6 = sin6_null; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); sin6.sin6_port = *(uint16_t *)tcph->th_lport; sin6.sin6_family = AF_INET6; mp = mi_tpi_conn_con(NULL, (char *)&sin6, (int)sizeof (sin6_t), optp, optlen); } } else { ip6_t *ip6h = (ip6_t *)iphdr; ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); ASSERT(tcp->tcp_family == AF_INET6); sin6 = sin6_null; sin6.sin6_addr = ip6h->ip6_src; sin6.sin6_port = *(uint16_t *)tcph->th_lport; sin6.sin6_family = AF_INET6; sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; mp = mi_tpi_conn_con(NULL, (char *)&sin6, (int)sizeof (sin6_t), optp, optlen); } if (!mp) return (B_FALSE); if ((cr = DB_CRED(idmp)) != NULL) { mblk_setcred(mp, cr); DB_CPID(mp) = DB_CPID(idmp); } if (defermp == NULL) putnext(tcp->tcp_rq, mp); else *defermp = mp; if (tcp->tcp_conn.tcp_opts_conn_req != NULL) tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); return (B_TRUE); } /* * Defense for the SYN attack - * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest * one that doesn't have the dontdrop bit set. * 2. Don't drop a SYN request before its first timeout. This gives every * request at least til the first timeout to complete its 3-way handshake. * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many * requests currently on the queue that has timed out. This will be used * as an indicator of whether an attack is under way, so that appropriate * actions can be taken. (It's incremented in tcp_timer() and decremented * either when eager goes into ESTABLISHED, or gets freed up.) * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on * # of timeout drops back to <= q0len/32 => SYN alert off */ static boolean_t tcp_drop_q0(tcp_t *tcp) { tcp_t *eager; ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); /* * New one is added after next_q0 so prev_q0 points to the oldest * Also do not drop any established connections that are deferred on * q0 due to q being full */ eager = tcp->tcp_eager_prev_q0; while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { eager = eager->tcp_eager_prev_q0; if (eager == tcp) { eager = tcp->tcp_eager_prev_q0; break; } } if (eager->tcp_syn_rcvd_timeout == 0) return (B_FALSE); if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, "tcp_drop_q0: listen half-open queue (max=%d) overflow" " (%d pending) on %s, drop one", tcp_conn_req_max_q0, tcp->tcp_conn_req_cnt_q0, tcp_display(tcp, NULL, DISP_PORT_ONLY)); } BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); /* * need to do refhold here because the selected eager could * be removed by someone else if we release the eager lock. */ CONN_INC_REF(eager->tcp_connp); mutex_exit(&tcp->tcp_eager_lock); /* Mark the IRE created for this SYN request temporary */ tcp_ip_ire_mark_advice(eager); (void) tcp_clean_death(eager, ETIMEDOUT, 5); CONN_DEC_REF(eager->tcp_connp); mutex_enter(&tcp->tcp_eager_lock); return (B_TRUE); } int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, tcph_t *tcph, uint_t ipvers, mblk_t *idmp) { tcp_t *ltcp = lconnp->conn_tcp; tcp_t *tcp = connp->conn_tcp; mblk_t *tpi_mp; ipha_t *ipha; ip6_t *ip6h; sin6_t sin6; in6_addr_t v6dst; int err; int ifindex = 0; cred_t *cr; if (ipvers == IPV4_VERSION) { ipha = (ipha_t *)mp->b_rptr; connp->conn_send = ip_output; connp->conn_recv = tcp_input; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); sin6 = sin6_null; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); sin6.sin6_port = *(uint16_t *)tcph->th_lport; sin6.sin6_family = AF_INET6; sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, lconnp->conn_zoneid); if (tcp->tcp_recvdstaddr) { sin6_t sin6d; sin6d = sin6_null; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6d.sin6_addr); sin6d.sin6_port = *(uint16_t *)tcph->th_fport; sin6d.sin6_family = AF_INET; tpi_mp = mi_tpi_extconn_ind(NULL, (char *)&sin6d, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (char *)&sin6d, sizeof (sin6_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } else { tpi_mp = mi_tpi_conn_ind(NULL, (char *)&sin6, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } } else { ip6h = (ip6_t *)mp->b_rptr; connp->conn_send = ip_output_v6; connp->conn_recv = tcp_input; connp->conn_srcv6 = ip6h->ip6_dst; connp->conn_remv6 = ip6h->ip6_src; /* db_cksumstuff is set at ip_fanout_tcp_v6 */ ifindex = (int)DB_CKSUMSTUFF(mp); DB_CKSUMSTUFF(mp) = 0; sin6 = sin6_null; sin6.sin6_addr = ip6h->ip6_src; sin6.sin6_port = *(uint16_t *)tcph->th_lport; sin6.sin6_family = AF_INET6; sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, lconnp->conn_zoneid); if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { /* Pass up the scope_id of remote addr */ sin6.sin6_scope_id = ifindex; } else { sin6.sin6_scope_id = 0; } if (tcp->tcp_recvdstaddr) { sin6_t sin6d; sin6d = sin6_null; sin6.sin6_addr = ip6h->ip6_dst; sin6d.sin6_port = *(uint16_t *)tcph->th_fport; sin6d.sin6_family = AF_INET; tpi_mp = mi_tpi_extconn_ind(NULL, (char *)&sin6d, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (char *)&sin6d, sizeof (sin6_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } else { tpi_mp = mi_tpi_conn_ind(NULL, (char *)&sin6, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } } if (tpi_mp == NULL) return (ENOMEM); connp->conn_fport = *(uint16_t *)tcph->th_lport; connp->conn_lport = *(uint16_t *)tcph->th_fport; connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); connp->conn_fully_bound = B_FALSE; if (tcp_trace) tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); /* Inherit information from the "parent" */ tcp->tcp_ipversion = ltcp->tcp_ipversion; tcp->tcp_family = ltcp->tcp_family; tcp->tcp_wq = ltcp->tcp_wq; tcp->tcp_rq = ltcp->tcp_rq; tcp->tcp_mss = tcp_mss_def_ipv6; tcp->tcp_detached = B_TRUE; if ((err = tcp_init_values(tcp)) != 0) { freemsg(tpi_mp); return (err); } if (ipvers == IPV4_VERSION) { if ((err = tcp_header_init_ipv4(tcp)) != 0) { freemsg(tpi_mp); return (err); } ASSERT(tcp->tcp_ipha != NULL); } else { /* ifindex must be already set */ ASSERT(ifindex != 0); if (ltcp->tcp_bound_if != 0) { /* * Set newtcp's bound_if equal to * listener's value. If ifindex is * not the same as ltcp->tcp_bound_if, * it must be a packet for the ipmp group * of interfaces */ tcp->tcp_bound_if = ltcp->tcp_bound_if; } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { tcp->tcp_bound_if = ifindex; } tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; tcp->tcp_recvifindex = 0; tcp->tcp_recvhops = 0xffffffffU; ASSERT(tcp->tcp_ip6h != NULL); } tcp->tcp_lport = ltcp->tcp_lport; if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { /* * Listener had options of some sort; eager inherits. * Free up the eager template and allocate one * of the right size. */ if (tcp->tcp_hdr_grown) { kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); } else { bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); } tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, KM_NOSLEEP); if (tcp->tcp_iphc == NULL) { tcp->tcp_iphc_len = 0; freemsg(tpi_mp); return (ENOMEM); } tcp->tcp_iphc_len = ltcp->tcp_iphc_len; tcp->tcp_hdr_grown = B_TRUE; } tcp->tcp_hdr_len = ltcp->tcp_hdr_len; tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; /* * Copy the IP+TCP header template from listener to eager */ bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); if (tcp->tcp_ipversion == IPV6_VERSION) { if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == IPPROTO_RAW) { tcp->tcp_ip6h = (ip6_t *)(tcp->tcp_iphc + sizeof (ip6i_t)); } else { tcp->tcp_ip6h = (ip6_t *)(tcp->tcp_iphc); } tcp->tcp_ipha = NULL; } else { tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; tcp->tcp_ip6h = NULL; } tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); } else { /* * only valid case when ipversion of listener and * eager differ is when listener is IPv6 and * eager is IPv4. * Eager header template has been initialized to the * maximum v4 header sizes, which includes space for * TCP and IP options. */ ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && (tcp->tcp_ipversion == IPV4_VERSION)); ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; /* copy IP header fields individually */ tcp->tcp_ipha->ipha_ttl = ltcp->tcp_ip6h->ip6_hops; bcopy(ltcp->tcp_tcph->th_lport, tcp->tcp_tcph->th_lport, sizeof (ushort_t)); } bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, sizeof (in_port_t)); if (ltcp->tcp_lport == 0) { tcp->tcp_lport = *(in_port_t *)tcph->th_fport; bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); } if (tcp->tcp_ipversion == IPV4_VERSION) { ASSERT(ipha != NULL); tcp->tcp_ipha->ipha_dst = ipha->ipha_src; tcp->tcp_ipha->ipha_src = ipha->ipha_dst; /* Source routing option copyover (reverse it) */ if (tcp_rev_src_routes) tcp_opt_reverse(tcp, ipha); } else { ASSERT(ip6h != NULL); tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; } ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); /* * If the SYN contains a credential, it's a loopback packet; attach * the credential to the TPI message. */ if ((cr = DB_CRED(idmp)) != NULL) { mblk_setcred(tpi_mp, cr); DB_CPID(tpi_mp) = DB_CPID(idmp); } tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; /* Inherit the listener's SSL protection state */ if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { kssl_hold_ent(tcp->tcp_kssl_ent); tcp->tcp_kssl_pending = B_TRUE; } return (0); } int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, tcph_t *tcph, mblk_t *idmp) { tcp_t *ltcp = lconnp->conn_tcp; tcp_t *tcp = connp->conn_tcp; sin_t sin; mblk_t *tpi_mp = NULL; int err; cred_t *cr; sin = sin_null; sin.sin_addr.s_addr = ipha->ipha_src; sin.sin_port = *(uint16_t *)tcph->th_lport; sin.sin_family = AF_INET; if (ltcp->tcp_recvdstaddr) { sin_t sind; sind = sin_null; sind.sin_addr.s_addr = ipha->ipha_dst; sind.sin_port = *(uint16_t *)tcph->th_fport; sind.sin_family = AF_INET; tpi_mp = mi_tpi_extconn_ind(NULL, (char *)&sind, sizeof (sin_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (char *)&sind, sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } else { tpi_mp = mi_tpi_conn_ind(NULL, (char *)&sin, sizeof (sin_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } if (tpi_mp == NULL) { return (ENOMEM); } connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); connp->conn_send = ip_output; connp->conn_recv = tcp_input; connp->conn_fully_bound = B_FALSE; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); connp->conn_fport = *(uint16_t *)tcph->th_lport; connp->conn_lport = *(uint16_t *)tcph->th_fport; if (tcp_trace) { tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); } /* Inherit information from the "parent" */ tcp->tcp_ipversion = ltcp->tcp_ipversion; tcp->tcp_family = ltcp->tcp_family; tcp->tcp_wq = ltcp->tcp_wq; tcp->tcp_rq = ltcp->tcp_rq; tcp->tcp_mss = tcp_mss_def_ipv4; tcp->tcp_detached = B_TRUE; if ((err = tcp_init_values(tcp)) != 0) { freemsg(tpi_mp); return (err); } /* * Let's make sure that eager tcp template has enough space to * copy IPv4 listener's tcp template. Since the conn_t structure is * preserved and tcp_iphc_len is also preserved, an eager conn_t may * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or * more (in case of re-allocation of conn_t with tcp-IPv6 template with * extension headers or with ip6i_t struct). Note that bcopy() below * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. */ ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); tcp->tcp_hdr_len = ltcp->tcp_hdr_len; tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; tcp->tcp_ttl = ltcp->tcp_ttl; tcp->tcp_tos = ltcp->tcp_tos; /* Copy the IP+TCP header template from listener to eager */ bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; tcp->tcp_ip6h = NULL; tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); /* Initialize the IP addresses and Ports */ tcp->tcp_ipha->ipha_dst = ipha->ipha_src; tcp->tcp_ipha->ipha_src = ipha->ipha_dst; bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); /* Source routing option copyover (reverse it) */ if (tcp_rev_src_routes) tcp_opt_reverse(tcp, ipha); ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); /* * If the SYN contains a credential, it's a loopback packet; attach * the credential to the TPI message. */ if ((cr = DB_CRED(idmp)) != NULL) { mblk_setcred(tpi_mp, cr); DB_CPID(tpi_mp) = DB_CPID(idmp); } tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; /* Inherit the listener's SSL protection state */ if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { kssl_hold_ent(tcp->tcp_kssl_ent); tcp->tcp_kssl_pending = B_TRUE; } return (0); } /* * sets up conn for ipsec. * if the first mblk is M_CTL it is consumed and mpp is updated. * in case of error mpp is freed. */ conn_t * tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) { conn_t *connp = tcp->tcp_connp; conn_t *econnp; squeue_t *new_sqp; mblk_t *first_mp = *mpp; mblk_t *mp = *mpp; boolean_t mctl_present = B_FALSE; uint_t ipvers; econnp = tcp_get_conn(sqp); if (econnp == NULL) { freemsg(first_mp); return (NULL); } if (DB_TYPE(mp) == M_CTL) { if (mp->b_cont == NULL || mp->b_cont->b_datap->db_type != M_DATA) { freemsg(first_mp); return (NULL); } mp = mp->b_cont; if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { freemsg(first_mp); return (NULL); } mp->b_datap->db_struioflag &= ~STRUIO_EAGER; first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; mctl_present = B_TRUE; } else { ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); mp->b_datap->db_struioflag &= ~STRUIO_POLICY; } new_sqp = (squeue_t *)DB_CKSUMSTART(mp); DB_CKSUMSTART(mp) = 0; ASSERT(OK_32PTR(mp->b_rptr)); ipvers = IPH_HDR_VERSION(mp->b_rptr); if (ipvers == IPV4_VERSION) { uint16_t *up; uint32_t ports; ipha_t *ipha; ipha = (ipha_t *)mp->b_rptr; up = (uint16_t *)((uchar_t *)ipha + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); ports = *(uint32_t *)up; IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, ipha->ipha_dst, ipha->ipha_src, ports); } else { uint16_t *up; uint32_t ports; uint16_t ip_hdr_len; uint8_t *nexthdrp; ip6_t *ip6h; tcph_t *tcph; ip6h = (ip6_t *)mp->b_rptr; if (ip6h->ip6_nxt == IPPROTO_TCP) { ip_hdr_len = IPV6_HDR_LEN; } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, &nexthdrp) || *nexthdrp != IPPROTO_TCP) { CONN_DEC_REF(econnp); freemsg(first_mp); return (NULL); } tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; up = (uint16_t *)tcph->th_lport; ports = *(uint32_t *)up; IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, ip6h->ip6_dst, ip6h->ip6_src, ports); } /* * The caller already ensured that there is a sqp present. */ econnp->conn_sqp = new_sqp; if (connp->conn_policy != NULL) { ipsec_in_t *ii; ii = (ipsec_in_t *)(first_mp->b_rptr); ASSERT(ii->ipsec_in_policy == NULL); IPPH_REFHOLD(connp->conn_policy); ii->ipsec_in_policy = connp->conn_policy; first_mp->b_datap->db_type = IPSEC_POLICY_SET; if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { CONN_DEC_REF(econnp); freemsg(first_mp); return (NULL); } } if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { CONN_DEC_REF(econnp); freemsg(first_mp); return (NULL); } /* * If we know we have some policy, pass the "IPSEC" * options size TCP uses this adjust the MSS. */ econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); if (mctl_present) { freeb(first_mp); *mpp = mp; } return (econnp); } /* * tcp_get_conn/tcp_free_conn * * tcp_get_conn is used to get a clean tcp connection structure. * It tries to reuse the connections put on the freelist by the * time_wait_collector failing which it goes to kmem_cache. This * way has two benefits compared to just allocating from and * freeing to kmem_cache. * 1) The time_wait_collector can free (which includes the cleanup) * outside the squeue. So when the interrupt comes, we have a clean * connection sitting in the freelist. Obviously, this buys us * performance. * * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request * has multiple disadvantages - tying up the squeue during alloc, and the * fact that IPSec policy initialization has to happen here which * requires us sending a M_CTL and checking for it i.e. real ugliness. * But allocating the conn/tcp in IP land is also not the best since * we can't check the 'q' and 'q0' which are protected by squeue and * blindly allocate memory which might have to be freed here if we are * not allowed to accept the connection. By using the freelist and * putting the conn/tcp back in freelist, we don't pay a penalty for * allocating memory without checking 'q/q0' and freeing it if we can't * accept the connection. * * Care should be taken to put the conn back in the same squeue's freelist * from which it was allocated. Best results are obtained if conn is * allocated from listener's squeue and freed to the same. Time wait * collector will free up the freelist is the connection ends up sitting * there for too long. */ void * tcp_get_conn(void *arg) { tcp_t *tcp = NULL; conn_t *connp = NULL; squeue_t *sqp = (squeue_t *)arg; tcp_squeue_priv_t *tcp_time_wait; tcp_time_wait = *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); mutex_enter(&tcp_time_wait->tcp_time_wait_lock); tcp = tcp_time_wait->tcp_free_list; ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); if (tcp != NULL) { tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; tcp_time_wait->tcp_free_list_cnt--; mutex_exit(&tcp_time_wait->tcp_time_wait_lock); tcp->tcp_time_wait_next = NULL; connp = tcp->tcp_connp; connp->conn_flags |= IPCL_REUSED; return ((void *)connp); } mutex_exit(&tcp_time_wait->tcp_time_wait_lock); if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) return (NULL); return ((void *)connp); } /* BEGIN CSTYLED */ /* * * The sockfs ACCEPT path: * ======================= * * The eager is now established in its own perimeter as soon as SYN is * received in tcp_conn_request(). When sockfs receives conn_ind, it * completes the accept processing on the acceptor STREAM. The sending * of conn_ind part is common for both sockfs listener and a TLI/XTI * listener but a TLI/XTI listener completes the accept processing * on the listener perimeter. * * Common control flow for 3 way handshake: * ---------------------------------------- * * incoming SYN (listener perimeter) -> tcp_rput_data() * -> tcp_conn_request() * * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() * * Sockfs ACCEPT Path: * ------------------- * * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() * as STREAM entry point) * * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() * * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager * association (we are not behind eager's squeue but sockfs is protecting us * and no one knows about this stream yet. The STREAMS entry point q->q_info * is changed to point at tcp_wput(). * * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to * listener (done on listener's perimeter). * * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish * accept. * * TLI/XTI client ACCEPT path: * --------------------------- * * soaccept() sends T_CONN_RES on the listener STREAM. * * tcp_accept() -> tcp_accept_swap() complete the processing and send * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). * * Locks: * ====== * * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and * and listeners->tcp_eager_next_q. * * Referencing: * ============ * * 1) We start out in tcp_conn_request by eager placing a ref on * listener and listener adding eager to listeners->tcp_eager_next_q0. * * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before * doing so we place a ref on the eager. This ref is finally dropped at the * end of tcp_accept_finish() while unwinding from the squeue, i.e. the * reference is dropped by the squeue framework. * * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish * * The reference must be released by the same entity that added the reference * In the above scheme, the eager is the entity that adds and releases the * references. Note that tcp_accept_finish executes in the squeue of the eager * (albeit after it is attached to the acceptor stream). Though 1. executes * in the listener's squeue, the eager is nascent at this point and the * reference can be considered to have been added on behalf of the eager. * * Eager getting a Reset or listener closing: * ========================================== * * Once the listener and eager are linked, the listener never does the unlink. * If the listener needs to close, tcp_eager_cleanup() is called which queues * a message on all eager perimeter. The eager then does the unlink, clears * any pointers to the listener's queue and drops the reference to the * listener. The listener waits in tcp_close outside the squeue until its * refcount has dropped to 1. This ensures that the listener has waited for * all eagers to clear their association with the listener. * * Similarly, if eager decides to go away, it can unlink itself and close. * When the T_CONN_RES comes down, we check if eager has closed. Note that * the reference to eager is still valid because of the extra ref we put * in tcp_send_conn_ind. * * Listener can always locate the eager under the protection * of the listener->tcp_eager_lock, and then do a refhold * on the eager during the accept processing. * * The acceptor stream accesses the eager in the accept processing * based on the ref placed on eager before sending T_conn_ind. * The only entity that can negate this refhold is a listener close * which is mutually exclusive with an active acceptor stream. * * Eager's reference on the listener * =================================== * * If the accept happens (even on a closed eager) the eager drops its * reference on the listener at the start of tcp_accept_finish. If the * eager is killed due to an incoming RST before the T_conn_ind is sent up, * the reference is dropped in tcp_closei_local. If the listener closes, * the reference is dropped in tcp_eager_kill. In all cases the reference * is dropped while executing in the eager's context (squeue). */ /* END CSTYLED */ /* Process the SYN packet, mp, directed at the listener 'tcp' */ /* * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. * tcp_rput_data will not see any SYN packets. */ /* ARGSUSED */ void tcp_conn_request(void *arg, mblk_t *mp, void *arg2) { tcph_t *tcph; uint32_t seg_seq; tcp_t *eager; uint_t ipvers; ipha_t *ipha; ip6_t *ip6h; int err; conn_t *econnp = NULL; squeue_t *new_sqp; mblk_t *mp1; uint_t ip_hdr_len; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; ire_t *ire; if (tcp->tcp_state != TCPS_LISTEN) goto error2; ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); mutex_enter(&tcp->tcp_eager_lock); if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { mutex_exit(&tcp->tcp_eager_lock); TCP_STAT(tcp_listendrop); BUMP_MIB(&tcp_mib, tcpListenDrop); if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_conn_request: listen backlog (max=%d) " "overflow (%d pending) on %s", tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, tcp_display(tcp, NULL, DISP_PORT_ONLY)); } goto error2; } if (tcp->tcp_conn_req_cnt_q0 >= tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { /* * Q0 is full. Drop a pending half-open req from the queue * to make room for the new SYN req. Also mark the time we * drop a SYN. * * A more aggressive defense against SYN attack will * be to set the "tcp_syn_defense" flag now. */ TCP_STAT(tcp_listendropq0); tcp->tcp_last_rcv_lbolt = lbolt64; if (!tcp_drop_q0(tcp)) { mutex_exit(&tcp->tcp_eager_lock); BUMP_MIB(&tcp_mib, tcpListenDropQ0); if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, "tcp_conn_request: listen half-open queue " "(max=%d) full (%d pending) on %s", tcp_conn_req_max_q0, tcp->tcp_conn_req_cnt_q0, tcp_display(tcp, NULL, DISP_PORT_ONLY)); } goto error2; } } mutex_exit(&tcp->tcp_eager_lock); /* * IP adds STRUIO_EAGER and ensures that the received packet is * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 * link local address. If IPSec is enabled, db_struioflag has * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); * otherwise an error case if neither of them is set. */ if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { new_sqp = (squeue_t *)DB_CKSUMSTART(mp); DB_CKSUMSTART(mp) = 0; mp->b_datap->db_struioflag &= ~STRUIO_EAGER; econnp = (conn_t *)tcp_get_conn(arg2); if (econnp == NULL) goto error2; econnp->conn_sqp = new_sqp; } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { /* * mp is updated in tcp_get_ipsec_conn(). */ econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); if (econnp == NULL) { /* * mp freed by tcp_get_ipsec_conn. */ return; } } else { goto error2; } ASSERT(DB_TYPE(mp) == M_DATA); ipvers = IPH_HDR_VERSION(mp->b_rptr); ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); ASSERT(OK_32PTR(mp->b_rptr)); if (ipvers == IPV4_VERSION) { ipha = (ipha_t *)mp->b_rptr; ip_hdr_len = IPH_HDR_LENGTH(ipha); tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; } else { ip6h = (ip6_t *)mp->b_rptr; ip_hdr_len = ip_hdr_length_v6(mp, ip6h); tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; } if (tcp->tcp_family == AF_INET) { ASSERT(ipvers == IPV4_VERSION); err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); } else { err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); } if (err) goto error3; eager = econnp->conn_tcp; /* Inherit various TCP parameters from the listener */ eager->tcp_naglim = tcp->tcp_naglim; eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold; eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold; eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold; eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold; /* * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. * If it does not, the eager's receive window will be set to the * listener's receive window later in this function. */ eager->tcp_rwnd = 0; /* * Inherit listener's tcp_init_cwnd. Need to do this before * calling tcp_process_options() where tcp_mss_set() is called * to set the initial cwnd. */ eager->tcp_init_cwnd = tcp->tcp_init_cwnd; /* * Zones: tcp_adapt_ire() and tcp_send_data() both need the * zone id before the accept is completed in tcp_wput_accept(). */ econnp->conn_zoneid = connp->conn_zoneid; /* Copy nexthop information from listener to eager */ if (connp->conn_nexthop_set) { econnp->conn_nexthop_set = connp->conn_nexthop_set; econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; } eager->tcp_hard_binding = B_TRUE; tcp_bind_hash_insert(&tcp_bind_fanout[ TCP_BIND_HASH(eager->tcp_lport)], eager, 0); CL_INET_CONNECT(eager); /* * No need to check for multicast destination since ip will only pass * up multicasts to those that have expressed interest * TODO: what about rejecting broadcasts? * Also check that source is not a multicast or broadcast address. */ eager->tcp_state = TCPS_SYN_RCVD; /* * There should be no ire in the mp as we are being called after * receiving the SYN. */ ASSERT(tcp_ire_mp(mp) == NULL); /* * Adapt our mss, ttl, ... according to information provided in IRE. */ if (tcp_adapt_ire(eager, NULL) == 0) { /* Undo the bind_hash_insert */ tcp_bind_hash_remove(eager); goto error3; } /* Process all TCP options. */ tcp_process_options(eager, tcph); /* Is the other end ECN capable? */ if (tcp_ecn_permitted >= 1 && (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { eager->tcp_ecn_ok = B_TRUE; } /* * listener->tcp_rq->q_hiwat should be the default window size or a * window size changed via SO_RCVBUF option. First round up the * eager's tcp_rwnd to the nearest MSS. Then find out the window * scale option value if needed. Call tcp_rwnd_set() to finish the * setting. * * Note if there is a rpipe metric associated with the remote host, * we should not inherit receive window size from listener. */ eager->tcp_rwnd = MSS_ROUNDUP( (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : eager->tcp_rwnd), eager->tcp_mss); if (eager->tcp_snd_ws_ok) tcp_set_ws_value(eager); /* * Note that this is the only place tcp_rwnd_set() is called for * accepting a connection. We need to call it here instead of * after the 3-way handshake because we need to tell the other * side our rwnd in the SYN-ACK segment. */ (void) tcp_rwnd_set(eager, eager->tcp_rwnd); /* * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ * via soaccept()->soinheritoptions() which essentially applies * all the listener options to the new STREAM. The options that we * need to take care of are: * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, * SO_SNDBUF, SO_RCVBUF. * * SO_RCVBUF: tcp_rwnd_set() above takes care of it. * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When * tcp_maxpsz_set() gets called later from * tcp_accept_finish(), the option takes effect. * */ /* Set the TCP options */ eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; eager->tcp_dgram_errind = tcp->tcp_dgram_errind; eager->tcp_oobinline = tcp->tcp_oobinline; eager->tcp_reuseaddr = tcp->tcp_reuseaddr; eager->tcp_broadcast = tcp->tcp_broadcast; eager->tcp_useloopback = tcp->tcp_useloopback; eager->tcp_dontroute = tcp->tcp_dontroute; eager->tcp_linger = tcp->tcp_linger; eager->tcp_lingertime = tcp->tcp_lingertime; if (tcp->tcp_ka_enabled) eager->tcp_ka_enabled = 1; /* Set the IP options */ econnp->conn_broadcast = connp->conn_broadcast; econnp->conn_loopback = connp->conn_loopback; econnp->conn_dontroute = connp->conn_dontroute; econnp->conn_reuseaddr = connp->conn_reuseaddr; /* Put a ref on the listener for the eager. */ CONN_INC_REF(connp); mutex_enter(&tcp->tcp_eager_lock); tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; tcp->tcp_eager_next_q0 = eager; eager->tcp_eager_prev_q0 = tcp; /* Set tcp_listener before adding it to tcp_conn_fanout */ eager->tcp_listener = tcp; eager->tcp_saved_listener = tcp; /* * Tag this detached tcp vector for later retrieval * by our listener client in tcp_accept(). */ eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; tcp->tcp_conn_req_cnt_q0++; if (++tcp->tcp_conn_req_seqnum == -1) { /* * -1 is "special" and defined in TPI as something * that should never be used in T_CONN_IND */ ++tcp->tcp_conn_req_seqnum; } mutex_exit(&tcp->tcp_eager_lock); if (tcp->tcp_syn_defense) { /* Don't drop the SYN that comes from a good IP source */ ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); if (addr_cache != NULL && eager->tcp_remote == addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { eager->tcp_dontdrop = B_TRUE; } } /* * We need to insert the eager in its own perimeter but as soon * as we do that, we expose the eager to the classifier and * should not touch any field outside the eager's perimeter. * So do all the work necessary before inserting the eager * in its own perimeter. Be optimistic that ipcl_conn_insert() * will succeed but undo everything if it fails. */ seg_seq = ABE32_TO_U32(tcph->th_seq); eager->tcp_irs = seg_seq; eager->tcp_rack = seg_seq; eager->tcp_rnxt = seg_seq + 1; U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); BUMP_MIB(&tcp_mib, tcpPassiveOpens); eager->tcp_state = TCPS_SYN_RCVD; mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); if (mp1 == NULL) goto error1; mblk_setcred(mp1, tcp->tcp_cred); DB_CPID(mp1) = tcp->tcp_cpid; /* * We need to start the rto timer. In normal case, we start * the timer after sending the packet on the wire (or at * least believing that packet was sent by waiting for * CALL_IP_WPUT() to return). Since this is the first packet * being sent on the wire for the eager, our initial tcp_rto * is at least tcp_rexmit_interval_min which is a fairly * large value to allow the algorithm to adjust slowly to large * fluctuations of RTT during first few transmissions. * * Starting the timer first and then sending the packet in this * case shouldn't make much difference since tcp_rexmit_interval_min * is of the order of several 100ms and starting the timer * first and then sending the packet will result in difference * of few micro seconds. * * Without this optimization, we are forced to hold the fanout * lock across the ipcl_bind_insert() and sending the packet * so that we don't race against an incoming packet (maybe RST) * for this eager. */ TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); TCP_TIMER_RESTART(eager, eager->tcp_rto); /* * Insert the eager in its own perimeter now. We are ready to deal * with any packets on eager. */ if (eager->tcp_ipversion == IPV4_VERSION) { if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { goto error; } } else { if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { goto error; } } /* mark conn as fully-bound */ econnp->conn_fully_bound = B_TRUE; /* Send the SYN-ACK */ tcp_send_data(eager, eager->tcp_wq, mp1); freemsg(mp); return; error: (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); freemsg(mp1); error1: /* Undo what we did above */ mutex_enter(&tcp->tcp_eager_lock); tcp_eager_unlink(eager); mutex_exit(&tcp->tcp_eager_lock); /* Drop eager's reference on the listener */ CONN_DEC_REF(connp); /* * Delete the cached ire in conn_ire_cache and also mark * the conn as CONDEMNED */ mutex_enter(&econnp->conn_lock); econnp->conn_state_flags |= CONN_CONDEMNED; ire = econnp->conn_ire_cache; econnp->conn_ire_cache = NULL; mutex_exit(&econnp->conn_lock); if (ire != NULL) IRE_REFRELE_NOTR(ire); /* * tcp_accept_comm inserts the eager to the bind_hash * we need to remove it from the hash if ipcl_conn_insert * fails. */ tcp_bind_hash_remove(eager); /* Drop the eager ref placed in tcp_open_detached */ CONN_DEC_REF(econnp); /* * If a connection already exists, send the mp to that connections so * that it can be appropriately dealt with. */ if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { if (!IPCL_IS_CONNECTED(econnp)) { /* * Something bad happened. ipcl_conn_insert() * failed because a connection already existed * in connected hash but we can't find it * anymore (someone blew it away). Just * free this message and hopefully remote * will retransmit at which time the SYN can be * treated as a new connection or dealth with * a TH_RST if a connection already exists. */ freemsg(mp); } else { squeue_fill(econnp->conn_sqp, mp, tcp_input, econnp, SQTAG_TCP_CONN_REQ); } } else { /* Nobody wants this packet */ freemsg(mp); } return; error2: freemsg(mp); return; error3: CONN_DEC_REF(econnp); freemsg(mp); } /* * In an ideal case of vertical partition in NUMA architecture, its * beneficial to have the listener and all the incoming connections * tied to the same squeue. The other constraint is that incoming * connections should be tied to the squeue attached to interrupted * CPU for obvious locality reason so this leaves the listener to * be tied to the same squeue. Our only problem is that when listener * is binding, the CPU that will get interrupted by the NIC whose * IP address the listener is binding to is not even known. So * the code below allows us to change that binding at the time the * CPU is interrupted by virtue of incoming connection's squeue. * * This is usefull only in case of a listener bound to a specific IP * address. For other kind of listeners, they get bound the * very first time and there is no attempt to rebind them. */ void tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg; squeue_t *sqp = (squeue_t *)arg2; squeue_t *new_sqp; uint32_t conn_flags; if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { new_sqp = (squeue_t *)DB_CKSUMSTART(mp); } else { goto done; } if (connp->conn_fanout == NULL) goto done; if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { mutex_enter(&connp->conn_fanout->connf_lock); mutex_enter(&connp->conn_lock); /* * No one from read or write side can access us now * except for already queued packets on this squeue. * But since we haven't changed the squeue yet, they * can't execute. If they are processed after we have * changed the squeue, they are sent back to the * correct squeue down below. */ if (connp->conn_sqp != new_sqp) { while (connp->conn_sqp != new_sqp) (void) casptr(&connp->conn_sqp, sqp, new_sqp); } do { conn_flags = connp->conn_flags; conn_flags |= IPCL_FULLY_BOUND; (void) cas32(&connp->conn_flags, connp->conn_flags, conn_flags); } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); mutex_exit(&connp->conn_fanout->connf_lock); mutex_exit(&connp->conn_lock); } done: if (connp->conn_sqp != sqp) { CONN_INC_REF(connp); squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); } else { tcp_conn_request(connp, mp, sqp); } } /* * Successful connect request processing begins when our client passes * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes * our T_OK_ACK reply message upstream. The control flow looks like this: * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP * upstream <- tcp_rput() <- IP * After various error checks are completed, tcp_connect() lays * the target address and port into the composite header template, * preallocates the T_OK_ACK reply message, construct a full 12 byte bind * request followed by an IRE request, and passes the three mblk message * down to IP looking like this: * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client * Processing continues in tcp_rput() when we receive the following message: * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client * After consuming the first two mblks, tcp_rput() calls tcp_timer(), * to fire off the connection request, and then passes the T_OK_ACK mblk * upstream that we filled in below. There are, of course, numerous * error conditions along the way which truncate the processing described * above. */ static void tcp_connect(tcp_t *tcp, mblk_t *mp) { sin_t *sin; sin6_t *sin6; queue_t *q = tcp->tcp_wq; struct T_conn_req *tcr; ipaddr_t *dstaddrp; in_port_t dstport; uint_t srcid; tcr = (struct T_conn_req *)mp->b_rptr; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { tcp_err_ack(tcp, mp, TPROTO, 0); return; } /* * Determine packet type based on type of address passed in * the request should contain an IPv4 or IPv6 address. * Make sure that address family matches the type of * family of the the address passed down */ switch (tcr->DEST_length) { default: tcp_err_ack(tcp, mp, TBADADDR, 0); return; case (sizeof (sin_t) - sizeof (sin->sin_zero)): { /* * XXX: The check for valid DEST_length was not there * in earlier releases and some buggy * TLI apps (e.g Sybase) got away with not feeding * in sin_zero part of address. * We allow that bug to keep those buggy apps humming. * Test suites require the check on DEST_length. * We construct a new mblk with valid DEST_length * free the original so the rest of the code does * not have to keep track of this special shorter * length address case. */ mblk_t *nmp; struct T_conn_req *ntcr; sin_t *nsin; nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + tcr->OPT_length, BPRI_HI); if (nmp == NULL) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } ntcr = (struct T_conn_req *)nmp->b_rptr; bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ ntcr->PRIM_type = T_CONN_REQ; ntcr->DEST_length = sizeof (sin_t); ntcr->DEST_offset = sizeof (struct T_conn_req); nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); *nsin = sin_null; /* Get pointer to shorter address to copy from original mp */ sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, tcr->DEST_length); /* extract DEST_length worth of sin_t */ if (sin == NULL || !OK_32PTR((char *)sin)) { freemsg(nmp); tcp_err_ack(tcp, mp, TSYSERR, EINVAL); return; } nsin->sin_family = sin->sin_family; nsin->sin_port = sin->sin_port; nsin->sin_addr = sin->sin_addr; /* Note:nsin->sin_zero zero-fill with sin_null assign above */ nmp->b_wptr = (uchar_t *)&nsin[1]; if (tcr->OPT_length != 0) { ntcr->OPT_length = tcr->OPT_length; ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; bcopy((uchar_t *)tcr + tcr->OPT_offset, (uchar_t *)ntcr + ntcr->OPT_offset, tcr->OPT_length); nmp->b_wptr += tcr->OPT_length; } freemsg(mp); /* original mp freed */ mp = nmp; /* re-initialize original variables */ tcr = ntcr; } /* FALLTHRU */ case sizeof (sin_t): sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin_t)); if (sin == NULL || !OK_32PTR((char *)sin)) { tcp_err_ack(tcp, mp, TSYSERR, EINVAL); return; } if (tcp->tcp_family != AF_INET || sin->sin_family != AF_INET) { tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); return; } if (sin->sin_port == 0) { tcp_err_ack(tcp, mp, TBADADDR, 0); return; } if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); return; } break; case sizeof (sin6_t): sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin6_t)); if (sin6 == NULL || !OK_32PTR((char *)sin6)) { tcp_err_ack(tcp, mp, TSYSERR, EINVAL); return; } if (tcp->tcp_family != AF_INET6 || sin6->sin6_family != AF_INET6) { tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); return; } if (sin6->sin6_port == 0) { tcp_err_ack(tcp, mp, TBADADDR, 0); return; } break; } /* * TODO: If someone in TCPS_TIME_WAIT has this dst/port we * should key on their sequence number and cut them loose. */ /* * If options passed in, feed it for verification and handling */ if (tcr->OPT_length != 0) { mblk_t *ok_mp; mblk_t *discon_mp; mblk_t *conn_opts_mp; int t_error, sys_error, do_disconnect; conn_opts_mp = NULL; if (tcp_conprim_opt_process(tcp, mp, &do_disconnect, &t_error, &sys_error) < 0) { if (do_disconnect) { ASSERT(t_error == 0 && sys_error == 0); discon_mp = mi_tpi_discon_ind(NULL, ECONNREFUSED, 0); if (!discon_mp) { tcp_err_ack_prim(tcp, mp, T_CONN_REQ, TSYSERR, ENOMEM); return; } ok_mp = mi_tpi_ok_ack_alloc(mp); if (!ok_mp) { tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, TSYSERR, ENOMEM); return; } qreply(q, ok_mp); qreply(q, discon_mp); /* no flush! */ } else { ASSERT(t_error != 0); tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, sys_error); } return; } /* * Success in setting options, the mp option buffer represented * by OPT_length/offset has been potentially modified and * contains results of option processing. We copy it in * another mp to save it for potentially influencing returning * it in T_CONN_CONN. */ if (tcr->OPT_length != 0) { /* there are resulting options */ conn_opts_mp = copyb(mp); if (!conn_opts_mp) { tcp_err_ack_prim(tcp, mp, T_CONN_REQ, TSYSERR, ENOMEM); return; } ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; /* * Note: * These resulting option negotiation can include any * end-to-end negotiation options but there no such * thing (yet?) in our TCP/IP. */ } } /* * If we're connecting to an IPv4-mapped IPv6 address, we need to * make sure that the template IP header in the tcp structure is an * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We * need to this before we call tcp_bindi() so that the port lookup * code will look for ports in the correct port space (IPv4 and * IPv6 have separate port spaces). */ if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { int err = 0; err = tcp_header_init_ipv4(tcp); if (err != 0) { mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); goto connect_failed; } if (tcp->tcp_lport != 0) *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; } switch (tcp->tcp_state) { case TCPS_IDLE: /* * We support quick connect, refer to comments in * tcp_connect_*() */ /* FALLTHRU */ case TCPS_BOUND: case TCPS_LISTEN: if (tcp->tcp_family == AF_INET6) { if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { tcp_connect_ipv6(tcp, mp, &sin6->sin6_addr, sin6->sin6_port, sin6->sin6_flowinfo, sin6->__sin6_src_id, sin6->sin6_scope_id); return; } /* * Destination adress is mapped IPv6 address. * Source bound address should be unspecified or * IPv6 mapped address as well. */ if (!IN6_IS_ADDR_UNSPECIFIED( &tcp->tcp_bound_source_v6) && !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EADDRNOTAVAIL); break; } dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); dstport = sin6->sin6_port; srcid = sin6->__sin6_src_id; } else { dstaddrp = &sin->sin_addr.s_addr; dstport = sin->sin_port; srcid = 0; } tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); return; default: mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); break; } /* * Note: Code below is the "failure" case */ /* return error ack and blow away saved option results if any */ connect_failed: if (mp != NULL) putnext(tcp->tcp_rq, mp); else { tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, TSYSERR, ENOMEM); } if (tcp->tcp_conn.tcp_opts_conn_req != NULL) tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); } /* * Handle connect to IPv4 destinations, including connections for AF_INET6 * sockets connecting to IPv4 mapped IPv6 destinations. */ static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, uint_t srcid) { tcph_t *tcph; mblk_t *mp1; ipaddr_t dstaddr = *dstaddrp; int32_t oldstate; uint16_t lport; ASSERT(tcp->tcp_ipversion == IPV4_VERSION); /* Check for attempt to connect to INADDR_ANY */ if (dstaddr == INADDR_ANY) { /* * SunOS 4.x and 4.3 BSD allow an application * to connect a TCP socket to INADDR_ANY. * When they do this, the kernel picks the * address of one interface and uses it * instead. The kernel usually ends up * picking the address of the loopback * interface. This is an undocumented feature. * However, we provide the same thing here * in order to have source and binary * compatibility with SunOS 4.x. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ dstaddr = htonl(INADDR_LOOPBACK); *dstaddrp = dstaddr; } /* Handle __sin6_src_id if socket not bound to an IP address */ if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, tcp->tcp_connp->conn_zoneid); IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, tcp->tcp_ipha->ipha_src); } /* * Don't let an endpoint connect to itself. Note that * the test here does not catch the case where the * source IP addr was left unspecified by the user. In * this case, the source addr is set in tcp_adapt_ire() * using the reply to the T_BIND message that we send * down to IP here and the check is repeated in tcp_rput_other. */ if (dstaddr == tcp->tcp_ipha->ipha_src && dstport == tcp->tcp_lport) { mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); goto failed; } tcp->tcp_ipha->ipha_dst = dstaddr; IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); /* * Massage a source route if any putting the first hop * in iph_dst. Compute a starting value for the checksum which * takes into account that the original iph_dst should be * included in the checksum but that ip will include the * first hop in the source route in the tcp checksum. */ tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + (tcp->tcp_ipha->ipha_dst & 0xffff)); if ((int)tcp->tcp_sum < 0) tcp->tcp_sum--; tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); tcph = tcp->tcp_tcph; *(uint16_t *)tcph->th_fport = dstport; tcp->tcp_fport = dstport; oldstate = tcp->tcp_state; /* * At this point the remote destination address and remote port fields * in the tcp-four-tuple have been filled in the tcp structure. Now we * have to see which state tcp was in so we can take apropriate action. */ if (oldstate == TCPS_IDLE) { /* * We support a quick connect capability here, allowing * clients to transition directly from IDLE to SYN_SENT * tcp_bindi will pick an unused port, insert the connection * in the bind hash and transition to BOUND state. */ lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, B_FALSE, B_FALSE); if (lport == 0) { mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); goto failed; } } tcp->tcp_state = TCPS_SYN_SENT; /* * TODO: allow data with connect requests * by unlinking M_DATA trailers here and * linking them in behind the T_OK_ACK mblk. * The tcp_rput() bind ack handler would then * feed them to tcp_wput_data() rather than call * tcp_timer(). */ mp = mi_tpi_ok_ack_alloc(mp); if (!mp) { tcp->tcp_state = oldstate; goto failed; } if (tcp->tcp_family == AF_INET) { mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa_conn_t)); } else { mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); } if (mp1) { /* Hang onto the T_OK_ACK for later. */ linkb(mp1, mp); if (tcp->tcp_family == AF_INET) mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); else { mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, &tcp->tcp_sticky_ipp); } BUMP_MIB(&tcp_mib, tcpActiveOpens); tcp->tcp_active_open = 1; /* * If the bind cannot complete immediately * IP will arrange to call tcp_rput_other * when the bind completes. */ if (mp1 != NULL) tcp_rput_other(tcp, mp1); return; } /* Error case */ tcp->tcp_state = oldstate; mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); failed: /* return error ack and blow away saved option results if any */ if (mp != NULL) putnext(tcp->tcp_rq, mp); else { tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, TSYSERR, ENOMEM); } if (tcp->tcp_conn.tcp_opts_conn_req != NULL) tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); } /* * Handle connect to IPv6 destinations. */ static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) { tcph_t *tcph; mblk_t *mp1; ip6_rthdr_t *rth; int32_t oldstate; uint16_t lport; ASSERT(tcp->tcp_family == AF_INET6); /* * If we're here, it means that the destination address is a native * IPv6 address. Return an error if tcp_ipversion is not IPv6. A * reason why it might not be IPv6 is if the socket was bound to an * IPv4-mapped IPv6 address. */ if (tcp->tcp_ipversion != IPV6_VERSION) { mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); goto failed; } /* * Interpret a zero destination to mean loopback. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { *dstaddrp = ipv6_loopback; } /* Handle __sin6_src_id if socket not bound to an IP address */ if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, tcp->tcp_connp->conn_zoneid); tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; } /* * Take care of the scope_id now and add ip6i_t * if ip6i_t is not already allocated through TCP * sticky options. At this point tcp_ip6h does not * have dst info, thus use dstaddrp. */ if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; ip6i_t *ip6i; ipp->ipp_ifindex = scope_id; ip6i = (ip6i_t *)tcp->tcp_iphc; if ((ipp->ipp_fields & IPPF_HAS_IP6I) && ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { /* Already allocated */ ip6i->ip6i_flags |= IP6I_IFINDEX; ip6i->ip6i_ifindex = ipp->ipp_ifindex; ipp->ipp_fields |= IPPF_SCOPE_ID; } else { int reterr; ipp->ipp_fields |= IPPF_SCOPE_ID; if (ipp->ipp_fields & IPPF_HAS_IP6I) ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); if (reterr != 0) goto failed; ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); } } /* * Don't let an endpoint connect to itself. Note that * the test here does not catch the case where the * source IP addr was left unspecified by the user. In * this case, the source addr is set in tcp_adapt_ire() * using the reply to the T_BIND message that we send * down to IP here and the check is repeated in tcp_rput_other. */ if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && (dstport == tcp->tcp_lport)) { mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); goto failed; } tcp->tcp_ip6h->ip6_dst = *dstaddrp; tcp->tcp_remote_v6 = *dstaddrp; tcp->tcp_ip6h->ip6_vcf = (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); /* * Massage a routing header (if present) putting the first hop * in ip6_dst. Compute a starting value for the checksum which * takes into account that the original ip6_dst should be * included in the checksum but that ip will include the * first hop in the source route in the tcp checksum. */ rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); if (rth != NULL) { tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); } else { tcp->tcp_sum = 0; } tcph = tcp->tcp_tcph; *(uint16_t *)tcph->th_fport = dstport; tcp->tcp_fport = dstport; oldstate = tcp->tcp_state; /* * At this point the remote destination address and remote port fields * in the tcp-four-tuple have been filled in the tcp structure. Now we * have to see which state tcp was in so we can take apropriate action. */ if (oldstate == TCPS_IDLE) { /* * We support a quick connect capability here, allowing * clients to transition directly from IDLE to SYN_SENT * tcp_bindi will pick an unused port, insert the connection * in the bind hash and transition to BOUND state. */ lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, B_FALSE, B_FALSE); if (lport == 0) { mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); goto failed; } } tcp->tcp_state = TCPS_SYN_SENT; /* * TODO: allow data with connect requests * by unlinking M_DATA trailers here and * linking them in behind the T_OK_ACK mblk. * The tcp_rput() bind ack handler would then * feed them to tcp_wput_data() rather than call * tcp_timer(). */ mp = mi_tpi_ok_ack_alloc(mp); if (!mp) { tcp->tcp_state = oldstate; goto failed; } mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); if (mp1) { /* Hang onto the T_OK_ACK for later. */ linkb(mp1, mp); mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, &tcp->tcp_sticky_ipp); BUMP_MIB(&tcp_mib, tcpActiveOpens); tcp->tcp_active_open = 1; /* ip_bind_v6() may return ACK or ERROR */ if (mp1 != NULL) tcp_rput_other(tcp, mp1); return; } /* Error case */ tcp->tcp_state = oldstate; mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); failed: /* return error ack and blow away saved option results if any */ if (mp != NULL) putnext(tcp->tcp_rq, mp); else { tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, TSYSERR, ENOMEM); } if (tcp->tcp_conn.tcp_opts_conn_req != NULL) tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); } /* * We need a stream q for detached closing tcp connections * to use. Our client hereby indicates that this q is the * one to use. */ static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp) { struct iocblk *iocp = (struct iocblk *)mp->b_rptr; queue_t *q = tcp->tcp_wq; mp->b_datap->db_type = M_IOCACK; iocp->ioc_count = 0; mutex_enter(&tcp_g_q_lock); if (tcp_g_q != NULL) { mutex_exit(&tcp_g_q_lock); iocp->ioc_error = EALREADY; } else { mblk_t *mp1; mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); if (mp1 == NULL) { mutex_exit(&tcp_g_q_lock); iocp->ioc_error = ENOMEM; } else { tcp_g_q = tcp->tcp_rq; mutex_exit(&tcp_g_q_lock); iocp->ioc_error = 0; iocp->ioc_rval = 0; /* * We are passing tcp_sticky_ipp as NULL * as it is not useful for tcp_default queue */ mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); if (mp1 != NULL) tcp_rput_other(tcp, mp1); } } qreply(q, mp); } /* * Our client hereby directs us to reject the connection request * that tcp_conn_request() marked with 'seqnum'. Rejection consists * of sending the appropriate RST, not an ICMP error. */ static void tcp_disconnect(tcp_t *tcp, mblk_t *mp) { tcp_t *ltcp = NULL; t_scalar_t seqnum; conn_t *connp; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { tcp_err_ack(tcp, mp, TPROTO, 0); return; } /* * Right now, upper modules pass down a T_DISCON_REQ to TCP, * when the stream is in BOUND state. Do not send a reset, * since the destination IP address is not valid, and it can * be the initialized value of all zeros (broadcast address). * * If TCP has sent down a bind request to IP and has not * received the reply, reject the request. Otherwise, TCP * will be confused. */ if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_disconnect: bad state, %d", tcp->tcp_state); } tcp_err_ack(tcp, mp, TOUTSTATE, 0); return; } seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { /* * According to TPI, for non-listeners, ignore seqnum * and disconnect. * Following interpretation of -1 seqnum is historical * and implied TPI ? (TPI only states that for T_CONN_IND, * a valid seqnum should not be -1). * * -1 means disconnect everything * regardless even on a listener. */ int old_state = tcp->tcp_state; /* * The connection can't be on the tcp_time_wait_head list * since it is not detached. */ ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == 0); ltcp = NULL; /* * If it used to be a listener, check to make sure no one else * has taken the port before switching back to LISTEN state. */ if (tcp->tcp_ipversion == IPV4_VERSION) { connp = ipcl_lookup_listener_v4(tcp->tcp_lport, tcp->tcp_ipha->ipha_src, tcp->tcp_connp->conn_zoneid); if (connp != NULL) ltcp = connp->conn_tcp; } else { /* Allow tcp_bound_if listeners? */ connp = ipcl_lookup_listener_v6(tcp->tcp_lport, &tcp->tcp_ip6h->ip6_src, 0, tcp->tcp_connp->conn_zoneid); if (connp != NULL) ltcp = connp->conn_tcp; } if (tcp->tcp_conn_req_max && ltcp == NULL) { tcp->tcp_state = TCPS_LISTEN; } else if (old_state > TCPS_BOUND) { tcp->tcp_conn_req_max = 0; tcp->tcp_state = TCPS_BOUND; } if (ltcp != NULL) CONN_DEC_REF(ltcp->tcp_connp); if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { BUMP_MIB(&tcp_mib, tcpAttemptFails); } else if (old_state == TCPS_ESTABLISHED || old_state == TCPS_CLOSE_WAIT) { BUMP_MIB(&tcp_mib, tcpEstabResets); } if (tcp->tcp_fused) tcp_unfuse(tcp); mutex_enter(&tcp->tcp_eager_lock); if ((tcp->tcp_conn_req_cnt_q0 != 0) || (tcp->tcp_conn_req_cnt_q != 0)) { tcp_eager_cleanup(tcp, 0); } mutex_exit(&tcp->tcp_eager_lock); tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_RST | TH_ACK); tcp_reinit(tcp); if (old_state >= TCPS_ESTABLISHED) { /* Send M_FLUSH according to TPI */ (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); } mp = mi_tpi_ok_ack_alloc(mp); if (mp) putnext(tcp->tcp_rq, mp); return; } else if (!tcp_eager_blowoff(tcp, seqnum)) { tcp_err_ack(tcp, mp, TBADSEQ, 0); return; } if (tcp->tcp_state >= TCPS_ESTABLISHED) { /* Send M_FLUSH according to TPI */ (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); } mp = mi_tpi_ok_ack_alloc(mp); if (mp) putnext(tcp->tcp_rq, mp); } /* * Diagnostic routine used to return a string associated with the tcp state. * Note that if the caller does not supply a buffer, it will use an internal * static string. This means that if multiple threads call this function at * the same time, output can be corrupted... Note also that this function * does not check the size of the supplied buffer. The caller has to make * sure that it is big enough. */ static char * tcp_display(tcp_t *tcp, char *sup_buf, char format) { char buf1[30]; static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; char *buf; char *cp; in6_addr_t local, remote; char local_addrbuf[INET6_ADDRSTRLEN]; char remote_addrbuf[INET6_ADDRSTRLEN]; if (sup_buf != NULL) buf = sup_buf; else buf = priv_buf; if (tcp == NULL) return ("NULL_TCP"); switch (tcp->tcp_state) { case TCPS_CLOSED: cp = "TCP_CLOSED"; break; case TCPS_IDLE: cp = "TCP_IDLE"; break; case TCPS_BOUND: cp = "TCP_BOUND"; break; case TCPS_LISTEN: cp = "TCP_LISTEN"; break; case TCPS_SYN_SENT: cp = "TCP_SYN_SENT"; break; case TCPS_SYN_RCVD: cp = "TCP_SYN_RCVD"; break; case TCPS_ESTABLISHED: cp = "TCP_ESTABLISHED"; break; case TCPS_CLOSE_WAIT: cp = "TCP_CLOSE_WAIT"; break; case TCPS_FIN_WAIT_1: cp = "TCP_FIN_WAIT_1"; break; case TCPS_CLOSING: cp = "TCP_CLOSING"; break; case TCPS_LAST_ACK: cp = "TCP_LAST_ACK"; break; case TCPS_FIN_WAIT_2: cp = "TCP_FIN_WAIT_2"; break; case TCPS_TIME_WAIT: cp = "TCP_TIME_WAIT"; break; default: (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); cp = buf1; break; } switch (format) { case DISP_ADDR_AND_PORT: if (tcp->tcp_ipversion == IPV4_VERSION) { /* * Note that we use the remote address in the tcp_b * structure. This means that it will print out * the real destination address, not the next hop's * address if source routing is used. */ IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); } else { local = tcp->tcp_ip_src_v6; remote = tcp->tcp_remote_v6; } (void) inet_ntop(AF_INET6, &local, local_addrbuf, sizeof (local_addrbuf)); (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, sizeof (remote_addrbuf)); (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, ntohs(tcp->tcp_fport), cp); break; case DISP_PORT_ONLY: default: (void) mi_sprintf(buf, "[%u, %u] %s", ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); break; } return (buf); } /* * Called via squeue to get on to eager's perimeter to send a * TH_RST. The listener wants the eager to disappear either * by means of tcp_eager_blowoff() or tcp_eager_cleanup() * being called. */ /* ARGSUSED */ void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) { conn_t *econnp = (conn_t *)arg; tcp_t *eager = econnp->conn_tcp; tcp_t *listener = eager->tcp_listener; /* * We could be called because listener is closing. Since * the eager is using listener's queue's, its not safe. * Better use the default queue just to send the TH_RST * out. */ eager->tcp_rq = tcp_g_q; eager->tcp_wq = WR(tcp_g_q); if (eager->tcp_state > TCPS_LISTEN) { tcp_xmit_ctl("tcp_eager_kill, can't wait", eager, eager->tcp_snxt, 0, TH_RST); } /* We are here because listener wants this eager gone */ if (listener != NULL) { mutex_enter(&listener->tcp_eager_lock); tcp_eager_unlink(eager); if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { /* * The eager has sent a conn_ind up to the * listener but listener decides to close * instead. We need to drop the extra ref * placed on eager in tcp_rput_data() before * sending the conn_ind to listener. */ CONN_DEC_REF(econnp); } mutex_exit(&listener->tcp_eager_lock); CONN_DEC_REF(listener->tcp_connp); } if (eager->tcp_state > TCPS_BOUND) tcp_close_detached(eager); } /* * Reset any eager connection hanging off this listener marked * with 'seqnum' and then reclaim it's resources. */ static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) { tcp_t *eager; mblk_t *mp; TCP_STAT(tcp_eager_blowoff_calls); eager = listener; mutex_enter(&listener->tcp_eager_lock); do { eager = eager->tcp_eager_next_q; if (eager == NULL) { mutex_exit(&listener->tcp_eager_lock); return (B_FALSE); } } while (eager->tcp_conn_req_seqnum != seqnum); CONN_INC_REF(eager->tcp_connp); mutex_exit(&listener->tcp_eager_lock); mp = &eager->tcp_closemp; squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); return (B_TRUE); } /* * Reset any eager connection hanging off this listener * and then reclaim it's resources. */ static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) { tcp_t *eager; mblk_t *mp; ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); if (!q0_only) { /* First cleanup q */ TCP_STAT(tcp_eager_blowoff_q); eager = listener->tcp_eager_next_q; while (eager != NULL) { CONN_INC_REF(eager->tcp_connp); mp = &eager->tcp_closemp; squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, eager->tcp_connp, SQTAG_TCP_EAGER_CLEANUP); eager = eager->tcp_eager_next_q; } } /* Then cleanup q0 */ TCP_STAT(tcp_eager_blowoff_q0); eager = listener->tcp_eager_next_q0; while (eager != listener) { CONN_INC_REF(eager->tcp_connp); mp = &eager->tcp_closemp; squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, eager->tcp_connp, SQTAG_TCP_EAGER_CLEANUP_Q0); eager = eager->tcp_eager_next_q0; } } /* * If we are an eager connection hanging off a listener that hasn't * formally accepted the connection yet, get off his list and blow off * any data that we have accumulated. */ static void tcp_eager_unlink(tcp_t *tcp) { tcp_t *listener = tcp->tcp_listener; ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); ASSERT(listener != NULL); if (tcp->tcp_eager_next_q0 != NULL) { ASSERT(tcp->tcp_eager_prev_q0 != NULL); /* Remove the eager tcp from q0 */ tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; ASSERT(listener->tcp_conn_req_cnt_q0 > 0); listener->tcp_conn_req_cnt_q0--; tcp->tcp_eager_next_q0 = NULL; tcp->tcp_eager_prev_q0 = NULL; if (tcp->tcp_syn_rcvd_timeout != 0) { /* we have timed out before */ ASSERT(listener->tcp_syn_rcvd_timeout > 0); listener->tcp_syn_rcvd_timeout--; } } else { tcp_t **tcpp = &listener->tcp_eager_next_q; tcp_t *prev = NULL; for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { if (tcpp[0] == tcp) { if (listener->tcp_eager_last_q == tcp) { /* * If we are unlinking the last * element on the list, adjust * tail pointer. Set tail pointer * to nil when list is empty. */ ASSERT(tcp->tcp_eager_next_q == NULL); if (listener->tcp_eager_last_q == listener->tcp_eager_next_q) { listener->tcp_eager_last_q = NULL; } else { /* * We won't get here if there * is only one eager in the * list. */ ASSERT(prev != NULL); listener->tcp_eager_last_q = prev; } } tcpp[0] = tcp->tcp_eager_next_q; tcp->tcp_eager_next_q = NULL; tcp->tcp_eager_last_q = NULL; ASSERT(listener->tcp_conn_req_cnt_q > 0); listener->tcp_conn_req_cnt_q--; break; } prev = tcpp[0]; } } tcp->tcp_listener = NULL; } /* Shorthand to generate and send TPI error acks to our client */ static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) { if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) putnext(tcp->tcp_rq, mp); } /* Shorthand to generate and send TPI error acks to our client */ static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, int t_error, int sys_error) { struct T_error_ack *teackp; if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), M_PCPROTO, T_ERROR_ACK)) != NULL) { teackp = (struct T_error_ack *)mp->b_rptr; teackp->ERROR_prim = primitive; teackp->TLI_error = t_error; teackp->UNIX_error = sys_error; putnext(tcp->tcp_rq, mp); } } /* * Note: No locks are held when inspecting tcp_g_*epriv_ports * but instead the code relies on: * - the fact that the address of the array and its size never changes * - the atomic assignment of the elements of the array */ /* ARGSUSED */ static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { int i; for (i = 0; i < tcp_g_num_epriv_ports; i++) { if (tcp_g_epriv_ports[i] != 0) (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); } return (0); } /* * Hold a lock while changing tcp_g_epriv_ports to prevent multiple * threads from changing it at the same time. */ /* ARGSUSED */ static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; int i; /* * Fail the request if the new value does not lie within the * port number limits. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || new_value >= 65536) { return (EINVAL); } mutex_enter(&tcp_epriv_port_lock); /* Check if the value is already in the list */ for (i = 0; i < tcp_g_num_epriv_ports; i++) { if (new_value == tcp_g_epriv_ports[i]) { mutex_exit(&tcp_epriv_port_lock); return (EEXIST); } } /* Find an empty slot */ for (i = 0; i < tcp_g_num_epriv_ports; i++) { if (tcp_g_epriv_ports[i] == 0) break; } if (i == tcp_g_num_epriv_ports) { mutex_exit(&tcp_epriv_port_lock); return (EOVERFLOW); } /* Set the new value */ tcp_g_epriv_ports[i] = (uint16_t)new_value; mutex_exit(&tcp_epriv_port_lock); return (0); } /* * Hold a lock while changing tcp_g_epriv_ports to prevent multiple * threads from changing it at the same time. */ /* ARGSUSED */ static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; int i; /* * Fail the request if the new value does not lie within the * port number limits. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || new_value >= 65536) { return (EINVAL); } mutex_enter(&tcp_epriv_port_lock); /* Check that the value is already in the list */ for (i = 0; i < tcp_g_num_epriv_ports; i++) { if (tcp_g_epriv_ports[i] == new_value) break; } if (i == tcp_g_num_epriv_ports) { mutex_exit(&tcp_epriv_port_lock); return (ESRCH); } /* Clear the value */ tcp_g_epriv_ports[i] = 0; mutex_exit(&tcp_epriv_port_lock); return (0); } /* Return the TPI/TLI equivalent of our current tcp_state */ static int tcp_tpistate(tcp_t *tcp) { switch (tcp->tcp_state) { case TCPS_IDLE: return (TS_UNBND); case TCPS_LISTEN: /* * Return whether there are outstanding T_CONN_IND waiting * for the matching T_CONN_RES. Therefore don't count q0. */ if (tcp->tcp_conn_req_cnt_q > 0) return (TS_WRES_CIND); else return (TS_IDLE); case TCPS_BOUND: return (TS_IDLE); case TCPS_SYN_SENT: return (TS_WCON_CREQ); case TCPS_SYN_RCVD: /* * Note: assumption: this has to the active open SYN_RCVD. * The passive instance is detached in SYN_RCVD stage of * incoming connection processing so we cannot get request * for T_info_ack on it. */ return (TS_WACK_CRES); case TCPS_ESTABLISHED: return (TS_DATA_XFER); case TCPS_CLOSE_WAIT: return (TS_WREQ_ORDREL); case TCPS_FIN_WAIT_1: return (TS_WIND_ORDREL); case TCPS_FIN_WAIT_2: return (TS_WIND_ORDREL); case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: case TCPS_CLOSED: /* * Following TS_WACK_DREQ7 is a rendition of "not * yet TS_IDLE" TPI state. There is no best match to any * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we * choose a value chosen that will map to TLI/XTI level * state of TSTATECHNG (state is process of changing) which * captures what this dummy state represents. */ return (TS_WACK_DREQ7); default: cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", tcp->tcp_state, tcp_display(tcp, NULL, DISP_PORT_ONLY)); return (TS_UNBND); } } static void tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) { if (tcp->tcp_family == AF_INET6) *tia = tcp_g_t_info_ack_v6; else *tia = tcp_g_t_info_ack; tia->CURRENT_state = tcp_tpistate(tcp); tia->OPT_size = tcp_max_optsize; if (tcp->tcp_mss == 0) { /* Not yet set - tcp_open does not set mss */ if (tcp->tcp_ipversion == IPV4_VERSION) tia->TIDU_size = tcp_mss_def_ipv4; else tia->TIDU_size = tcp_mss_def_ipv6; } else { tia->TIDU_size = tcp->tcp_mss; } /* TODO: Default ETSDU is 1. Is that correct for tcp? */ } /* * This routine responds to T_CAPABILITY_REQ messages. It is called by * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from * tcp_g_t_info_ack. The current state of the stream is copied from * tcp_state. */ static void tcp_capability_req(tcp_t *tcp, mblk_t *mp) { t_uscalar_t cap_bits1; struct T_capability_ack *tcap; if (MBLKL(mp) < sizeof (struct T_capability_req)) { freemsg(mp); return; } cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), mp->b_datap->db_type, T_CAPABILITY_ACK); if (mp == NULL) return; tcap = (struct T_capability_ack *)mp->b_rptr; tcap->CAP_bits1 = 0; if (cap_bits1 & TC1_INFO) { tcp_copy_info(&tcap->INFO_ack, tcp); tcap->CAP_bits1 |= TC1_INFO; } if (cap_bits1 & TC1_ACCEPTOR_ID) { tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; } putnext(tcp->tcp_rq, mp); } /* * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. * The current state of the stream is copied from tcp_state. */ static void tcp_info_req(tcp_t *tcp, mblk_t *mp) { mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, T_INFO_ACK); if (!mp) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); putnext(tcp->tcp_rq, mp); } /* Respond to the TPI addr request */ static void tcp_addr_req(tcp_t *tcp, mblk_t *mp) { sin_t *sin; mblk_t *ackmp; struct T_addr_ack *taa; /* Make it large enough for worst case */ ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2 * sizeof (sin6_t), 1); if (ackmp == NULL) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } if (tcp->tcp_ipversion == IPV6_VERSION) { tcp_addr_req_ipv6(tcp, ackmp); return; } taa = (struct T_addr_ack *)ackmp->b_rptr; bzero(taa, sizeof (struct T_addr_ack)); ackmp->b_wptr = (uchar_t *)&taa[1]; taa->PRIM_type = T_ADDR_ACK; ackmp->b_datap->db_type = M_PCPROTO; /* * Note: Following code assumes 32 bit alignment of basic * data structures like sin_t and struct T_addr_ack. */ if (tcp->tcp_state >= TCPS_BOUND) { /* * Fill in local address */ taa->LOCADDR_length = sizeof (sin_t); taa->LOCADDR_offset = sizeof (*taa); sin = (sin_t *)&taa[1]; /* Fill zeroes and then intialize non-zero fields */ *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; ackmp->b_wptr = (uchar_t *)&sin[1]; if (tcp->tcp_state >= TCPS_SYN_RCVD) { /* * Fill in Remote address */ taa->REMADDR_length = sizeof (sin_t); taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + taa->LOCADDR_length); sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = tcp->tcp_remote; sin->sin_port = tcp->tcp_fport; ackmp->b_wptr = (uchar_t *)&sin[1]; } } putnext(tcp->tcp_rq, ackmp); } /* Assumes that tcp_addr_req gets enough space and alignment */ static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) { sin6_t *sin6; struct T_addr_ack *taa; ASSERT(tcp->tcp_ipversion == IPV6_VERSION); ASSERT(OK_32PTR(ackmp->b_rptr)); ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 2 * sizeof (sin6_t)); taa = (struct T_addr_ack *)ackmp->b_rptr; bzero(taa, sizeof (struct T_addr_ack)); ackmp->b_wptr = (uchar_t *)&taa[1]; taa->PRIM_type = T_ADDR_ACK; ackmp->b_datap->db_type = M_PCPROTO; /* * Note: Following code assumes 32 bit alignment of basic * data structures like sin6_t and struct T_addr_ack. */ if (tcp->tcp_state >= TCPS_BOUND) { /* * Fill in local address */ taa->LOCADDR_length = sizeof (sin6_t); taa->LOCADDR_offset = sizeof (*taa); sin6 = (sin6_t *)&taa[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; sin6->sin6_port = tcp->tcp_lport; ackmp->b_wptr = (uchar_t *)&sin6[1]; if (tcp->tcp_state >= TCPS_SYN_RCVD) { /* * Fill in Remote address */ taa->REMADDR_length = sizeof (sin6_t); taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + taa->LOCADDR_length); sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; sin6->sin6_addr = tcp->tcp_remote_v6; sin6->sin6_port = tcp->tcp_fport; ackmp->b_wptr = (uchar_t *)&sin6[1]; } } putnext(tcp->tcp_rq, ackmp); } /* * Handle reinitialization of a tcp structure. * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. */ static void tcp_reinit(tcp_t *tcp) { mblk_t *mp; int err; TCP_STAT(tcp_reinit_calls); /* tcp_reinit should never be called for detached tcp_t's */ ASSERT(tcp->tcp_listener == NULL); ASSERT((tcp->tcp_family == AF_INET && tcp->tcp_ipversion == IPV4_VERSION) || (tcp->tcp_family == AF_INET6 && (tcp->tcp_ipversion == IPV4_VERSION || tcp->tcp_ipversion == IPV6_VERSION))); /* Cancel outstanding timers */ tcp_timers_stop(tcp); /* * Reset everything in the state vector, after updating global * MIB data from instance counters. */ UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); tcp->tcp_ibsegs = 0; UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); tcp->tcp_obsegs = 0; tcp_close_mpp(&tcp->tcp_xmit_head); if (tcp->tcp_snd_zcopy_aware) tcp_zcopy_notify(tcp); tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; if (tcp->tcp_flow_stopped && TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { tcp_clrqfull(tcp); } tcp_close_mpp(&tcp->tcp_reass_head); tcp->tcp_reass_tail = NULL; if (tcp->tcp_rcv_list != NULL) { /* Free b_next chain */ tcp_close_mpp(&tcp->tcp_rcv_list); tcp->tcp_rcv_last_head = NULL; tcp->tcp_rcv_last_tail = NULL; tcp->tcp_rcv_cnt = 0; } tcp->tcp_rcv_last_tail = NULL; if ((mp = tcp->tcp_urp_mp) != NULL) { freemsg(mp); tcp->tcp_urp_mp = NULL; } if ((mp = tcp->tcp_urp_mark_mp) != NULL) { freemsg(mp); tcp->tcp_urp_mark_mp = NULL; } if (tcp->tcp_fused_sigurg_mp != NULL) { freeb(tcp->tcp_fused_sigurg_mp); tcp->tcp_fused_sigurg_mp = NULL; } /* * Following is a union with two members which are * identical types and size so the following cleanup * is enough. */ tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); CL_INET_DISCONNECT(tcp); /* * The connection can't be on the tcp_time_wait_head list * since it is not detached. */ ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == 0); if (tcp->tcp_kssl_pending) { tcp->tcp_kssl_pending = B_FALSE; /* Don't reset if the initialized by bind. */ if (tcp->tcp_kssl_ent != NULL) { kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); } } if (tcp->tcp_kssl_ctx != NULL) { kssl_release_ctx(tcp->tcp_kssl_ctx); tcp->tcp_kssl_ctx = NULL; } /* * Reset/preserve other values */ tcp_reinit_values(tcp); ipcl_hash_remove(tcp->tcp_connp); conn_delete_ire(tcp->tcp_connp, NULL); if (tcp->tcp_conn_req_max != 0) { /* * This is the case when a TLI program uses the same * transport end point to accept a connection. This * makes the TCP both a listener and acceptor. When * this connection is closed, we need to set the state * back to TCPS_LISTEN. Make sure that the eager list * is reinitialized. * * Note that this stream is still bound to the four * tuples of the previous connection in IP. If a new * SYN with different foreign address comes in, IP will * not find it and will send it to the global queue. In * the global queue, TCP will do a tcp_lookup_listener() * to find this stream. This works because this stream * is only removed from connected hash. * */ tcp->tcp_state = TCPS_LISTEN; tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; tcp->tcp_connp->conn_recv = tcp_conn_request; if (tcp->tcp_family == AF_INET6) { ASSERT(tcp->tcp_connp->conn_af_isv6); (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); } else { ASSERT(!tcp->tcp_connp->conn_af_isv6); (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, tcp->tcp_ipha->ipha_src, tcp->tcp_lport); } } else { tcp->tcp_state = TCPS_BOUND; } /* * Initialize to default values * Can't fail since enough header template space already allocated * at open(). */ err = tcp_init_values(tcp); ASSERT(err == 0); /* Restore state in tcp_tcph */ bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); if (tcp->tcp_ipversion == IPV4_VERSION) tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; else tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; /* * Copy of the src addr. in tcp_t is needed in tcp_t * since the lookup funcs can only lookup on tcp_t */ tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; ASSERT(tcp->tcp_ptpbhn != NULL); tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; tcp->tcp_rwnd = tcp_recv_hiwat; tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? tcp_mss_def_ipv6 : tcp_mss_def_ipv4; } /* * Force values to zero that need be zero. * Do not touch values asociated with the BOUND or LISTEN state * since the connection will end up in that state after the reinit. * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t * structure! */ static void tcp_reinit_values(tcp) tcp_t *tcp; { #ifndef lint #define DONTCARE(x) #define PRESERVE(x) #else #define DONTCARE(x) ((x) = (x)) #define PRESERVE(x) ((x) = (x)) #endif /* lint */ PRESERVE(tcp->tcp_bind_hash); PRESERVE(tcp->tcp_ptpbhn); PRESERVE(tcp->tcp_acceptor_hash); PRESERVE(tcp->tcp_ptpahn); /* Should be ASSERT NULL on these with new code! */ ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == 0); PRESERVE(tcp->tcp_state); PRESERVE(tcp->tcp_rq); PRESERVE(tcp->tcp_wq); ASSERT(tcp->tcp_xmit_head == NULL); ASSERT(tcp->tcp_xmit_last == NULL); ASSERT(tcp->tcp_unsent == 0); ASSERT(tcp->tcp_xmit_tail == NULL); ASSERT(tcp->tcp_xmit_tail_unsent == 0); tcp->tcp_snxt = 0; /* Displayed in mib */ tcp->tcp_suna = 0; /* Displayed in mib */ tcp->tcp_swnd = 0; DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ ASSERT(tcp->tcp_ibsegs == 0); ASSERT(tcp->tcp_obsegs == 0); if (tcp->tcp_iphc != NULL) { ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); } DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_ipha); DONTCARE(tcp->tcp_ip6h); DONTCARE(tcp->tcp_ip_hdr_len); DONTCARE(tcp->tcp_tcph); DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ tcp->tcp_valid_bits = 0; DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ tcp->tcp_last_rcv_lbolt = 0; tcp->tcp_init_cwnd = 0; tcp->tcp_urp_last_valid = 0; tcp->tcp_hard_binding = 0; tcp->tcp_hard_bound = 0; PRESERVE(tcp->tcp_cred); PRESERVE(tcp->tcp_cpid); PRESERVE(tcp->tcp_exclbind); tcp->tcp_fin_acked = 0; tcp->tcp_fin_rcvd = 0; tcp->tcp_fin_sent = 0; tcp->tcp_ordrel_done = 0; tcp->tcp_debug = 0; tcp->tcp_dontroute = 0; tcp->tcp_broadcast = 0; tcp->tcp_useloopback = 0; tcp->tcp_reuseaddr = 0; tcp->tcp_oobinline = 0; tcp->tcp_dgram_errind = 0; tcp->tcp_detached = 0; tcp->tcp_bind_pending = 0; tcp->tcp_unbind_pending = 0; tcp->tcp_deferred_clean_death = 0; tcp->tcp_snd_ws_ok = B_FALSE; tcp->tcp_snd_ts_ok = B_FALSE; tcp->tcp_linger = 0; tcp->tcp_ka_enabled = 0; tcp->tcp_zero_win_probe = 0; tcp->tcp_loopback = 0; tcp->tcp_localnet = 0; tcp->tcp_syn_defense = 0; tcp->tcp_set_timer = 0; tcp->tcp_active_open = 0; ASSERT(tcp->tcp_timeout == B_FALSE); tcp->tcp_rexmit = B_FALSE; tcp->tcp_xmit_zc_clean = B_FALSE; tcp->tcp_snd_sack_ok = B_FALSE; PRESERVE(tcp->tcp_recvdstaddr); tcp->tcp_hwcksum = B_FALSE; tcp->tcp_ire_ill_check_done = B_FALSE; DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ tcp->tcp_mdt = B_FALSE; tcp->tcp_mdt_hdr_head = 0; tcp->tcp_mdt_hdr_tail = 0; tcp->tcp_conn_def_q0 = 0; tcp->tcp_ip_forward_progress = B_FALSE; tcp->tcp_anon_priv_bind = 0; tcp->tcp_ecn_ok = B_FALSE; tcp->tcp_cwr = B_FALSE; tcp->tcp_ecn_echo_on = B_FALSE; if (tcp->tcp_sack_info != NULL) { if (tcp->tcp_notsack_list != NULL) { TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); } kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); tcp->tcp_sack_info = NULL; } tcp->tcp_rcv_ws = 0; tcp->tcp_snd_ws = 0; tcp->tcp_ts_recent = 0; tcp->tcp_rnxt = 0; /* Displayed in mib */ DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ tcp->tcp_if_mtu = 0; ASSERT(tcp->tcp_reass_head == NULL); ASSERT(tcp->tcp_reass_tail == NULL); tcp->tcp_cwnd_cnt = 0; ASSERT(tcp->tcp_rcv_list == NULL); ASSERT(tcp->tcp_rcv_last_head == NULL); ASSERT(tcp->tcp_rcv_last_tail == NULL); ASSERT(tcp->tcp_rcv_cnt == 0); DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ tcp->tcp_csuna = 0; tcp->tcp_rto = 0; /* Displayed in MIB */ DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ tcp->tcp_rtt_update = 0; DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ tcp->tcp_rack = 0; /* Displayed in mib */ tcp->tcp_rack_cnt = 0; tcp->tcp_rack_cur_max = 0; tcp->tcp_rack_abs_max = 0; tcp->tcp_max_swnd = 0; ASSERT(tcp->tcp_listener == NULL); DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ ASSERT(tcp->tcp_conn_req_cnt_q == 0); ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); PRESERVE(tcp->tcp_conn_req_max); PRESERVE(tcp->tcp_conn_req_seqnum); DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ tcp->tcp_lingertime = 0; DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ ASSERT(tcp->tcp_urp_mp == NULL); ASSERT(tcp->tcp_urp_mark_mp == NULL); ASSERT(tcp->tcp_fused_sigurg_mp == NULL); ASSERT(tcp->tcp_eager_next_q == NULL); ASSERT(tcp->tcp_eager_last_q == NULL); ASSERT((tcp->tcp_eager_next_q0 == NULL && tcp->tcp_eager_prev_q0 == NULL) || tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); tcp->tcp_client_errno = 0; DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ PRESERVE(tcp->tcp_bound_source_v6); tcp->tcp_last_sent_len = 0; tcp->tcp_dupack_cnt = 0; tcp->tcp_fport = 0; /* Displayed in MIB */ PRESERVE(tcp->tcp_lport); PRESERVE(tcp->tcp_acceptor_lockp); ASSERT(tcp->tcp_ordrelid == 0); PRESERVE(tcp->tcp_acceptor_id); DONTCARE(tcp->tcp_ipsec_overhead); /* * If tcp_tracing flag is ON (i.e. We have a trace buffer * in tcp structure and now tracing), Re-initialize all * members of tcp_traceinfo. */ if (tcp->tcp_tracebuf != NULL) { bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); } PRESERVE(tcp->tcp_family); if (tcp->tcp_family == AF_INET6) { tcp->tcp_ipversion = IPV6_VERSION; tcp->tcp_mss = tcp_mss_def_ipv6; } else { tcp->tcp_ipversion = IPV4_VERSION; tcp->tcp_mss = tcp_mss_def_ipv4; } tcp->tcp_bound_if = 0; tcp->tcp_ipv6_recvancillary = 0; tcp->tcp_recvifindex = 0; tcp->tcp_recvhops = 0; tcp->tcp_closed = 0; tcp->tcp_cleandeathtag = 0; if (tcp->tcp_hopopts != NULL) { mi_free(tcp->tcp_hopopts); tcp->tcp_hopopts = NULL; tcp->tcp_hopoptslen = 0; } ASSERT(tcp->tcp_hopoptslen == 0); if (tcp->tcp_dstopts != NULL) { mi_free(tcp->tcp_dstopts); tcp->tcp_dstopts = NULL; tcp->tcp_dstoptslen = 0; } ASSERT(tcp->tcp_dstoptslen == 0); if (tcp->tcp_rtdstopts != NULL) { mi_free(tcp->tcp_rtdstopts); tcp->tcp_rtdstopts = NULL; tcp->tcp_rtdstoptslen = 0; } ASSERT(tcp->tcp_rtdstoptslen == 0); if (tcp->tcp_rthdr != NULL) { mi_free(tcp->tcp_rthdr); tcp->tcp_rthdr = NULL; tcp->tcp_rthdrlen = 0; } ASSERT(tcp->tcp_rthdrlen == 0); PRESERVE(tcp->tcp_drop_opt_ack_cnt); /* Reset fusion-related fields */ tcp->tcp_fused = B_FALSE; tcp->tcp_unfusable = B_FALSE; tcp->tcp_fused_sigurg = B_FALSE; tcp->tcp_direct_sockfs = B_FALSE; tcp->tcp_fuse_syncstr_stopped = B_FALSE; tcp->tcp_loopback_peer = NULL; tcp->tcp_fuse_rcv_hiwater = 0; tcp->tcp_fuse_rcv_unread_hiwater = 0; tcp->tcp_fuse_rcv_unread_cnt = 0; tcp->tcp_in_ack_unsent = 0; tcp->tcp_cork = B_FALSE; PRESERVE(tcp->tcp_squeue_bytes); ASSERT(tcp->tcp_kssl_ctx == NULL); ASSERT(!tcp->tcp_kssl_pending); PRESERVE(tcp->tcp_kssl_ent); #undef DONTCARE #undef PRESERVE } /* * Allocate necessary resources and initialize state vector. * Guaranteed not to fail so that when an error is returned, * the caller doesn't need to do any additional cleanup. */ int tcp_init(tcp_t *tcp, queue_t *q) { int err; tcp->tcp_rq = q; tcp->tcp_wq = WR(q); tcp->tcp_state = TCPS_IDLE; if ((err = tcp_init_values(tcp)) != 0) tcp_timers_stop(tcp); return (err); } static int tcp_init_values(tcp_t *tcp) { int err; ASSERT((tcp->tcp_family == AF_INET && tcp->tcp_ipversion == IPV4_VERSION) || (tcp->tcp_family == AF_INET6 && (tcp->tcp_ipversion == IPV4_VERSION || tcp->tcp_ipversion == IPV6_VERSION))); /* * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO * will be close to tcp_rexmit_interval_initial. By doing this, we * allow the algorithm to adjust slowly to large fluctuations of RTT * during first few transmissions of a connection as seen in slow * links. */ tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + tcp_conn_grace_period; if (tcp->tcp_rto < tcp_rexmit_interval_min) tcp->tcp_rto = tcp_rexmit_interval_min; tcp->tcp_timer_backoff = 0; tcp->tcp_ms_we_have_waited = 0; tcp->tcp_last_recv_time = lbolt; tcp->tcp_cwnd_max = tcp_cwnd_max_; tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; tcp->tcp_snd_burst = TCP_CWND_INFINITE; tcp->tcp_maxpsz = tcp_maxpsz_multiplier; tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; /* * Fix it to tcp_ip_abort_linterval later if it turns out to be a * passive open. */ tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; tcp->tcp_naglim = tcp_naglim_def; /* NOTE: ISS is now set in tcp_adapt_ire(). */ tcp->tcp_mdt_hdr_head = 0; tcp->tcp_mdt_hdr_tail = 0; /* Reset fusion-related fields */ tcp->tcp_fused = B_FALSE; tcp->tcp_unfusable = B_FALSE; tcp->tcp_fused_sigurg = B_FALSE; tcp->tcp_direct_sockfs = B_FALSE; tcp->tcp_fuse_syncstr_stopped = B_FALSE; tcp->tcp_loopback_peer = NULL; tcp->tcp_fuse_rcv_hiwater = 0; tcp->tcp_fuse_rcv_unread_hiwater = 0; tcp->tcp_fuse_rcv_unread_cnt = 0; /* Initialize the header template */ if (tcp->tcp_ipversion == IPV4_VERSION) { err = tcp_header_init_ipv4(tcp); } else { err = tcp_header_init_ipv6(tcp); } if (err) return (err); /* * Init the window scale to the max so tcp_rwnd_set() won't pare * down tcp_rwnd. tcp_adapt_ire() will set the right value later. */ tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; tcp->tcp_xmit_lowater = tcp_xmit_lowat; tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; tcp->tcp_cork = B_FALSE; /* * Init the tcp_debug option. This value determines whether TCP * calls strlog() to print out debug messages. Doing this * initialization here means that this value is not inherited thru * tcp_reinit(). */ tcp->tcp_debug = tcp_dbg; tcp->tcp_ka_interval = tcp_keepalive_interval; tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; return (0); } /* * Initialize the IPv4 header. Loses any record of any IP options. */ static int tcp_header_init_ipv4(tcp_t *tcp) { tcph_t *tcph; uint32_t sum; /* * This is a simple initialization. If there's * already a template, it should never be too small, * so reuse it. Otherwise, allocate space for the new one. */ if (tcp->tcp_iphc == NULL) { ASSERT(tcp->tcp_iphc_len == 0); tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); if (tcp->tcp_iphc == NULL) { tcp->tcp_iphc_len = 0; return (ENOMEM); } } ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; tcp->tcp_ip6h = NULL; tcp->tcp_ipversion = IPV4_VERSION; tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); tcp->tcp_tcp_hdr_len = sizeof (tcph_t); tcp->tcp_ip_hdr_len = sizeof (ipha_t); tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); tcp->tcp_ipha->ipha_version_and_hdr_length = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; tcp->tcp_ipha->ipha_ident = 0; tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; tcp->tcp_tos = 0; tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); tcp->tcp_tcph = tcph; tcph->th_offset_and_rsrvd[0] = (5 << 4); /* * IP wants our header length in the checksum field to * allow it to perform a single pseudo-header+checksum * calculation on behalf of TCP. * Include the adjustment for a source route once IP_OPTIONS is set. */ sum = sizeof (tcph_t) + tcp->tcp_sum; sum = (sum >> 16) + (sum & 0xFFFF); U16_TO_ABE16(sum, tcph->th_sum); return (0); } /* * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. */ static int tcp_header_init_ipv6(tcp_t *tcp) { tcph_t *tcph; uint32_t sum; /* * This is a simple initialization. If there's * already a template, it should never be too small, * so reuse it. Otherwise, allocate space for the new one. * Ensure that there is enough space to "downgrade" the tcp_t * to an IPv4 tcp_t. This requires having space for a full load * of IPv4 options, as well as a full load of TCP options * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space * than a v6 header and a TCP header with a full load of TCP options * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). * We want to avoid reallocation in the "downgraded" case when * processing outbound IPv4 options. */ if (tcp->tcp_iphc == NULL) { ASSERT(tcp->tcp_iphc_len == 0); tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); if (tcp->tcp_iphc == NULL) { tcp->tcp_iphc_len = 0; return (ENOMEM); } } ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); tcp->tcp_ipversion = IPV6_VERSION; tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); tcp->tcp_tcp_hdr_len = sizeof (tcph_t); tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; tcp->tcp_ipha = NULL; /* Initialize the header template */ tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); tcp->tcp_tcph = tcph; tcph->th_offset_and_rsrvd[0] = (5 << 4); /* * IP wants our header length in the checksum field to * allow it to perform a single psuedo-header+checksum * calculation on behalf of TCP. * Include the adjustment for a source route when IPV6_RTHDR is set. */ sum = sizeof (tcph_t) + tcp->tcp_sum; sum = (sum >> 16) + (sum & 0xFFFF); U16_TO_ABE16(sum, tcph->th_sum); return (0); } /* At minimum we need 4 bytes in the TCP header for the lookup */ #define ICMP_MIN_TCP_HDR 12 /* * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages * passed up by IP. The message is always received on the correct tcp_t. * Assumes that IP has pulled up everything up to and including the ICMP header. */ void tcp_icmp_error(tcp_t *tcp, mblk_t *mp) { icmph_t *icmph; ipha_t *ipha; int iph_hdr_length; tcph_t *tcph; boolean_t ipsec_mctl = B_FALSE; boolean_t secure; mblk_t *first_mp = mp; uint32_t new_mss; uint32_t ratio; size_t mp_size = MBLKL(mp); uint32_t seg_ack; uint32_t seg_seq; /* Assume IP provides aligned packets - otherwise toss */ if (!OK_32PTR(mp->b_rptr)) { freemsg(mp); return; } /* * Since ICMP errors are normal data marked with M_CTL when sent * to TCP or UDP, we have to look for a IPSEC_IN value to identify * packets starting with an ipsec_info_t, see ipsec_info.h. */ if ((mp_size == sizeof (ipsec_info_t)) && (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { ASSERT(mp->b_cont != NULL); mp = mp->b_cont; /* IP should have done this */ ASSERT(OK_32PTR(mp->b_rptr)); mp_size = MBLKL(mp); ipsec_mctl = B_TRUE; } /* * Verify that we have a complete outer IP header. If not, drop it. */ if (mp_size < sizeof (ipha_t)) { noticmpv4: freemsg(first_mp); return; } ipha = (ipha_t *)mp->b_rptr; /* * Verify IP version. Anything other than IPv4 or IPv6 packet is sent * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. */ switch (IPH_HDR_VERSION(ipha)) { case IPV6_VERSION: tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); return; case IPV4_VERSION: break; default: goto noticmpv4; } /* Skip past the outer IP and ICMP headers */ iph_hdr_length = IPH_HDR_LENGTH(ipha); icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; /* * If we don't have the correct outer IP header length or if the ULP * is not IPPROTO_ICMP or if we don't have a complete inner IP header * send it upstream. */ if (iph_hdr_length < sizeof (ipha_t) || ipha->ipha_protocol != IPPROTO_ICMP || (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { goto noticmpv4; } ipha = (ipha_t *)&icmph[1]; /* Skip past the inner IP and find the ULP header */ iph_hdr_length = IPH_HDR_LENGTH(ipha); tcph = (tcph_t *)((char *)ipha + iph_hdr_length); /* * If we don't have the correct inner IP header length or if the ULP * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR * bytes of TCP header, drop it. */ if (iph_hdr_length < sizeof (ipha_t) || ipha->ipha_protocol != IPPROTO_TCP || (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { goto noticmpv4; } if (TCP_IS_DETACHED_NONEAGER(tcp)) { if (ipsec_mctl) { secure = ipsec_in_is_secure(first_mp); } else { secure = B_FALSE; } if (secure) { /* * If we are willing to accept this in clear * we don't have to verify policy. */ if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { if (!tcp_check_policy(tcp, first_mp, ipha, NULL, secure, ipsec_mctl)) { /* * tcp_check_policy called * ip_drop_packet() on failure. */ return; } } } } else if (ipsec_mctl) { /* * This is a hard_bound connection. IP has already * verified policy. We don't have to do it again. */ freeb(first_mp); first_mp = mp; ipsec_mctl = B_FALSE; } seg_ack = ABE32_TO_U32(tcph->th_ack); seg_seq = ABE32_TO_U32(tcph->th_seq); /* * TCP SHOULD check that the TCP sequence number contained in * payload of the ICMP error message is within the range * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT */ if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || SEQ_GT(seg_ack, tcp->tcp_rnxt)) { /* * If the ICMP message is bogus, should we kill the * connection, or should we just drop the bogus ICMP * message? It would probably make more sense to just * drop the message so that if this one managed to get * in, the real connection should not suffer. */ goto noticmpv4; } switch (icmph->icmph_type) { case ICMP_DEST_UNREACHABLE: switch (icmph->icmph_code) { case ICMP_FRAGMENTATION_NEEDED: /* * Reduce the MSS based on the new MTU. This will * eliminate any fragmentation locally. * N.B. There may well be some funny side-effects on * the local send policy and the remote receive policy. * Pending further research, we provide * tcp_ignore_path_mtu just in case this proves * disastrous somewhere. * * After updating the MSS, retransmit part of the * dropped segment using the new mss by calling * tcp_wput_data(). Need to adjust all those * params to make sure tcp_wput_data() work properly. */ if (tcp_ignore_path_mtu) break; /* * Decrease the MSS by time stamp options * IP options and IPSEC options. tcp_hdr_len * includes time stamp option and IP option * length. */ new_mss = ntohs(icmph->icmph_du_mtu) - tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; /* * Only update the MSS if the new one is * smaller than the previous one. This is * to avoid problems when getting multiple * ICMP errors for the same MTU. */ if (new_mss >= tcp->tcp_mss) break; /* * Stop doing PMTU if new_mss is less than 68 * or less than tcp_mss_min. * The value 68 comes from rfc 1191. */ if (new_mss < MAX(68, tcp_mss_min)) tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; ratio = tcp->tcp_cwnd / tcp->tcp_mss; ASSERT(ratio >= 1); tcp_mss_set(tcp, new_mss); /* * Make sure we have something to * send. */ if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && (tcp->tcp_xmit_head != NULL)) { /* * Shrink tcp_cwnd in * proportion to the old MSS/new MSS. */ tcp->tcp_cwnd = ratio * tcp->tcp_mss; if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) { tcp->tcp_rexmit_max = tcp->tcp_fss; } else { tcp->tcp_rexmit_max = tcp->tcp_snxt; } tcp->tcp_rexmit_nxt = tcp->tcp_suna; tcp->tcp_rexmit = B_TRUE; tcp->tcp_dupack_cnt = 0; tcp->tcp_snd_burst = TCP_CWND_SS; tcp_ss_rexmit(tcp); } break; case ICMP_PORT_UNREACHABLE: case ICMP_PROTOCOL_UNREACHABLE: switch (tcp->tcp_state) { case TCPS_SYN_SENT: case TCPS_SYN_RCVD: /* * ICMP can snipe away incipient * TCP connections as long as * seq number is same as initial * send seq number. */ if (seg_seq == tcp->tcp_iss) { (void) tcp_clean_death(tcp, ECONNREFUSED, 6); } break; } break; case ICMP_HOST_UNREACHABLE: case ICMP_NET_UNREACHABLE: /* Record the error in case we finally time out. */ if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) tcp->tcp_client_errno = EHOSTUNREACH; else tcp->tcp_client_errno = ENETUNREACH; if (tcp->tcp_state == TCPS_SYN_RCVD) { if (tcp->tcp_listener != NULL && tcp->tcp_listener->tcp_syn_defense) { /* * Ditch the half-open connection if we * suspect a SYN attack is under way. */ tcp_ip_ire_mark_advice(tcp); (void) tcp_clean_death(tcp, tcp->tcp_client_errno, 7); } } break; default: break; } break; case ICMP_SOURCE_QUENCH: { /* * use a global boolean to control * whether TCP should respond to ICMP_SOURCE_QUENCH. * The default is false. */ if (tcp_icmp_source_quench) { /* * Reduce the sending rate as if we got a * retransmit timeout */ uint32_t npkt; npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / tcp->tcp_mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; tcp->tcp_cwnd = tcp->tcp_mss; tcp->tcp_cwnd_cnt = 0; } break; } } freemsg(first_mp); } /* * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 * error messages passed up by IP. * Assumes that IP has pulled up all the extension headers as well * as the ICMPv6 header. */ static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) { icmp6_t *icmp6; ip6_t *ip6h; uint16_t iph_hdr_length; tcpha_t *tcpha; uint8_t *nexthdrp; uint32_t new_mss; uint32_t ratio; boolean_t secure; mblk_t *first_mp = mp; size_t mp_size; uint32_t seg_ack; uint32_t seg_seq; /* * The caller has determined if this is an IPSEC_IN packet and * set ipsec_mctl appropriately (see tcp_icmp_error). */ if (ipsec_mctl) mp = mp->b_cont; mp_size = MBLKL(mp); /* * Verify that we have a complete IP header. If not, send it upstream. */ if (mp_size < sizeof (ip6_t)) { noticmpv6: freemsg(first_mp); return; } /* * Verify this is an ICMPV6 packet, else send it upstream. */ ip6h = (ip6_t *)mp->b_rptr; if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { iph_hdr_length = IPV6_HDR_LEN; } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp) || *nexthdrp != IPPROTO_ICMPV6) { goto noticmpv6; } icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; ip6h = (ip6_t *)&icmp6[1]; /* * Verify if we have a complete ICMP and inner IP header. */ if ((uchar_t *)&ip6h[1] > mp->b_wptr) goto noticmpv6; if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) goto noticmpv6; tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); /* * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the * packet. */ if ((*nexthdrp != IPPROTO_TCP) || ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { goto noticmpv6; } /* * ICMP errors come on the right queue or come on * listener/global queue for detached connections and * get switched to the right queue. If it comes on the * right queue, policy check has already been done by IP * and thus free the first_mp without verifying the policy. * If it has come for a non-hard bound connection, we need * to verify policy as IP may not have done it. */ if (!tcp->tcp_hard_bound) { if (ipsec_mctl) { secure = ipsec_in_is_secure(first_mp); } else { secure = B_FALSE; } if (secure) { /* * If we are willing to accept this in clear * we don't have to verify policy. */ if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { if (!tcp_check_policy(tcp, first_mp, NULL, ip6h, secure, ipsec_mctl)) { /* * tcp_check_policy called * ip_drop_packet() on failure. */ return; } } } } else if (ipsec_mctl) { /* * This is a hard_bound connection. IP has already * verified policy. We don't have to do it again. */ freeb(first_mp); first_mp = mp; ipsec_mctl = B_FALSE; } seg_ack = ntohl(tcpha->tha_ack); seg_seq = ntohl(tcpha->tha_seq); /* * TCP SHOULD check that the TCP sequence number contained in * payload of the ICMP error message is within the range * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT */ if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || SEQ_GT(seg_ack, tcp->tcp_rnxt)) { /* * If the ICMP message is bogus, should we kill the * connection, or should we just drop the bogus ICMP * message? It would probably make more sense to just * drop the message so that if this one managed to get * in, the real connection should not suffer. */ goto noticmpv6; } switch (icmp6->icmp6_type) { case ICMP6_PACKET_TOO_BIG: /* * Reduce the MSS based on the new MTU. This will * eliminate any fragmentation locally. * N.B. There may well be some funny side-effects on * the local send policy and the remote receive policy. * Pending further research, we provide * tcp_ignore_path_mtu just in case this proves * disastrous somewhere. * * After updating the MSS, retransmit part of the * dropped segment using the new mss by calling * tcp_wput_data(). Need to adjust all those * params to make sure tcp_wput_data() work properly. */ if (tcp_ignore_path_mtu) break; /* * Decrease the MSS by time stamp options * IP options and IPSEC options. tcp_hdr_len * includes time stamp option and IP option * length. */ new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; /* * Only update the MSS if the new one is * smaller than the previous one. This is * to avoid problems when getting multiple * ICMP errors for the same MTU. */ if (new_mss >= tcp->tcp_mss) break; ratio = tcp->tcp_cwnd / tcp->tcp_mss; ASSERT(ratio >= 1); tcp_mss_set(tcp, new_mss); /* * Make sure we have something to * send. */ if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && (tcp->tcp_xmit_head != NULL)) { /* * Shrink tcp_cwnd in * proportion to the old MSS/new MSS. */ tcp->tcp_cwnd = ratio * tcp->tcp_mss; if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) { tcp->tcp_rexmit_max = tcp->tcp_fss; } else { tcp->tcp_rexmit_max = tcp->tcp_snxt; } tcp->tcp_rexmit_nxt = tcp->tcp_suna; tcp->tcp_rexmit = B_TRUE; tcp->tcp_dupack_cnt = 0; tcp->tcp_snd_burst = TCP_CWND_SS; tcp_ss_rexmit(tcp); } break; case ICMP6_DST_UNREACH: switch (icmp6->icmp6_code) { case ICMP6_DST_UNREACH_NOPORT: if (((tcp->tcp_state == TCPS_SYN_SENT) || (tcp->tcp_state == TCPS_SYN_RCVD)) && (seg_seq == tcp->tcp_iss)) { (void) tcp_clean_death(tcp, ECONNREFUSED, 8); } break; case ICMP6_DST_UNREACH_ADMIN: case ICMP6_DST_UNREACH_NOROUTE: case ICMP6_DST_UNREACH_BEYONDSCOPE: case ICMP6_DST_UNREACH_ADDR: /* Record the error in case we finally time out. */ tcp->tcp_client_errno = EHOSTUNREACH; if (((tcp->tcp_state == TCPS_SYN_SENT) || (tcp->tcp_state == TCPS_SYN_RCVD)) && (seg_seq == tcp->tcp_iss)) { if (tcp->tcp_listener != NULL && tcp->tcp_listener->tcp_syn_defense) { /* * Ditch the half-open connection if we * suspect a SYN attack is under way. */ tcp_ip_ire_mark_advice(tcp); (void) tcp_clean_death(tcp, tcp->tcp_client_errno, 9); } } break; default: break; } break; case ICMP6_PARAM_PROB: /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && (uchar_t *)ip6h + icmp6->icmp6_pptr == (uchar_t *)nexthdrp) { if (tcp->tcp_state == TCPS_SYN_SENT || tcp->tcp_state == TCPS_SYN_RCVD) { (void) tcp_clean_death(tcp, ECONNREFUSED, 10); } break; } break; case ICMP6_TIME_EXCEEDED: default: break; } freemsg(first_mp); } /* * IP recognizes seven kinds of bind requests: * * - A zero-length address binds only to the protocol number. * * - A 4-byte address is treated as a request to * validate that the address is a valid local IPv4 * address, appropriate for an application to bind to. * IP does the verification, but does not make any note * of the address at this time. * * - A 16-byte address contains is treated as a request * to validate a local IPv6 address, as the 4-byte * address case above. * * - A 16-byte sockaddr_in to validate the local IPv4 address and also * use it for the inbound fanout of packets. * * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also * use it for the inbound fanout of packets. * * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout * information consisting of local and remote addresses * and ports. In this case, the addresses are both * validated as appropriate for this operation, and, if * so, the information is retained for use in the * inbound fanout. * * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 * fanout information, like the 12-byte case above. * * IP will also fill in the IRE request mblk with information * regarding our peer. In all cases, we notify IP of our protocol * type by appending a single protocol byte to the bind request. */ static mblk_t * tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) { char *cp; mblk_t *mp; struct T_bind_req *tbr; ipa_conn_t *ac; ipa6_conn_t *ac6; sin_t *sin; sin6_t *sin6; ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); ASSERT((tcp->tcp_family == AF_INET && tcp->tcp_ipversion == IPV4_VERSION) || (tcp->tcp_family == AF_INET6 && (tcp->tcp_ipversion == IPV4_VERSION || tcp->tcp_ipversion == IPV6_VERSION))); mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); if (!mp) return (mp); mp->b_datap->db_type = M_PROTO; tbr = (struct T_bind_req *)mp->b_rptr; tbr->PRIM_type = bind_prim; tbr->ADDR_offset = sizeof (*tbr); tbr->CONIND_number = 0; tbr->ADDR_length = addr_length; cp = (char *)&tbr[1]; switch (addr_length) { case sizeof (ipa_conn_t): ASSERT(tcp->tcp_family == AF_INET); ASSERT(tcp->tcp_ipversion == IPV4_VERSION); mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (mp->b_cont == NULL) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; /* cp known to be 32 bit aligned */ ac = (ipa_conn_t *)cp; ac->ac_laddr = tcp->tcp_ipha->ipha_src; ac->ac_faddr = tcp->tcp_remote; ac->ac_fport = tcp->tcp_fport; ac->ac_lport = tcp->tcp_lport; tcp->tcp_hard_binding = 1; break; case sizeof (ipa6_conn_t): ASSERT(tcp->tcp_family == AF_INET6); mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); if (mp->b_cont == NULL) { freemsg(mp); return (NULL); } mp->b_cont->b_wptr += sizeof (ire_t); mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; /* cp known to be 32 bit aligned */ ac6 = (ipa6_conn_t *)cp; if (tcp->tcp_ipversion == IPV4_VERSION) { IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &ac6->ac6_laddr); } else { ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; } ac6->ac6_faddr = tcp->tcp_remote_v6; ac6->ac6_fport = tcp->tcp_fport; ac6->ac6_lport = tcp->tcp_lport; tcp->tcp_hard_binding = 1; break; case sizeof (sin_t): /* * NOTE: IPV6_ADDR_LEN also has same size. * Use family to discriminate. */ if (tcp->tcp_family == AF_INET) { sin = (sin_t *)cp; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = tcp->tcp_bound_source; sin->sin_port = tcp->tcp_lport; break; } else { *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; } break; case sizeof (sin6_t): ASSERT(tcp->tcp_family == AF_INET6); sin6 = (sin6_t *)cp; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = tcp->tcp_bound_source_v6; sin6->sin6_port = tcp->tcp_lport; break; case IP_ADDR_LEN: ASSERT(tcp->tcp_ipversion == IPV4_VERSION); *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; break; } /* Add protocol number to end */ cp[addr_length] = (char)IPPROTO_TCP; mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; return (mp); } /* * Notify IP that we are having trouble with this connection. IP should * blow the IRE away and start over. */ static void tcp_ip_notify(tcp_t *tcp) { struct iocblk *iocp; ipid_t *ipid; mblk_t *mp; /* IPv6 has NUD thus notification to delete the IRE is not needed */ if (tcp->tcp_ipversion == IPV6_VERSION) return; mp = mkiocb(IP_IOCTL); if (mp == NULL) return; iocp = (struct iocblk *)mp->b_rptr; iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); if (!mp->b_cont) { freeb(mp); return; } ipid = (ipid_t *)mp->b_cont->b_rptr; mp->b_cont->b_wptr += iocp->ioc_count; bzero(ipid, sizeof (*ipid)); ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; ipid->ipid_ire_type = IRE_CACHE; ipid->ipid_addr_offset = sizeof (ipid_t); ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); /* * Note: in the case of source routing we want to blow away the * route to the first source route hop. */ bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], sizeof (tcp->tcp_ipha->ipha_dst)); CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); } /* Unlink and return any mblk that looks like it contains an ire */ static mblk_t * tcp_ire_mp(mblk_t *mp) { mblk_t *prev_mp; for (;;) { prev_mp = mp; mp = mp->b_cont; if (mp == NULL) break; switch (DB_TYPE(mp)) { case IRE_DB_TYPE: case IRE_DB_REQ_TYPE: if (prev_mp != NULL) prev_mp->b_cont = mp->b_cont; mp->b_cont = NULL; return (mp); default: break; } } return (mp); } /* * Timer callback routine for keepalive probe. We do a fake resend of * last ACKed byte. Then set a timer using RTO. When the timer expires, * check to see if we have heard anything from the other end for the last * RTO period. If we have, set the timer to expire for another * tcp_keepalive_intrvl and check again. If we have not, set a timer using * RTO << 1 and check again when it expires. Keep exponentially increasing * the timeout if we have not heard from the other side. If for more than * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, * kill the connection unless the keepalive abort threshold is 0. In * that case, we will probe "forever." */ static void tcp_keepalive_killer(void *arg) { mblk_t *mp; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; int32_t firetime; int32_t idletime; int32_t ka_intrvl; tcp->tcp_ka_tid = 0; if (tcp->tcp_fused) return; BUMP_MIB(&tcp_mib, tcpTimKeepalive); ka_intrvl = tcp->tcp_ka_interval; /* * Keepalive probe should only be sent if the application has not * done a close on the connection. */ if (tcp->tcp_state > TCPS_CLOSE_WAIT) { return; } /* Timer fired too early, restart it. */ if (tcp->tcp_state < TCPS_ESTABLISHED) { tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(ka_intrvl)); return; } idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); /* * If we have not heard from the other side for a long * time, kill the connection unless the keepalive abort * threshold is 0. In that case, we will probe "forever." */ if (tcp->tcp_ka_abort_thres != 0 && idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? tcp->tcp_client_errno : ETIMEDOUT, 11); return; } if (tcp->tcp_snxt == tcp->tcp_suna && idletime >= ka_intrvl) { /* Fake resend of last ACKed byte. */ mblk_t *mp1 = allocb(1, BPRI_LO); if (mp1 != NULL) { *mp1->b_wptr++ = '\0'; mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); freeb(mp1); /* * if allocation failed, fall through to start the * timer back. */ if (mp != NULL) { TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, mp); BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); if (tcp->tcp_ka_last_intrvl != 0) { /* * We should probe again at least * in ka_intrvl, but not more than * tcp_rexmit_interval_max. */ firetime = MIN(ka_intrvl - 1, tcp->tcp_ka_last_intrvl << 1); if (firetime > tcp_rexmit_interval_max) firetime = tcp_rexmit_interval_max; } else { firetime = tcp->tcp_rto; } tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(firetime)); tcp->tcp_ka_last_intrvl = firetime; return; } } } else { tcp->tcp_ka_last_intrvl = 0; } /* firetime can be negative if (mp1 == NULL || mp == NULL) */ if ((firetime = ka_intrvl - idletime) < 0) { firetime = ka_intrvl; } tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(firetime)); } int tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) { queue_t *q = tcp->tcp_rq; int32_t mss = tcp->tcp_mss; int maxpsz; if (TCP_IS_DETACHED(tcp)) return (mss); if (tcp->tcp_fused) { maxpsz = tcp_fuse_maxpsz_set(tcp); mss = INFPSZ; } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { /* * Set the sd_qn_maxpsz according to the socket send buffer * size, and sd_maxblk to INFPSZ (-1). This will essentially * instruct the stream head to copyin user data into contiguous * kernel-allocated buffers without breaking it up into smaller * chunks. We round up the buffer size to the nearest SMSS. */ maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); if (tcp->tcp_kssl_ctx == NULL) mss = INFPSZ; else mss = SSL3_MAX_RECORD_LEN; } else { /* * Set sd_qn_maxpsz to approx half the (receivers) buffer * (and a multiple of the mss). This instructs the stream * head to break down larger than SMSS writes into SMSS- * size mblks, up to tcp_maxpsz_multiplier mblks at a time. */ maxpsz = tcp->tcp_maxpsz * mss; if (maxpsz > tcp->tcp_xmit_hiwater/2) { maxpsz = tcp->tcp_xmit_hiwater/2; /* Round up to nearest mss */ maxpsz = MSS_ROUNDUP(maxpsz, mss); } } (void) setmaxps(q, maxpsz); tcp->tcp_wq->q_maxpsz = maxpsz; if (set_maxblk) (void) mi_set_sth_maxblk(q, mss); return (mss); } /* * Extract option values from a tcp header. We put any found values into the * tcpopt struct and return a bitmask saying which options were found. */ static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) { uchar_t *endp; int len; uint32_t mss; uchar_t *up = (uchar_t *)tcph; int found = 0; int32_t sack_len; tcp_seq sack_begin, sack_end; tcp_t *tcp; endp = up + TCP_HDR_LENGTH(tcph); up += TCP_MIN_HEADER_LENGTH; while (up < endp) { len = endp - up; switch (*up) { case TCPOPT_EOL: break; case TCPOPT_NOP: up++; continue; case TCPOPT_MAXSEG: if (len < TCPOPT_MAXSEG_LEN || up[1] != TCPOPT_MAXSEG_LEN) break; mss = BE16_TO_U16(up+2); /* Caller must handle tcp_mss_min and tcp_mss_max_* */ tcpopt->tcp_opt_mss = mss; found |= TCP_OPT_MSS_PRESENT; up += TCPOPT_MAXSEG_LEN; continue; case TCPOPT_WSCALE: if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) break; if (up[2] > TCP_MAX_WINSHIFT) tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; else tcpopt->tcp_opt_wscale = up[2]; found |= TCP_OPT_WSCALE_PRESENT; up += TCPOPT_WS_LEN; continue; case TCPOPT_SACK_PERMITTED: if (len < TCPOPT_SACK_OK_LEN || up[1] != TCPOPT_SACK_OK_LEN) break; found |= TCP_OPT_SACK_OK_PRESENT; up += TCPOPT_SACK_OK_LEN; continue; case TCPOPT_SACK: if (len <= 2 || up[1] <= 2 || len < up[1]) break; /* If TCP is not interested in SACK blks... */ if ((tcp = tcpopt->tcp) == NULL) { up += up[1]; continue; } sack_len = up[1] - TCPOPT_HEADER_LEN; up += TCPOPT_HEADER_LEN; /* * If the list is empty, allocate one and assume * nothing is sack'ed. */ ASSERT(tcp->tcp_sack_info != NULL); if (tcp->tcp_notsack_list == NULL) { tcp_notsack_update(&(tcp->tcp_notsack_list), tcp->tcp_suna, tcp->tcp_snxt, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); /* * Make sure tcp_notsack_list is not NULL. * This happens when kmem_alloc(KM_NOSLEEP) * returns NULL. */ if (tcp->tcp_notsack_list == NULL) { up += sack_len; continue; } tcp->tcp_fack = tcp->tcp_suna; } while (sack_len > 0) { if (up + 8 > endp) { up = endp; break; } sack_begin = BE32_TO_U32(up); up += 4; sack_end = BE32_TO_U32(up); up += 4; sack_len -= 8; /* * Bounds checking. Make sure the SACK * info is within tcp_suna and tcp_snxt. * If this SACK blk is out of bound, ignore * it but continue to parse the following * blks. */ if (SEQ_LEQ(sack_end, sack_begin) || SEQ_LT(sack_begin, tcp->tcp_suna) || SEQ_GT(sack_end, tcp->tcp_snxt)) { continue; } tcp_notsack_insert(&(tcp->tcp_notsack_list), sack_begin, sack_end, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); if (SEQ_GT(sack_end, tcp->tcp_fack)) { tcp->tcp_fack = sack_end; } } found |= TCP_OPT_SACK_PRESENT; continue; case TCPOPT_TSTAMP: if (len < TCPOPT_TSTAMP_LEN || up[1] != TCPOPT_TSTAMP_LEN) break; tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); found |= TCP_OPT_TSTAMP_PRESENT; up += TCPOPT_TSTAMP_LEN; continue; default: if (len <= 1 || len < (int)up[1] || up[1] == 0) break; up += up[1]; continue; } break; } return (found); } /* * Set the mss associated with a particular tcp based on its current value, * and a new one passed in. Observe minimums and maximums, and reset * other state variables that we want to view as multiples of mss. * * This function is called in various places mainly because * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the * other side's SYN/SYN-ACK packet arrives. * 2) PMTUd may get us a new MSS. * 3) If the other side stops sending us timestamp option, we need to * increase the MSS size to use the extra bytes available. */ static void tcp_mss_set(tcp_t *tcp, uint32_t mss) { uint32_t mss_max; if (tcp->tcp_ipversion == IPV4_VERSION) mss_max = tcp_mss_max_ipv4; else mss_max = tcp_mss_max_ipv6; if (mss < tcp_mss_min) mss = tcp_mss_min; if (mss > mss_max) mss = mss_max; /* * Unless naglim has been set by our client to * a non-mss value, force naglim to track mss. * This can help to aggregate small writes. */ if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) tcp->tcp_naglim = mss; /* * TCP should be able to buffer at least 4 MSS data for obvious * performance reason. */ if ((mss << 2) > tcp->tcp_xmit_hiwater) tcp->tcp_xmit_hiwater = mss << 2; /* * Check if we need to apply the tcp_init_cwnd here. If * it is set and the MSS gets bigger (should not happen * normally), we need to adjust the resulting tcp_cwnd properly. * The new tcp_cwnd should not get bigger. */ if (tcp->tcp_init_cwnd == 0) { tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); } else { if (tcp->tcp_mss < mss) { tcp->tcp_cwnd = MAX(1, (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; } else { tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; } } tcp->tcp_mss = mss; tcp->tcp_cwnd_cnt = 0; (void) tcp_maxpsz_set(tcp, B_TRUE); } static int tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { tcp_t *tcp = NULL; conn_t *connp; int err; dev_t conn_dev; zoneid_t zoneid = getzoneid(); /* * Special case for install: miniroot needs to be able to access files * via NFS as though it were always in the global zone. */ if (credp == kcred && nfs_global_client_only != 0) zoneid = GLOBAL_ZONEID; if (q->q_ptr != NULL) return (0); if (sflag == MODOPEN) { /* * This is a special case. The purpose of a modopen * is to allow just the T_SVR4_OPTMGMT_REQ to pass * through for MIB browsers. Everything else is failed. */ connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); if (connp == NULL) return (ENOMEM); connp->conn_flags |= IPCL_TCPMOD; connp->conn_cred = credp; connp->conn_zoneid = zoneid; q->q_ptr = WR(q)->q_ptr = connp; crhold(credp); q->q_qinfo = &tcp_mod_rinit; WR(q)->q_qinfo = &tcp_mod_winit; qprocson(q); return (0); } if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) return (EBUSY); *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); if (flag & SO_ACCEPTOR) { q->q_qinfo = &tcp_acceptor_rinit; q->q_ptr = (void *)conn_dev; WR(q)->q_qinfo = &tcp_acceptor_winit; WR(q)->q_ptr = (void *)conn_dev; qprocson(q); return (0); } connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); if (connp == NULL) { inet_minor_free(ip_minor_arena, conn_dev); q->q_ptr = NULL; return (ENOSR); } connp->conn_sqp = IP_SQUEUE_GET(lbolt); tcp = connp->conn_tcp; q->q_ptr = WR(q)->q_ptr = connp; if (getmajor(*devp) == TCP6_MAJ) { connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); connp->conn_send = ip_output_v6; connp->conn_af_isv6 = B_TRUE; connp->conn_pkt_isv6 = B_TRUE; connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; tcp->tcp_ipversion = IPV6_VERSION; tcp->tcp_family = AF_INET6; tcp->tcp_mss = tcp_mss_def_ipv6; } else { connp->conn_flags |= IPCL_TCP4; connp->conn_send = ip_output; connp->conn_af_isv6 = B_FALSE; connp->conn_pkt_isv6 = B_FALSE; tcp->tcp_ipversion = IPV4_VERSION; tcp->tcp_family = AF_INET; tcp->tcp_mss = tcp_mss_def_ipv4; } /* * TCP keeps a copy of cred for cache locality reasons but * we put a reference only once. If connp->conn_cred * becomes invalid, tcp_cred should also be set to NULL. */ tcp->tcp_cred = connp->conn_cred = credp; crhold(connp->conn_cred); tcp->tcp_cpid = curproc->p_pid; connp->conn_zoneid = zoneid; connp->conn_dev = conn_dev; ASSERT(q->q_qinfo == &tcp_rinit); ASSERT(WR(q)->q_qinfo == &tcp_winit); if (flag & SO_SOCKSTR) { /* * No need to insert a socket in tcp acceptor hash. * If it was a socket acceptor stream, we dealt with * it above. A socket listener can never accept a * connection and doesn't need acceptor_id. */ connp->conn_flags |= IPCL_SOCKET; tcp->tcp_issocket = 1; WR(q)->q_qinfo = &tcp_sock_winit; } else { #ifdef _ILP32 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); #else tcp->tcp_acceptor_id = conn_dev; #endif /* _ILP32 */ tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); } if (tcp_trace) tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); err = tcp_init(tcp, q); if (err != 0) { inet_minor_free(ip_minor_arena, connp->conn_dev); tcp_acceptor_hash_remove(tcp); CONN_DEC_REF(connp); q->q_ptr = WR(q)->q_ptr = NULL; return (err); } RD(q)->q_hiwat = tcp_recv_hiwat; tcp->tcp_rwnd = tcp_recv_hiwat; /* Non-zero default values */ connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; /* * Put the ref for TCP. Ref for IP was already put * by ipcl_conn_create. Also Make the conn_t globally * visible to walkers */ mutex_enter(&connp->conn_lock); CONN_INC_REF_LOCKED(connp); ASSERT(connp->conn_ref == 2); connp->conn_state_flags &= ~CONN_INCIPIENT; mutex_exit(&connp->conn_lock); qprocson(q); return (0); } /* * Some TCP options can be "set" by requesting them in the option * buffer. This is needed for XTI feature test though we do not * allow it in general. We interpret that this mechanism is more * applicable to OSI protocols and need not be allowed in general. * This routine filters out options for which it is not allowed (most) * and lets through those (few) for which it is. [ The XTI interface * test suite specifics will imply that any XTI_GENERIC level XTI_* if * ever implemented will have to be allowed here ]. */ static boolean_t tcp_allow_connopt_set(int level, int name) { switch (level) { case IPPROTO_TCP: switch (name) { case TCP_NODELAY: return (B_TRUE); default: return (B_FALSE); } /*NOTREACHED*/ default: return (B_FALSE); } /*NOTREACHED*/ } /* * This routine gets default values of certain options whose default * values are maintained by protocol specific code */ /* ARGSUSED */ int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) { int32_t *i1 = (int32_t *)ptr; switch (level) { case IPPROTO_TCP: switch (name) { case TCP_NOTIFY_THRESHOLD: *i1 = tcp_ip_notify_interval; break; case TCP_ABORT_THRESHOLD: *i1 = tcp_ip_abort_interval; break; case TCP_CONN_NOTIFY_THRESHOLD: *i1 = tcp_ip_notify_cinterval; break; case TCP_CONN_ABORT_THRESHOLD: *i1 = tcp_ip_abort_cinterval; break; default: return (-1); } break; case IPPROTO_IP: switch (name) { case IP_TTL: *i1 = tcp_ipv4_ttl; break; default: return (-1); } break; case IPPROTO_IPV6: switch (name) { case IPV6_UNICAST_HOPS: *i1 = tcp_ipv6_hoplimit; break; default: return (-1); } break; default: return (-1); } return (sizeof (int)); } /* * TCP routine to get the values of options. */ int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) { int *i1 = (int *)ptr; conn_t *connp = Q_TO_CONN(q); tcp_t *tcp = connp->conn_tcp; ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; switch (level) { case SOL_SOCKET: switch (name) { case SO_LINGER: { struct linger *lgr = (struct linger *)ptr; lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; lgr->l_linger = tcp->tcp_lingertime; } return (sizeof (struct linger)); case SO_DEBUG: *i1 = tcp->tcp_debug ? SO_DEBUG : 0; break; case SO_KEEPALIVE: *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; break; case SO_DONTROUTE: *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; break; case SO_USELOOPBACK: *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; break; case SO_BROADCAST: *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; break; case SO_REUSEADDR: *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; break; case SO_OOBINLINE: *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; break; case SO_DGRAM_ERRIND: *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; break; case SO_TYPE: *i1 = SOCK_STREAM; break; case SO_SNDBUF: *i1 = tcp->tcp_xmit_hiwater; break; case SO_RCVBUF: *i1 = RD(q)->q_hiwat; break; case SO_SND_COPYAVOID: *i1 = tcp->tcp_snd_zcopy_on ? SO_SND_COPYAVOID : 0; break; default: return (-1); } break; case IPPROTO_TCP: switch (name) { case TCP_NODELAY: *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; break; case TCP_MAXSEG: *i1 = tcp->tcp_mss; break; case TCP_NOTIFY_THRESHOLD: *i1 = (int)tcp->tcp_first_timer_threshold; break; case TCP_ABORT_THRESHOLD: *i1 = tcp->tcp_second_timer_threshold; break; case TCP_CONN_NOTIFY_THRESHOLD: *i1 = tcp->tcp_first_ctimer_threshold; break; case TCP_CONN_ABORT_THRESHOLD: *i1 = tcp->tcp_second_ctimer_threshold; break; case TCP_RECVDSTADDR: *i1 = tcp->tcp_recvdstaddr; break; case TCP_ANONPRIVBIND: *i1 = tcp->tcp_anon_priv_bind; break; case TCP_EXCLBIND: *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; break; case TCP_INIT_CWND: *i1 = tcp->tcp_init_cwnd; break; case TCP_KEEPALIVE_THRESHOLD: *i1 = tcp->tcp_ka_interval; break; case TCP_KEEPALIVE_ABORT_THRESHOLD: *i1 = tcp->tcp_ka_abort_thres; break; case TCP_CORK: *i1 = tcp->tcp_cork; break; default: return (-1); } break; case IPPROTO_IP: if (tcp->tcp_family != AF_INET) return (-1); switch (name) { case IP_OPTIONS: case T_IP_OPTIONS: { /* * This is compatible with BSD in that in only return * the reverse source route with the final destination * as the last entry. The first 4 bytes of the option * will contain the final destination. */ char *opt_ptr; int opt_len; opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; opt_len = (char *)tcp->tcp_tcph - opt_ptr; /* Caller ensures enough space */ if (opt_len > 0) { /* * TODO: Do we have to handle getsockopt on an * initiator as well? */ return (tcp_opt_get_user(tcp->tcp_ipha, ptr)); } return (0); } case IP_TOS: case T_IP_TOS: *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; break; case IP_TTL: *i1 = (int)tcp->tcp_ipha->ipha_ttl; break; case IP_NEXTHOP: /* Handled at IP level */ return (-EINVAL); default: return (-1); } break; case IPPROTO_IPV6: /* * IPPROTO_IPV6 options are only supported for sockets * that are using IPv6 on the wire. */ if (tcp->tcp_ipversion != IPV6_VERSION) { return (-1); } switch (name) { case IPV6_UNICAST_HOPS: *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; break; /* goto sizeof (int) option return */ case IPV6_BOUND_IF: /* Zero if not set */ *i1 = tcp->tcp_bound_if; break; /* goto sizeof (int) option return */ case IPV6_RECVPKTINFO: if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) *i1 = 1; else *i1 = 0; break; /* goto sizeof (int) option return */ case IPV6_RECVTCLASS: if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) *i1 = 1; else *i1 = 0; break; /* goto sizeof (int) option return */ case IPV6_RECVHOPLIMIT: if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT) *i1 = 1; else *i1 = 0; break; /* goto sizeof (int) option return */ case IPV6_RECVHOPOPTS: if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) *i1 = 1; else *i1 = 0; break; /* goto sizeof (int) option return */ case IPV6_RECVDSTOPTS: if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) *i1 = 1; else *i1 = 0; break; /* goto sizeof (int) option return */ case _OLD_IPV6_RECVDSTOPTS: if (tcp->tcp_ipv6_recvancillary & TCP_OLD_IPV6_RECVDSTOPTS) *i1 = 1; else *i1 = 0; break; /* goto sizeof (int) option return */ case IPV6_RECVRTHDR: if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) *i1 = 1; else *i1 = 0; break; /* goto sizeof (int) option return */ case IPV6_RECVRTHDRDSTOPTS: if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) *i1 = 1; else *i1 = 0; break; /* goto sizeof (int) option return */ case IPV6_PKTINFO: { /* XXX assumes that caller has room for max size! */ struct in6_pktinfo *pkti; pkti = (struct in6_pktinfo *)ptr; if (ipp->ipp_fields & IPPF_IFINDEX) pkti->ipi6_ifindex = ipp->ipp_ifindex; else pkti->ipi6_ifindex = 0; if (ipp->ipp_fields & IPPF_ADDR) pkti->ipi6_addr = ipp->ipp_addr; else pkti->ipi6_addr = ipv6_all_zeros; return (sizeof (struct in6_pktinfo)); } case IPV6_TCLASS: if (ipp->ipp_fields & IPPF_TCLASS) *i1 = ipp->ipp_tclass; else *i1 = IPV6_FLOW_TCLASS( IPV6_DEFAULT_VERS_AND_FLOW); break; /* goto sizeof (int) option return */ case IPV6_NEXTHOP: { sin6_t *sin6 = (sin6_t *)ptr; if (!(ipp->ipp_fields & IPPF_NEXTHOP)) return (0); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipp->ipp_nexthop; return (sizeof (sin6_t)); } case IPV6_HOPOPTS: if (!(ipp->ipp_fields & IPPF_HOPOPTS)) return (0); bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); return (ipp->ipp_hopoptslen); case IPV6_RTHDRDSTOPTS: if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) return (0); bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); return (ipp->ipp_rtdstoptslen); case IPV6_RTHDR: if (!(ipp->ipp_fields & IPPF_RTHDR)) return (0); bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); return (ipp->ipp_rthdrlen); case IPV6_DSTOPTS: if (!(ipp->ipp_fields & IPPF_DSTOPTS)) return (0); bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); return (ipp->ipp_dstoptslen); case IPV6_SRC_PREFERENCES: return (ip6_get_src_preferences(connp, (uint32_t *)ptr)); case IPV6_PATHMTU: { struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; if (tcp->tcp_state < TCPS_ESTABLISHED) return (-1); return (ip_fill_mtuinfo(&connp->conn_remv6, connp->conn_fport, mtuinfo)); } default: return (-1); } break; default: return (-1); } return (sizeof (int)); } /* * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. * Parameters are assumed to be verified by the caller. */ /* ARGSUSED */ int tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) { tcp_t *tcp = Q_TO_TCP(q); int *i1 = (int *)invalp; boolean_t onoff = (*i1 == 0) ? 0 : 1; boolean_t checkonly; int reterr; switch (optset_context) { case SETFN_OPTCOM_CHECKONLY: checkonly = B_TRUE; /* * Note: Implies T_CHECK semantics for T_OPTCOM_REQ * inlen != 0 implies value supplied and * we have to "pretend" to set it. * inlen == 0 implies that there is no * value part in T_CHECK request and just validation * done elsewhere should be enough, we just return here. */ if (inlen == 0) { *outlenp = 0; return (0); } break; case SETFN_OPTCOM_NEGOTIATE: checkonly = B_FALSE; break; case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ case SETFN_CONN_NEGOTIATE: checkonly = B_FALSE; /* * Negotiating local and "association-related" options * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) * primitives is allowed by XTI, but we choose * to not implement this style negotiation for Internet * protocols (We interpret it is a must for OSI world but * optional for Internet protocols) for all options. * [ Will do only for the few options that enable test * suites that our XTI implementation of this feature * works for transports that do allow it ] */ if (!tcp_allow_connopt_set(level, name)) { *outlenp = 0; return (EINVAL); } break; default: /* * We should never get here */ *outlenp = 0; return (EINVAL); } ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); /* * For TCP, we should have no ancillary data sent down * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs * has to be zero. */ ASSERT(thisdg_attrs == NULL); /* * For fixed length options, no sanity check * of passed in length is done. It is assumed *_optcom_req() * routines do the right thing. */ switch (level) { case SOL_SOCKET: switch (name) { case SO_LINGER: { struct linger *lgr = (struct linger *)invalp; if (!checkonly) { if (lgr->l_onoff) { tcp->tcp_linger = 1; tcp->tcp_lingertime = lgr->l_linger; } else { tcp->tcp_linger = 0; tcp->tcp_lingertime = 0; } /* struct copy */ *(struct linger *)outvalp = *lgr; } else { if (!lgr->l_onoff) { ((struct linger *)outvalp)->l_onoff = 0; ((struct linger *)outvalp)->l_linger = 0; } else { /* struct copy */ *(struct linger *)outvalp = *lgr; } } *outlenp = sizeof (struct linger); return (0); } case SO_DEBUG: if (!checkonly) tcp->tcp_debug = onoff; break; case SO_KEEPALIVE: if (checkonly) { /* T_CHECK case */ break; } if (!onoff) { if (tcp->tcp_ka_enabled) { if (tcp->tcp_ka_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); tcp->tcp_ka_tid = 0; } tcp->tcp_ka_enabled = 0; } break; } if (!tcp->tcp_ka_enabled) { /* Crank up the keepalive timer */ tcp->tcp_ka_last_intrvl = 0; tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(tcp->tcp_ka_interval)); tcp->tcp_ka_enabled = 1; } break; case SO_DONTROUTE: /* * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are * only of interest to IP. We track them here only so * that we can report their current value. */ if (!checkonly) { tcp->tcp_dontroute = onoff; tcp->tcp_connp->conn_dontroute = onoff; } break; case SO_USELOOPBACK: if (!checkonly) { tcp->tcp_useloopback = onoff; tcp->tcp_connp->conn_loopback = onoff; } break; case SO_BROADCAST: if (!checkonly) { tcp->tcp_broadcast = onoff; tcp->tcp_connp->conn_broadcast = onoff; } break; case SO_REUSEADDR: if (!checkonly) { tcp->tcp_reuseaddr = onoff; tcp->tcp_connp->conn_reuseaddr = onoff; } break; case SO_OOBINLINE: if (!checkonly) tcp->tcp_oobinline = onoff; break; case SO_DGRAM_ERRIND: if (!checkonly) tcp->tcp_dgram_errind = onoff; break; case SO_SNDBUF: { tcp_t *peer_tcp; if (*i1 > tcp_max_buf) { *outlenp = 0; return (ENOBUFS); } if (checkonly) break; tcp->tcp_xmit_hiwater = *i1; if (tcp_snd_lowat_fraction != 0) tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / tcp_snd_lowat_fraction; (void) tcp_maxpsz_set(tcp, B_TRUE); /* * If we are flow-controlled, recheck the condition. * There are apps that increase SO_SNDBUF size when * flow-controlled (EWOULDBLOCK), and expect the flow * control condition to be lifted right away. * * For the fused tcp loopback case, in order to avoid * a race with the peer's tcp_fuse_rrw() we need to * hold its fuse_lock while accessing tcp_flow_stopped. */ peer_tcp = tcp->tcp_loopback_peer; ASSERT(!tcp->tcp_fused || peer_tcp != NULL); if (tcp->tcp_fused) mutex_enter(&peer_tcp->tcp_fuse_lock); if (tcp->tcp_flow_stopped && TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { tcp_clrqfull(tcp); } if (tcp->tcp_fused) mutex_exit(&peer_tcp->tcp_fuse_lock); break; } case SO_RCVBUF: if (*i1 > tcp_max_buf) { *outlenp = 0; return (ENOBUFS); } /* Silently ignore zero */ if (!checkonly && *i1 != 0) { *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); (void) tcp_rwnd_set(tcp, *i1); } /* * XXX should we return the rwnd here * and tcp_opt_get ? */ break; case SO_SND_COPYAVOID: if (!checkonly) { /* we only allow enable at most once for now */ if (tcp->tcp_loopback || (!tcp->tcp_snd_zcopy_aware && (onoff != 1 || !tcp_zcopy_check(tcp)))) { *outlenp = 0; return (EOPNOTSUPP); } tcp->tcp_snd_zcopy_aware = 1; } break; default: *outlenp = 0; return (EINVAL); } break; case IPPROTO_TCP: switch (name) { case TCP_NODELAY: if (!checkonly) tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; break; case TCP_NOTIFY_THRESHOLD: if (!checkonly) tcp->tcp_first_timer_threshold = *i1; break; case TCP_ABORT_THRESHOLD: if (!checkonly) tcp->tcp_second_timer_threshold = *i1; break; case TCP_CONN_NOTIFY_THRESHOLD: if (!checkonly) tcp->tcp_first_ctimer_threshold = *i1; break; case TCP_CONN_ABORT_THRESHOLD: if (!checkonly) tcp->tcp_second_ctimer_threshold = *i1; break; case TCP_RECVDSTADDR: if (tcp->tcp_state > TCPS_LISTEN) return (EOPNOTSUPP); if (!checkonly) tcp->tcp_recvdstaddr = onoff; break; case TCP_ANONPRIVBIND: if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { *outlenp = 0; return (reterr); } if (!checkonly) { tcp->tcp_anon_priv_bind = onoff; } break; case TCP_EXCLBIND: if (!checkonly) tcp->tcp_exclbind = onoff; break; /* goto sizeof (int) option return */ case TCP_INIT_CWND: { uint32_t init_cwnd = *((uint32_t *)invalp); if (checkonly) break; /* * Only allow socket with network configuration * privilege to set the initial cwnd to be larger * than allowed by RFC 3390. */ if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { tcp->tcp_init_cwnd = init_cwnd; break; } if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { *outlenp = 0; return (reterr); } if (init_cwnd > TCP_MAX_INIT_CWND) { *outlenp = 0; return (EINVAL); } tcp->tcp_init_cwnd = init_cwnd; break; } case TCP_KEEPALIVE_THRESHOLD: if (checkonly) break; if (*i1 < tcp_keepalive_interval_low || *i1 > tcp_keepalive_interval_high) { *outlenp = 0; return (EINVAL); } if (*i1 != tcp->tcp_ka_interval) { tcp->tcp_ka_interval = *i1; /* * Check if we need to restart the * keepalive timer. */ if (tcp->tcp_ka_tid != 0) { ASSERT(tcp->tcp_ka_enabled); (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); tcp->tcp_ka_last_intrvl = 0; tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(tcp->tcp_ka_interval)); } } break; case TCP_KEEPALIVE_ABORT_THRESHOLD: if (!checkonly) { if (*i1 < tcp_keepalive_abort_interval_low || *i1 > tcp_keepalive_abort_interval_high) { *outlenp = 0; return (EINVAL); } tcp->tcp_ka_abort_thres = *i1; } break; case TCP_CORK: if (!checkonly) { /* * if tcp->tcp_cork was set and is now * being unset, we have to make sure that * the remaining data gets sent out. Also * unset tcp->tcp_cork so that tcp_wput_data() * can send data even if it is less than mss */ if (tcp->tcp_cork && onoff == 0 && tcp->tcp_unsent > 0) { tcp->tcp_cork = B_FALSE; tcp_wput_data(tcp, NULL, B_FALSE); } tcp->tcp_cork = onoff; } break; default: *outlenp = 0; return (EINVAL); } break; case IPPROTO_IP: if (tcp->tcp_family != AF_INET) { *outlenp = 0; return (ENOPROTOOPT); } switch (name) { case IP_OPTIONS: case T_IP_OPTIONS: reterr = tcp_opt_set_header(tcp, checkonly, invalp, inlen); if (reterr) { *outlenp = 0; return (reterr); } /* OK return - copy input buffer into output buffer */ if (invalp != outvalp) { /* don't trust bcopy for identical src/dst */ bcopy(invalp, outvalp, inlen); } *outlenp = inlen; return (0); case IP_TOS: case T_IP_TOS: if (!checkonly) { tcp->tcp_ipha->ipha_type_of_service = (uchar_t)*i1; tcp->tcp_tos = (uchar_t)*i1; } break; case IP_TTL: if (!checkonly) { tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; tcp->tcp_ttl = (uchar_t)*i1; } break; case IP_BOUND_IF: case IP_NEXTHOP: /* Handled at the IP level */ return (-EINVAL); case IP_SEC_OPT: /* * We should not allow policy setting after * we start listening for connections. */ if (tcp->tcp_state == TCPS_LISTEN) { return (EINVAL); } else { /* Handled at the IP level */ return (-EINVAL); } default: *outlenp = 0; return (EINVAL); } break; case IPPROTO_IPV6: { ip6_pkt_t *ipp; /* * IPPROTO_IPV6 options are only supported for sockets * that are using IPv6 on the wire. */ if (tcp->tcp_ipversion != IPV6_VERSION) { *outlenp = 0; return (ENOPROTOOPT); } /* * Only sticky options; no ancillary data */ ASSERT(thisdg_attrs == NULL); ipp = &tcp->tcp_sticky_ipp; switch (name) { case IPV6_UNICAST_HOPS: /* -1 means use default */ if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { *outlenp = 0; return (EINVAL); } if (!checkonly) { if (*i1 == -1) { tcp->tcp_ip6h->ip6_hops = ipp->ipp_unicast_hops = (uint8_t)tcp_ipv6_hoplimit; ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; /* Pass modified value to IP. */ *i1 = tcp->tcp_ip6h->ip6_hops; } else { tcp->tcp_ip6h->ip6_hops = ipp->ipp_unicast_hops = (uint8_t)*i1; ipp->ipp_fields |= IPPF_UNICAST_HOPS; } reterr = tcp_build_hdrs(q, tcp); if (reterr != 0) return (reterr); } break; case IPV6_BOUND_IF: if (!checkonly) { int error = 0; tcp->tcp_bound_if = *i1; error = ip_opt_set_ill(tcp->tcp_connp, *i1, B_TRUE, checkonly, level, name, mblk); if (error != 0) { *outlenp = 0; return (error); } } break; /* * Set boolean switches for ancillary data delivery */ case IPV6_RECVPKTINFO: if (!checkonly) { if (onoff) tcp->tcp_ipv6_recvancillary |= TCP_IPV6_RECVPKTINFO; else tcp->tcp_ipv6_recvancillary &= ~TCP_IPV6_RECVPKTINFO; /* Force it to be sent up with the next msg */ tcp->tcp_recvifindex = 0; } break; case IPV6_RECVTCLASS: if (!checkonly) { if (onoff) tcp->tcp_ipv6_recvancillary |= TCP_IPV6_RECVTCLASS; else tcp->tcp_ipv6_recvancillary &= ~TCP_IPV6_RECVTCLASS; } break; case IPV6_RECVHOPLIMIT: if (!checkonly) { if (onoff) tcp->tcp_ipv6_recvancillary |= TCP_IPV6_RECVHOPLIMIT; else tcp->tcp_ipv6_recvancillary &= ~TCP_IPV6_RECVHOPLIMIT; /* Force it to be sent up with the next msg */ tcp->tcp_recvhops = 0xffffffffU; } break; case IPV6_RECVHOPOPTS: if (!checkonly) { if (onoff) tcp->tcp_ipv6_recvancillary |= TCP_IPV6_RECVHOPOPTS; else tcp->tcp_ipv6_recvancillary &= ~TCP_IPV6_RECVHOPOPTS; } break; case IPV6_RECVDSTOPTS: if (!checkonly) { if (onoff) tcp->tcp_ipv6_recvancillary |= TCP_IPV6_RECVDSTOPTS; else tcp->tcp_ipv6_recvancillary &= ~TCP_IPV6_RECVDSTOPTS; } break; case _OLD_IPV6_RECVDSTOPTS: if (!checkonly) { if (onoff) tcp->tcp_ipv6_recvancillary |= TCP_OLD_IPV6_RECVDSTOPTS; else tcp->tcp_ipv6_recvancillary &= ~TCP_OLD_IPV6_RECVDSTOPTS; } break; case IPV6_RECVRTHDR: if (!checkonly) { if (onoff) tcp->tcp_ipv6_recvancillary |= TCP_IPV6_RECVRTHDR; else tcp->tcp_ipv6_recvancillary &= ~TCP_IPV6_RECVRTHDR; } break; case IPV6_RECVRTHDRDSTOPTS: if (!checkonly) { if (onoff) tcp->tcp_ipv6_recvancillary |= TCP_IPV6_RECVRTDSTOPTS; else tcp->tcp_ipv6_recvancillary &= ~TCP_IPV6_RECVRTDSTOPTS; } break; case IPV6_PKTINFO: if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); } else { struct in6_pktinfo *pkti; pkti = (struct in6_pktinfo *)invalp; /* * RFC 3542 states that ipi6_addr must be * the unspecified address when setting the * IPV6_PKTINFO sticky socket option on a * TCP socket. */ if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) return (EINVAL); /* * ip6_set_pktinfo() validates the source * address and interface index. */ reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, pkti, mblk); if (reterr != 0) return (reterr); ipp->ipp_ifindex = pkti->ipi6_ifindex; ipp->ipp_addr = pkti->ipi6_addr; if (ipp->ipp_ifindex != 0) ipp->ipp_fields |= IPPF_IFINDEX; else ipp->ipp_fields &= ~IPPF_IFINDEX; if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) ipp->ipp_fields |= IPPF_ADDR; else ipp->ipp_fields &= ~IPPF_ADDR; } reterr = tcp_build_hdrs(q, tcp); if (reterr != 0) return (reterr); break; case IPV6_TCLASS: if (inlen != 0 && inlen != sizeof (int)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~IPPF_TCLASS; } else { if (*i1 > 255 || *i1 < -1) return (EINVAL); if (*i1 == -1) { ipp->ipp_tclass = 0; *i1 = 0; } else { ipp->ipp_tclass = *i1; } ipp->ipp_fields |= IPPF_TCLASS; } reterr = tcp_build_hdrs(q, tcp); if (reterr != 0) return (reterr); break; case IPV6_NEXTHOP: /* * IP will verify that the nexthop is reachable * and fail for sticky options. */ if (inlen != 0 && inlen != sizeof (sin6_t)) return (EINVAL); if (checkonly) break; if (inlen == 0) { ipp->ipp_fields &= ~IPPF_NEXTHOP; } else { sin6_t *sin6 = (sin6_t *)invalp; if (sin6->sin6_family != AF_INET6) return (EAFNOSUPPORT); if (IN6_IS_ADDR_V4MAPPED( &sin6->sin6_addr)) return (EADDRNOTAVAIL); ipp->ipp_nexthop = sin6->sin6_addr; if (!IN6_IS_ADDR_UNSPECIFIED( &ipp->ipp_nexthop)) ipp->ipp_fields |= IPPF_NEXTHOP; else ipp->ipp_fields &= ~IPPF_NEXTHOP; } reterr = tcp_build_hdrs(q, tcp); if (reterr != 0) return (reterr); break; case IPV6_HOPOPTS: { ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (hopts->ip6h_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); ipp->ipp_hopopts = NULL; ipp->ipp_hopoptslen = 0; } ipp->ipp_fields &= ~IPPF_HOPOPTS; } else { reterr = tcp_pkt_set(invalp, inlen, (uchar_t **)&ipp->ipp_hopopts, &ipp->ipp_hopoptslen); if (reterr != 0) return (reterr); ipp->ipp_fields |= IPPF_HOPOPTS; } reterr = tcp_build_hdrs(q, tcp); if (reterr != 0) return (reterr); break; } case IPV6_RTHDRDSTOPTS: { ip6_dest_t *dopts = (ip6_dest_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (dopts->ip6d_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); ipp->ipp_rtdstopts = NULL; ipp->ipp_rtdstoptslen = 0; } ipp->ipp_fields &= ~IPPF_RTDSTOPTS; } else { reterr = tcp_pkt_set(invalp, inlen, (uchar_t **)&ipp->ipp_rtdstopts, &ipp->ipp_rtdstoptslen); if (reterr != 0) return (reterr); ipp->ipp_fields |= IPPF_RTDSTOPTS; } reterr = tcp_build_hdrs(q, tcp); if (reterr != 0) return (reterr); break; } case IPV6_DSTOPTS: { ip6_dest_t *dopts = (ip6_dest_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (dopts->ip6d_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); ipp->ipp_dstopts = NULL; ipp->ipp_dstoptslen = 0; } ipp->ipp_fields &= ~IPPF_DSTOPTS; } else { reterr = tcp_pkt_set(invalp, inlen, (uchar_t **)&ipp->ipp_dstopts, &ipp->ipp_dstoptslen); if (reterr != 0) return (reterr); ipp->ipp_fields |= IPPF_DSTOPTS; } reterr = tcp_build_hdrs(q, tcp); if (reterr != 0) return (reterr); break; } case IPV6_RTHDR: { ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; /* * Sanity checks - minimum size, size a multiple of * eight bytes, and matching size passed in. */ if (inlen != 0 && inlen != (8 * (rt->ip6r_len + 1))) return (EINVAL); if (checkonly) break; if (inlen == 0) { if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); ipp->ipp_rthdr = NULL; ipp->ipp_rthdrlen = 0; } ipp->ipp_fields &= ~IPPF_RTHDR; } else { reterr = tcp_pkt_set(invalp, inlen, (uchar_t **)&ipp->ipp_rthdr, &ipp->ipp_rthdrlen); if (reterr != 0) return (reterr); ipp->ipp_fields |= IPPF_RTHDR; } reterr = tcp_build_hdrs(q, tcp); if (reterr != 0) return (reterr); break; } case IPV6_V6ONLY: if (!checkonly) tcp->tcp_connp->conn_ipv6_v6only = onoff; break; case IPV6_USE_MIN_MTU: if (inlen != sizeof (int)) return (EINVAL); if (*i1 < -1 || *i1 > 1) return (EINVAL); if (checkonly) break; ipp->ipp_fields |= IPPF_USE_MIN_MTU; ipp->ipp_use_min_mtu = *i1; break; case IPV6_BOUND_PIF: /* Handled at the IP level */ return (-EINVAL); case IPV6_SEC_OPT: /* * We should not allow policy setting after * we start listening for connections. */ if (tcp->tcp_state == TCPS_LISTEN) { return (EINVAL); } else { /* Handled at the IP level */ return (-EINVAL); } case IPV6_SRC_PREFERENCES: if (inlen != sizeof (uint32_t)) return (EINVAL); reterr = ip6_set_src_preferences(tcp->tcp_connp, *(uint32_t *)invalp); if (reterr != 0) { *outlenp = 0; return (reterr); } break; default: *outlenp = 0; return (EINVAL); } break; } /* end IPPROTO_IPV6 */ default: *outlenp = 0; return (EINVAL); } /* * Common case of OK return with outval same as inval */ if (invalp != outvalp) { /* don't trust bcopy for identical src/dst */ (void) bcopy(invalp, outvalp, inlen); } *outlenp = inlen; return (0); } /* * Update tcp_sticky_hdrs based on tcp_sticky_ipp. * The headers include ip6i_t (if needed), ip6_t, any sticky extension * headers, and the maximum size tcp header (to avoid reallocation * on the fly for additional tcp options). * Returns failure if can't allocate memory. */ static int tcp_build_hdrs(queue_t *q, tcp_t *tcp) { char *hdrs; uint_t hdrs_len; ip6i_t *ip6i; char buf[TCP_MAX_HDR_LENGTH]; ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; in6_addr_t src, dst; /* * save the existing tcp header and source/dest IP addresses */ bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); src = tcp->tcp_ip6h->ip6_src; dst = tcp->tcp_ip6h->ip6_dst; hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; ASSERT(hdrs_len != 0); if (hdrs_len > tcp->tcp_iphc_len) { /* Need to reallocate */ hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); if (hdrs == NULL) return (ENOMEM); if (tcp->tcp_iphc != NULL) { if (tcp->tcp_hdr_grown) { kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); } else { bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); } tcp->tcp_iphc_len = 0; } ASSERT(tcp->tcp_iphc_len == 0); tcp->tcp_iphc = hdrs; tcp->tcp_iphc_len = hdrs_len; tcp->tcp_hdr_grown = B_TRUE; } ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); /* Set header fields not in ipp */ if (ipp->ipp_fields & IPPF_HAS_IP6I) { ip6i = (ip6i_t *)tcp->tcp_iphc; tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; } else { tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; } /* * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. * * tcp->tcp_tcp_hdr_len doesn't change here. */ tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); tcp->tcp_ip6h->ip6_src = src; tcp->tcp_ip6h->ip6_dst = dst; /* * If the hop limit was not set by ip_build_hdrs_v6(), set it to * the default value for TCP. */ if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; /* * If we're setting extension headers after a connection * has been established, and if we have a routing header * among the extension headers, call ip_massage_options_v6 to * manipulate the routing header/ip6_dst set the checksum * difference in the tcp header template. * (This happens in tcp_connect_ipv6 if the routing header * is set prior to the connect.) * Set the tcp_sum to zero first in case we've cleared a * routing header or don't have one at all. */ tcp->tcp_sum = 0; if ((tcp->tcp_state >= TCPS_SYN_SENT) && (tcp->tcp_ipp_fields & IPPF_RTHDR)) { ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); if (rth != NULL) { tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); } } /* Try to get everything in a single mblk */ (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); return (0); } /* * Set optbuf and optlen for the option. * Allocate memory (if not already present). * Otherwise just point optbuf and optlen at invalp and inlen. * Returns failure if memory can not be allocated. */ static int tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp) { uchar_t *optbuf; if (inlen == *optlenp) { /* Unchanged length - no need to realocate */ bcopy(invalp, *optbufp, inlen); return (0); } if (inlen != 0) { /* Allocate new buffer before free */ optbuf = kmem_alloc(inlen, KM_NOSLEEP); if (optbuf == NULL) return (ENOMEM); } else { optbuf = NULL; } /* Free old buffer */ if (*optlenp != 0) kmem_free(*optbufp, *optlenp); bcopy(invalp, optbuf, inlen); *optbufp = optbuf; *optlenp = inlen; return (0); } /* * Use the outgoing IP header to create an IP_OPTIONS option the way * it was passed down from the application. */ static int tcp_opt_get_user(ipha_t *ipha, uchar_t *buf) { ipoptp_t opts; uchar_t *opt; uint8_t optval; uint8_t optlen; uint32_t len = 0; uchar_t *buf1 = buf; buf += IP_ADDR_LEN; /* Leave room for final destination */ len += IP_ADDR_LEN; bzero(buf1, IP_ADDR_LEN); for (optval = ipoptp_first(&opts, ipha); optval != IPOPT_EOL; optval = ipoptp_next(&opts)) { opt = opts.ipoptp_cur; optlen = opts.ipoptp_len; switch (optval) { int off; case IPOPT_SSRR: case IPOPT_LSRR: /* * Insert ipha_dst as the first entry in the source * route and move down the entries on step. * The last entry gets placed at buf1. */ buf[IPOPT_OPTVAL] = optval; buf[IPOPT_OLEN] = optlen; buf[IPOPT_OFFSET] = optlen; off = optlen - IP_ADDR_LEN; if (off < 0) { /* No entries in source route */ break; } /* Last entry in source route */ bcopy(opt + off, buf1, IP_ADDR_LEN); off -= IP_ADDR_LEN; while (off > 0) { bcopy(opt + off, buf + off + IP_ADDR_LEN, IP_ADDR_LEN); off -= IP_ADDR_LEN; } /* ipha_dst into first slot */ bcopy(&ipha->ipha_dst, buf + off + IP_ADDR_LEN, IP_ADDR_LEN); buf += optlen; len += optlen; break; default: bcopy(opt, buf, optlen); buf += optlen; len += optlen; break; } } done: /* Pad the resulting options */ while (len & 0x3) { *buf++ = IPOPT_EOL; len++; } return (len); } /* * Transfer any source route option from ipha to buf/dst in reversed form. */ static int tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) { ipoptp_t opts; uchar_t *opt; uint8_t optval; uint8_t optlen; uint32_t len = 0; for (optval = ipoptp_first(&opts, ipha); optval != IPOPT_EOL; optval = ipoptp_next(&opts)) { opt = opts.ipoptp_cur; optlen = opts.ipoptp_len; switch (optval) { int off1, off2; case IPOPT_SSRR: case IPOPT_LSRR: /* Reverse source route */ /* * First entry should be the next to last one in the * current source route (the last entry is our * address.) * The last entry should be the final destination. */ buf[IPOPT_OPTVAL] = (uint8_t)optval; buf[IPOPT_OLEN] = (uint8_t)optlen; off1 = IPOPT_MINOFF_SR - 1; off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; if (off2 < 0) { /* No entries in source route */ break; } bcopy(opt + off2, dst, IP_ADDR_LEN); /* * Note: use src since ipha has not had its src * and dst reversed (it is in the state it was * received. */ bcopy(&ipha->ipha_src, buf + off2, IP_ADDR_LEN); off2 -= IP_ADDR_LEN; while (off2 > 0) { bcopy(opt + off2, buf + off1, IP_ADDR_LEN); off1 += IP_ADDR_LEN; off2 -= IP_ADDR_LEN; } buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; buf += optlen; len += optlen; break; } } done: /* Pad the resulting options */ while (len & 0x3) { *buf++ = IPOPT_EOL; len++; } return (len); } /* * Extract and revert a source route from ipha (if any) * and then update the relevant fields in both tcp_t and the standard header. */ static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) { char buf[TCP_MAX_HDR_LENGTH]; uint_t tcph_len; int len; ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); len = IPH_HDR_LENGTH(ipha); if (len == IP_SIMPLE_HDR_LENGTH) /* Nothing to do */ return; if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || (len & 0x3)) return; tcph_len = tcp->tcp_tcp_hdr_len; bcopy(tcp->tcp_tcph, buf, tcph_len); tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + (tcp->tcp_ipha->ipha_dst & 0xffff); len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); len += IP_SIMPLE_HDR_LENGTH; tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + (tcp->tcp_ipha->ipha_dst & 0xffff)); if ((int)tcp->tcp_sum < 0) tcp->tcp_sum--; tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); bcopy(buf, tcp->tcp_tcph, tcph_len); tcp->tcp_ip_hdr_len = len; tcp->tcp_ipha->ipha_version_and_hdr_length = (IP_VERSION << 4) | (len >> 2); len += tcph_len; tcp->tcp_hdr_len = len; } /* * Copy the standard header into its new location, * lay in the new options and then update the relevant * fields in both tcp_t and the standard header. */ static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) { uint_t tcph_len; char *ip_optp; tcph_t *new_tcph; if (checkonly) { /* * do not really set, just pretend to - T_CHECK */ if (len != 0) { /* * there is value supplied, validate it as if * for a real set operation. */ if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) return (EINVAL); } return (0); } if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) return (EINVAL); ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; tcph_len = tcp->tcp_tcp_hdr_len; new_tcph = (tcph_t *)(ip_optp + len); ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len); tcp->tcp_tcph = new_tcph; bcopy(ptr, ip_optp, len); len += IP_SIMPLE_HDR_LENGTH; tcp->tcp_ip_hdr_len = len; tcp->tcp_ipha->ipha_version_and_hdr_length = (IP_VERSION << 4) | (len >> 2); len += tcph_len; tcp->tcp_hdr_len = len; if (!TCP_IS_DETACHED(tcp)) { /* Always allocate room for all options. */ (void) mi_set_sth_wroff(tcp->tcp_rq, TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); } return (0); } /* Get callback routine passed to nd_load by tcp_param_register */ /* ARGSUSED */ static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { tcpparam_t *tcppa = (tcpparam_t *)cp; (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); return (0); } /* * Walk through the param array specified registering each element with the * named dispatch handler. */ static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt) { for (; cnt-- > 0; tcppa++) { if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, tcp_param_get, tcp_param_set, (caddr_t)tcppa)) { nd_free(&tcp_g_nd); return (B_FALSE); } } } if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, tcp_param_get, tcp_param_set_aligned, (caddr_t)&tcp_wroff_xtra_param)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, tcp_param_get, tcp_param_set_aligned, (caddr_t)&tcp_mdt_head_param)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, tcp_param_get, tcp_param_set_aligned, (caddr_t)&tcp_mdt_tail_param)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, tcp_param_get, tcp_param_set, (caddr_t)&tcp_mdt_max_pbufs_param)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", tcp_extra_priv_ports_get, NULL, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", NULL, tcp_extra_priv_ports_add, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", NULL, tcp_extra_priv_ports_del, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, NULL, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, NULL, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, NULL, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, NULL, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, tcp_host_param_set, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", tcp_reserved_port_list, NULL, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } /* * Dummy ndd variables - only to convey obsolescence information * through printing of their name (no get or set routines) * XXX Remove in future releases ? */ if (!nd_load(&tcp_g_nd, "tcp_close_wait_interval(obsoleted - " "use tcp_time_wait_interval)", NULL, NULL, NULL)) { nd_free(&tcp_g_nd); return (B_FALSE); } return (B_TRUE); } /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ /* ARGSUSED */ static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; tcpparam_t *tcppa = (tcpparam_t *)cp; if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value < tcppa->tcp_param_min || new_value > tcppa->tcp_param_max) { return (EINVAL); } /* * Need to make sure new_value is a multiple of 4. If it is not, * round it up. For future 64 bit requirement, we actually make it * a multiple of 8. */ if (new_value & 0x7) { new_value = (new_value & ~0x7) + 0x8; } tcppa->tcp_param_val = new_value; return (0); } /* Set callback routine passed to nd_load by tcp_param_register */ /* ARGSUSED */ static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; tcpparam_t *tcppa = (tcpparam_t *)cp; if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value < tcppa->tcp_param_min || new_value > tcppa->tcp_param_max) { return (EINVAL); } tcppa->tcp_param_val = new_value; return (0); } /* * Add a new piece to the tcp reassembly queue. If the gap at the beginning * is filled, return as much as we can. The message passed in may be * multi-part, chained using b_cont. "start" is the starting sequence * number for this piece. */ static mblk_t * tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) { uint32_t end; mblk_t *mp1; mblk_t *mp2; mblk_t *next_mp; uint32_t u1; /* Walk through all the new pieces. */ do { ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); end = start + (int)(mp->b_wptr - mp->b_rptr); next_mp = mp->b_cont; if (start == end) { /* Empty. Blast it. */ freeb(mp); continue; } mp->b_cont = NULL; TCP_REASS_SET_SEQ(mp, start); TCP_REASS_SET_END(mp, end); mp1 = tcp->tcp_reass_tail; if (!mp1) { tcp->tcp_reass_tail = mp; tcp->tcp_reass_head = mp; BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); UPDATE_MIB(&tcp_mib, tcpInDataUnorderBytes, end - start); continue; } /* New stuff completely beyond tail? */ if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { /* Link it on end. */ mp1->b_cont = mp; tcp->tcp_reass_tail = mp; BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); UPDATE_MIB(&tcp_mib, tcpInDataUnorderBytes, end - start); continue; } mp1 = tcp->tcp_reass_head; u1 = TCP_REASS_SEQ(mp1); /* New stuff at the front? */ if (SEQ_LT(start, u1)) { /* Yes... Check for overlap. */ mp->b_cont = mp1; tcp->tcp_reass_head = mp; tcp_reass_elim_overlap(tcp, mp); continue; } /* * The new piece fits somewhere between the head and tail. * We find our slot, where mp1 precedes us and mp2 trails. */ for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { u1 = TCP_REASS_SEQ(mp2); if (SEQ_LEQ(start, u1)) break; } /* Link ourselves in */ mp->b_cont = mp2; mp1->b_cont = mp; /* Trim overlap with following mblk(s) first */ tcp_reass_elim_overlap(tcp, mp); /* Trim overlap with preceding mblk */ tcp_reass_elim_overlap(tcp, mp1); } while (start = end, mp = next_mp); mp1 = tcp->tcp_reass_head; /* Anything ready to go? */ if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) return (NULL); /* Eat what we can off the queue */ for (;;) { mp = mp1->b_cont; end = TCP_REASS_END(mp1); TCP_REASS_SET_SEQ(mp1, 0); TCP_REASS_SET_END(mp1, 0); if (!mp) { tcp->tcp_reass_tail = NULL; break; } if (end != TCP_REASS_SEQ(mp)) { mp1->b_cont = NULL; break; } mp1 = mp; } mp1 = tcp->tcp_reass_head; tcp->tcp_reass_head = mp; return (mp1); } /* Eliminate any overlap that mp may have over later mblks */ static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) { uint32_t end; mblk_t *mp1; uint32_t u1; end = TCP_REASS_END(mp); while ((mp1 = mp->b_cont) != NULL) { u1 = TCP_REASS_SEQ(mp1); if (!SEQ_GT(end, u1)) break; if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { mp->b_wptr -= end - u1; TCP_REASS_SET_END(mp, u1); BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); break; } mp->b_cont = mp1->b_cont; TCP_REASS_SET_SEQ(mp1, 0); TCP_REASS_SET_END(mp1, 0); freeb(mp1); BUMP_MIB(&tcp_mib, tcpInDataDupSegs); UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); } if (!mp1) tcp->tcp_reass_tail = mp; } /* * Send up all messages queued on tcp_rcv_list. */ static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp) { mblk_t *mp; uint_t ret = 0; uint_t thwin; #ifdef DEBUG uint_t cnt = 0; #endif /* Can't drain on an eager connection */ if (tcp->tcp_listener != NULL) return (ret); /* * Handle two cases here: we are currently fused or we were * previously fused and have some urgent data to be delivered * upstream. The latter happens because we either ran out of * memory or were detached and therefore sending the SIGURG was * deferred until this point. In either case we pass control * over to tcp_fuse_rcv_drain() since it may need to complete * some work. */ if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { ASSERT(tcp->tcp_fused_sigurg_mp != NULL); if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : &tcp->tcp_fused_sigurg_mp)) return (ret); } while ((mp = tcp->tcp_rcv_list) != NULL) { tcp->tcp_rcv_list = mp->b_next; mp->b_next = NULL; #ifdef DEBUG cnt += msgdsize(mp); #endif /* Does this need SSL processing first? */ if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { tcp_kssl_input(tcp, mp); continue; } putnext(q, mp); } ASSERT(cnt == tcp->tcp_rcv_cnt); tcp->tcp_rcv_last_head = NULL; tcp->tcp_rcv_last_tail = NULL; tcp->tcp_rcv_cnt = 0; /* Learn the latest rwnd information that we sent to the other side. */ thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) << tcp->tcp_rcv_ws; /* This is peer's calculated send window (our receive window). */ thwin -= tcp->tcp_rnxt - tcp->tcp_rack; /* * Increase the receive window to max. But we need to do receiver * SWS avoidance. This means that we need to check the increase of * of receive window is at least 1 MSS. */ if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { /* * If the window that the other side knows is less than max * deferred acks segments, send an update immediately. */ if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { BUMP_MIB(&tcp_mib, tcpOutWinUpdate); ret = TH_ACK_NEEDED; } tcp->tcp_rwnd = q->q_hiwat; } /* No need for the push timer now. */ if (tcp->tcp_push_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); tcp->tcp_push_tid = 0; } return (ret); } /* * Queue data on tcp_rcv_list which is a b_next chain. * tcp_rcv_last_head/tail is the last element of this chain. * Each element of the chain is a b_cont chain. * * M_DATA messages are added to the current element. * Other messages are added as new (b_next) elements. */ void tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) { ASSERT(seg_len == msgdsize(mp)); ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); if (tcp->tcp_rcv_list == NULL) { ASSERT(tcp->tcp_rcv_last_head == NULL); tcp->tcp_rcv_list = mp; tcp->tcp_rcv_last_head = mp; } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { tcp->tcp_rcv_last_tail->b_cont = mp; } else { tcp->tcp_rcv_last_head->b_next = mp; tcp->tcp_rcv_last_head = mp; } while (mp->b_cont) mp = mp->b_cont; tcp->tcp_rcv_last_tail = mp; tcp->tcp_rcv_cnt += seg_len; tcp->tcp_rwnd -= seg_len; } /* * DEFAULT TCP ENTRY POINT via squeue on READ side. * * This is the default entry function into TCP on the read side. TCP is * always entered via squeue i.e. using squeue's for mutual exclusion. * When classifier does a lookup to find the tcp, it also puts a reference * on the conn structure associated so the tcp is guaranteed to exist * when we come here. We still need to check the state because it might * as well has been closed. The squeue processing function i.e. squeue_enter, * squeue_enter_nodrain, or squeue_drain is responsible for doing the * CONN_DEC_REF. * * Apart from the default entry point, IP also sends packets directly to * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming * connections. */ void tcp_input(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = (tcp_t *)connp->conn_tcp; /* arg2 is the sqp */ ASSERT(arg2 != NULL); ASSERT(mp != NULL); /* * Don't accept any input on a closed tcp as this TCP logically does * not exist on the system. Don't proceed further with this TCP. * For eg. this packet could trigger another close of this tcp * which would be disastrous for tcp_refcnt. tcp_close_detached / * tcp_clean_death / tcp_closei_local must be called at most once * on a TCP. In this case we need to refeed the packet into the * classifier and figure out where the packet should go. Need to * preserve the recv_ill somehow. Until we figure that out, for * now just drop the packet if we can't classify the packet. */ if (tcp->tcp_state == TCPS_CLOSED || tcp->tcp_state == TCPS_BOUND) { conn_t *new_connp; new_connp = ipcl_classify(mp, connp->conn_zoneid); if (new_connp != NULL) { tcp_reinput(new_connp, mp, arg2); return; } /* We failed to classify. For now just drop the packet */ freemsg(mp); return; } if (DB_TYPE(mp) == M_DATA) tcp_rput_data(connp, mp, arg2); else tcp_rput_common(tcp, mp); } /* * The read side put procedure. * The packets passed up by ip are assume to be aligned according to * OK_32PTR and the IP+TCP headers fitting in the first mblk. */ static void tcp_rput_common(tcp_t *tcp, mblk_t *mp) { /* * tcp_rput_data() does not expect M_CTL except for the case * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO * type. Need to make sure that any other M_CTLs don't make * it to tcp_rput_data since it is not expecting any and doesn't * check for it. */ if (DB_TYPE(mp) == M_CTL) { switch (*(uint32_t *)(mp->b_rptr)) { case TCP_IOC_ABORT_CONN: /* * Handle connection abort request. */ tcp_ioctl_abort_handler(tcp, mp); return; case IPSEC_IN: /* * Only secure icmp arrive in TCP and they * don't go through data path. */ tcp_icmp_error(tcp, mp); return; case IN_PKTINFO: /* * Handle IPV6_RECVPKTINFO socket option on AF_INET6 * sockets that are receiving IPv4 traffic. tcp */ ASSERT(tcp->tcp_family == AF_INET6); ASSERT(tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO); tcp_rput_data(tcp->tcp_connp, mp, tcp->tcp_connp->conn_sqp); return; case MDT_IOC_INFO_UPDATE: /* * Handle Multidata information update; the * following routine will free the message. */ if (tcp->tcp_connp->conn_mdt_ok) { tcp_mdt_update(tcp, &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, B_FALSE); } freemsg(mp); return; default: break; } } /* No point processing the message if tcp is already closed */ if (TCP_IS_DETACHED_NONEAGER(tcp)) { freemsg(mp); return; } tcp_rput_other(tcp, mp); } /* The minimum of smoothed mean deviation in RTO calculation. */ #define TCP_SD_MIN 400 /* * Set RTO for this connection. The formula is from Jacobson and Karels' * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names * are the same as those in Appendix A.2 of that paper. * * m = new measurement * sa = smoothed RTT average (8 * average estimates). * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). */ static void tcp_set_rto(tcp_t *tcp, clock_t rtt) { long m = TICK_TO_MSEC(rtt); clock_t sa = tcp->tcp_rtt_sa; clock_t sv = tcp->tcp_rtt_sd; clock_t rto; BUMP_MIB(&tcp_mib, tcpRttUpdate); tcp->tcp_rtt_update++; /* tcp_rtt_sa is not 0 means this is a new sample. */ if (sa != 0) { /* * Update average estimator: * new rtt = 7/8 old rtt + 1/8 Error */ /* m is now Error in estimate. */ m -= sa >> 3; if ((sa += m) <= 0) { /* * Don't allow the smoothed average to be negative. * We use 0 to denote reinitialization of the * variables. */ sa = 1; } /* * Update deviation estimator: * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) */ if (m < 0) m = -m; m -= sv >> 2; sv += m; } else { /* * This follows BSD's implementation. So the reinitialized * RTO is 3 * m. We cannot go less than 2 because if the * link is bandwidth dominated, doubling the window size * during slow start means doubling the RTT. We want to be * more conservative when we reinitialize our estimates. 3 * is just a convenient number. */ sa = m << 3; sv = m << 1; } if (sv < TCP_SD_MIN) { /* * We do not know that if sa captures the delay ACK * effect as in a long train of segments, a receiver * does not delay its ACKs. So set the minimum of sv * to be TCP_SD_MIN, which is default to 400 ms, twice * of BSD DATO. That means the minimum of mean * deviation is 100 ms. * */ sv = TCP_SD_MIN; } tcp->tcp_rtt_sa = sa; tcp->tcp_rtt_sd = sv; /* * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) * * Add tcp_rexmit_interval extra in case of extreme environment * where the algorithm fails to work. The default value of * tcp_rexmit_interval_extra should be 0. * * As we use a finer grained clock than BSD and update * RTO for every ACKs, add in another .25 of RTT to the * deviation of RTO to accomodate burstiness of 1/4 of * window size. */ rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); if (rto > tcp_rexmit_interval_max) { tcp->tcp_rto = tcp_rexmit_interval_max; } else if (rto < tcp_rexmit_interval_min) { tcp->tcp_rto = tcp_rexmit_interval_min; } else { tcp->tcp_rto = rto; } /* Now, we can reset tcp_timer_backoff to use the new RTO... */ tcp->tcp_timer_backoff = 0; } /* * tcp_get_seg_mp() is called to get the pointer to a segment in the * send queue which starts at the given seq. no. * * Parameters: * tcp_t *tcp: the tcp instance pointer. * uint32_t seq: the starting seq. no of the requested segment. * int32_t *off: after the execution, *off will be the offset to * the returned mblk which points to the requested seq no. * It is the caller's responsibility to send in a non-null off. * * Return: * A mblk_t pointer pointing to the requested segment in send queue. */ static mblk_t * tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) { int32_t cnt; mblk_t *mp; /* Defensive coding. Make sure we don't send incorrect data. */ if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) return (NULL); cnt = seq - tcp->tcp_suna; mp = tcp->tcp_xmit_head; while (cnt > 0 && mp != NULL) { cnt -= mp->b_wptr - mp->b_rptr; if (cnt < 0) { cnt += mp->b_wptr - mp->b_rptr; break; } mp = mp->b_cont; } ASSERT(mp != NULL); *off = cnt; return (mp); } /* * This function handles all retransmissions if SACK is enabled for this * connection. First it calculates how many segments can be retransmitted * based on tcp_pipe. Then it goes thru the notsack list to find eligible * segments. A segment is eligible if sack_cnt for that segment is greater * than or equal tcp_dupack_fast_retransmit. After it has retransmitted * all eligible segments, it checks to see if TCP can send some new segments * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). * * Parameters: * tcp_t *tcp: the tcp structure of the connection. * uint_t *flags: in return, appropriate value will be set for * tcp_rput_data(). */ static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) { notsack_blk_t *notsack_blk; int32_t usable_swnd; int32_t mss; uint32_t seg_len; mblk_t *xmit_mp; ASSERT(tcp->tcp_sack_info != NULL); ASSERT(tcp->tcp_notsack_list != NULL); ASSERT(tcp->tcp_rexmit == B_FALSE); /* Defensive coding in case there is a bug... */ if (tcp->tcp_notsack_list == NULL) { return; } notsack_blk = tcp->tcp_notsack_list; mss = tcp->tcp_mss; /* * Limit the num of outstanding data in the network to be * tcp_cwnd_ssthresh, which is half of the original congestion wnd. */ usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; /* At least retransmit 1 MSS of data. */ if (usable_swnd <= 0) { usable_swnd = mss; } /* Make sure no new RTT samples will be taken. */ tcp->tcp_csuna = tcp->tcp_snxt; notsack_blk = tcp->tcp_notsack_list; while (usable_swnd > 0) { mblk_t *snxt_mp, *tmp_mp; tcp_seq begin = tcp->tcp_sack_snxt; tcp_seq end; int32_t off; for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { if (SEQ_GT(notsack_blk->end, begin) && (notsack_blk->sack_cnt >= tcp_dupack_fast_retransmit)) { end = notsack_blk->end; if (SEQ_LT(begin, notsack_blk->begin)) { begin = notsack_blk->begin; } break; } } /* * All holes are filled. Manipulate tcp_cwnd to send more * if we can. Note that after the SACK recovery, tcp_cwnd is * set to tcp_cwnd_ssthresh. */ if (notsack_blk == NULL) { usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; ASSERT(tcp->tcp_cwnd > 0); return; } else { usable_swnd = usable_swnd / mss; tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + MAX(usable_swnd * mss, mss); *flags |= TH_XMIT_NEEDED; return; } } /* * Note that we may send more than usable_swnd allows here * because of round off, but no more than 1 MSS of data. */ seg_len = end - begin; if (seg_len > mss) seg_len = mss; snxt_mp = tcp_get_seg_mp(tcp, begin, &off); ASSERT(snxt_mp != NULL); /* This should not happen. Defensive coding again... */ if (snxt_mp == NULL) { return; } xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); if (xmit_mp == NULL) return; usable_swnd -= seg_len; tcp->tcp_pipe += seg_len; tcp->tcp_sack_snxt = begin + seg_len; TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); /* * Update the send timestamp to avoid false retransmission. */ snxt_mp->b_prev = (mblk_t *)lbolt; BUMP_MIB(&tcp_mib, tcpRetransSegs); UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); /* * Update tcp_rexmit_max to extend this SACK recovery phase. * This happens when new data sent during fast recovery is * also lost. If TCP retransmits those new data, it needs * to extend SACK recover phase to avoid starting another * fast retransmit/recovery unnecessarily. */ if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; } } } /* * This function handles policy checking at TCP level for non-hard_bound/ * detached connections. */ static boolean_t tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, boolean_t secure, boolean_t mctl_present) { ipsec_latch_t *ipl = NULL; ipsec_action_t *act = NULL; mblk_t *data_mp; ipsec_in_t *ii; const char *reason; kstat_named_t *counter; ASSERT(mctl_present || !secure); ASSERT((ipha == NULL && ip6h != NULL) || (ip6h == NULL && ipha != NULL)); /* * We don't necessarily have an ipsec_in_act action to verify * policy because of assymetrical policy where we have only * outbound policy and no inbound policy (possible with global * policy). */ if (!secure) { if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) return (B_TRUE); ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, "tcp_check_policy", ipha, ip6h, secure); ip_drop_packet(first_mp, B_TRUE, NULL, NULL, &ipdrops_tcp_clear, &tcp_dropper); return (B_FALSE); } /* * We have a secure packet. */ if (act == NULL) { ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, secure); ip_drop_packet(first_mp, B_TRUE, NULL, NULL, &ipdrops_tcp_secure, &tcp_dropper); return (B_FALSE); } /* * XXX This whole routine is currently incorrect. ipl should * be set to the latch pointer, but is currently not set, so * we initialize it to NULL to avoid picking up random garbage. */ if (ipl == NULL) return (B_TRUE); data_mp = first_mp->b_cont; ii = (ipsec_in_t *)first_mp->b_rptr; if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, &counter)) { BUMP_MIB(&ip_mib, ipsecInSucceeded); return (B_TRUE); } (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, "tcp inbound policy mismatch: %s, packet dropped\n", reason); BUMP_MIB(&ip_mib, ipsecInFailed); ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); return (B_FALSE); } /* * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start * retransmission after a timeout. * * To limit the number of duplicate segments, we limit the number of segment * to be sent in one time to tcp_snd_burst, the burst variable. */ static void tcp_ss_rexmit(tcp_t *tcp) { uint32_t snxt; uint32_t smax; int32_t win; int32_t mss; int32_t off; int32_t burst = tcp->tcp_snd_burst; mblk_t *snxt_mp; /* * Note that tcp_rexmit can be set even though TCP has retransmitted * all unack'ed segments. */ if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { smax = tcp->tcp_rexmit_max; snxt = tcp->tcp_rexmit_nxt; if (SEQ_LT(snxt, tcp->tcp_suna)) { snxt = tcp->tcp_suna; } win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); win -= snxt - tcp->tcp_suna; mss = tcp->tcp_mss; snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); while (SEQ_LT(snxt, smax) && (win > 0) && (burst > 0) && (snxt_mp != NULL)) { mblk_t *xmit_mp; mblk_t *old_snxt_mp = snxt_mp; uint32_t cnt = mss; if (win < cnt) { cnt = win; } if (SEQ_GT(snxt + cnt, smax)) { cnt = smax - snxt; } xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); if (xmit_mp == NULL) return; tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); snxt += cnt; win -= cnt; /* * Update the send timestamp to avoid false * retransmission. */ old_snxt_mp->b_prev = (mblk_t *)lbolt; BUMP_MIB(&tcp_mib, tcpRetransSegs); UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); tcp->tcp_rexmit_nxt = snxt; burst--; } /* * If we have transmitted all we have at the time * we started the retranmission, we can leave * the rest of the job to tcp_wput_data(). But we * need to check the send window first. If the * win is not 0, go on with tcp_wput_data(). */ if (SEQ_LT(snxt, smax) || win == 0) { return; } } /* Only call tcp_wput_data() if there is data to be sent. */ if (tcp->tcp_unsent) { tcp_wput_data(tcp, NULL, B_FALSE); } } /* * Process all TCP option in SYN segment. Note that this function should * be called after tcp_adapt_ire() is called so that the necessary info * from IRE is already set in the tcp structure. * * This function sets up the correct tcp_mss value according to the * MSS option value and our header size. It also sets up the window scale * and timestamp values, and initialize SACK info blocks. But it does not * change receive window size after setting the tcp_mss value. The caller * should do the appropriate change. */ void tcp_process_options(tcp_t *tcp, tcph_t *tcph) { int options; tcp_opt_t tcpopt; uint32_t mss_max; char *tmp_tcph; tcpopt.tcp = NULL; options = tcp_parse_options(tcph, &tcpopt); /* * Process MSS option. Note that MSS option value does not account * for IP or TCP options. This means that it is equal to MTU - minimum * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for * IPv6. */ if (!(options & TCP_OPT_MSS_PRESENT)) { if (tcp->tcp_ipversion == IPV4_VERSION) tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; else tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; } else { if (tcp->tcp_ipversion == IPV4_VERSION) mss_max = tcp_mss_max_ipv4; else mss_max = tcp_mss_max_ipv6; if (tcpopt.tcp_opt_mss < tcp_mss_min) tcpopt.tcp_opt_mss = tcp_mss_min; else if (tcpopt.tcp_opt_mss > mss_max) tcpopt.tcp_opt_mss = mss_max; } /* Process Window Scale option. */ if (options & TCP_OPT_WSCALE_PRESENT) { tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; tcp->tcp_snd_ws_ok = B_TRUE; } else { tcp->tcp_snd_ws = B_FALSE; tcp->tcp_snd_ws_ok = B_FALSE; tcp->tcp_rcv_ws = B_FALSE; } /* Process Timestamp option. */ if ((options & TCP_OPT_TSTAMP_PRESENT) && (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { tmp_tcph = (char *)tcp->tcp_tcph; tcp->tcp_snd_ts_ok = B_TRUE; tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; tcp->tcp_last_rcv_lbolt = lbolt64; ASSERT(OK_32PTR(tmp_tcph)); ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); /* Fill in our template header with basic timestamp option. */ tmp_tcph += tcp->tcp_tcp_hdr_len; tmp_tcph[0] = TCPOPT_NOP; tmp_tcph[1] = TCPOPT_NOP; tmp_tcph[2] = TCPOPT_TSTAMP; tmp_tcph[3] = TCPOPT_TSTAMP_LEN; tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); } else { tcp->tcp_snd_ts_ok = B_FALSE; } /* * Process SACK options. If SACK is enabled for this connection, * then allocate the SACK info structure. Note the following ways * when tcp_snd_sack_ok is set to true. * * For active connection: in tcp_adapt_ire() called in * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted * is checked. * * For passive connection: in tcp_adapt_ire() called in * tcp_accept_comm(). * * That's the reason why the extra TCP_IS_DETACHED() check is there. * That check makes sure that if we did not send a SACK OK option, * we will not enable SACK for this connection even though the other * side sends us SACK OK option. For active connection, the SACK * info structure has already been allocated. So we need to free * it if SACK is disabled. */ if ((options & TCP_OPT_SACK_OK_PRESENT) && (tcp->tcp_snd_sack_ok || (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { /* This should be true only in the passive case. */ if (tcp->tcp_sack_info == NULL) { ASSERT(TCP_IS_DETACHED(tcp)); tcp->tcp_sack_info = kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); } if (tcp->tcp_sack_info == NULL) { tcp->tcp_snd_sack_ok = B_FALSE; } else { tcp->tcp_snd_sack_ok = B_TRUE; if (tcp->tcp_snd_ts_ok) { tcp->tcp_max_sack_blk = 3; } else { tcp->tcp_max_sack_blk = 4; } } } else { /* * Resetting tcp_snd_sack_ok to B_FALSE so that * no SACK info will be used for this * connection. This assumes that SACK usage * permission is negotiated. This may need * to be changed once this is clarified. */ if (tcp->tcp_sack_info != NULL) { ASSERT(tcp->tcp_notsack_list == NULL); kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); tcp->tcp_sack_info = NULL; } tcp->tcp_snd_sack_ok = B_FALSE; } /* * Now we know the exact TCP/IP header length, subtract * that from tcp_mss to get our side's MSS. */ tcp->tcp_mss -= tcp->tcp_hdr_len; /* * Here we assume that the other side's header size will be equal to * our header size. We calculate the real MSS accordingly. Need to * take into additional stuffs IPsec puts in. * * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) */ tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - ((tcp->tcp_ipversion == IPV4_VERSION ? IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); /* * Set MSS to the smaller one of both ends of the connection. * We should not have called tcp_mss_set() before, but our * side of the MSS should have been set to a proper value * by tcp_adapt_ire(). tcp_mss_set() will also set up the * STREAM head parameters properly. * * If we have a larger-than-16-bit window but the other side * didn't want to do window scale, tcp_rwnd_set() will take * care of that. */ tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); } /* * Sends the T_CONN_IND to the listener. The caller calls this * functions via squeue to get inside the listener's perimeter * once the 3 way hand shake is done a T_CONN_IND needs to be * sent. As an optimization, the caller can call this directly * if listener's perimeter is same as eager's. */ /* ARGSUSED */ void tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) { conn_t *lconnp = (conn_t *)arg; tcp_t *listener = lconnp->conn_tcp; tcp_t *tcp; struct T_conn_ind *conn_ind; ipaddr_t *addr_cache; boolean_t need_send_conn_ind = B_FALSE; /* retrieve the eager */ conn_ind = (struct T_conn_ind *)mp->b_rptr; ASSERT(conn_ind->OPT_offset != 0 && conn_ind->OPT_length == sizeof (intptr_t)); bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, conn_ind->OPT_length); /* * TLI/XTI applications will get confused by * sending eager as an option since it violates * the option semantics. So remove the eager as * option since TLI/XTI app doesn't need it anyway. */ if (!TCP_IS_SOCKET(listener)) { conn_ind->OPT_length = 0; conn_ind->OPT_offset = 0; } if (listener->tcp_state == TCPS_CLOSED || TCP_IS_DETACHED(listener)) { /* * If listener has closed, it would have caused a * a cleanup/blowoff to happen for the eager. We * just need to return. */ freemsg(mp); return; } /* * if the conn_req_q is full defer passing up the * T_CONN_IND until space is availabe after t_accept() * processing */ mutex_enter(&listener->tcp_eager_lock); if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { tcp_t *tail; /* * The eager already has an extra ref put in tcp_rput_data * so that it stays till accept comes back even though it * might get into TCPS_CLOSED as a result of a TH_RST etc. */ ASSERT(listener->tcp_conn_req_cnt_q0 > 0); listener->tcp_conn_req_cnt_q0--; listener->tcp_conn_req_cnt_q++; /* Move from SYN_RCVD to ESTABLISHED list */ tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; tcp->tcp_eager_prev_q0 = NULL; tcp->tcp_eager_next_q0 = NULL; /* * Insert at end of the queue because sockfs * sends down T_CONN_RES in chronological * order. Leaving the older conn indications * at front of the queue helps reducing search * time. */ tail = listener->tcp_eager_last_q; if (tail != NULL) tail->tcp_eager_next_q = tcp; else listener->tcp_eager_next_q = tcp; listener->tcp_eager_last_q = tcp; tcp->tcp_eager_next_q = NULL; /* * Delay sending up the T_conn_ind until we are * done with the eager. Once we have have sent up * the T_conn_ind, the accept can potentially complete * any time and release the refhold we have on the eager. */ need_send_conn_ind = B_TRUE; } else { /* * Defer connection on q0 and set deferred * connection bit true */ tcp->tcp_conn_def_q0 = B_TRUE; /* take tcp out of q0 ... */ tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; /* ... and place it at the end of q0 */ tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; tcp->tcp_eager_next_q0 = listener; listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; listener->tcp_eager_prev_q0 = tcp; tcp->tcp_conn.tcp_eager_conn_ind = mp; } /* we have timed out before */ if (tcp->tcp_syn_rcvd_timeout != 0) { tcp->tcp_syn_rcvd_timeout = 0; listener->tcp_syn_rcvd_timeout--; if (listener->tcp_syn_defense && listener->tcp_syn_rcvd_timeout <= (tcp_conn_req_max_q0 >> 5) && 10*MINUTES < TICK_TO_MSEC(lbolt64 - listener->tcp_last_rcv_lbolt)) { /* * Turn off the defense mode if we * believe the SYN attack is over. */ listener->tcp_syn_defense = B_FALSE; if (listener->tcp_ip_addr_cache) { kmem_free((void *)listener->tcp_ip_addr_cache, IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); listener->tcp_ip_addr_cache = NULL; } } } addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); if (addr_cache != NULL) { /* * We have finished a 3-way handshake with this * remote host. This proves the IP addr is good. * Cache it! */ addr_cache[IP_ADDR_CACHE_HASH( tcp->tcp_remote)] = tcp->tcp_remote; } mutex_exit(&listener->tcp_eager_lock); if (need_send_conn_ind) putnext(listener->tcp_rq, mp); } mblk_t * tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, uint_t *ifindexp, ip6_pkt_t *ippp) { in_pktinfo_t *pinfo; ip6_t *ip6h; uchar_t *rptr; mblk_t *first_mp = mp; boolean_t mctl_present = B_FALSE; uint_t ifindex = 0; ip6_pkt_t ipp; uint_t ipvers; uint_t ip_hdr_len; rptr = mp->b_rptr; ASSERT(OK_32PTR(rptr)); ASSERT(tcp != NULL); ipp.ipp_fields = 0; switch DB_TYPE(mp) { case M_CTL: mp = mp->b_cont; if (mp == NULL) { freemsg(first_mp); return (NULL); } if (DB_TYPE(mp) != M_DATA) { freemsg(first_mp); return (NULL); } mctl_present = B_TRUE; break; case M_DATA: break; default: cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); freemsg(mp); return (NULL); } ipvers = IPH_HDR_VERSION(rptr); if (ipvers == IPV4_VERSION) { if (tcp == NULL) { ip_hdr_len = IPH_HDR_LENGTH(rptr); goto done; } ipp.ipp_fields |= IPPF_HOPLIMIT; ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; /* * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. */ if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && mctl_present) { pinfo = (in_pktinfo_t *)first_mp->b_rptr; if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && (pinfo->in_pkt_ulp_type == IN_PKTINFO) && (pinfo->in_pkt_flags & IPF_RECVIF)) { ipp.ipp_fields |= IPPF_IFINDEX; ipp.ipp_ifindex = pinfo->in_pkt_ifindex; ifindex = pinfo->in_pkt_ifindex; } freeb(first_mp); mctl_present = B_FALSE; } ip_hdr_len = IPH_HDR_LENGTH(rptr); } else { ip6h = (ip6_t *)rptr; ASSERT(ipvers == IPV6_VERSION); ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; ipp.ipp_hoplimit = ip6h->ip6_hops; if (ip6h->ip6_nxt != IPPROTO_TCP) { uint8_t nexthdrp; /* Look for ifindex information */ if (ip6h->ip6_nxt == IPPROTO_RAW) { ip6i_t *ip6i = (ip6i_t *)ip6h; if ((uchar_t *)&ip6i[1] > mp->b_wptr) { BUMP_MIB(&ip_mib, tcpInErrs); freemsg(first_mp); return (NULL); } if (ip6i->ip6i_flags & IP6I_IFINDEX) { ASSERT(ip6i->ip6i_ifindex != 0); ipp.ipp_fields |= IPPF_IFINDEX; ipp.ipp_ifindex = ip6i->ip6i_ifindex; ifindex = ip6i->ip6i_ifindex; } rptr = (uchar_t *)&ip6i[1]; mp->b_rptr = rptr; if (rptr == mp->b_wptr) { mblk_t *mp1; mp1 = mp->b_cont; freeb(mp); mp = mp1; rptr = mp->b_rptr; } if (MBLKL(mp) < IPV6_HDR_LEN + sizeof (tcph_t)) { BUMP_MIB(&ip_mib, tcpInErrs); freemsg(first_mp); return (NULL); } ip6h = (ip6_t *)rptr; } /* * Find any potentially interesting extension headers * as well as the length of the IPv6 + extension * headers. */ ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); /* Verify if this is a TCP packet */ if (nexthdrp != IPPROTO_TCP) { BUMP_MIB(&ip_mib, tcpInErrs); freemsg(first_mp); return (NULL); } } else { ip_hdr_len = IPV6_HDR_LEN; } } done: if (ipversp != NULL) *ipversp = ipvers; if (ip_hdr_lenp != NULL) *ip_hdr_lenp = ip_hdr_len; if (ippp != NULL) *ippp = ipp; if (ifindexp != NULL) *ifindexp = ifindex; if (mctl_present) { freeb(first_mp); } return (mp); } /* * Handle M_DATA messages from IP. Its called directly from IP via * squeue for AF_INET type sockets fast path. No M_CTL are expected * in this path. * * For everything else (including AF_INET6 sockets with 'tcp_ipversion' * v4 and v6), we are called through tcp_input() and a M_CTL can * be present for options but tcp_find_pktinfo() deals with it. We * only expect M_DATA packets after tcp_find_pktinfo() is done. * * The first argument is always the connp/tcp to which the mp belongs. * There are no exceptions to this rule. The caller has already put * a reference on this connp/tcp and once tcp_rput_data() returns, * the squeue will do the refrele. * * The TH_SYN for the listener directly go to tcp_conn_request via * squeue. * * sqp: NULL = recursive, sqp != NULL means called from squeue */ void tcp_rput_data(void *arg, mblk_t *mp, void *arg2) { int32_t bytes_acked; int32_t gap; mblk_t *mp1; uint_t flags; uint32_t new_swnd = 0; uchar_t *iphdr; uchar_t *rptr; int32_t rgap; uint32_t seg_ack; int seg_len; uint_t ip_hdr_len; uint32_t seg_seq; tcph_t *tcph; int urp; tcp_opt_t tcpopt; uint_t ipvers; ip6_pkt_t ipp; boolean_t ofo_seg = B_FALSE; /* Out of order segment */ uint32_t cwnd; uint32_t add; int npkt; int mss; conn_t *connp = (conn_t *)arg; squeue_t *sqp = (squeue_t *)arg2; tcp_t *tcp = connp->conn_tcp; /* * RST from fused tcp loopback peer should trigger an unfuse. */ if (tcp->tcp_fused) { TCP_STAT(tcp_fusion_aborted); tcp_unfuse(tcp); } iphdr = mp->b_rptr; rptr = mp->b_rptr; ASSERT(OK_32PTR(rptr)); /* * An AF_INET socket is not capable of receiving any pktinfo. Do inline * processing here. For rest call tcp_find_pktinfo to fill up the * necessary information. */ if (IPCL_IS_TCP4(connp)) { ipvers = IPV4_VERSION; ip_hdr_len = IPH_HDR_LENGTH(rptr); } else { mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, NULL, &ipp); if (mp == NULL) { TCP_STAT(tcp_rput_v6_error); return; } iphdr = mp->b_rptr; rptr = mp->b_rptr; } ASSERT(DB_TYPE(mp) == M_DATA); tcph = (tcph_t *)&rptr[ip_hdr_len]; seg_seq = ABE32_TO_U32(tcph->th_seq); seg_ack = ABE32_TO_U32(tcph->th_ack); ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); seg_len = (int)(mp->b_wptr - rptr) - (ip_hdr_len + TCP_HDR_LENGTH(tcph)); if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { do { ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); seg_len += (int)(mp1->b_wptr - mp1->b_rptr); } while ((mp1 = mp1->b_cont) != NULL && mp1->b_datap->db_type == M_DATA); } if (tcp->tcp_state == TCPS_TIME_WAIT) { tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, seg_len, tcph); return; } if (sqp != NULL) { /* * This is the correct place to update tcp_last_recv_time. Note * that it is also updated for tcp structure that belongs to * global and listener queues which do not really need updating. * But that should not cause any harm. And it is updated for * all kinds of incoming segments, not only for data segments. */ tcp->tcp_last_recv_time = lbolt; } flags = (unsigned int)tcph->th_flags[0] & 0xFF; BUMP_LOCAL(tcp->tcp_ibsegs); TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); if ((flags & TH_URG) && sqp != NULL) { /* * TCP can't handle urgent pointers that arrive before * the connection has been accept()ed since it can't * buffer OOB data. Discard segment if this happens. * * Nor can it reassemble urgent pointers, so discard * if it's not the next segment expected. * * Otherwise, collapse chain into one mblk (discard if * that fails). This makes sure the headers, retransmitted * data, and new data all are in the same mblk. */ ASSERT(mp != NULL); if (tcp->tcp_listener || !pullupmsg(mp, -1)) { freemsg(mp); return; } /* Update pointers into message */ iphdr = rptr = mp->b_rptr; tcph = (tcph_t *)&rptr[ip_hdr_len]; if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { /* * Since we can't handle any data with this urgent * pointer that is out of sequence, we expunge * the data. This allows us to still register * the urgent mark and generate the M_PCSIG, * which we can do. */ mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); seg_len = 0; } } switch (tcp->tcp_state) { case TCPS_SYN_SENT: if (flags & TH_ACK) { /* * Note that our stack cannot send data before a * connection is established, therefore the * following check is valid. Otherwise, it has * to be changed. */ if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || SEQ_GT(seg_ack, tcp->tcp_snxt)) { freemsg(mp); if (flags & TH_RST) return; tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", tcp, seg_ack, 0, TH_RST); return; } ASSERT(tcp->tcp_suna + 1 == seg_ack); } if (flags & TH_RST) { freemsg(mp); if (flags & TH_ACK) (void) tcp_clean_death(tcp, ECONNREFUSED, 13); return; } if (!(flags & TH_SYN)) { freemsg(mp); return; } /* Process all TCP options. */ tcp_process_options(tcp, tcph); /* * The following changes our rwnd to be a multiple of the * MIN(peer MSS, our MSS) for performance reason. */ (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, tcp->tcp_mss)); /* Is the other end ECN capable? */ if (tcp->tcp_ecn_ok) { if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { tcp->tcp_ecn_ok = B_FALSE; } } /* * Clear ECN flags because it may interfere with later * processing. */ flags &= ~(TH_ECE|TH_CWR); tcp->tcp_irs = seg_seq; tcp->tcp_rack = seg_seq; tcp->tcp_rnxt = seg_seq + 1; U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); if (!TCP_IS_DETACHED(tcp)) { /* Allocate room for SACK options if needed. */ if (tcp->tcp_snd_sack_ok) { (void) mi_set_sth_wroff(tcp->tcp_rq, tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); } else { (void) mi_set_sth_wroff(tcp->tcp_rq, tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); } } if (flags & TH_ACK) { /* * If we can't get the confirmation upstream, pretend * we didn't even see this one. * * XXX: how can we pretend we didn't see it if we * have updated rnxt et. al. * * For loopback we defer sending up the T_CONN_CON * until after some checks below. */ mp1 = NULL; if (!tcp_conn_con(tcp, iphdr, tcph, mp, tcp->tcp_loopback ? &mp1 : NULL)) { freemsg(mp); return; } /* SYN was acked - making progress */ if (tcp->tcp_ipversion == IPV6_VERSION) tcp->tcp_ip_forward_progress = B_TRUE; /* One for the SYN */ tcp->tcp_suna = tcp->tcp_iss + 1; tcp->tcp_valid_bits &= ~TCP_ISS_VALID; tcp->tcp_state = TCPS_ESTABLISHED; /* * If SYN was retransmitted, need to reset all * retransmission info. This is because this * segment will be treated as a dup ACK. */ if (tcp->tcp_rexmit) { tcp->tcp_rexmit = B_FALSE; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_rexmit_max = tcp->tcp_snxt; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; tcp->tcp_ms_we_have_waited = 0; /* * Set tcp_cwnd back to 1 MSS, per * recommendation from * draft-floyd-incr-init-win-01.txt, * Increasing TCP's Initial Window. */ tcp->tcp_cwnd = tcp->tcp_mss; } tcp->tcp_swl1 = seg_seq; tcp->tcp_swl2 = seg_ack; new_swnd = BE16_TO_U16(tcph->th_win); tcp->tcp_swnd = new_swnd; if (new_swnd > tcp->tcp_max_swnd) tcp->tcp_max_swnd = new_swnd; /* * Always send the three-way handshake ack immediately * in order to make the connection complete as soon as * possible on the accepting host. */ flags |= TH_ACK_NEEDED; /* * Special case for loopback. At this point we have * received SYN-ACK from the remote endpoint. In * order to ensure that both endpoints reach the * fused state prior to any data exchange, the final * ACK needs to be sent before we indicate T_CONN_CON * to the module upstream. */ if (tcp->tcp_loopback) { mblk_t *ack_mp; ASSERT(!tcp->tcp_unfusable); ASSERT(mp1 != NULL); /* * For loopback, we always get a pure SYN-ACK * and only need to send back the final ACK * with no data (this is because the other * tcp is ours and we don't do T/TCP). This * final ACK triggers the passive side to * perform fusion in ESTABLISHED state. */ if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { if (tcp->tcp_ack_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); tcp->tcp_ack_tid = 0; } TCP_RECORD_TRACE(tcp, ack_mp, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, ack_mp); BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcp_mib, tcpOutAck); /* Send up T_CONN_CON */ putnext(tcp->tcp_rq, mp1); freemsg(mp); return; } /* * Forget fusion; we need to handle more * complex cases below. Send the deferred * T_CONN_CON message upstream and proceed * as usual. Mark this tcp as not capable * of fusion. */ TCP_STAT(tcp_fusion_unfusable); tcp->tcp_unfusable = B_TRUE; putnext(tcp->tcp_rq, mp1); } /* * Check to see if there is data to be sent. If * yes, set the transmit flag. Then check to see * if received data processing needs to be done. * If not, go straight to xmit_check. This short * cut is OK as we don't support T/TCP. */ if (tcp->tcp_unsent) flags |= TH_XMIT_NEEDED; if (seg_len == 0 && !(flags & TH_URG)) { freemsg(mp); goto xmit_check; } flags &= ~TH_SYN; seg_seq++; break; } tcp->tcp_state = TCPS_SYN_RCVD; mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); if (mp1) { mblk_setcred(mp1, tcp->tcp_cred); DB_CPID(mp1) = tcp->tcp_cpid; TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, mp1); TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } freemsg(mp); return; case TCPS_SYN_RCVD: if (flags & TH_ACK) { /* * In this state, a SYN|ACK packet is either bogus * because the other side must be ACKing our SYN which * indicates it has seen the ACK for their SYN and * shouldn't retransmit it or we're crossing SYNs * on active open. */ if ((flags & TH_SYN) && !tcp->tcp_active_open) { freemsg(mp); tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", tcp, seg_ack, 0, TH_RST); return; } /* * NOTE: RFC 793 pg. 72 says this should be * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt * but that would mean we have an ack that ignored * our SYN. */ if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || SEQ_GT(seg_ack, tcp->tcp_snxt)) { freemsg(mp); tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", tcp, seg_ack, 0, TH_RST); return; } } break; case TCPS_LISTEN: /* * Only a TLI listener can come through this path when a * acceptor is going back to be a listener and a packet * for the acceptor hits the classifier. For a socket * listener, this can never happen because a listener * can never accept connection on itself and hence a * socket acceptor can not go back to being a listener. */ ASSERT(!TCP_IS_SOCKET(tcp)); /*FALLTHRU*/ case TCPS_CLOSED: case TCPS_BOUND: { conn_t *new_connp; new_connp = ipcl_classify(mp, connp->conn_zoneid); if (new_connp != NULL) { tcp_reinput(new_connp, mp, connp->conn_sqp); return; } /* We failed to classify. For now just drop the packet */ freemsg(mp); return; } case TCPS_IDLE: /* * Handle the case where the tcp_clean_death() has happened * on a connection (application hasn't closed yet) but a packet * was already queued on squeue before tcp_clean_death() * was processed. Calling tcp_clean_death() twice on same * connection can result in weird behaviour. */ freemsg(mp); return; default: break; } /* * Already on the correct queue/perimeter. * If this is a detached connection and not an eager * connection hanging off a listener then new data * (past the FIN) will cause a reset. * We do a special check here where it * is out of the main line, rather than check * if we are detached every time we see new * data down below. */ if (TCP_IS_DETACHED_NONEAGER(tcp) && (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { BUMP_MIB(&tcp_mib, tcpInClosed); TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); freemsg(mp); /* * This could be an SSL closure alert. We're detached so just * acknowledge it this last time. */ if (tcp->tcp_kssl_ctx != NULL) { kssl_release_ctx(tcp->tcp_kssl_ctx); tcp->tcp_kssl_ctx = NULL; tcp->tcp_rnxt += seg_len; U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); flags |= TH_ACK_NEEDED; goto ack_check; } tcp_xmit_ctl("new data when detached", tcp, tcp->tcp_snxt, 0, TH_RST); (void) tcp_clean_death(tcp, EPROTO, 12); return; } mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; new_swnd = BE16_TO_U16(tcph->th_win) << ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); mss = tcp->tcp_mss; if (tcp->tcp_snd_ts_ok) { if (!tcp_paws_check(tcp, tcph, &tcpopt)) { /* * This segment is not acceptable. * Drop it and send back an ACK. */ freemsg(mp); flags |= TH_ACK_NEEDED; goto ack_check; } } else if (tcp->tcp_snd_sack_ok) { ASSERT(tcp->tcp_sack_info != NULL); tcpopt.tcp = tcp; /* * SACK info in already updated in tcp_parse_options. Ignore * all other TCP options... */ (void) tcp_parse_options(tcph, &tcpopt); } try_again:; gap = seg_seq - tcp->tcp_rnxt; rgap = tcp->tcp_rwnd - (gap + seg_len); /* * gap is the amount of sequence space between what we expect to see * and what we got for seg_seq. A positive value for gap means * something got lost. A negative value means we got some old stuff. */ if (gap < 0) { /* Old stuff present. Is the SYN in there? */ if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && (seg_len != 0)) { flags &= ~TH_SYN; seg_seq++; urp--; /* Recompute the gaps after noting the SYN. */ goto try_again; } BUMP_MIB(&tcp_mib, tcpInDataDupSegs); UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, (seg_len > -gap ? -gap : seg_len)); /* Remove the old stuff from seg_len. */ seg_len += gap; /* * Anything left? * Make sure to check for unack'd FIN when rest of data * has been previously ack'd. */ if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { /* * Resets are only valid if they lie within our offered * window. If the RST bit is set, we just ignore this * segment. */ if (flags & TH_RST) { freemsg(mp); return; } /* * The arriving of dup data packets indicate that we * may have postponed an ack for too long, or the other * side's RTT estimate is out of shape. Start acking * more often. */ if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && tcp->tcp_rack_cnt >= 1 && tcp->tcp_rack_abs_max > 2) { tcp->tcp_rack_abs_max--; } tcp->tcp_rack_cur_max = 1; /* * This segment is "unacceptable". None of its * sequence space lies within our advertized window. * * Adjust seg_len to the original value for tracing. */ seg_len -= gap; if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: unacceptable, gap %d, rgap %d, " "flags 0x%x, seg_seq %u, seg_ack %u, " "seg_len %d, rnxt %u, snxt %u, %s", gap, rgap, flags, seg_seq, seg_ack, seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); } /* * Arrange to send an ACK in response to the * unacceptable segment per RFC 793 page 69. There * is only one small difference between ours and the * acceptability test in the RFC - we accept ACK-only * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK * will be generated. * * Note that we have to ACK an ACK-only packet at least * for stacks that send 0-length keep-alives with * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, * section 4.2.3.6. As long as we don't ever generate * an unacceptable packet in response to an incoming * packet that is unacceptable, it should not cause * "ACK wars". */ flags |= TH_ACK_NEEDED; /* * Continue processing this segment in order to use the * ACK information it contains, but skip all other * sequence-number processing. Processing the ACK * information is necessary in order to * re-synchronize connections that may have lost * synchronization. * * We clear seg_len and flag fields related to * sequence number processing as they are not * to be trusted for an unacceptable segment. */ seg_len = 0; flags &= ~(TH_SYN | TH_FIN | TH_URG); goto process_ack; } /* Fix seg_seq, and chew the gap off the front. */ seg_seq = tcp->tcp_rnxt; urp += gap; do { mblk_t *mp2; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)UINT_MAX); gap += (uint_t)(mp->b_wptr - mp->b_rptr); if (gap > 0) { mp->b_rptr = mp->b_wptr - gap; break; } mp2 = mp; mp = mp->b_cont; freeb(mp2); } while (gap < 0); /* * If the urgent data has already been acknowledged, we * should ignore TH_URG below */ if (urp < 0) flags &= ~TH_URG; } /* * rgap is the amount of stuff received out of window. A negative * value is the amount out of window. */ if (rgap < 0) { mblk_t *mp2; if (tcp->tcp_rwnd == 0) { BUMP_MIB(&tcp_mib, tcpInWinProbe); } else { BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); } /* * seg_len does not include the FIN, so if more than * just the FIN is out of window, we act like we don't * see it. (If just the FIN is out of window, rgap * will be zero and we will go ahead and acknowledge * the FIN.) */ flags &= ~TH_FIN; /* Fix seg_len and make sure there is something left. */ seg_len += rgap; if (seg_len <= 0) { /* * Resets are only valid if they lie within our offered * window. If the RST bit is set, we just ignore this * segment. */ if (flags & TH_RST) { freemsg(mp); return; } /* Per RFC 793, we need to send back an ACK. */ flags |= TH_ACK_NEEDED; /* * Send SIGURG as soon as possible i.e. even * if the TH_URG was delivered in a window probe * packet (which will be unacceptable). * * We generate a signal if none has been generated * for this connection or if this is a new urgent * byte. Also send a zero-length "unmarked" message * to inform SIOCATMARK that this is not the mark. * * tcp_urp_last_valid is cleared when the T_exdata_ind * is sent up. This plus the check for old data * (gap >= 0) handles the wraparound of the sequence * number space without having to always track the * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks * this max in its rcv_up variable). * * This prevents duplicate SIGURGS due to a "late" * zero-window probe when the T_EXDATA_IND has already * been sent up. */ if ((flags & TH_URG) && (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, tcp->tcp_urp_last))) { mp1 = allocb(0, BPRI_MED); if (mp1 == NULL) { freemsg(mp); return; } if (!TCP_IS_DETACHED(tcp) && !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { /* Try again on the rexmit. */ freemsg(mp1); freemsg(mp); return; } /* * If the next byte would be the mark * then mark with MARKNEXT else mark * with NOTMARKNEXT. */ if (gap == 0 && urp == 0) mp1->b_flag |= MSGMARKNEXT; else mp1->b_flag |= MSGNOTMARKNEXT; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = mp1; flags |= TH_SEND_URP_MARK; tcp->tcp_urp_last_valid = B_TRUE; tcp->tcp_urp_last = urp + seg_seq; } /* * If this is a zero window probe, continue to * process the ACK part. But we need to set seg_len * to 0 to avoid data processing. Otherwise just * drop the segment and send back an ACK. */ if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { flags &= ~(TH_SYN | TH_URG); seg_len = 0; goto process_ack; } else { freemsg(mp); goto ack_check; } } /* Pitch out of window stuff off the end. */ rgap = seg_len; mp2 = mp; do { ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= (uintptr_t)INT_MAX); rgap -= (int)(mp2->b_wptr - mp2->b_rptr); if (rgap < 0) { mp2->b_wptr += rgap; if ((mp1 = mp2->b_cont) != NULL) { mp2->b_cont = NULL; freemsg(mp1); } break; } } while ((mp2 = mp2->b_cont) != NULL); } ok:; /* * TCP should check ECN info for segments inside the window only. * Therefore the check should be done here. */ if (tcp->tcp_ecn_ok) { if (flags & TH_CWR) { tcp->tcp_ecn_echo_on = B_FALSE; } /* * Note that both ECN_CE and CWR can be set in the * same segment. In this case, we once again turn * on ECN_ECHO. */ if (tcp->tcp_ipversion == IPV4_VERSION) { uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { tcp->tcp_ecn_echo_on = B_TRUE; } } else { uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; if ((vcf & htonl(IPH_ECN_CE << 20)) == htonl(IPH_ECN_CE << 20)) { tcp->tcp_ecn_echo_on = B_TRUE; } } } /* * Check whether we can update tcp_ts_recent. This test is * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP * Extensions for High Performance: An Update", Internet Draft. */ if (tcp->tcp_snd_ts_ok && TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && SEQ_LEQ(seg_seq, tcp->tcp_rack)) { tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; tcp->tcp_last_rcv_lbolt = lbolt64; } if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { /* * FIN in an out of order segment. We record this in * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. * Clear the FIN so that any check on FIN flag will fail. * Remember that FIN also counts in the sequence number * space. So we need to ack out of order FIN only segments. */ if (flags & TH_FIN) { tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; tcp->tcp_ofo_fin_seq = seg_seq + seg_len; flags &= ~TH_FIN; flags |= TH_ACK_NEEDED; } if (seg_len > 0) { /* Fill in the SACK blk list. */ if (tcp->tcp_snd_sack_ok) { ASSERT(tcp->tcp_sack_info != NULL); tcp_sack_insert(tcp->tcp_sack_list, seg_seq, seg_seq + seg_len, &(tcp->tcp_num_sack_blk)); } /* * Attempt reassembly and see if we have something * ready to go. */ mp = tcp_reass(tcp, mp, seg_seq); /* Always ack out of order packets */ flags |= TH_ACK_NEEDED | TH_PUSH; if (mp) { ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); seg_len = mp->b_cont ? msgdsize(mp) : (int)(mp->b_wptr - mp->b_rptr); seg_seq = tcp->tcp_rnxt; /* * A gap is filled and the seq num and len * of the gap match that of a previously * received FIN, put the FIN flag back in. */ if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { flags |= TH_FIN; tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; } } else { /* * Keep going even with NULL mp. * There may be a useful ACK or something else * we don't want to miss. * * But TCP should not perform fast retransmit * because of the ack number. TCP uses * seg_len == 0 to determine if it is a pure * ACK. And this is not a pure ACK. */ seg_len = 0; ofo_seg = B_TRUE; } } } else if (seg_len > 0) { BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); /* * If an out of order FIN was received before, and the seq * num and len of the new segment match that of the FIN, * put the FIN flag back in. */ if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { flags |= TH_FIN; tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; } } if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { if (flags & TH_RST) { freemsg(mp); switch (tcp->tcp_state) { case TCPS_SYN_RCVD: (void) tcp_clean_death(tcp, ECONNREFUSED, 14); break; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: (void) tcp_clean_death(tcp, ECONNRESET, 15); break; case TCPS_CLOSING: case TCPS_LAST_ACK: (void) tcp_clean_death(tcp, 0, 16); break; default: ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); (void) tcp_clean_death(tcp, ENXIO, 17); break; } return; } if (flags & TH_SYN) { /* * See RFC 793, Page 71 * * The seq number must be in the window as it should * be "fixed" above. If it is outside window, it should * be already rejected. Note that we allow seg_seq to be * rnxt + rwnd because we want to accept 0 window probe. */ ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); freemsg(mp); /* * If the ACK flag is not set, just use our snxt as the * seq number of the RST segment. */ if (!(flags & TH_ACK)) { seg_ack = tcp->tcp_snxt; } tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, TH_RST|TH_ACK); ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); (void) tcp_clean_death(tcp, ECONNRESET, 18); return; } /* * urp could be -1 when the urp field in the packet is 0 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent * byte was at seg_seq - 1, in which case we ignore the urgent flag. */ if (flags & TH_URG && urp >= 0) { if (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { /* * If we haven't generated the signal yet for this * urgent pointer value, do it now. Also, send up a * zero-length M_DATA indicating whether or not this is * the mark. The latter is not needed when a * T_EXDATA_IND is sent up. However, if there are * allocation failures this code relies on the sender * retransmitting and the socket code for determining * the mark should not block waiting for the peer to * transmit. Thus, for simplicity we always send up the * mark indication. */ mp1 = allocb(0, BPRI_MED); if (mp1 == NULL) { freemsg(mp); return; } if (!TCP_IS_DETACHED(tcp) && !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { /* Try again on the rexmit. */ freemsg(mp1); freemsg(mp); return; } /* * Mark with NOTMARKNEXT for now. * The code below will change this to MARKNEXT * if we are at the mark. * * If there are allocation failures (e.g. in dupmsg * below) the next time tcp_rput_data sees the urgent * segment it will send up the MSG*MARKNEXT message. */ mp1->b_flag |= MSGNOTMARKNEXT; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = mp1; flags |= TH_SEND_URP_MARK; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sent M_PCSIG 2 seq %x urp %x " "last %x, %s", seg_seq, urp, tcp->tcp_urp_last, tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ tcp->tcp_urp_last_valid = B_TRUE; tcp->tcp_urp_last = urp + seg_seq; } else if (tcp->tcp_urp_mark_mp != NULL) { /* * An allocation failure prevented the previous * tcp_rput_data from sending up the allocated * MSG*MARKNEXT message - send it up this time * around. */ flags |= TH_SEND_URP_MARK; } /* * If the urgent byte is in this segment, make sure that it is * all by itself. This makes it much easier to deal with the * possibility of an allocation failure on the T_exdata_ind. * Note that seg_len is the number of bytes in the segment, and * urp is the offset into the segment of the urgent byte. * urp < seg_len means that the urgent byte is in this segment. */ if (urp < seg_len) { if (seg_len != 1) { uint32_t tmp_rnxt; /* * Break it up and feed it back in. * Re-attach the IP header. */ mp->b_rptr = iphdr; if (urp > 0) { /* * There is stuff before the urgent * byte. */ mp1 = dupmsg(mp); if (!mp1) { /* * Trim from urgent byte on. * The rest will come back. */ (void) adjmsg(mp, urp - seg_len); tcp_rput_data(connp, mp, NULL); return; } (void) adjmsg(mp1, urp - seg_len); /* Feed this piece back in. */ tmp_rnxt = tcp->tcp_rnxt; tcp_rput_data(connp, mp1, NULL); /* * If the data passed back in was not * processed (ie: bad ACK) sending * the remainder back in will cause a * loop. In this case, drop the * packet and let the sender try * sending a good packet. */ if (tmp_rnxt == tcp->tcp_rnxt) { freemsg(mp); return; } } if (urp != seg_len - 1) { uint32_t tmp_rnxt; /* * There is stuff after the urgent * byte. */ mp1 = dupmsg(mp); if (!mp1) { /* * Trim everything beyond the * urgent byte. The rest will * come back. */ (void) adjmsg(mp, urp + 1 - seg_len); tcp_rput_data(connp, mp, NULL); return; } (void) adjmsg(mp1, urp + 1 - seg_len); tmp_rnxt = tcp->tcp_rnxt; tcp_rput_data(connp, mp1, NULL); /* * If the data passed back in was not * processed (ie: bad ACK) sending * the remainder back in will cause a * loop. In this case, drop the * packet and let the sender try * sending a good packet. */ if (tmp_rnxt == tcp->tcp_rnxt) { freemsg(mp); return; } } tcp_rput_data(connp, mp, NULL); return; } /* * This segment contains only the urgent byte. We * have to allocate the T_exdata_ind, if we can. */ if (!tcp->tcp_urp_mp) { struct T_exdata_ind *tei; mp1 = allocb(sizeof (struct T_exdata_ind), BPRI_MED); if (!mp1) { /* * Sigh... It'll be back. * Generate any MSG*MARK message now. */ freemsg(mp); seg_len = 0; if (flags & TH_SEND_URP_MARK) { ASSERT(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp->b_flag &= ~MSGNOTMARKNEXT; tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; } goto ack_check; } mp1->b_datap->db_type = M_PROTO; tei = (struct T_exdata_ind *)mp1->b_rptr; tei->PRIM_type = T_EXDATA_IND; tei->MORE_flag = 0; mp1->b_wptr = (uchar_t *)&tei[1]; tcp->tcp_urp_mp = mp1; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: allocated exdata_ind %s", tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ /* * There is no need to send a separate MSG*MARK * message since the T_EXDATA_IND will be sent * now. */ flags &= ~TH_SEND_URP_MARK; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = NULL; } /* * Now we are all set. On the next putnext upstream, * tcp_urp_mp will be non-NULL and will get prepended * to what has to be this piece containing the urgent * byte. If for any reason we abort this segment below, * if it comes back, we will have this ready, or it * will get blown off in close. */ } else if (urp == seg_len) { /* * The urgent byte is the next byte after this sequence * number. If there is data it is marked with * MSGMARKNEXT and any tcp_urp_mark_mp is discarded * since it is not needed. Otherwise, if the code * above just allocated a zero-length tcp_urp_mark_mp * message, that message is tagged with MSGMARKNEXT. * Sending up these MSGMARKNEXT messages makes * SIOCATMARK work correctly even though * the T_EXDATA_IND will not be sent up until the * urgent byte arrives. */ if (seg_len != 0) { flags |= TH_MARKNEXT_NEEDED; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = NULL; flags &= ~TH_SEND_URP_MARK; } else if (tcp->tcp_urp_mark_mp != NULL) { flags |= TH_SEND_URP_MARK; tcp->tcp_urp_mark_mp->b_flag &= ~MSGNOTMARKNEXT; tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; } #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: AT MARK, len %d, flags 0x%x, %s", seg_len, flags, tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ } else { /* Data left until we hit mark */ #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: URP %d bytes left, %s", urp - seg_len, tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ } } process_ack: if (!(flags & TH_ACK)) { freemsg(mp); goto xmit_check; } } bytes_acked = (int)(seg_ack - tcp->tcp_suna); if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) tcp->tcp_ip_forward_progress = B_TRUE; if (tcp->tcp_state == TCPS_SYN_RCVD) { if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { /* 3-way handshake complete - pass up the T_CONN_IND */ tcp_t *listener = tcp->tcp_listener; mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; tcp->tcp_conn.tcp_eager_conn_ind = NULL; /* * We are here means eager is fine but it can * get a TH_RST at any point between now and till * accept completes and disappear. We need to * ensure that reference to eager is valid after * we get out of eager's perimeter. So we do * an extra refhold. */ CONN_INC_REF(connp); /* * The listener also exists because of the refhold * done in tcp_conn_request. Its possible that it * might have closed. We will check that once we * get inside listeners context. */ CONN_INC_REF(listener->tcp_connp); if (listener->tcp_connp->conn_sqp == connp->conn_sqp) { tcp_send_conn_ind(listener->tcp_connp, mp, listener->tcp_connp->conn_sqp); CONN_DEC_REF(listener->tcp_connp); } else if (!tcp->tcp_loopback) { squeue_fill(listener->tcp_connp->conn_sqp, mp, tcp_send_conn_ind, listener->tcp_connp, SQTAG_TCP_CONN_IND); } else { squeue_enter(listener->tcp_connp->conn_sqp, mp, tcp_send_conn_ind, listener->tcp_connp, SQTAG_TCP_CONN_IND); } } if (tcp->tcp_active_open) { /* * We are seeing the final ack in the three way * hand shake of a active open'ed connection * so we must send up a T_CONN_CON */ if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { freemsg(mp); return; } /* * Don't fuse the loopback endpoints for * simultaneous active opens. */ if (tcp->tcp_loopback) { TCP_STAT(tcp_fusion_unfusable); tcp->tcp_unfusable = B_TRUE; } } tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ bytes_acked--; /* SYN was acked - making progress */ if (tcp->tcp_ipversion == IPV6_VERSION) tcp->tcp_ip_forward_progress = B_TRUE; /* * If SYN was retransmitted, need to reset all * retransmission info as this segment will be * treated as a dup ACK. */ if (tcp->tcp_rexmit) { tcp->tcp_rexmit = B_FALSE; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_rexmit_max = tcp->tcp_snxt; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; tcp->tcp_ms_we_have_waited = 0; tcp->tcp_cwnd = mss; } /* * We set the send window to zero here. * This is needed if there is data to be * processed already on the queue. * Later (at swnd_update label), the * "new_swnd > tcp_swnd" condition is satisfied * the XMIT_NEEDED flag is set in the current * (SYN_RCVD) state. This ensures tcp_wput_data() is * called if there is already data on queue in * this state. */ tcp->tcp_swnd = 0; if (new_swnd > tcp->tcp_max_swnd) tcp->tcp_max_swnd = new_swnd; tcp->tcp_swl1 = seg_seq; tcp->tcp_swl2 = seg_ack; tcp->tcp_state = TCPS_ESTABLISHED; tcp->tcp_valid_bits &= ~TCP_ISS_VALID; /* Fuse when both sides are in ESTABLISHED state */ if (tcp->tcp_loopback && do_tcp_fusion) tcp_fuse(tcp, iphdr, tcph); } /* This code follows 4.4BSD-Lite2 mostly. */ if (bytes_acked < 0) goto est; /* * If TCP is ECN capable and the congestion experience bit is * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be * done once per window (or more loosely, per RTT). */ if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) tcp->tcp_cwr = B_FALSE; if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { if (!tcp->tcp_cwr) { npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; tcp->tcp_cwnd = npkt * mss; /* * If the cwnd is 0, use the timer to clock out * new segments. This is required by the ECN spec. */ if (npkt == 0) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); /* * This makes sure that when the ACK comes * back, we will increase tcp_cwnd by 1 MSS. */ tcp->tcp_cwnd_cnt = 0; } tcp->tcp_cwr = B_TRUE; /* * This marks the end of the current window of in * flight data. That is why we don't use * tcp_suna + tcp_swnd. Only data in flight can * provide ECN info. */ tcp->tcp_cwr_snd_max = tcp->tcp_snxt; tcp->tcp_ecn_cwr_sent = B_FALSE; } } mp1 = tcp->tcp_xmit_head; if (bytes_acked == 0) { if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { int dupack_cnt; BUMP_MIB(&tcp_mib, tcpInDupAck); /* * Fast retransmit. When we have seen exactly three * identical ACKs while we have unacked data * outstanding we take it as a hint that our peer * dropped something. * * If TCP is retransmitting, don't do fast retransmit. */ if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && ! tcp->tcp_rexmit) { /* Do Limited Transmit */ if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < tcp_dupack_fast_retransmit) { /* * RFC 3042 * * What we need to do is temporarily * increase tcp_cwnd so that new * data can be sent if it is allowed * by the receive window (tcp_rwnd). * tcp_wput_data() will take care of * the rest. * * If the connection is SACK capable, * only do limited xmit when there * is SACK info. * * Note how tcp_cwnd is incremented. * The first dup ACK will increase * it by 1 MSS. The second dup ACK * will increase it by 2 MSS. This * means that only 1 new segment will * be sent for each dup ACK. */ if (tcp->tcp_unsent > 0 && (!tcp->tcp_snd_sack_ok || (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL))) { tcp->tcp_cwnd += mss << (tcp->tcp_dupack_cnt - 1); flags |= TH_LIMIT_XMIT; } } else if (dupack_cnt == tcp_dupack_fast_retransmit) { /* * If we have reduced tcp_ssthresh * because of ECN, do not reduce it again * unless it is already one window of data * away. After one window of data, tcp_cwr * should then be cleared. Note that * for non ECN capable connection, tcp_cwr * should always be false. * * Adjust cwnd since the duplicate * ack indicates that a packet was * dropped (due to congestion.) */ if (!tcp->tcp_cwr) { npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; tcp->tcp_cwnd = (npkt + tcp->tcp_dupack_cnt) * mss; } if (tcp->tcp_ecn_ok) { tcp->tcp_cwr = B_TRUE; tcp->tcp_cwr_snd_max = tcp->tcp_snxt; tcp->tcp_ecn_cwr_sent = B_FALSE; } /* * We do Hoe's algorithm. Refer to her * paper "Improving the Start-up Behavior * of a Congestion Control Scheme for TCP," * appeared in SIGCOMM'96. * * Save highest seq no we have sent so far. * Be careful about the invisible FIN byte. */ if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) { tcp->tcp_rexmit_max = tcp->tcp_fss; } else { tcp->tcp_rexmit_max = tcp->tcp_snxt; } /* * Do not allow bursty traffic during. * fast recovery. Refer to Fall and Floyd's * paper "Simulation-based Comparisons of * Tahoe, Reno and SACK TCP" (in CCR?) * This is a best current practise. */ tcp->tcp_snd_burst = TCP_CWND_SS; /* * For SACK: * Calculate tcp_pipe, which is the * estimated number of bytes in * network. * * tcp_fack is the highest sack'ed seq num * TCP has received. * * tcp_pipe is explained in the above quoted * Fall and Floyd's paper. tcp_fack is * explained in Mathis and Mahdavi's * "Forward Acknowledgment: Refining TCP * Congestion Control" in SIGCOMM '96. */ if (tcp->tcp_snd_sack_ok) { ASSERT(tcp->tcp_sack_info != NULL); if (tcp->tcp_notsack_list != NULL) { tcp->tcp_pipe = tcp->tcp_snxt - tcp->tcp_fack; tcp->tcp_sack_snxt = seg_ack; flags |= TH_NEED_SACK_REXMIT; } else { /* * Always initialize tcp_pipe * even though we don't have * any SACK info. If later * we get SACK info and * tcp_pipe is not initialized, * funny things will happen. */ tcp->tcp_pipe = tcp->tcp_cwnd_ssthresh; } } else { flags |= TH_REXMIT_NEEDED; } /* tcp_snd_sack_ok */ } else { /* * Here we perform congestion * avoidance, but NOT slow start. * This is known as the Fast * Recovery Algorithm. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { flags |= TH_NEED_SACK_REXMIT; tcp->tcp_pipe -= mss; if (tcp->tcp_pipe < 0) tcp->tcp_pipe = 0; } else { /* * We know that one more packet has * left the pipe thus we can update * cwnd. */ cwnd = tcp->tcp_cwnd + mss; if (cwnd > tcp->tcp_cwnd_max) cwnd = tcp->tcp_cwnd_max; tcp->tcp_cwnd = cwnd; if (tcp->tcp_unsent > 0) flags |= TH_XMIT_NEEDED; } } } } else if (tcp->tcp_zero_win_probe) { /* * If the window has opened, need to arrange * to send additional data. */ if (new_swnd != 0) { /* tcp_suna != tcp_snxt */ /* Packet contains a window update */ BUMP_MIB(&tcp_mib, tcpInWinUpdate); tcp->tcp_zero_win_probe = 0; tcp->tcp_timer_backoff = 0; tcp->tcp_ms_we_have_waited = 0; /* * Transmit starting with tcp_suna since * the one byte probe is not ack'ed. * If TCP has sent more than one identical * probe, tcp_rexmit will be set. That means * tcp_ss_rexmit() will send out the one * byte along with new data. Otherwise, * fake the retransmission. */ flags |= TH_XMIT_NEEDED; if (!tcp->tcp_rexmit) { tcp->tcp_rexmit = B_TRUE; tcp->tcp_dupack_cnt = 0; tcp->tcp_rexmit_nxt = tcp->tcp_suna; tcp->tcp_rexmit_max = tcp->tcp_suna + 1; } } } goto swnd_update; } /* * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. * If the ACK value acks something that we have not yet sent, it might * be an old duplicate segment. Send an ACK to re-synchronize the * other side. * Note: reset in response to unacceptable ACK in SYN_RECEIVE * state is handled above, so we can always just drop the segment and * send an ACK here. * * Should we send ACKs in response to ACK only segments? */ if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { BUMP_MIB(&tcp_mib, tcpInAckUnsent); /* drop the received segment */ freemsg(mp); /* * Send back an ACK. If tcp_drop_ack_unsent_cnt is * greater than 0, check if the number of such * bogus ACks is greater than that count. If yes, * don't send back any ACK. This prevents TCP from * getting into an ACK storm if somehow an attacker * successfully spoofs an acceptable segment to our * peer. */ if (tcp_drop_ack_unsent_cnt > 0 && ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { TCP_STAT(tcp_in_ack_unsent_drop); return; } mp = tcp_ack_mp(tcp); if (mp != NULL) { TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcp_mib, tcpOutAck); tcp_send_data(tcp, tcp->tcp_wq, mp); } return; } /* * TCP gets a new ACK, update the notsack'ed list to delete those * blocks that are covered by this ACK. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); } /* * If we got an ACK after fast retransmit, check to see * if it is a partial ACK. If it is not and the congestion * window was inflated to account for the other side's * cached packets, retract it. If it is, do Hoe's algorithm. */ if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { ASSERT(tcp->tcp_rexmit == B_FALSE); if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { tcp->tcp_dupack_cnt = 0; /* * Restore the orig tcp_cwnd_ssthresh after * fast retransmit phase. */ if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; } tcp->tcp_rexmit_max = seg_ack; tcp->tcp_cwnd_cnt = 0; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; /* * Remove all notsack info to avoid confusion with * the next fast retrasnmit/recovery phase. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); } } else { if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { flags |= TH_NEED_SACK_REXMIT; tcp->tcp_pipe -= mss; if (tcp->tcp_pipe < 0) tcp->tcp_pipe = 0; } else { /* * Hoe's algorithm: * * Retransmit the unack'ed segment and * restart fast recovery. Note that we * need to scale back tcp_cwnd to the * original value when we started fast * recovery. This is to prevent overly * aggressive behaviour in sending new * segments. */ tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + tcp_dupack_fast_retransmit * mss; tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; flags |= TH_REXMIT_NEEDED; } } } else { tcp->tcp_dupack_cnt = 0; if (tcp->tcp_rexmit) { /* * TCP is retranmitting. If the ACK ack's all * outstanding data, update tcp_rexmit_max and * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt * to the correct value. * * Note that SEQ_LEQ() is used. This is to avoid * unnecessary fast retransmit caused by dup ACKs * received when TCP does slow start retransmission * after a time out. During this phase, TCP may * send out segments which are already received. * This causes dup ACKs to be sent back. */ if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { tcp->tcp_rexmit_nxt = seg_ack; } if (seg_ack != tcp->tcp_rexmit_max) { flags |= TH_XMIT_NEEDED; } } else { tcp->tcp_rexmit = B_FALSE; tcp->tcp_xmit_zc_clean = B_FALSE; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; } tcp->tcp_ms_we_have_waited = 0; } } BUMP_MIB(&tcp_mib, tcpInAckSegs); UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); tcp->tcp_suna = seg_ack; if (tcp->tcp_zero_win_probe != 0) { tcp->tcp_zero_win_probe = 0; tcp->tcp_timer_backoff = 0; } /* * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. * Note that it cannot be the SYN being ack'ed. The code flow * will not reach here. */ if (mp1 == NULL) { goto fin_acked; } /* * Update the congestion window. * * If TCP is not ECN capable or TCP is ECN capable but the * congestion experience bit is not set, increase the tcp_cwnd as * usual. */ if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { cwnd = tcp->tcp_cwnd; add = mss; if (cwnd >= tcp->tcp_cwnd_ssthresh) { /* * This is to prevent an increase of less than 1 MSS of * tcp_cwnd. With partial increase, tcp_wput_data() * may send out tinygrams in order to preserve mblk * boundaries. * * By initializing tcp_cwnd_cnt to new tcp_cwnd and * decrementing it by 1 MSS for every ACKs, tcp_cwnd is * increased by 1 MSS for every RTTs. */ if (tcp->tcp_cwnd_cnt <= 0) { tcp->tcp_cwnd_cnt = cwnd + add; } else { tcp->tcp_cwnd_cnt -= add; add = 0; } } tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); } /* See if the latest urgent data has been acknowledged */ if ((tcp->tcp_valid_bits & TCP_URG_VALID) && SEQ_GT(seg_ack, tcp->tcp_urg)) tcp->tcp_valid_bits &= ~TCP_URG_VALID; /* Can we update the RTT estimates? */ if (tcp->tcp_snd_ts_ok) { /* Ignore zero timestamp echo-reply. */ if (tcpopt.tcp_opt_ts_ecr != 0) { tcp_set_rto(tcp, (int32_t)lbolt - (int32_t)tcpopt.tcp_opt_ts_ecr); } /* If needed, restart the timer. */ if (tcp->tcp_set_timer == 1) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); tcp->tcp_set_timer = 0; } /* * Update tcp_csuna in case the other side stops sending * us timestamps. */ tcp->tcp_csuna = tcp->tcp_snxt; } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { /* * An ACK sequence we haven't seen before, so get the RTT * and update the RTO. But first check if the timestamp is * valid to use. */ if ((mp1->b_next != NULL) && SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) tcp_set_rto(tcp, (int32_t)lbolt - (int32_t)(intptr_t)mp1->b_prev); else BUMP_MIB(&tcp_mib, tcpRttNoUpdate); /* Remeber the last sequence to be ACKed */ tcp->tcp_csuna = seg_ack; if (tcp->tcp_set_timer == 1) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); tcp->tcp_set_timer = 0; } } else { BUMP_MIB(&tcp_mib, tcpRttNoUpdate); } /* Eat acknowledged bytes off the xmit queue. */ for (;;) { mblk_t *mp2; uchar_t *wptr; wptr = mp1->b_wptr; ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); bytes_acked -= (int)(wptr - mp1->b_rptr); if (bytes_acked < 0) { mp1->b_rptr = wptr + bytes_acked; /* * Set a new timestamp if all the bytes timed by the * old timestamp have been ack'ed. */ if (SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) { mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; mp1->b_next = NULL; } break; } mp1->b_next = NULL; mp1->b_prev = NULL; mp2 = mp1; mp1 = mp1->b_cont; /* * This notification is required for some zero-copy * clients to maintain a copy semantic. After the data * is ack'ed, client is safe to modify or reuse the buffer. */ if (tcp->tcp_snd_zcopy_aware && (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) tcp_zcopy_notify(tcp); freeb(mp2); if (bytes_acked == 0) { if (mp1 == NULL) { /* Everything is ack'ed, clear the tail. */ tcp->tcp_xmit_tail = NULL; /* * Cancel the timer unless we are still * waiting for an ACK for the FIN packet. */ if (tcp->tcp_timer_tid != 0 && tcp->tcp_snxt == tcp->tcp_suna) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); tcp->tcp_timer_tid = 0; } goto pre_swnd_update; } if (mp2 != tcp->tcp_xmit_tail) break; tcp->tcp_xmit_tail = mp1; ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - mp1->b_rptr); break; } if (mp1 == NULL) { /* * More was acked but there is nothing more * outstanding. This means that the FIN was * just acked or that we're talking to a clown. */ fin_acked: ASSERT(tcp->tcp_fin_sent); tcp->tcp_xmit_tail = NULL; if (tcp->tcp_fin_sent) { /* FIN was acked - making progress */ if (tcp->tcp_ipversion == IPV6_VERSION && !tcp->tcp_fin_acked) tcp->tcp_ip_forward_progress = B_TRUE; tcp->tcp_fin_acked = B_TRUE; if (tcp->tcp_linger_tid != 0 && TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { tcp_stop_lingering(tcp); } } else { /* * We should never get here because * we have already checked that the * number of bytes ack'ed should be * smaller than or equal to what we * have sent so far (it is the * acceptability check of the ACK). * We can only get here if the send * queue is corrupted. * * Terminate the connection and * panic the system. It is better * for us to panic instead of * continuing to avoid other disaster. */ tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_RST|TH_ACK); panic("Memory corruption " "detected for connection %s.", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); /*NOTREACHED*/ } goto pre_swnd_update; } ASSERT(mp2 != tcp->tcp_xmit_tail); } if (tcp->tcp_unsent) { flags |= TH_XMIT_NEEDED; } pre_swnd_update: tcp->tcp_xmit_head = mp1; swnd_update: /* * The following check is different from most other implementations. * For bi-directional transfer, when segments are dropped, the * "normal" check will not accept a window update in those * retransmitted segemnts. Failing to do that, TCP may send out * segments which are outside receiver's window. As TCP accepts * the ack in those retransmitted segments, if the window update in * the same segment is not accepted, TCP will incorrectly calculates * that it can send more segments. This can create a deadlock * with the receiver if its window becomes zero. */ if (SEQ_LT(tcp->tcp_swl2, seg_ack) || SEQ_LT(tcp->tcp_swl1, seg_seq) || (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { /* * The criteria for update is: * * 1. the segment acknowledges some data. Or * 2. the segment is new, i.e. it has a higher seq num. Or * 3. the segment is not old and the advertised window is * larger than the previous advertised window. */ if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) flags |= TH_XMIT_NEEDED; tcp->tcp_swnd = new_swnd; if (new_swnd > tcp->tcp_max_swnd) tcp->tcp_max_swnd = new_swnd; tcp->tcp_swl1 = seg_seq; tcp->tcp_swl2 = seg_ack; } est: if (tcp->tcp_state > TCPS_ESTABLISHED) { switch (tcp->tcp_state) { case TCPS_FIN_WAIT_1: if (tcp->tcp_fin_acked) { tcp->tcp_state = TCPS_FIN_WAIT_2; /* * We implement the non-standard BSD/SunOS * FIN_WAIT_2 flushing algorithm. * If there is no user attached to this * TCP endpoint, then this TCP struct * could hang around forever in FIN_WAIT_2 * state if the peer forgets to send us * a FIN. To prevent this, we wait only * 2*MSL (a convenient time value) for * the FIN to arrive. If it doesn't show up, * we flush the TCP endpoint. This algorithm, * though a violation of RFC-793, has worked * for over 10 years in BSD systems. * Note: SunOS 4.x waits 675 seconds before * flushing the FIN_WAIT_2 connection. */ TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); } break; case TCPS_FIN_WAIT_2: break; /* Shutdown hook? */ case TCPS_LAST_ACK: freemsg(mp); if (tcp->tcp_fin_acked) { (void) tcp_clean_death(tcp, 0, 19); return; } goto xmit_check; case TCPS_CLOSING: if (tcp->tcp_fin_acked) { tcp->tcp_state = TCPS_TIME_WAIT; if (!TCP_IS_DETACHED(tcp)) { TCP_TIMER_RESTART(tcp, tcp_time_wait_interval); } else { tcp_time_wait_append(tcp); TCP_DBGSTAT(tcp_rput_time_wait); } } /*FALLTHRU*/ case TCPS_CLOSE_WAIT: freemsg(mp); goto xmit_check; default: ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); break; } } if (flags & TH_FIN) { /* Make sure we ack the fin */ flags |= TH_ACK_NEEDED; if (!tcp->tcp_fin_rcvd) { tcp->tcp_fin_rcvd = B_TRUE; tcp->tcp_rnxt++; tcph = tcp->tcp_tcph; U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); /* * Generate the ordrel_ind at the end unless we * are an eager guy. * In the eager case tcp_rsrv will do this when run * after tcp_accept is done. */ if (tcp->tcp_listener == NULL && !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) flags |= TH_ORDREL_NEEDED; switch (tcp->tcp_state) { case TCPS_SYN_RCVD: case TCPS_ESTABLISHED: tcp->tcp_state = TCPS_CLOSE_WAIT; /* Keepalive? */ break; case TCPS_FIN_WAIT_1: if (!tcp->tcp_fin_acked) { tcp->tcp_state = TCPS_CLOSING; break; } /* FALLTHRU */ case TCPS_FIN_WAIT_2: tcp->tcp_state = TCPS_TIME_WAIT; if (!TCP_IS_DETACHED(tcp)) { TCP_TIMER_RESTART(tcp, tcp_time_wait_interval); } else { tcp_time_wait_append(tcp); TCP_DBGSTAT(tcp_rput_time_wait); } if (seg_len) { /* * implies data piggybacked on FIN. * break to handle data. */ break; } freemsg(mp); goto ack_check; } } } if (mp == NULL) goto xmit_check; if (seg_len == 0) { freemsg(mp); goto xmit_check; } if (mp->b_rptr == mp->b_wptr) { /* * The header has been consumed, so we remove the * zero-length mblk here. */ mp1 = mp; mp = mp->b_cont; freeb(mp1); } tcph = tcp->tcp_tcph; tcp->tcp_rack_cnt++; { uint32_t cur_max; cur_max = tcp->tcp_rack_cur_max; if (tcp->tcp_rack_cnt >= cur_max) { /* * We have more unacked data than we should - send * an ACK now. */ flags |= TH_ACK_NEEDED; cur_max++; if (cur_max > tcp->tcp_rack_abs_max) tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; else tcp->tcp_rack_cur_max = cur_max; } else if (TCP_IS_DETACHED(tcp)) { /* We don't have an ACK timer for detached TCP. */ flags |= TH_ACK_NEEDED; } else if (seg_len < mss) { /* * If we get a segment that is less than an mss, and we * already have unacknowledged data, and the amount * unacknowledged is not a multiple of mss, then we * better generate an ACK now. Otherwise, this may be * the tail piece of a transaction, and we would rather * wait for the response. */ uint32_t udif; ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= (uintptr_t)INT_MAX); udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); if (udif && (udif % mss)) flags |= TH_ACK_NEEDED; else flags |= TH_ACK_TIMER_NEEDED; } else { /* Start delayed ack timer */ flags |= TH_ACK_TIMER_NEEDED; } } tcp->tcp_rnxt += seg_len; U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); /* Update SACK list */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, &(tcp->tcp_num_sack_blk)); } if (tcp->tcp_urp_mp) { tcp->tcp_urp_mp->b_cont = mp; mp = tcp->tcp_urp_mp; tcp->tcp_urp_mp = NULL; /* Ready for a new signal. */ tcp->tcp_urp_last_valid = B_FALSE; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sending exdata_ind %s", tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ } /* * Check for ancillary data changes compared to last segment. */ if (tcp->tcp_ipv6_recvancillary != 0) { mp = tcp_rput_add_ancillary(tcp, mp, &ipp); if (mp == NULL) return; } if (tcp->tcp_listener || tcp->tcp_hard_binding) { /* * Side queue inbound data until the accept happens. * tcp_accept/tcp_rput drains this when the accept happens. * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or * T_EXDATA_IND) it is queued on b_next. * XXX Make urgent data use this. Requires: * Removing tcp_listener check for TH_URG * Making M_PCPROTO and MARK messages skip the eager case */ if (tcp->tcp_kssl_pending) { tcp_kssl_input(tcp, mp); } else { tcp_rcv_enqueue(tcp, mp, seg_len); } } else { if (mp->b_datap->db_type != M_DATA || (flags & TH_MARKNEXT_NEEDED)) { if (tcp->tcp_rcv_list != NULL) { flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); if (flags & TH_MARKNEXT_NEEDED) { #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sending MSGMARKNEXT %s", tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ mp->b_flag |= MSGMARKNEXT; flags &= ~TH_MARKNEXT_NEEDED; } /* Does this need SSL processing first? */ if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { tcp_kssl_input(tcp, mp); } else { putnext(tcp->tcp_rq, mp); if (!canputnext(tcp->tcp_rq)) tcp->tcp_rwnd -= seg_len; } } else if (((flags & (TH_PUSH|TH_FIN)) || tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) && (sqp != NULL)) { if (tcp->tcp_rcv_list != NULL) { /* * Enqueue the new segment first and then * call tcp_rcv_drain() to send all data * up. The other way to do this is to * send all queued data up and then call * putnext() to send the new segment up. * This way can remove the else part later * on. * * We don't this to avoid one more call to * canputnext() as tcp_rcv_drain() needs to * call canputnext(). */ tcp_rcv_enqueue(tcp, mp, seg_len); flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); } else { /* Does this need SSL processing first? */ if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { tcp_kssl_input(tcp, mp); } else { putnext(tcp->tcp_rq, mp); if (!canputnext(tcp->tcp_rq)) tcp->tcp_rwnd -= seg_len; } } } else { /* * Enqueue all packets when processing an mblk * from the co queue and also enqueue normal packets. */ tcp_rcv_enqueue(tcp, mp, seg_len); } /* * Make sure the timer is running if we have data waiting * for a push bit. This provides resiliency against * implementations that do not correctly generate push bits. */ if ((sqp != NULL) && tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { /* * The connection may be closed at this point, so don't * do anything for a detached tcp. */ if (!TCP_IS_DETACHED(tcp)) tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, MSEC_TO_TICK(tcp_push_timer_interval)); } } xmit_check: /* Is there anything left to do? */ ASSERT(!(flags & TH_MARKNEXT_NEEDED)); if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) goto done; /* Any transmit work to do and a non-zero window? */ if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { if (flags & TH_REXMIT_NEEDED) { uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; BUMP_MIB(&tcp_mib, tcpOutFastRetrans); if (snd_size > mss) snd_size = mss; if (snd_size > tcp->tcp_swnd) snd_size = tcp->tcp_swnd; mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, B_TRUE); if (mp1 != NULL) { tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; tcp->tcp_csuna = tcp->tcp_snxt; BUMP_MIB(&tcp_mib, tcpRetransSegs); UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, mp1); } } if (flags & TH_NEED_SACK_REXMIT) { tcp_sack_rxmit(tcp, &flags); } /* * For TH_LIMIT_XMIT, tcp_wput_data() is called to send * out new segment. Note that tcp_rexmit should not be * set, otherwise TH_LIMIT_XMIT should not be set. */ if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { if (!tcp->tcp_rexmit) { tcp_wput_data(tcp, NULL, B_FALSE); } else { tcp_ss_rexmit(tcp); } } /* * Adjust tcp_cwnd back to normal value after sending * new data segments. */ if (flags & TH_LIMIT_XMIT) { tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); /* * This will restart the timer. Restarting the * timer is used to avoid a timeout before the * limited transmitted segment's ACK gets back. */ if (tcp->tcp_xmit_head != NULL) tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; } /* Anything more to do? */ if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) goto done; } ack_check: if (flags & TH_SEND_URP_MARK) { ASSERT(tcp->tcp_urp_mark_mp); /* * Send up any queued data and then send the mark message */ if (tcp->tcp_rcv_list != NULL) { flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); mp1 = tcp->tcp_urp_mark_mp; tcp->tcp_urp_mark_mp = NULL; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sending zero-length %s %s", ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : "MSGNOTMARKNEXT"), tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ putnext(tcp->tcp_rq, mp1); flags &= ~TH_SEND_URP_MARK; } if (flags & TH_ACK_NEEDED) { /* * Time to send an ack for some reason. */ mp1 = tcp_ack_mp(tcp); if (mp1 != NULL) { TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, mp1); BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcp_mib, tcpOutAck); } if (tcp->tcp_ack_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); tcp->tcp_ack_tid = 0; } } if (flags & TH_ACK_TIMER_NEEDED) { /* * Arrange for deferred ACK or push wait timeout. * Start timer if it is not already running. */ if (tcp->tcp_ack_tid == 0) { tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, MSEC_TO_TICK(tcp->tcp_localnet ? (clock_t)tcp_local_dack_interval : (clock_t)tcp_deferred_ack_interval)); } } if (flags & TH_ORDREL_NEEDED) { /* * Send up the ordrel_ind unless we are an eager guy. * In the eager case tcp_rsrv will do this when run * after tcp_accept is done. */ ASSERT(tcp->tcp_listener == NULL); if (tcp->tcp_rcv_list != NULL) { /* * Push any mblk(s) enqueued from co processing. */ flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { tcp->tcp_ordrel_done = B_TRUE; putnext(tcp->tcp_rq, mp1); if (tcp->tcp_deferred_clean_death) { /* * tcp_clean_death was deferred * for T_ORDREL_IND - do it now */ (void) tcp_clean_death(tcp, tcp->tcp_client_errno, 20); tcp->tcp_deferred_clean_death = B_FALSE; } } else { /* * Run the orderly release in the * service routine. */ qenable(tcp->tcp_rq); /* * Caveat(XXX): The machine may be so * overloaded that tcp_rsrv() is not scheduled * until after the endpoint has transitioned * to TCPS_TIME_WAIT * and tcp_time_wait_interval expires. Then * tcp_timer() will blow away state in tcp_t * and T_ORDREL_IND will never be delivered * upstream. Unlikely but potentially * a problem. */ } } done: ASSERT(!(flags & TH_MARKNEXT_NEEDED)); } /* * This function does PAWS protection check. Returns B_TRUE if the * segment passes the PAWS test, else returns B_FALSE. */ boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) { uint8_t flags; int options; uint8_t *up; flags = (unsigned int)tcph->th_flags[0] & 0xFF; /* * If timestamp option is aligned nicely, get values inline, * otherwise call general routine to parse. Only do that * if timestamp is the only option. */ if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + TCPOPT_REAL_TS_LEN && OK_32PTR((up = ((uint8_t *)tcph) + TCP_MIN_HEADER_LENGTH)) && *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); options = TCP_OPT_TSTAMP_PRESENT; } else { if (tcp->tcp_snd_sack_ok) { tcpoptp->tcp = tcp; } else { tcpoptp->tcp = NULL; } options = tcp_parse_options(tcph, tcpoptp); } if (options & TCP_OPT_TSTAMP_PRESENT) { /* * Do PAWS per RFC 1323 section 4.2. Accept RST * regardless of the timestamp, page 18 RFC 1323.bis. */ if ((flags & TH_RST) == 0 && TSTMP_LT(tcpoptp->tcp_opt_ts_val, tcp->tcp_ts_recent)) { if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { /* This segment is not acceptable. */ return (B_FALSE); } else { /* * Connection has been idle for * too long. Reset the timestamp * and assume the segment is valid. */ tcp->tcp_ts_recent = tcpoptp->tcp_opt_ts_val; } } } else { /* * If we don't get a timestamp on every packet, we * figure we can't really trust 'em, so we stop sending * and parsing them. */ tcp->tcp_snd_ts_ok = B_FALSE; tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); if (tcp->tcp_snd_sack_ok) { ASSERT(tcp->tcp_sack_info != NULL); tcp->tcp_max_sack_blk = 4; } } return (B_TRUE); } /* * Attach ancillary data to a received TCP segments for the * ancillary pieces requested by the application that are * different than they were in the previous data segment. * * Save the "current" values once memory allocation is ok so that * when memory allocation fails we can just wait for the next data segment. */ static mblk_t * tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) { struct T_optdata_ind *todi; int optlen; uchar_t *optptr; struct T_opthdr *toh; uint_t addflag; /* Which pieces to add */ mblk_t *mp1; optlen = 0; addflag = 0; /* If app asked for pktinfo and the index has changed ... */ if ((ipp->ipp_fields & IPPF_IFINDEX) && ipp->ipp_ifindex != tcp->tcp_recvifindex && (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { optlen += sizeof (struct T_opthdr) + sizeof (struct in6_pktinfo); addflag |= TCP_IPV6_RECVPKTINFO; } /* If app asked for hoplimit and it has changed ... */ if ((ipp->ipp_fields & IPPF_HOPLIMIT) && ipp->ipp_hoplimit != tcp->tcp_recvhops && (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { optlen += sizeof (struct T_opthdr) + sizeof (uint_t); addflag |= TCP_IPV6_RECVHOPLIMIT; } /* If app asked for tclass and it has changed ... */ if ((ipp->ipp_fields & IPPF_TCLASS) && ipp->ipp_tclass != tcp->tcp_recvtclass && (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { optlen += sizeof (struct T_opthdr) + sizeof (uint_t); addflag |= TCP_IPV6_RECVTCLASS; } /* If app asked for hopbyhop headers and it has changed ... */ if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; addflag |= TCP_IPV6_RECVHOPOPTS; if (!tcp_allocbuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen)) return (mp); } /* If app asked for dst headers before routing headers ... */ if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_rtdstoptslen; addflag |= TCP_IPV6_RECVRTDSTOPTS; if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts, &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) return (mp); } /* If app asked for routing headers and it has changed ... */ if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; addflag |= TCP_IPV6_RECVRTHDR; if (!tcp_allocbuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen)) return (mp); } /* If app asked for dest headers and it has changed ... */ if ((tcp->tcp_ipv6_recvancillary & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; addflag |= TCP_IPV6_RECVDSTOPTS; if (!tcp_allocbuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen)) return (mp); } if (optlen == 0) { /* Nothing to add */ return (mp); } mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); if (mp1 == NULL) { /* * Defer sending ancillary data until the next TCP segment * arrives. */ return (mp); } mp1->b_cont = mp; mp = mp1; mp->b_wptr += sizeof (*todi) + optlen; mp->b_datap->db_type = M_PROTO; todi = (struct T_optdata_ind *)mp->b_rptr; todi->PRIM_type = T_OPTDATA_IND; todi->DATA_flag = 1; /* MORE data */ todi->OPT_length = optlen; todi->OPT_offset = sizeof (*todi); optptr = (uchar_t *)&todi[1]; /* * If app asked for pktinfo and the index has changed ... * Note that the local address never changes for the connection. */ if (addflag & TCP_IPV6_RECVPKTINFO) { struct in6_pktinfo *pkti; toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_PKTINFO; toh->len = sizeof (*toh) + sizeof (*pkti); toh->status = 0; optptr += sizeof (*toh); pkti = (struct in6_pktinfo *)optptr; if (tcp->tcp_ipversion == IPV6_VERSION) pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; else IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &pkti->ipi6_addr); pkti->ipi6_ifindex = ipp->ipp_ifindex; optptr += sizeof (*pkti); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ tcp->tcp_recvifindex = ipp->ipp_ifindex; } /* If app asked for hoplimit and it has changed ... */ if (addflag & TCP_IPV6_RECVHOPLIMIT) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPLIMIT; toh->len = sizeof (*toh) + sizeof (uint_t); toh->status = 0; optptr += sizeof (*toh); *(uint_t *)optptr = ipp->ipp_hoplimit; optptr += sizeof (uint_t); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ tcp->tcp_recvhops = ipp->ipp_hoplimit; } /* If app asked for tclass and it has changed ... */ if (addflag & TCP_IPV6_RECVTCLASS) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_TCLASS; toh->len = sizeof (*toh) + sizeof (uint_t); toh->status = 0; optptr += sizeof (*toh); *(uint_t *)optptr = ipp->ipp_tclass; optptr += sizeof (uint_t); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ tcp->tcp_recvtclass = ipp->ipp_tclass; } if (addflag & TCP_IPV6_RECVHOPOPTS) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPOPTS; toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); optptr += ipp->ipp_hopoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ tcp_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen); } if (addflag & TCP_IPV6_RECVRTDSTOPTS) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_RTHDRDSTOPTS; toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); optptr += ipp->ipp_rtdstoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ tcp_savebuf((void **)&tcp->tcp_rtdstopts, &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); } if (addflag & TCP_IPV6_RECVRTHDR) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_RTHDR; toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); optptr += ipp->ipp_rthdrlen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ tcp_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen); } if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_DSTOPTS; toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); optptr += ipp->ipp_dstoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ tcp_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen); } ASSERT(optptr == mp->b_wptr); return (mp); } /* * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK * or a "bad" IRE detected by tcp_adapt_ire. * We can't tell if the failure was due to the laddr or the faddr * thus we clear out all addresses and ports. */ static void tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) { queue_t *q = tcp->tcp_rq; tcph_t *tcph; struct T_error_ack *tea; conn_t *connp = tcp->tcp_connp; ASSERT(mp->b_datap->db_type == M_PCPROTO); if (mp->b_cont) { freemsg(mp->b_cont); mp->b_cont = NULL; } tea = (struct T_error_ack *)mp->b_rptr; switch (tea->PRIM_type) { case T_BIND_ACK: /* * Need to unbind with classifier since we were just told that * our bind succeeded. */ tcp->tcp_hard_bound = B_FALSE; tcp->tcp_hard_binding = B_FALSE; ipcl_hash_remove(connp); /* Reuse the mblk if possible */ ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= sizeof (*tea)); mp->b_rptr = mp->b_datap->db_base; mp->b_wptr = mp->b_rptr + sizeof (*tea); tea = (struct T_error_ack *)mp->b_rptr; tea->PRIM_type = T_ERROR_ACK; tea->TLI_error = TSYSERR; tea->UNIX_error = error; if (tcp->tcp_state >= TCPS_SYN_SENT) { tea->ERROR_prim = T_CONN_REQ; } else { tea->ERROR_prim = O_T_BIND_REQ; } break; case T_ERROR_ACK: if (tcp->tcp_state >= TCPS_SYN_SENT) tea->ERROR_prim = T_CONN_REQ; break; default: panic("tcp_bind_failed: unexpected TPI type"); /*NOTREACHED*/ } tcp->tcp_state = TCPS_IDLE; if (tcp->tcp_ipversion == IPV4_VERSION) tcp->tcp_ipha->ipha_src = 0; else V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); /* * Copy of the src addr. in tcp_t is needed since * the lookup funcs. can only look at tcp_t */ V6_SET_ZERO(tcp->tcp_ip_src_v6); tcph = tcp->tcp_tcph; tcph->th_lport[0] = 0; tcph->th_lport[1] = 0; tcp_bind_hash_remove(tcp); bzero(&connp->u_port, sizeof (connp->u_port)); /* blow away saved option results if any */ if (tcp->tcp_conn.tcp_opts_conn_req != NULL) tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); conn_delete_ire(tcp->tcp_connp, NULL); putnext(q, mp); } /* * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA * messages. */ void tcp_rput_other(tcp_t *tcp, mblk_t *mp) { mblk_t *mp1; uchar_t *rptr = mp->b_rptr; queue_t *q = tcp->tcp_rq; struct T_error_ack *tea; uint32_t mss; mblk_t *syn_mp; mblk_t *mdti; int retval; mblk_t *ire_mp; switch (mp->b_datap->db_type) { case M_PROTO: case M_PCPROTO: ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) break; tea = (struct T_error_ack *)rptr; switch (tea->PRIM_type) { case T_BIND_ACK: /* * Adapt Multidata information, if any. The * following tcp_mdt_update routine will free * the message. */ if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> b_rptr)->mdt_capab, B_TRUE); freemsg(mdti); } /* Get the IRE, if we had requested for it */ ire_mp = tcp_ire_mp(mp); if (tcp->tcp_hard_binding) { tcp->tcp_hard_binding = B_FALSE; tcp->tcp_hard_bound = B_TRUE; CL_INET_CONNECT(tcp); } else { if (ire_mp != NULL) freeb(ire_mp); goto after_syn_sent; } retval = tcp_adapt_ire(tcp, ire_mp); if (ire_mp != NULL) freeb(ire_mp); if (retval == 0) { tcp_bind_failed(tcp, mp, (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? ENETUNREACH : EADDRNOTAVAIL)); return; } /* * Don't let an endpoint connect to itself. * Also checked in tcp_connect() but that * check can't handle the case when the * local IP address is INADDR_ANY. */ if (tcp->tcp_ipversion == IPV4_VERSION) { if ((tcp->tcp_ipha->ipha_dst == tcp->tcp_ipha->ipha_src) && (BE16_EQL(tcp->tcp_tcph->th_lport, tcp->tcp_tcph->th_fport))) { tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); return; } } else { if (IN6_ARE_ADDR_EQUAL( &tcp->tcp_ip6h->ip6_dst, &tcp->tcp_ip6h->ip6_src) && (BE16_EQL(tcp->tcp_tcph->th_lport, tcp->tcp_tcph->th_fport))) { tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); return; } } ASSERT(tcp->tcp_state == TCPS_SYN_SENT); /* * This should not be possible! Just for * defensive coding... */ if (tcp->tcp_state != TCPS_SYN_SENT) goto after_syn_sent; ASSERT(q == tcp->tcp_rq); /* * tcp_adapt_ire() does not adjust * for TCP/IP header length. */ mss = tcp->tcp_mss - tcp->tcp_hdr_len; /* * Just make sure our rwnd is at * least tcp_recv_hiwat_mss * MSS * large, and round up to the nearest * MSS. * * We do the round up here because * we need to get the interface * MTU first before we can do the * round up. */ tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), tcp_recv_hiwat_minmss * mss); q->q_hiwat = tcp->tcp_rwnd; tcp_set_ws_value(tcp); U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), tcp->tcp_tcph->th_win); if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) tcp->tcp_snd_ws_ok = B_TRUE; /* * Set tcp_snd_ts_ok to true * so that tcp_xmit_mp will * include the timestamp * option in the SYN segment. */ if (tcp_tstamp_always || (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { tcp->tcp_snd_ts_ok = B_TRUE; } /* * tcp_snd_sack_ok can be set in * tcp_adapt_ire() if the sack metric * is set. So check it here also. */ if (tcp_sack_permitted == 2 || tcp->tcp_snd_sack_ok) { if (tcp->tcp_sack_info == NULL) { tcp->tcp_sack_info = kmem_cache_alloc(tcp_sack_info_cache, KM_SLEEP); } tcp->tcp_snd_sack_ok = B_TRUE; } /* * Should we use ECN? Note that the current * default value (SunOS 5.9) of tcp_ecn_permitted * is 1. The reason for doing this is that there * are equipments out there that will drop ECN * enabled IP packets. Setting it to 1 avoids * compatibility problems. */ if (tcp_ecn_permitted == 2) tcp->tcp_ecn_ok = B_TRUE; TCP_TIMER_RESTART(tcp, tcp->tcp_rto); syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); if (syn_mp) { cred_t *cr; pid_t pid; /* * Obtain the credential from the * thread calling connect(); the credential * lives on in the second mblk which * originated from T_CONN_REQ and is echoed * with the T_BIND_ACK from ip. If none * can be found, default to the creator * of the socket. */ if (mp->b_cont == NULL || (cr = DB_CRED(mp->b_cont)) == NULL) { cr = tcp->tcp_cred; pid = tcp->tcp_cpid; } else { pid = DB_CPID(mp->b_cont); } TCP_RECORD_TRACE(tcp, syn_mp, TCP_TRACE_SEND_PKT); mblk_setcred(syn_mp, cr); DB_CPID(syn_mp) = pid; tcp_send_data(tcp, tcp->tcp_wq, syn_mp); } after_syn_sent: /* * A trailer mblk indicates a waiting client upstream. * We complete here the processing begun in * either tcp_bind() or tcp_connect() by passing * upstream the reply message they supplied. */ mp1 = mp; mp = mp->b_cont; freeb(mp1); if (mp) break; return; case T_ERROR_ACK: if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_rput_other: case T_ERROR_ACK, " "ERROR_prim == %d", tea->ERROR_prim); } switch (tea->ERROR_prim) { case O_T_BIND_REQ: case T_BIND_REQ: tcp_bind_failed(tcp, mp, (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? ENETUNREACH : EADDRNOTAVAIL)); return; case T_UNBIND_REQ: tcp->tcp_hard_binding = B_FALSE; tcp->tcp_hard_bound = B_FALSE; if (mp->b_cont) { freemsg(mp->b_cont); mp->b_cont = NULL; } if (tcp->tcp_unbind_pending) tcp->tcp_unbind_pending = 0; else { /* From tcp_ip_unbind() - free */ freemsg(mp); return; } break; case T_SVR4_OPTMGMT_REQ: if (tcp->tcp_drop_opt_ack_cnt > 0) { /* T_OPTMGMT_REQ generated by TCP */ printf("T_SVR4_OPTMGMT_REQ failed " "%d/%d - dropped (cnt %d)\n", tea->TLI_error, tea->UNIX_error, tcp->tcp_drop_opt_ack_cnt); freemsg(mp); tcp->tcp_drop_opt_ack_cnt--; return; } break; } if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && tcp->tcp_drop_opt_ack_cnt > 0) { printf("T_SVR4_OPTMGMT_REQ failed %d/%d " "- dropped (cnt %d)\n", tea->TLI_error, tea->UNIX_error, tcp->tcp_drop_opt_ack_cnt); freemsg(mp); tcp->tcp_drop_opt_ack_cnt--; return; } break; case T_OPTMGMT_ACK: if (tcp->tcp_drop_opt_ack_cnt > 0) { /* T_OPTMGMT_REQ generated by TCP */ freemsg(mp); tcp->tcp_drop_opt_ack_cnt--; return; } break; default: break; } break; case M_CTL: /* * ICMP messages. */ tcp_icmp_error(tcp, mp); return; case M_FLUSH: if (*rptr & FLUSHR) flushq(q, FLUSHDATA); break; default: break; } /* * Make sure we set this bit before sending the ACK for * bind. Otherwise accept could possibly run and free * this tcp struct. */ putnext(q, mp); } /* * Called as the result of a qbufcall or a qtimeout to remedy a failure * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make * tcp_rsrv() try again. */ static void tcp_ordrel_kick(void *arg) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; tcp->tcp_ordrelid = 0; tcp->tcp_timeout = B_FALSE; if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { qenable(tcp->tcp_rq); } } /* ARGSUSED */ static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; queue_t *q = tcp->tcp_rq; uint_t thwin; freeb(mp); TCP_STAT(tcp_rsrv_calls); if (TCP_IS_DETACHED(tcp) || q == NULL) { return; } if (tcp->tcp_fused) { tcp_t *peer_tcp = tcp->tcp_loopback_peer; ASSERT(tcp->tcp_fused); ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); ASSERT(peer_tcp->tcp_loopback_peer == tcp); ASSERT(!TCP_IS_DETACHED(tcp)); ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); /* * Normally we would not get backenabled in synchronous * streams mode, but in case this happens, we need to stop * synchronous streams temporarily to prevent a race with * tcp_fuse_rrw() or tcp_fuse_rinfop(). It is safe to access * tcp_rcv_list here because those entry points will return * right away when synchronous streams is stopped. */ TCP_FUSE_SYNCSTR_STOP(tcp); if (tcp->tcp_rcv_list != NULL) (void) tcp_rcv_drain(tcp->tcp_rq, tcp); tcp_clrqfull(peer_tcp); TCP_FUSE_SYNCSTR_RESUME(tcp); TCP_STAT(tcp_fusion_backenabled); return; } if (canputnext(q)) { tcp->tcp_rwnd = q->q_hiwat; thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) << tcp->tcp_rcv_ws; thwin -= tcp->tcp_rnxt - tcp->tcp_rack; /* * Send back a window update immediately if TCP is above * ESTABLISHED state and the increase of the rcv window * that the other side knows is at least 1 MSS after flow * control is lifted. */ if (tcp->tcp_state >= TCPS_ESTABLISHED && (q->q_hiwat - thwin >= tcp->tcp_mss)) { tcp_xmit_ctl(NULL, tcp, (tcp->tcp_swnd == 0) ? tcp->tcp_suna : tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); BUMP_MIB(&tcp_mib, tcpOutWinUpdate); } } /* Handle a failure to allocate a T_ORDREL_IND here */ if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { ASSERT(tcp->tcp_listener == NULL); if (tcp->tcp_rcv_list != NULL) { (void) tcp_rcv_drain(q, tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); mp = mi_tpi_ordrel_ind(); if (mp) { tcp->tcp_ordrel_done = B_TRUE; putnext(q, mp); if (tcp->tcp_deferred_clean_death) { /* * tcp_clean_death was deferred for * T_ORDREL_IND - do it now */ tcp->tcp_deferred_clean_death = B_FALSE; (void) tcp_clean_death(tcp, tcp->tcp_client_errno, 22); } } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { /* * If there isn't already a timer running * start one. Use a 4 second * timer as a fallback since it can't fail. */ tcp->tcp_timeout = B_TRUE; tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, MSEC_TO_TICK(4000)); } } } /* * The read side service routine is called mostly when we get back-enabled as a * result of flow control relief. Since we don't actually queue anything in * TCP, we have no data to send out of here. What we do is clear the receive * window, and send out a window update. * This routine is also called to drive an orderly release message upstream * if the attempt in tcp_rput failed. */ static void tcp_rsrv(queue_t *q) { conn_t *connp = Q_TO_CONN(q); tcp_t *tcp = connp->conn_tcp; mblk_t *mp; /* No code does a putq on the read side */ ASSERT(q->q_first == NULL); /* Nothing to do for the default queue */ if (q == tcp_g_q) { return; } mp = allocb(0, BPRI_HI); if (mp == NULL) { /* * We are under memory pressure. Return for now and we * we will be called again later. */ if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { /* * If there isn't already a timer running * start one. Use a 4 second * timer as a fallback since it can't fail. */ tcp->tcp_timeout = B_TRUE; tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, MSEC_TO_TICK(4000)); } return; } CONN_INC_REF(connp); squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, SQTAG_TCP_RSRV); } /* * tcp_rwnd_set() is called to adjust the receive window to a desired value. * We do not allow the receive window to shrink. After setting rwnd, * set the flow control hiwat of the stream. * * This function is called in 2 cases: * * 1) Before data transfer begins, in tcp_accept_comm() for accepting a * connection (passive open) and in tcp_rput_data() for active connect. * This is called after tcp_mss_set() when the desired MSS value is known. * This makes sure that our window size is a mutiple of the other side's * MSS. * 2) Handling SO_RCVBUF option. * * It is ASSUMED that the requested size is a multiple of the current MSS. * * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the * user requests so. */ static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) { uint32_t mss = tcp->tcp_mss; uint32_t old_max_rwnd; uint32_t max_transmittable_rwnd; boolean_t tcp_detached = TCP_IS_DETACHED(tcp); if (tcp->tcp_fused) { size_t sth_hiwat; tcp_t *peer_tcp = tcp->tcp_loopback_peer; ASSERT(peer_tcp != NULL); /* * Record the stream head's high water mark for * this endpoint; this is used for flow-control * purposes in tcp_fuse_output(). */ sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); if (!tcp_detached) (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); /* * In the fusion case, the maxpsz stream head value of * our peer is set according to its send buffer size * and our receive buffer size; since the latter may * have changed we need to update the peer's maxpsz. */ (void) tcp_maxpsz_set(peer_tcp, B_TRUE); return (rwnd); } if (tcp_detached) old_max_rwnd = tcp->tcp_rwnd; else old_max_rwnd = tcp->tcp_rq->q_hiwat; /* * Insist on a receive window that is at least * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid * funny TCP interactions of Nagle algorithm, SWS avoidance * and delayed acknowledgement. */ rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); /* * If window size info has already been exchanged, TCP should not * shrink the window. Shrinking window is doable if done carefully. * We may add that support later. But so far there is not a real * need to do that. */ if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { /* MSS may have changed, do a round up again. */ rwnd = MSS_ROUNDUP(old_max_rwnd, mss); } /* * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check * can be applied even before the window scale option is decided. */ max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; if (rwnd > max_transmittable_rwnd) { rwnd = max_transmittable_rwnd - (max_transmittable_rwnd % mss); if (rwnd < mss) rwnd = max_transmittable_rwnd; /* * If we're over the limit we may have to back down tcp_rwnd. * The increment below won't work for us. So we set all three * here and the increment below will have no effect. */ tcp->tcp_rwnd = old_max_rwnd = rwnd; } if (tcp->tcp_localnet) { tcp->tcp_rack_abs_max = MIN(tcp_local_dacks_max, rwnd / mss / 2); } else { /* * For a remote host on a different subnet (through a router), * we ack every other packet to be conforming to RFC1122. * tcp_deferred_acks_max is default to 2. */ tcp->tcp_rack_abs_max = MIN(tcp_deferred_acks_max, rwnd / mss / 2); } if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; else tcp->tcp_rack_cur_max = 0; /* * Increment the current rwnd by the amount the maximum grew (we * can not overwrite it since we might be in the middle of a * connection.) */ tcp->tcp_rwnd += rwnd - old_max_rwnd; U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) tcp->tcp_cwnd_max = rwnd; if (tcp_detached) return (rwnd); /* * We set the maximum receive window into rq->q_hiwat. * This is not actually used for flow control. */ tcp->tcp_rq->q_hiwat = rwnd; /* * Set the Stream head high water mark. This doesn't have to be * here, since we are simply using default values, but we would * prefer to choose these values algorithmically, with a likely * relationship to rwnd. */ (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); return (rwnd); } /* * Return SNMP stuff in buffer in mpdata. */ int tcp_snmp_get(queue_t *q, mblk_t *mpctl) { mblk_t *mpdata; mblk_t *mp_conn_ctl = NULL; mblk_t *mp_conn_data; mblk_t *mp6_conn_ctl = NULL; mblk_t *mp6_conn_data; mblk_t *mp_conn_tail = NULL; mblk_t *mp6_conn_tail = NULL; struct opthdr *optp; mib2_tcpConnEntry_t tce; mib2_tcp6ConnEntry_t tce6; connf_t *connfp; conn_t *connp; int i; boolean_t ispriv; zoneid_t zoneid; if (mpctl == NULL || (mpdata = mpctl->b_cont) == NULL || (mp_conn_ctl = copymsg(mpctl)) == NULL || (mp6_conn_ctl = copymsg(mpctl)) == NULL) { if (mp_conn_ctl != NULL) freemsg(mp_conn_ctl); if (mp6_conn_ctl != NULL) freemsg(mp6_conn_ctl); return (0); } /* build table of connections -- need count in fixed part */ mp_conn_data = mp_conn_ctl->b_cont; mp6_conn_data = mp6_conn_ctl->b_cont; SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); SET_MIB(tcp_mib.tcpMaxConn, -1); SET_MIB(tcp_mib.tcpCurrEstab, 0); ispriv = secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; zoneid = Q_TO_CONN(q)->conn_zoneid; for (i = 0; i < CONN_G_HASH_SIZE; i++) { connfp = &ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { tcp_t *tcp; if (connp->conn_zoneid != zoneid) continue; /* not in this zone */ tcp = connp->conn_tcp; UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); tcp->tcp_ibsegs = 0; UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); tcp->tcp_obsegs = 0; tce6.tcp6ConnState = tce.tcpConnState = tcp_snmp_state(tcp); if (tce.tcpConnState == MIB2_TCP_established || tce.tcpConnState == MIB2_TCP_closeWait) BUMP_MIB(&tcp_mib, tcpCurrEstab); /* Create a message to report on IPv6 entries */ if (tcp->tcp_ipversion == IPV6_VERSION) { tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; /* Don't want just anybody seeing these... */ if (ispriv) { tce6.tcp6ConnEntryInfo.ce_snxt = tcp->tcp_snxt; tce6.tcp6ConnEntryInfo.ce_suna = tcp->tcp_suna; tce6.tcp6ConnEntryInfo.ce_rnxt = tcp->tcp_rnxt; tce6.tcp6ConnEntryInfo.ce_rack = tcp->tcp_rack; } else { /* * Netstat, unfortunately, uses this to * get send/receive queue sizes. How to fix? * Why not compute the difference only? */ tce6.tcp6ConnEntryInfo.ce_snxt = tcp->tcp_snxt - tcp->tcp_suna; tce6.tcp6ConnEntryInfo.ce_suna = 0; tce6.tcp6ConnEntryInfo.ce_rnxt = tcp->tcp_rnxt - tcp->tcp_rack; tce6.tcp6ConnEntryInfo.ce_rack = 0; } tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; (void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); } /* * Create an IPv4 table entry for IPv4 entries and also * for IPv6 entries which are bound to in6addr_any * but don't have IPV6_V6ONLY set. * (i.e. anything an IPv4 peer could connect to) */ if (tcp->tcp_ipversion == IPV4_VERSION || (tcp->tcp_state <= TCPS_LISTEN && !tcp->tcp_connp->conn_ipv6_v6only && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { if (tcp->tcp_ipversion == IPV6_VERSION) { tce.tcpConnRemAddress = INADDR_ANY; tce.tcpConnLocalAddress = INADDR_ANY; } else { tce.tcpConnRemAddress = tcp->tcp_remote; tce.tcpConnLocalAddress = tcp->tcp_ip_src; } tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); tce.tcpConnRemPort = ntohs(tcp->tcp_fport); /* Don't want just anybody seeing these... */ if (ispriv) { tce.tcpConnEntryInfo.ce_snxt = tcp->tcp_snxt; tce.tcpConnEntryInfo.ce_suna = tcp->tcp_suna; tce.tcpConnEntryInfo.ce_rnxt = tcp->tcp_rnxt; tce.tcpConnEntryInfo.ce_rack = tcp->tcp_rack; } else { /* * Netstat, unfortunately, uses this to * get send/receive queue sizes. How * to fix? * Why not compute the difference only? */ tce.tcpConnEntryInfo.ce_snxt = tcp->tcp_snxt - tcp->tcp_suna; tce.tcpConnEntryInfo.ce_suna = 0; tce.tcpConnEntryInfo.ce_rnxt = tcp->tcp_rnxt - tcp->tcp_rack; tce.tcpConnEntryInfo.ce_rack = 0; } tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; tce.tcpConnEntryInfo.ce_state = tcp->tcp_state; (void) snmp_append_data2(mp_conn_data, &mp_conn_tail, (char *)&tce, sizeof (tce)); } } } /* fixed length structure for IPv4 and IPv6 counters */ SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_TCP; optp->name = 0; (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); optp->len = msgdsize(mpdata); qreply(q, mpctl); /* table of connections... */ optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_TCP; optp->name = MIB2_TCP_CONN; optp->len = msgdsize(mp_conn_data); qreply(q, mp_conn_ctl); /* table of IPv6 connections... */ optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_TCP6; optp->name = MIB2_TCP6_CONN; optp->len = msgdsize(mp6_conn_data); qreply(q, mp6_conn_ctl); return (1); } /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ /* ARGSUSED */ int tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) { mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; switch (level) { case MIB2_TCP: switch (name) { case 13: if (tce->tcpConnState != MIB2_TCP_deleteTCB) return (0); /* TODO: delete entry defined by tce */ return (1); default: return (0); } default: return (1); } } /* Translate TCP state to MIB2 TCP state. */ static int tcp_snmp_state(tcp_t *tcp) { if (tcp == NULL) return (0); switch (tcp->tcp_state) { case TCPS_CLOSED: case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ case TCPS_BOUND: return (MIB2_TCP_closed); case TCPS_LISTEN: return (MIB2_TCP_listen); case TCPS_SYN_SENT: return (MIB2_TCP_synSent); case TCPS_SYN_RCVD: return (MIB2_TCP_synReceived); case TCPS_ESTABLISHED: return (MIB2_TCP_established); case TCPS_CLOSE_WAIT: return (MIB2_TCP_closeWait); case TCPS_FIN_WAIT_1: return (MIB2_TCP_finWait1); case TCPS_CLOSING: return (MIB2_TCP_closing); case TCPS_LAST_ACK: return (MIB2_TCP_lastAck); case TCPS_FIN_WAIT_2: return (MIB2_TCP_finWait2); case TCPS_TIME_WAIT: return (MIB2_TCP_timeWait); default: return (0); } } static char tcp_report_header[] = "TCP " MI_COL_HDRPAD_STR "zone dest snxt suna " "swnd rnxt rack rwnd rto mss w sw rw t " "recent [lport,fport] state"; /* * TCP status report triggered via the Named Dispatch mechanism. */ /* ARGSUSED */ static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, cred_t *cr) { char hash[10], addrbuf[INET6_ADDRSTRLEN]; boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; char cflag; in6_addr_t v6dst; char buf[80]; uint_t print_len, buf_len; buf_len = mp->b_datap->db_lim - mp->b_wptr; if (buf_len <= 0) return; if (hashval >= 0) (void) sprintf(hash, "%03d ", hashval); else hash[0] = '\0'; /* * Note that we use the remote address in the tcp_b structure. * This means that it will print out the real destination address, * not the next hop's address if source routing is used. This * avoid the confusion on the output because user may not * know that source routing is used for a connection. */ if (tcp->tcp_ipversion == IPV4_VERSION) { IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); } else { v6dst = tcp->tcp_remote_v6; } (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); /* * the ispriv checks are so that normal users cannot determine * sequence number information using NDD. */ if (TCP_IS_DETACHED(tcp)) cflag = '*'; else cflag = ' '; print_len = snprintf((char *)mp->b_wptr, buf_len, "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", hash, (void *)tcp, tcp->tcp_connp->conn_zoneid, addrbuf, (ispriv) ? tcp->tcp_snxt : 0, (ispriv) ? tcp->tcp_suna : 0, tcp->tcp_swnd, (ispriv) ? tcp->tcp_rnxt : 0, (ispriv) ? tcp->tcp_rack : 0, tcp->tcp_rwnd, tcp->tcp_rto, tcp->tcp_mss, tcp->tcp_snd_ws_ok, tcp->tcp_snd_ws, tcp->tcp_rcv_ws, tcp->tcp_snd_ts_ok, tcp->tcp_ts_recent, tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); if (print_len < buf_len) { ((mblk_t *)mp)->b_wptr += print_len; } else { ((mblk_t *)mp)->b_wptr += buf_len; } } /* * TCP status report (for listeners only) triggered via the Named Dispatch * mechanism. */ /* ARGSUSED */ static void tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) { char addrbuf[INET6_ADDRSTRLEN]; in6_addr_t v6dst; uint_t print_len, buf_len; buf_len = mp->b_datap->db_lim - mp->b_wptr; if (buf_len <= 0) return; if (tcp->tcp_ipversion == IPV4_VERSION) { IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); } else { (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, addrbuf, sizeof (addrbuf)); } print_len = snprintf((char *)mp->b_wptr, buf_len, "%03d " MI_COL_PTRFMT_STR "%d %s %05u %08u %d/%d/%d%c\n", hashval, (void *)tcp, tcp->tcp_connp->conn_zoneid, addrbuf, (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), tcp->tcp_conn_req_seqnum, tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, tcp->tcp_conn_req_max, tcp->tcp_syn_defense ? '*' : ' '); if (print_len < buf_len) { ((mblk_t *)mp)->b_wptr += print_len; } else { ((mblk_t *)mp)->b_wptr += buf_len; } } /* TCP status report triggered via the Named Dispatch mechanism. */ /* ARGSUSED */ static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { tcp_t *tcp; int i; conn_t *connp; connf_t *connfp; zoneid_t zoneid; /* * Because of the ndd constraint, at most we can have 64K buffer * to put in all TCP info. So to be more efficient, just * allocate a 64K buffer here, assuming we need that large buffer. * This may be a problem as any user can read tcp_status. Therefore * we limit the rate of doing this using tcp_ndd_get_info_interval. * This should be OK as normal users should not do this too often. */ if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < drv_usectohz(tcp_ndd_get_info_interval * 1000)) { (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); return (0); } } if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { /* The following may work even if we cannot get a large buf. */ (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); return (0); } (void) mi_mpprintf(mp, "%s", tcp_report_header); zoneid = Q_TO_CONN(q)->conn_zoneid; for (i = 0; i < CONN_G_HASH_SIZE; i++) { connfp = &ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { tcp = connp->conn_tcp; if (zoneid != GLOBAL_ZONEID && zoneid != connp->conn_zoneid) continue; tcp_report_item(mp->b_cont, tcp, -1, tcp, cr); } } tcp_last_ndd_get_info_time = ddi_get_lbolt(); return (0); } /* TCP status report triggered via the Named Dispatch mechanism. */ /* ARGSUSED */ static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { tf_t *tbf; tcp_t *tcp; int i; zoneid_t zoneid; /* Refer to comments in tcp_status_report(). */ if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < drv_usectohz(tcp_ndd_get_info_interval * 1000)) { (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); return (0); } } if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { /* The following may work even if we cannot get a large buf. */ (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); return (0); } (void) mi_mpprintf(mp, " %s", tcp_report_header); zoneid = Q_TO_CONN(q)->conn_zoneid; for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { tbf = &tcp_bind_fanout[i]; mutex_enter(&tbf->tf_lock); for (tcp = tbf->tf_tcp; tcp != NULL; tcp = tcp->tcp_bind_hash) { if (zoneid != GLOBAL_ZONEID && zoneid != tcp->tcp_connp->conn_zoneid) continue; CONN_INC_REF(tcp->tcp_connp); tcp_report_item(mp->b_cont, tcp, i, Q_TO_TCP(q), cr); CONN_DEC_REF(tcp->tcp_connp); } mutex_exit(&tbf->tf_lock); } tcp_last_ndd_get_info_time = ddi_get_lbolt(); return (0); } /* TCP status report triggered via the Named Dispatch mechanism. */ /* ARGSUSED */ static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { connf_t *connfp; conn_t *connp; tcp_t *tcp; int i; zoneid_t zoneid; /* Refer to comments in tcp_status_report(). */ if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < drv_usectohz(tcp_ndd_get_info_interval * 1000)) { (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); return (0); } } if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { /* The following may work even if we cannot get a large buf. */ (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); return (0); } (void) mi_mpprintf(mp, " TCP " MI_COL_HDRPAD_STR "zone IP addr port seqnum backlog (q0/q/max)"); zoneid = Q_TO_CONN(q)->conn_zoneid; for (i = 0; i < ipcl_bind_fanout_size; i++) { connfp = &ipcl_bind_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { tcp = connp->conn_tcp; if (zoneid != GLOBAL_ZONEID && zoneid != connp->conn_zoneid) continue; tcp_report_listener(mp->b_cont, tcp, i); } } tcp_last_ndd_get_info_time = ddi_get_lbolt(); return (0); } /* TCP status report triggered via the Named Dispatch mechanism. */ /* ARGSUSED */ static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { connf_t *connfp; conn_t *connp; tcp_t *tcp; int i; zoneid_t zoneid; /* Refer to comments in tcp_status_report(). */ if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < drv_usectohz(tcp_ndd_get_info_interval * 1000)) { (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); return (0); } } if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { /* The following may work even if we cannot get a large buf. */ (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); return (0); } (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", ipcl_conn_fanout_size); (void) mi_mpprintf(mp, " %s", tcp_report_header); zoneid = Q_TO_CONN(q)->conn_zoneid; for (i = 0; i < ipcl_conn_fanout_size; i++) { connfp = &ipcl_conn_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { tcp = connp->conn_tcp; if (zoneid != GLOBAL_ZONEID && zoneid != connp->conn_zoneid) continue; tcp_report_item(mp->b_cont, tcp, i, Q_TO_TCP(q), cr); } } tcp_last_ndd_get_info_time = ddi_get_lbolt(); return (0); } /* TCP status report triggered via the Named Dispatch mechanism. */ /* ARGSUSED */ static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { tf_t *tf; tcp_t *tcp; int i; zoneid_t zoneid; /* Refer to comments in tcp_status_report(). */ if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < drv_usectohz(tcp_ndd_get_info_interval * 1000)) { (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); return (0); } } if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { /* The following may work even if we cannot get a large buf. */ (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); return (0); } (void) mi_mpprintf(mp, " %s", tcp_report_header); zoneid = Q_TO_CONN(q)->conn_zoneid; for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { tf = &tcp_acceptor_fanout[i]; mutex_enter(&tf->tf_lock); for (tcp = tf->tf_tcp; tcp != NULL; tcp = tcp->tcp_acceptor_hash) { if (zoneid != GLOBAL_ZONEID && zoneid != tcp->tcp_connp->conn_zoneid) continue; tcp_report_item(mp->b_cont, tcp, i, Q_TO_TCP(q), cr); } mutex_exit(&tf->tf_lock); } tcp_last_ndd_get_info_time = ddi_get_lbolt(); return (0); } /* * tcp_timer is the timer service routine. It handles the retransmission, * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out * from the state of the tcp instance what kind of action needs to be done * at the time it is called. */ static void tcp_timer(void *arg) { mblk_t *mp; clock_t first_threshold; clock_t second_threshold; clock_t ms; uint32_t mss; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; tcp->tcp_timer_tid = 0; if (tcp->tcp_fused) return; first_threshold = tcp->tcp_first_timer_threshold; second_threshold = tcp->tcp_second_timer_threshold; switch (tcp->tcp_state) { case TCPS_IDLE: case TCPS_BOUND: case TCPS_LISTEN: return; case TCPS_SYN_RCVD: { tcp_t *listener = tcp->tcp_listener; if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { ASSERT(tcp->tcp_rq == listener->tcp_rq); /* it's our first timeout */ tcp->tcp_syn_rcvd_timeout = 1; mutex_enter(&listener->tcp_eager_lock); listener->tcp_syn_rcvd_timeout++; if (!listener->tcp_syn_defense && (listener->tcp_syn_rcvd_timeout > (tcp_conn_req_max_q0 >> 2)) && (tcp_conn_req_max_q0 > 200)) { /* We may be under attack. Put on a defense. */ listener->tcp_syn_defense = B_TRUE; cmn_err(CE_WARN, "High TCP connect timeout " "rate! System (port %d) may be under a " "SYN flood attack!", BE16_TO_U16(listener->tcp_tcph->th_lport)); listener->tcp_ip_addr_cache = kmem_zalloc( IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), KM_NOSLEEP); } mutex_exit(&listener->tcp_eager_lock); } } /* FALLTHRU */ case TCPS_SYN_SENT: first_threshold = tcp->tcp_first_ctimer_threshold; second_threshold = tcp->tcp_second_ctimer_threshold; break; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_CLOSING: case TCPS_CLOSE_WAIT: case TCPS_LAST_ACK: /* If we have data to rexmit */ if (tcp->tcp_suna != tcp->tcp_snxt) { clock_t time_to_wait; BUMP_MIB(&tcp_mib, tcpTimRetrans); if (!tcp->tcp_xmit_head) break; time_to_wait = lbolt - (clock_t)tcp->tcp_xmit_head->b_prev; time_to_wait = tcp->tcp_rto - TICK_TO_MSEC(time_to_wait); /* * If the timer fires too early, 1 clock tick earlier, * restart the timer. */ if (time_to_wait > msec_per_tick) { TCP_STAT(tcp_timer_fire_early); TCP_TIMER_RESTART(tcp, time_to_wait); return; } /* * When we probe zero windows, we force the swnd open. * If our peer acks with a closed window swnd will be * set to zero by tcp_rput(). As long as we are * receiving acks tcp_rput will * reset 'tcp_ms_we_have_waited' so as not to trip the * first and second interval actions. NOTE: the timer * interval is allowed to continue its exponential * backoff. */ if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_timer: zero win"); } } else { /* * After retransmission, we need to do * slow start. Set the ssthresh to one * half of current effective window and * cwnd to one MSS. Also reset * tcp_cwnd_cnt. * * Note that if tcp_ssthresh is reduced because * of ECN, do not reduce it again unless it is * already one window of data away (tcp_cwr * should then be cleared) or this is a * timeout for a retransmitted segment. */ uint32_t npkt; if (!tcp->tcp_cwr || tcp->tcp_rexmit) { npkt = ((tcp->tcp_timer_backoff ? tcp->tcp_cwnd_ssthresh : tcp->tcp_snxt - tcp->tcp_suna) >> 1) / tcp->tcp_mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; } tcp->tcp_cwnd = tcp->tcp_mss; tcp->tcp_cwnd_cnt = 0; if (tcp->tcp_ecn_ok) { tcp->tcp_cwr = B_TRUE; tcp->tcp_cwr_snd_max = tcp->tcp_snxt; tcp->tcp_ecn_cwr_sent = B_FALSE; } } break; } /* * We have something to send yet we cannot send. The * reason can be: * * 1. Zero send window: we need to do zero window probe. * 2. Zero cwnd: because of ECN, we need to "clock out * segments. * 3. SWS avoidance: receiver may have shrunk window, * reset our knowledge. * * Note that condition 2 can happen with either 1 or * 3. But 1 and 3 are exclusive. */ if (tcp->tcp_unsent != 0) { if (tcp->tcp_cwnd == 0) { /* * Set tcp_cwnd to 1 MSS so that a * new segment can be sent out. We * are "clocking out" new data when * the network is really congested. */ ASSERT(tcp->tcp_ecn_ok); tcp->tcp_cwnd = tcp->tcp_mss; } if (tcp->tcp_swnd == 0) { /* Extend window for zero window probe */ tcp->tcp_swnd++; tcp->tcp_zero_win_probe = B_TRUE; BUMP_MIB(&tcp_mib, tcpOutWinProbe); } else { /* * Handle timeout from sender SWS avoidance. * Reset our knowledge of the max send window * since the receiver might have reduced its * receive buffer. Avoid setting tcp_max_swnd * to one since that will essentially disable * the SWS checks. * * Note that since we don't have a SWS * state variable, if the timeout is set * for ECN but not for SWS, this * code will also be executed. This is * fine as tcp_max_swnd is updated * constantly and it will not affect * anything. */ tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); } tcp_wput_data(tcp, NULL, B_FALSE); return; } /* Is there a FIN that needs to be to re retransmitted? */ if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && !tcp->tcp_fin_acked) break; /* Nothing to do, return without restarting timer. */ TCP_STAT(tcp_timer_fire_miss); return; case TCPS_FIN_WAIT_2: /* * User closed the TCP endpoint and peer ACK'ed our FIN. * We waited some time for for peer's FIN, but it hasn't * arrived. We flush the connection now to avoid * case where the peer has rebooted. */ if (TCP_IS_DETACHED(tcp)) { (void) tcp_clean_death(tcp, 0, 23); } else { TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); } return; case TCPS_TIME_WAIT: (void) tcp_clean_death(tcp, 0, 24); return; default: if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_timer: strange state (%d) %s", tcp->tcp_state, tcp_display(tcp, NULL, DISP_PORT_ONLY)); } return; } if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { /* * For zero window probe, we need to send indefinitely, * unless we have not heard from the other side for some * time... */ if ((tcp->tcp_zero_win_probe == 0) || (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > second_threshold)) { BUMP_MIB(&tcp_mib, tcpTimRetransDrop); /* * If TCP is in SYN_RCVD state, send back a * RST|ACK as BSD does. Note that tcp_zero_win_probe * should be zero in TCPS_SYN_RCVD state. */ if (tcp->tcp_state == TCPS_SYN_RCVD) { tcp_xmit_ctl("tcp_timer: RST sent on timeout " "in SYN_RCVD", tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_RST | TH_ACK); } (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? tcp->tcp_client_errno : ETIMEDOUT, 25); return; } else { /* * Set tcp_ms_we_have_waited to second_threshold * so that in next timeout, we will do the above * check (lbolt - tcp_last_recv_time). This is * also to avoid overflow. * * We don't need to decrement tcp_timer_backoff * to avoid overflow because it will be decremented * later if new timeout value is greater than * tcp_rexmit_interval_max. In the case when * tcp_rexmit_interval_max is greater than * second_threshold, it means that we will wait * longer than second_threshold to send the next * window probe. */ tcp->tcp_ms_we_have_waited = second_threshold; } } else if (ms > first_threshold) { if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && tcp->tcp_xmit_head != NULL) { tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); } /* * We have been retransmitting for too long... The RTT * we calculated is probably incorrect. Reinitialize it. * Need to compensate for 0 tcp_rtt_sa. Reset * tcp_rtt_update so that we won't accidentally cache a * bad value. But only do this if this is not a zero * window probe. */ if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + (tcp->tcp_rtt_sa >> 5); tcp->tcp_rtt_sa = 0; tcp_ip_notify(tcp); tcp->tcp_rtt_update = 0; } } tcp->tcp_timer_backoff++; if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < tcp_rexmit_interval_min) { /* * This means the original RTO is tcp_rexmit_interval_min. * So we will use tcp_rexmit_interval_min as the RTO value * and do the backoff. */ ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; } else { ms <<= tcp->tcp_timer_backoff; } if (ms > tcp_rexmit_interval_max) { ms = tcp_rexmit_interval_max; /* * ms is at max, decrement tcp_timer_backoff to avoid * overflow. */ tcp->tcp_timer_backoff--; } tcp->tcp_ms_we_have_waited += ms; if (tcp->tcp_zero_win_probe == 0) { tcp->tcp_rto = ms; } TCP_TIMER_RESTART(tcp, ms); /* * This is after a timeout and tcp_rto is backed off. Set * tcp_set_timer to 1 so that next time RTO is updated, we will * restart the timer with a correct value. */ tcp->tcp_set_timer = 1; mss = tcp->tcp_snxt - tcp->tcp_suna; if (mss > tcp->tcp_mss) mss = tcp->tcp_mss; if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) mss = tcp->tcp_swnd; if ((mp = tcp->tcp_xmit_head) != NULL) mp->b_prev = (mblk_t *)lbolt; mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, B_TRUE); /* * When slow start after retransmission begins, start with * this seq no. tcp_rexmit_max marks the end of special slow * start phase. tcp_snd_burst controls how many segments * can be sent because of an ack. */ tcp->tcp_rexmit_nxt = tcp->tcp_suna; tcp->tcp_snd_burst = TCP_CWND_SS; if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) { tcp->tcp_rexmit_max = tcp->tcp_fss; } else { tcp->tcp_rexmit_max = tcp->tcp_snxt; } tcp->tcp_rexmit = B_TRUE; tcp->tcp_dupack_cnt = 0; /* * Remove all rexmit SACK blk to start from fresh. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); tcp->tcp_num_notsack_blk = 0; tcp->tcp_cnt_notsack_list = 0; } if (mp == NULL) { return; } /* Attach credentials to retransmitted initial SYNs. */ if (tcp->tcp_state == TCPS_SYN_SENT) { mblk_setcred(mp, tcp->tcp_cred); DB_CPID(mp) = tcp->tcp_cpid; } tcp->tcp_csuna = tcp->tcp_snxt; BUMP_MIB(&tcp_mib, tcpRetransSegs); UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, mp); } /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ static void tcp_unbind(tcp_t *tcp, mblk_t *mp) { conn_t *connp; switch (tcp->tcp_state) { case TCPS_BOUND: case TCPS_LISTEN: break; default: tcp_err_ack(tcp, mp, TOUTSTATE, 0); return; } /* * Need to clean up all the eagers since after the unbind, segments * will no longer be delivered to this listener stream. */ mutex_enter(&tcp->tcp_eager_lock); if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { tcp_eager_cleanup(tcp, 0); } mutex_exit(&tcp->tcp_eager_lock); if (tcp->tcp_ipversion == IPV4_VERSION) { tcp->tcp_ipha->ipha_src = 0; } else { V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); } V6_SET_ZERO(tcp->tcp_ip_src_v6); bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); tcp_bind_hash_remove(tcp); tcp->tcp_state = TCPS_IDLE; tcp->tcp_mdt = B_FALSE; /* Send M_FLUSH according to TPI */ (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); connp = tcp->tcp_connp; connp->conn_mdt_ok = B_FALSE; ipcl_hash_remove(connp); bzero(&connp->conn_ports, sizeof (connp->conn_ports)); mp = mi_tpi_ok_ack_alloc(mp); putnext(tcp->tcp_rq, mp); } /* * Don't let port fall into the privileged range. * Since the extra privileged ports can be arbitrary we also * ensure that we exclude those from consideration. * tcp_g_epriv_ports is not sorted thus we loop over it until * there are no changes. * * Note: No locks are held when inspecting tcp_g_*epriv_ports * but instead the code relies on: * - the fact that the address of the array and its size never changes * - the atomic assignment of the elements of the array */ static in_port_t tcp_update_next_port(in_port_t port, boolean_t random) { int i; if (random && tcp_random_anon_port != 0) { (void) random_get_pseudo_bytes((uint8_t *)&port, sizeof (in_port_t)); /* * Unless changed by a sys admin, the smallest anon port * is 32768 and the largest anon port is 65535. It is * very likely (50%) for the random port to be smaller * than the smallest anon port. When that happens, * add port % (anon port range) to the smallest anon * port to get the random port. It should fall into the * valid anon port range. */ if (port < tcp_smallest_anon_port) { port = tcp_smallest_anon_port + port % (tcp_largest_anon_port - tcp_smallest_anon_port); } } retry: if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port) port = (in_port_t)tcp_smallest_anon_port; if (port < tcp_smallest_nonpriv_port) port = (in_port_t)tcp_smallest_nonpriv_port; for (i = 0; i < tcp_g_num_epriv_ports; i++) { if (port == tcp_g_epriv_ports[i]) { port++; /* * Make sure whether the port is in the * valid range. * * XXX Note that if tcp_g_epriv_ports contains * all the anonymous ports this will be an * infinite loop. */ goto retry; } } return (port); } /* * Return the next anonymous port in the priviledged port range for * bind checking. It starts at IPPORT_RESERVED - 1 and goes * downwards. This is the same behavior as documented in the userland * library call rresvport(3N). */ static in_port_t tcp_get_next_priv_port(void) { static in_port_t next_priv_port = IPPORT_RESERVED - 1; if (next_priv_port < tcp_min_anonpriv_port) { next_priv_port = IPPORT_RESERVED - 1; } return (next_priv_port--); } /* The write side r/w procedure. */ #if CCS_STATS struct { struct { int64_t count, bytes; } tot, hit; } wrw_stats; #endif /* * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, * messages. */ /* ARGSUSED */ static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; queue_t *q = tcp->tcp_wq; ASSERT(DB_TYPE(mp) != M_IOCTL); /* * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. * Once the close starts, streamhead and sockfs will not let any data * packets come down (close ensures that there are no threads using the * queue and no new threads will come down) but since qprocsoff() * hasn't happened yet, a M_FLUSH or some non data message might * get reflected back (in response to our own FLUSHRW) and get * processed after tcp_close() is done. The conn would still be valid * because a ref would have added but we need to check the state * before actually processing the packet. */ if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { freemsg(mp); return; } switch (DB_TYPE(mp)) { case M_IOCDATA: tcp_wput_iocdata(tcp, mp); break; case M_FLUSH: tcp_wput_flush(tcp, mp); break; default: CALL_IP_WPUT(connp, q, mp); break; } } /* * The TCP fast path write put procedure. * NOTE: the logic of the fast path is duplicated from tcp_wput_data() */ /* ARGSUSED */ void tcp_output(void *arg, mblk_t *mp, void *arg2) { int len; int hdrlen; int plen; mblk_t *mp1; uchar_t *rptr; uint32_t snxt; tcph_t *tcph; struct datab *db; uint32_t suna; uint32_t mss; ipaddr_t *dst; ipaddr_t *src; uint32_t sum; int usable; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; uint32_t msize; /* * Try and ASSERT the minimum possible references on the * conn early enough. Since we are executing on write side, * the connection is obviously not detached and that means * there is a ref each for TCP and IP. Since we are behind * the squeue, the minimum references needed are 3. If the * conn is in classifier hash list, there should be an * extra ref for that (we check both the possibilities). */ ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); ASSERT(DB_TYPE(mp) == M_DATA); msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); mutex_enter(&connp->conn_lock); tcp->tcp_squeue_bytes -= msize; mutex_exit(&connp->conn_lock); /* Bypass tcp protocol for fused tcp loopback */ if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) return; mss = tcp->tcp_mss; if (tcp->tcp_xmit_zc_clean) mp = tcp_zcopy_backoff(tcp, mp, 0); ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); len = (int)(mp->b_wptr - mp->b_rptr); /* * Criteria for fast path: * * 1. no unsent data * 2. single mblk in request * 3. connection established * 4. data in mblk * 5. len <= mss * 6. no tcp_valid bits */ if ((tcp->tcp_unsent != 0) || (tcp->tcp_cork) || (mp->b_cont != NULL) || (tcp->tcp_state != TCPS_ESTABLISHED) || (len == 0) || (len > mss) || (tcp->tcp_valid_bits != 0)) { tcp_wput_data(tcp, mp, B_FALSE); return; } ASSERT(tcp->tcp_xmit_tail_unsent == 0); ASSERT(tcp->tcp_fin_sent == 0); /* queue new packet onto retransmission queue */ if (tcp->tcp_xmit_head == NULL) { tcp->tcp_xmit_head = mp; } else { tcp->tcp_xmit_last->b_cont = mp; } tcp->tcp_xmit_last = mp; tcp->tcp_xmit_tail = mp; /* find out how much we can send */ /* BEGIN CSTYLED */ /* * un-acked usable * |--------------|-----------------| * tcp_suna tcp_snxt tcp_suna+tcp_swnd */ /* END CSTYLED */ /* start sending from tcp_snxt */ snxt = tcp->tcp_snxt; /* * Check to see if this connection has been idled for some * time and no ACK is expected. If it is, we need to slow * start again to get back the connection's "self-clock" as * described in VJ's paper. * * Refer to the comment in tcp_mss_set() for the calculation * of tcp_cwnd after idle. */ if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); } usable = tcp->tcp_swnd; /* tcp window size */ if (usable > tcp->tcp_cwnd) usable = tcp->tcp_cwnd; /* congestion window smaller */ usable -= snxt; /* subtract stuff already sent */ suna = tcp->tcp_suna; usable += suna; /* usable can be < 0 if the congestion window is smaller */ if (len > usable) { /* Can't send complete M_DATA in one shot */ goto slow; } if (tcp->tcp_flow_stopped && TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { tcp_clrqfull(tcp); } /* * determine if anything to send (Nagle). * * 1. len < tcp_mss (i.e. small) * 2. unacknowledged data present * 3. len < nagle limit * 4. last packet sent < nagle limit (previous packet sent) */ if ((len < mss) && (snxt != suna) && (len < (int)tcp->tcp_naglim) && (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { /* * This was the first unsent packet and normally * mss < xmit_hiwater so there is no need to worry * about flow control. The next packet will go * through the flow control check in tcp_wput_data(). */ /* leftover work from above */ tcp->tcp_unsent = len; tcp->tcp_xmit_tail_unsent = len; return; } /* len <= tcp->tcp_mss && len == unsent so no silly window */ if (snxt == suna) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } /* we have always sent something */ tcp->tcp_rack_cnt = 0; tcp->tcp_snxt = snxt + len; tcp->tcp_rack = tcp->tcp_rnxt; if ((mp1 = dupb(mp)) == 0) goto no_memory; mp->b_prev = (mblk_t *)(uintptr_t)lbolt; mp->b_next = (mblk_t *)(uintptr_t)snxt; /* adjust tcp header information */ tcph = tcp->tcp_tcph; tcph->th_flags[0] = (TH_ACK|TH_PUSH); sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; sum = (sum >> 16) + (sum & 0xFFFF); U16_TO_ABE16(sum, tcph->th_sum); U32_TO_ABE32(snxt, tcph->th_seq); BUMP_MIB(&tcp_mib, tcpOutDataSegs); UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); BUMP_LOCAL(tcp->tcp_obsegs); /* Update the latest receive window size in TCP header. */ U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcph->th_win); tcp->tcp_last_sent_len = (ushort_t)len; plen = len + tcp->tcp_hdr_len; if (tcp->tcp_ipversion == IPV4_VERSION) { tcp->tcp_ipha->ipha_length = htons(plen); } else { tcp->tcp_ip6h->ip6_plen = htons(plen - ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); } /* see if we need to allocate a mblk for the headers */ hdrlen = tcp->tcp_hdr_len; rptr = mp1->b_rptr - hdrlen; db = mp1->b_datap; if ((db->db_ref != 2) || rptr < db->db_base || (!OK_32PTR(rptr))) { /* NOTE: we assume allocb returns an OK_32PTR */ mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, BPRI_MED); if (!mp) { freemsg(mp1); goto no_memory; } mp->b_cont = mp1; mp1 = mp; /* Leave room for Link Level header */ /* hdrlen = tcp->tcp_hdr_len; */ rptr = &mp1->b_rptr[tcp_wroff_xtra]; mp1->b_wptr = &rptr[hdrlen]; } mp1->b_rptr = rptr; /* Fill in the timestamp option. */ if (tcp->tcp_snd_ts_ok) { U32_TO_BE32((uint32_t)lbolt, (char *)tcph+TCP_MIN_HEADER_LENGTH+4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcph+TCP_MIN_HEADER_LENGTH+8); } else { ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); } /* copy header into outgoing packet */ dst = (ipaddr_t *)rptr; src = (ipaddr_t *)tcp->tcp_iphc; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; if (hdrlen -= 40) { hdrlen >>= 2; dst += 10; src += 10; do { *dst++ = *src++; } while (--hdrlen); } /* * Set the ECN info in the TCP header. Note that this * is not the template header. */ if (tcp->tcp_ecn_ok) { SET_ECT(tcp, rptr); tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); if (tcp->tcp_ecn_echo_on) tcph->th_flags[0] |= TH_ECE; if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { tcph->th_flags[0] |= TH_CWR; tcp->tcp_ecn_cwr_sent = B_TRUE; } } if (tcp->tcp_ip_forward_progress) { ASSERT(tcp->tcp_ipversion == IPV6_VERSION); *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; tcp->tcp_ip_forward_progress = B_FALSE; } TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, mp1); return; /* * If we ran out of memory, we pretend to have sent the packet * and that it was lost on the wire. */ no_memory: return; slow: /* leftover work from above */ tcp->tcp_unsent = len; tcp->tcp_xmit_tail_unsent = len; tcp_wput_data(tcp, NULL, B_FALSE); } /* * The function called through squeue to get behind eager's perimeter to * finish the accept processing. */ /* ARGSUSED */ void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; queue_t *q = tcp->tcp_rq; mblk_t *mp1; mblk_t *stropt_mp = mp; struct stroptions *stropt; uint_t thwin; /* * Drop the eager's ref on the listener, that was placed when * this eager began life in tcp_conn_request. */ CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { /* * Someone blewoff the eager before we could finish * the accept. * * The only reason eager exists it because we put in * a ref on it when conn ind went up. We need to send * a disconnect indication up while the last reference * on the eager will be dropped by the squeue when we * return. */ ASSERT(tcp->tcp_listener == NULL); if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { struct T_discon_ind *tdi; (void) putnextctl1(q, M_FLUSH, FLUSHRW); /* * Let us reuse the incoming mblk to avoid memory * allocation failure problems. We know that the * size of the incoming mblk i.e. stroptions is greater * than sizeof T_discon_ind. So the reallocb below * can't fail. */ freemsg(mp->b_cont); mp->b_cont = NULL; ASSERT(DB_REF(mp) == 1); mp = reallocb(mp, sizeof (struct T_discon_ind), B_FALSE); ASSERT(mp != NULL); DB_TYPE(mp) = M_PROTO; ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; tdi = (struct T_discon_ind *)mp->b_rptr; if (tcp->tcp_issocket) { tdi->DISCON_reason = ECONNREFUSED; tdi->SEQ_number = 0; } else { tdi->DISCON_reason = ENOPROTOOPT; tdi->SEQ_number = tcp->tcp_conn_req_seqnum; } mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); putnext(q, mp); } else { freemsg(mp); } if (tcp->tcp_hard_binding) { tcp->tcp_hard_binding = B_FALSE; tcp->tcp_hard_bound = B_TRUE; } tcp->tcp_detached = B_FALSE; return; } mp1 = stropt_mp->b_cont; stropt_mp->b_cont = NULL; ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); stropt = (struct stroptions *)stropt_mp->b_rptr; while (mp1 != NULL) { mp = mp1; mp1 = mp1->b_cont; mp->b_cont = NULL; tcp->tcp_drop_opt_ack_cnt++; CALL_IP_WPUT(connp, tcp->tcp_wq, mp); } mp = NULL; /* * For a loopback connection with tcp_direct_sockfs on, note that * we don't have to protect tcp_rcv_list yet because synchronous * streams has not yet been enabled and tcp_fuse_rrw() cannot * possibly race with us. */ /* * Set the max window size (tcp_rq->q_hiwat) of the acceptor * properly. This is the first time we know of the acceptor' * queue. So we do it here. */ if (tcp->tcp_rcv_list == NULL) { /* * Recv queue is empty, tcp_rwnd should not have changed. * That means it should be equal to the listener's tcp_rwnd. */ tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; } else { #ifdef DEBUG uint_t cnt = 0; mp1 = tcp->tcp_rcv_list; while ((mp = mp1) != NULL) { mp1 = mp->b_next; cnt += msgdsize(mp); } ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); #endif /* There is some data, add them back to get the max. */ tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; } stropt->so_flags = SO_HIWAT; stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); stropt->so_flags |= SO_MAXBLK; stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); /* * This is the first time we run on the correct * queue after tcp_accept. So fix all the q parameters * here. */ /* Allocate room for SACK options if needed. */ stropt->so_flags |= SO_WROFF; if (tcp->tcp_fused) { ASSERT(tcp->tcp_loopback); ASSERT(tcp->tcp_loopback_peer != NULL); /* * For fused tcp loopback, set the stream head's write * offset value to zero since we won't be needing any room * for TCP/IP headers. This would also improve performance * since it would reduce the amount of work done by kmem. * Non-fused tcp loopback case is handled separately below. */ stropt->so_wroff = 0; /* * Record the stream head's high water mark for this endpoint; * this is used for flow-control purposes in tcp_fuse_output(). */ stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); /* * Update the peer's transmit parameters according to * our recently calculated high water mark value. */ (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); } else if (tcp->tcp_snd_sack_ok) { stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); } else { stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); } /* * If this is endpoint is handling SSL, then reserve extra * offset and space at the end. * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, * overriding the previous setting. The extra cost of signing and * encrypting multiple MSS-size records (12 of them with Ethernet), * instead of a single contiguous one by the stream head * largely outweighs the statistical reduction of ACKs, when * applicable. The peer will also save on decyption and verification * costs. */ if (tcp->tcp_kssl_ctx != NULL) { stropt->so_wroff += SSL3_WROFFSET; stropt->so_flags |= SO_TAIL; stropt->so_tail = SSL3_MAX_TAIL_LEN; stropt->so_maxblk = SSL3_MAX_RECORD_LEN; } /* Send the options up */ putnext(q, stropt_mp); /* * Pass up any data and/or a fin that has been received. * * Adjust receive window in case it had decreased * (because there is data <=> tcp_rcv_list != NULL) * while the connection was detached. Note that * in case the eager was flow-controlled, w/o this * code, the rwnd may never open up again! */ if (tcp->tcp_rcv_list != NULL) { /* We drain directly in case of fused tcp loopback */ if (!tcp->tcp_fused && canputnext(q)) { tcp->tcp_rwnd = q->q_hiwat; thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) << tcp->tcp_rcv_ws; thwin -= tcp->tcp_rnxt - tcp->tcp_rack; if (tcp->tcp_state >= TCPS_ESTABLISHED && (q->q_hiwat - thwin >= tcp->tcp_mss)) { tcp_xmit_ctl(NULL, tcp, (tcp->tcp_swnd == 0) ? tcp->tcp_suna : tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); BUMP_MIB(&tcp_mib, tcpOutWinUpdate); } } (void) tcp_rcv_drain(q, tcp); /* * For fused tcp loopback, back-enable peer endpoint * if it's currently flow-controlled. */ if (tcp->tcp_fused && tcp->tcp_loopback_peer->tcp_flow_stopped) { tcp_t *peer_tcp = tcp->tcp_loopback_peer; ASSERT(peer_tcp != NULL); ASSERT(peer_tcp->tcp_fused); tcp_clrqfull(peer_tcp); TCP_STAT(tcp_fusion_backenabled); } } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { mp = mi_tpi_ordrel_ind(); if (mp) { tcp->tcp_ordrel_done = B_TRUE; putnext(q, mp); if (tcp->tcp_deferred_clean_death) { /* * tcp_clean_death was deferred * for T_ORDREL_IND - do it now */ (void) tcp_clean_death(tcp, tcp->tcp_client_errno, 21); tcp->tcp_deferred_clean_death = B_FALSE; } } else { /* * Run the orderly release in the * service routine. */ qenable(q); } } if (tcp->tcp_hard_binding) { tcp->tcp_hard_binding = B_FALSE; tcp->tcp_hard_bound = B_TRUE; } tcp->tcp_detached = B_FALSE; /* We can enable synchronous streams now */ if (tcp->tcp_fused) { tcp_fuse_syncstr_enable_pair(tcp); } if (tcp->tcp_ka_enabled) { tcp->tcp_ka_last_intrvl = 0; tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(tcp->tcp_ka_interval)); } /* * At this point, eager is fully established and will * have the following references - * * 2 references for connection to exist (1 for TCP and 1 for IP). * 1 reference for the squeue which will be dropped by the squeue as * soon as this function returns. * There will be 1 additonal reference for being in classifier * hash list provided something bad hasn't happened. */ ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); } /* * The function called through squeue to get behind listener's perimeter to * send a deffered conn_ind. */ /* ARGSUSED */ void tcp_send_pending(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg; tcp_t *listener = connp->conn_tcp; if (listener->tcp_state == TCPS_CLOSED || TCP_IS_DETACHED(listener)) { /* * If listener has closed, it would have caused a * a cleanup/blowoff to happen for the eager. */ tcp_t *tcp; struct T_conn_ind *conn_ind; conn_ind = (struct T_conn_ind *)mp->b_rptr; bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, conn_ind->OPT_length); /* * We need to drop the ref on eager that was put * tcp_rput_data() before trying to send the conn_ind * to listener. The conn_ind was deferred in tcp_send_conn_ind * and tcp_wput_accept() is sending this deferred conn_ind but * listener is closed so we drop the ref. */ CONN_DEC_REF(tcp->tcp_connp); freemsg(mp); return; } putnext(listener->tcp_rq, mp); } /* * This is the STREAMS entry point for T_CONN_RES coming down on * Acceptor STREAM when sockfs listener does accept processing. * Read the block comment on top pf tcp_conn_request(). */ void tcp_wput_accept(queue_t *q, mblk_t *mp) { queue_t *rq = RD(q); struct T_conn_res *conn_res; tcp_t *eager; tcp_t *listener; struct T_ok_ack *ok; t_scalar_t PRIM_type; mblk_t *opt_mp; conn_t *econnp; ASSERT(DB_TYPE(mp) == M_PROTO); conn_res = (struct T_conn_res *)mp->b_rptr; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); if (mp != NULL) putnext(rq, mp); return; } switch (conn_res->PRIM_type) { case O_T_CONN_RES: case T_CONN_RES: /* * We pass up an err ack if allocb fails. This will * cause sockfs to issue a T_DISCON_REQ which will cause * tcp_eager_blowoff to be called. sockfs will then call * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. * we need to do the allocb up here because we have to * make sure rq->q_qinfo->qi_qclose still points to the * correct function (tcpclose_accept) in case allocb * fails. */ opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); if (opt_mp == NULL) { mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); if (mp != NULL) putnext(rq, mp); return; } bcopy(mp->b_rptr + conn_res->OPT_offset, &eager, conn_res->OPT_length); PRIM_type = conn_res->PRIM_type; mp->b_datap->db_type = M_PCPROTO; mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); ok = (struct T_ok_ack *)mp->b_rptr; ok->PRIM_type = T_OK_ACK; ok->CORRECT_prim = PRIM_type; econnp = eager->tcp_connp; econnp->conn_dev = (dev_t)q->q_ptr; eager->tcp_rq = rq; eager->tcp_wq = q; rq->q_ptr = econnp; rq->q_qinfo = &tcp_rinit; q->q_ptr = econnp; q->q_qinfo = &tcp_winit; listener = eager->tcp_listener; eager->tcp_issocket = B_TRUE; eager->tcp_cred = econnp->conn_cred = listener->tcp_connp->conn_cred; crhold(econnp->conn_cred); econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; /* Put the ref for IP */ CONN_INC_REF(econnp); /* * We should have minimum of 3 references on the conn * at this point. One each for TCP and IP and one for * the T_conn_ind that was sent up when the 3-way handshake * completed. In the normal case we would also have another * reference (making a total of 4) for the conn being in the * classifier hash list. However the eager could have received * an RST subsequently and tcp_closei_local could have removed * the eager from the classifier hash list, hence we can't * assert that reference. */ ASSERT(econnp->conn_ref >= 3); /* * Send the new local address also up to sockfs. There * should already be enough space in the mp that came * down from soaccept(). */ if (eager->tcp_family == AF_INET) { sin_t *sin; ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= (sizeof (struct T_ok_ack) + sizeof (sin_t))); sin = (sin_t *)mp->b_wptr; mp->b_wptr += sizeof (sin_t); sin->sin_family = AF_INET; sin->sin_port = eager->tcp_lport; sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; } else { sin6_t *sin6; ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= sizeof (struct T_ok_ack) + sizeof (sin6_t)); sin6 = (sin6_t *)mp->b_wptr; mp->b_wptr += sizeof (sin6_t); sin6->sin6_family = AF_INET6; sin6->sin6_port = eager->tcp_lport; if (eager->tcp_ipversion == IPV4_VERSION) { sin6->sin6_flowinfo = 0; IN6_IPADDR_TO_V4MAPPED( eager->tcp_ipha->ipha_src, &sin6->sin6_addr); } else { ASSERT(eager->tcp_ip6h != NULL); sin6->sin6_flowinfo = eager->tcp_ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; sin6->sin6_addr = eager->tcp_ip6h->ip6_src; } sin6->sin6_scope_id = 0; sin6->__sin6_src_id = 0; } putnext(rq, mp); opt_mp->b_datap->db_type = M_SETOPTS; opt_mp->b_wptr += sizeof (struct stroptions); /* * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO * from listener to acceptor. The message is chained on the * bind_mp which tcp_rput_other will send down to IP. */ if (listener->tcp_bound_if != 0) { /* allocate optmgmt req */ mp = tcp_setsockopt_mp(IPPROTO_IPV6, IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, sizeof (int)); if (mp != NULL) linkb(opt_mp, mp); } if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { uint_t on = 1; /* allocate optmgmt req */ mp = tcp_setsockopt_mp(IPPROTO_IPV6, IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); if (mp != NULL) linkb(opt_mp, mp); } mutex_enter(&listener->tcp_eager_lock); if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { tcp_t *tail; tcp_t *tcp; mblk_t *mp1; tcp = listener->tcp_eager_prev_q0; /* * listener->tcp_eager_prev_q0 points to the TAIL of the * deferred T_conn_ind queue. We need to get to the head * of the queue in order to send up T_conn_ind the same * order as how the 3WHS is completed. */ while (tcp != listener) { if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && !tcp->tcp_kssl_pending) break; else tcp = tcp->tcp_eager_prev_q0; } /* None of the pending eagers can be sent up now */ if (tcp == listener) goto no_more_eagers; mp1 = tcp->tcp_conn.tcp_eager_conn_ind; tcp->tcp_conn.tcp_eager_conn_ind = NULL; /* Move from q0 to q */ ASSERT(listener->tcp_conn_req_cnt_q0 > 0); listener->tcp_conn_req_cnt_q0--; listener->tcp_conn_req_cnt_q++; tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; tcp->tcp_eager_prev_q0 = NULL; tcp->tcp_eager_next_q0 = NULL; tcp->tcp_conn_def_q0 = B_FALSE; /* * Insert at end of the queue because sockfs sends * down T_CONN_RES in chronological order. Leaving * the older conn indications at front of the queue * helps reducing search time. */ tail = listener->tcp_eager_last_q; if (tail != NULL) { tail->tcp_eager_next_q = tcp; } else { listener->tcp_eager_next_q = tcp; } listener->tcp_eager_last_q = tcp; tcp->tcp_eager_next_q = NULL; /* Need to get inside the listener perimeter */ CONN_INC_REF(listener->tcp_connp); squeue_fill(listener->tcp_connp->conn_sqp, mp1, tcp_send_pending, listener->tcp_connp, SQTAG_TCP_SEND_PENDING); } no_more_eagers: tcp_eager_unlink(eager); mutex_exit(&listener->tcp_eager_lock); /* * At this point, the eager is detached from the listener * but we still have an extra refs on eager (apart from the * usual tcp references). The ref was placed in tcp_rput_data * before sending the conn_ind in tcp_send_conn_ind. * The ref will be dropped in tcp_accept_finish(). */ squeue_enter_nodrain(econnp->conn_sqp, opt_mp, tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); return; default: mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); if (mp != NULL) putnext(rq, mp); return; } } void tcp_wput(queue_t *q, mblk_t *mp) { conn_t *connp = Q_TO_CONN(q); tcp_t *tcp; void (*output_proc)(); t_scalar_t type; uchar_t *rptr; struct iocblk *iocp; uint32_t msize; ASSERT(connp->conn_ref >= 2); switch (DB_TYPE(mp)) { case M_DATA: tcp = connp->conn_tcp; ASSERT(tcp != NULL); msize = msgdsize(mp); mutex_enter(&connp->conn_lock); CONN_INC_REF_LOCKED(connp); tcp->tcp_squeue_bytes += msize; if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { mutex_exit(&connp->conn_lock); tcp_setqfull(tcp); } else mutex_exit(&connp->conn_lock); (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, tcp_output, connp, SQTAG_TCP_OUTPUT); return; case M_PROTO: case M_PCPROTO: /* * if it is a snmp message, don't get behind the squeue */ tcp = connp->conn_tcp; rptr = mp->b_rptr; if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { type = ((union T_primitives *)rptr)->type; } else { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_wput_proto, dropping one..."); } freemsg(mp); return; } if (type == T_SVR4_OPTMGMT_REQ) { cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, cr)) { /* * This was a SNMP request */ return; } else { output_proc = tcp_wput_proto; } } else { output_proc = tcp_wput_proto; } break; case M_IOCTL: /* * Most ioctls can be processed right away without going via * squeues - process them right here. Those that do require * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) * are processed by tcp_wput_ioctl(). */ iocp = (struct iocblk *)mp->b_rptr; tcp = connp->conn_tcp; switch (iocp->ioc_cmd) { case TCP_IOC_ABORT_CONN: tcp_ioctl_abort_conn(q, mp); return; case TI_GETPEERNAME: if (tcp->tcp_state < TCPS_SYN_RCVD) { iocp->ioc_error = ENOTCONN; iocp->ioc_count = 0; mp->b_datap->db_type = M_IOCACK; qreply(q, mp); return; } /* FALLTHRU */ case TI_GETMYNAME: mi_copyin(q, mp, NULL, SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); return; case ND_SET: /* nd_getset does the necessary checks */ case ND_GET: if (!nd_getset(q, tcp_g_nd, mp)) { CALL_IP_WPUT(connp, q, mp); return; } qreply(q, mp); return; case TCP_IOC_DEFAULT_Q: /* * Wants to be the default wq. Check the credentials * first, the rest is executed via squeue. */ if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { iocp->ioc_error = EPERM; iocp->ioc_count = 0; mp->b_datap->db_type = M_IOCACK; qreply(q, mp); return; } output_proc = tcp_wput_ioctl; break; default: output_proc = tcp_wput_ioctl; break; } break; default: output_proc = tcp_wput_nondata; break; } CONN_INC_REF(connp); (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, output_proc, connp, SQTAG_TCP_WPUT_OTHER); } /* * Initial STREAMS write side put() procedure for sockets. It tries to * handle the T_CAPABILITY_REQ which sockfs sends down while setting * up the socket without using the squeue. Non T_CAPABILITY_REQ messages * are handled by tcp_wput() as usual. * * All further messages will also be handled by tcp_wput() because we cannot * be sure that the above short cut is safe later. */ static void tcp_wput_sock(queue_t *wq, mblk_t *mp) { conn_t *connp = Q_TO_CONN(wq); tcp_t *tcp = connp->conn_tcp; struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; ASSERT(wq->q_qinfo == &tcp_sock_winit); wq->q_qinfo = &tcp_winit; ASSERT(IPCL_IS_TCP(connp)); ASSERT(TCP_IS_SOCKET(tcp)); if (DB_TYPE(mp) == M_PCPROTO && MBLKL(mp) == sizeof (struct T_capability_req) && car->PRIM_type == T_CAPABILITY_REQ) { tcp_capability_req(tcp, mp); return; } tcp_wput(wq, mp); } static boolean_t tcp_zcopy_check(tcp_t *tcp) { conn_t *connp = tcp->tcp_connp; ire_t *ire; boolean_t zc_enabled = B_FALSE; if (do_tcpzcopy == 2) zc_enabled = B_TRUE; else if (tcp->tcp_ipversion == IPV4_VERSION && IPCL_IS_CONNECTED(connp) && (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && connp->conn_dontroute == 0 && !connp->conn_nexthop_set && connp->conn_xmit_if_ill == NULL && connp->conn_nofailover_ill == NULL && do_tcpzcopy == 1) { /* * the checks above closely resemble the fast path checks * in tcp_send_data(). */ mutex_enter(&connp->conn_lock); ire = connp->conn_ire_cache; ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { IRE_REFHOLD(ire); if (ire->ire_stq != NULL) { ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; zc_enabled = ill && (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) && (ill->ill_zerocopy_capab-> ill_zerocopy_flags != 0); } IRE_REFRELE(ire); } mutex_exit(&connp->conn_lock); } tcp->tcp_snd_zcopy_on = zc_enabled; if (!TCP_IS_DETACHED(tcp)) { if (zc_enabled) { (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); TCP_STAT(tcp_zcopy_on); } else { (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); TCP_STAT(tcp_zcopy_off); } } return (zc_enabled); } static mblk_t * tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) { if (do_tcpzcopy == 2) return (bp); else if (tcp->tcp_snd_zcopy_on) { tcp->tcp_snd_zcopy_on = B_FALSE; if (!TCP_IS_DETACHED(tcp)) { (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); TCP_STAT(tcp_zcopy_disable); } } return (tcp_zcopy_backoff(tcp, bp, 0)); } /* * Backoff from a zero-copy mblk by copying data to a new mblk and freeing * the original desballoca'ed segmapped mblk. */ static mblk_t * tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) { mblk_t *head, *tail, *nbp; if (IS_VMLOANED_MBLK(bp)) { TCP_STAT(tcp_zcopy_backoff); if ((head = copyb(bp)) == NULL) { /* fail to backoff; leave it for the next backoff */ tcp->tcp_xmit_zc_clean = B_FALSE; return (bp); } if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { if (fix_xmitlist) tcp_zcopy_notify(tcp); else head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; } nbp = bp->b_cont; if (fix_xmitlist) { head->b_prev = bp->b_prev; head->b_next = bp->b_next; if (tcp->tcp_xmit_tail == bp) tcp->tcp_xmit_tail = head; } bp->b_next = NULL; bp->b_prev = NULL; freeb(bp); } else { head = bp; nbp = bp->b_cont; } tail = head; while (nbp) { if (IS_VMLOANED_MBLK(nbp)) { TCP_STAT(tcp_zcopy_backoff); if ((tail->b_cont = copyb(nbp)) == NULL) { tcp->tcp_xmit_zc_clean = B_FALSE; tail->b_cont = nbp; return (head); } tail = tail->b_cont; if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { if (fix_xmitlist) tcp_zcopy_notify(tcp); else tail->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; } bp = nbp; nbp = nbp->b_cont; if (fix_xmitlist) { tail->b_prev = bp->b_prev; tail->b_next = bp->b_next; if (tcp->tcp_xmit_tail == bp) tcp->tcp_xmit_tail = tail; } bp->b_next = NULL; bp->b_prev = NULL; freeb(bp); } else { tail->b_cont = nbp; tail = nbp; nbp = nbp->b_cont; } } if (fix_xmitlist) { tcp->tcp_xmit_last = tail; tcp->tcp_xmit_zc_clean = B_TRUE; } return (head); } static void tcp_zcopy_notify(tcp_t *tcp) { struct stdata *stp; if (tcp->tcp_detached) return; stp = STREAM(tcp->tcp_rq); mutex_enter(&stp->sd_lock); stp->sd_flag |= STZCNOTIFY; cv_broadcast(&stp->sd_zcopy_wait); mutex_exit(&stp->sd_lock); } static void tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) { ipha_t *ipha; ipaddr_t src; ipaddr_t dst; uint32_t cksum; ire_t *ire; uint16_t *up; ill_t *ill; conn_t *connp = tcp->tcp_connp; uint32_t hcksum_txflags = 0; mblk_t *ire_fp_mp; uint_t ire_fp_mp_len; ASSERT(DB_TYPE(mp) == M_DATA); ipha = (ipha_t *)mp->b_rptr; src = ipha->ipha_src; dst = ipha->ipha_dst; /* * Drop off slow path for IPv6 and also if options are present. */ if (tcp->tcp_ipversion != IPV4_VERSION || !IPCL_IS_CONNECTED(connp) || (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || connp->conn_dontroute || connp->conn_nexthop_set || connp->conn_xmit_if_ill != NULL || connp->conn_nofailover_ill != NULL || ipha->ipha_ident == IP_HDR_INCLUDED || ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || IPP_ENABLED(IPP_LOCAL_OUT)) { if (tcp->tcp_snd_zcopy_aware) mp = tcp_zcopy_disable(tcp, mp); TCP_STAT(tcp_ip_send); CALL_IP_WPUT(connp, q, mp); return; } mutex_enter(&connp->conn_lock); ire = connp->conn_ire_cache; ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); if (ire != NULL && ire->ire_addr == dst && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { IRE_REFHOLD(ire); mutex_exit(&connp->conn_lock); } else { boolean_t cached = B_FALSE; /* force a recheck later on */ tcp->tcp_ire_ill_check_done = B_FALSE; TCP_DBGSTAT(tcp_ire_null1); connp->conn_ire_cache = NULL; mutex_exit(&connp->conn_lock); if (ire != NULL) IRE_REFRELE_NOTR(ire); ire = ire_cache_lookup(dst, connp->conn_zoneid); if (ire == NULL) { if (tcp->tcp_snd_zcopy_aware) mp = tcp_zcopy_backoff(tcp, mp, 0); TCP_STAT(tcp_ire_null); CALL_IP_WPUT(connp, q, mp); return; } IRE_REFHOLD_NOTR(ire); /* * Since we are inside the squeue, there cannot be another * thread in TCP trying to set the conn_ire_cache now. The * check for IRE_MARK_CONDEMNED ensures that an interface * unplumb thread has not yet started cleaning up the conns. * Hence we don't need to grab the conn lock. */ if (!(connp->conn_state_flags & CONN_CLOSING)) { rw_enter(&ire->ire_bucket->irb_lock, RW_READER); if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { connp->conn_ire_cache = ire; cached = B_TRUE; } rw_exit(&ire->ire_bucket->irb_lock); } /* * We can continue to use the ire but since it was * not cached, we should drop the extra reference. */ if (!cached) IRE_REFRELE_NOTR(ire); } if (ire->ire_flags & RTF_MULTIRT || ire->ire_stq == NULL || ire->ire_max_frag < ntohs(ipha->ipha_length) || (ire_fp_mp = ire->ire_fp_mp) == NULL || (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { if (tcp->tcp_snd_zcopy_aware) mp = tcp_zcopy_disable(tcp, mp); TCP_STAT(tcp_ip_ire_send); IRE_REFRELE(ire); CALL_IP_WPUT(connp, q, mp); return; } ill = ire_to_ill(ire); if (connp->conn_outgoing_ill != NULL) { ill_t *conn_outgoing_ill = NULL; /* * Choose a good ill in the group to send the packets on. */ ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); ill = ire_to_ill(ire); } ASSERT(ill != NULL); if (!tcp->tcp_ire_ill_check_done) { tcp_ire_ill_check(tcp, ire, ill, B_TRUE); tcp->tcp_ire_ill_check_done = B_TRUE; } ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); #ifndef _BIG_ENDIAN ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); #endif /* * Check to see if we need to re-enable MDT for this connection * because it was previously disabled due to changes in the ill; * note that by doing it here, this re-enabling only applies when * the packet is not dispatched through CALL_IP_WPUT(). * * That means for IPv4, it is worth re-enabling MDT for the fastpath * case, since that's how we ended up here. For IPv6, we do the * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. */ if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { /* * Restore MDT for this connection, so that next time around * it is eligible to go through tcp_multisend() path again. */ TCP_STAT(tcp_mdt_conn_resumed1); tcp->tcp_mdt = B_TRUE; ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " "interface %s\n", (void *)connp, ill->ill_name)); } if (tcp->tcp_snd_zcopy_aware) { if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) mp = tcp_zcopy_disable(tcp, mp); /* * we shouldn't need to reset ipha as the mp containing * ipha should never be a zero-copy mp. */ } if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { ASSERT(ill->ill_hcksum_capab != NULL); hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; } /* pseudo-header checksum (do it in parts for IP header checksum) */ cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); /* Software checksum? */ if (DB_CKSUMFLAGS(mp) == 0) { TCP_STAT(tcp_out_sw_cksum); TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); } ipha->ipha_fragment_offset_and_flags |= (uint32_t)htons(ire->ire_frag_flag); /* Calculate IP header checksum if hardware isn't capable */ if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], ((uint16_t *)ipha)[4]); } ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); UPDATE_OB_PKT_COUNT(ire); ire->ire_last_used_time = lbolt; BUMP_MIB(&ip_mib, ipOutRequests); if (ILL_DLS_CAPABLE(ill)) { /* * Send the packet directly to DLD, where it may be queued * depending on the availability of transmit resources at * the media layer. */ IP_DLS_ILL_TX(ill, mp); } else { putnext(ire->ire_stq, mp); } IRE_REFRELE(ire); } /* * This handles the case when the receiver has shrunk its win. Per RFC 1122 * if the receiver shrinks the window, i.e. moves the right window to the * left, the we should not send new data, but should retransmit normally the * old unacked data between suna and suna + swnd. We might has sent data * that is now outside the new window, pretend that we didn't send it. */ static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) { uint32_t snxt = tcp->tcp_snxt; mblk_t *xmit_tail; int32_t offset; ASSERT(shrunk_count > 0); /* Pretend we didn't send the data outside the window */ snxt -= shrunk_count; /* Get the mblk and the offset in it per the shrunk window */ xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); ASSERT(xmit_tail != NULL); /* Reset all the values per the now shrunk window */ tcp->tcp_snxt = snxt; tcp->tcp_xmit_tail = xmit_tail; tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - offset; tcp->tcp_unsent += shrunk_count; if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) /* * Make sure the timer is running so that we will probe a zero * window. */ TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } /* * The TCP normal data output path. * NOTE: the logic of the fast path is duplicated from this function. */ static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) { int len; mblk_t *local_time; mblk_t *mp1; uint32_t snxt; int tail_unsent; int tcpstate; int usable = 0; mblk_t *xmit_tail; queue_t *q = tcp->tcp_wq; int32_t mss; int32_t num_sack_blk = 0; int32_t tcp_hdr_len; int32_t tcp_tcp_hdr_len; int mdt_thres; int rc; tcpstate = tcp->tcp_state; if (mp == NULL) { /* * tcp_wput_data() with NULL mp should only be called when * there is unsent data. */ ASSERT(tcp->tcp_unsent > 0); /* Really tacky... but we need this for detached closes. */ len = tcp->tcp_unsent; goto data_null; } #if CCS_STATS wrw_stats.tot.count++; wrw_stats.tot.bytes += msgdsize(mp); #endif ASSERT(mp->b_datap->db_type == M_DATA); /* * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, * or before a connection attempt has begun. */ if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { #ifdef DEBUG cmn_err(CE_WARN, "tcp_wput_data: data after ordrel, %s", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); #else if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_wput_data: data after ordrel, %s\n", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); } #endif /* DEBUG */ } if (tcp->tcp_snd_zcopy_aware && (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) tcp_zcopy_notify(tcp); freemsg(mp); if (tcp->tcp_flow_stopped && TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { tcp_clrqfull(tcp); } return; } /* Strip empties */ for (;;) { ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); len = (int)(mp->b_wptr - mp->b_rptr); if (len > 0) break; mp1 = mp; mp = mp->b_cont; freeb(mp1); if (!mp) { return; } } /* If we are the first on the list ... */ if (tcp->tcp_xmit_head == NULL) { tcp->tcp_xmit_head = mp; tcp->tcp_xmit_tail = mp; tcp->tcp_xmit_tail_unsent = len; } else { /* If tiny tx and room in txq tail, pullup to save mblks. */ struct datab *dp; mp1 = tcp->tcp_xmit_last; if (len < tcp_tx_pull_len && (dp = mp1->b_datap)->db_ref == 1 && dp->db_lim - mp1->b_wptr >= len) { ASSERT(len > 0); ASSERT(!mp1->b_cont); if (len == 1) { *mp1->b_wptr++ = *mp->b_rptr; } else { bcopy(mp->b_rptr, mp1->b_wptr, len); mp1->b_wptr += len; } if (mp1 == tcp->tcp_xmit_tail) tcp->tcp_xmit_tail_unsent += len; mp1->b_cont = mp->b_cont; if (tcp->tcp_snd_zcopy_aware && (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; freeb(mp); mp = mp1; } else { tcp->tcp_xmit_last->b_cont = mp; } len += tcp->tcp_unsent; } /* Tack on however many more positive length mblks we have */ if ((mp1 = mp->b_cont) != NULL) { do { int tlen; ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); tlen = (int)(mp1->b_wptr - mp1->b_rptr); if (tlen <= 0) { mp->b_cont = mp1->b_cont; freeb(mp1); } else { len += tlen; mp = mp1; } } while ((mp1 = mp->b_cont) != NULL); } tcp->tcp_xmit_last = mp; tcp->tcp_unsent = len; if (urgent) usable = 1; data_null: snxt = tcp->tcp_snxt; xmit_tail = tcp->tcp_xmit_tail; tail_unsent = tcp->tcp_xmit_tail_unsent; /* * Note that tcp_mss has been adjusted to take into account the * timestamp option if applicable. Because SACK options do not * appear in every TCP segments and they are of variable lengths, * they cannot be included in tcp_mss. Thus we need to calculate * the actual segment length when we need to send a segment which * includes SACK options. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { int32_t opt_len; num_sack_blk = MIN(tcp->tcp_max_sack_blk, tcp->tcp_num_sack_blk); opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; mss = tcp->tcp_mss - opt_len; tcp_hdr_len = tcp->tcp_hdr_len + opt_len; tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; } else { mss = tcp->tcp_mss; tcp_hdr_len = tcp->tcp_hdr_len; tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; } if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); } if (tcpstate == TCPS_SYN_RCVD) { /* * The three-way connection establishment handshake is not * complete yet. We want to queue the data for transmission * after entering ESTABLISHED state (RFC793). A jump to * "done" label effectively leaves data on the queue. */ goto done; } else { int usable_r = tcp->tcp_swnd; /* * In the special case when cwnd is zero, which can only * happen if the connection is ECN capable, return now. * New segments is sent using tcp_timer(). The timer * is set in tcp_rput_data(). */ if (tcp->tcp_cwnd == 0) { /* * Note that tcp_cwnd is 0 before 3-way handshake is * finished. */ ASSERT(tcp->tcp_ecn_ok || tcp->tcp_state < TCPS_ESTABLISHED); return; } /* NOTE: trouble if xmitting while SYN not acked? */ usable_r -= snxt; usable_r += tcp->tcp_suna; /* * Check if the receiver has shrunk the window. If * tcp_wput_data() with NULL mp is called, tcp_fin_sent * cannot be set as there is unsent data, so FIN cannot * be sent out. Otherwise, we need to take into account * of FIN as it consumes an "invisible" sequence number. */ ASSERT(tcp->tcp_fin_sent == 0); if (usable_r < 0) { /* * The receiver has shrunk the window and we have sent * -usable_r date beyond the window, re-adjust. * * If TCP window scaling is enabled, there can be * round down error as the advertised receive window * is actually right shifted n bits. This means that * the lower n bits info is wiped out. It will look * like the window is shrunk. Do a check here to * see if the shrunk amount is actually within the * error in window calculation. If it is, just * return. Note that this check is inside the * shrunk window check. This makes sure that even * though tcp_process_shrunk_swnd() is not called, * we will stop further processing. */ if ((-usable_r >> tcp->tcp_snd_ws) > 0) { tcp_process_shrunk_swnd(tcp, -usable_r); } return; } /* usable = MIN(swnd, cwnd) - unacked_bytes */ if (tcp->tcp_swnd > tcp->tcp_cwnd) usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; /* usable = MIN(usable, unsent) */ if (usable_r > len) usable_r = len; /* usable = MAX(usable, {1 for urgent, 0 for data}) */ if (usable_r > 0) { usable = usable_r; } else { /* Bypass all other unnecessary processing. */ goto done; } } local_time = (mblk_t *)lbolt; /* * "Our" Nagle Algorithm. This is not the same as in the old * BSD. This is more in line with the true intent of Nagle. * * The conditions are: * 1. The amount of unsent data (or amount of data which can be * sent, whichever is smaller) is less than Nagle limit. * 2. The last sent size is also less than Nagle limit. * 3. There is unack'ed data. * 4. Urgent pointer is not set. Send urgent data ignoring the * Nagle algorithm. This reduces the probability that urgent * bytes get "merged" together. * 5. The app has not closed the connection. This eliminates the * wait time of the receiving side waiting for the last piece of * (small) data. * * If all are satisified, exit without sending anything. Note * that Nagle limit can be smaller than 1 MSS. Nagle limit is * the smaller of 1 MSS and global tcp_naglim_def (default to be * 4095). */ if (usable < (int)tcp->tcp_naglim && tcp->tcp_naglim > tcp->tcp_last_sent_len && snxt != tcp->tcp_suna && !(tcp->tcp_valid_bits & TCP_URG_VALID) && !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { goto done; } if (tcp->tcp_cork) { /* * if the tcp->tcp_cork option is set, then we have to force * TCP not to send partial segment (smaller than MSS bytes). * We are calculating the usable now based on full mss and * will save the rest of remaining data for later. */ if (usable < mss) goto done; usable = (usable / mss) * mss; } /* Update the latest receive window size in TCP header. */ U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); /* * Determine if it's worthwhile to attempt MDT, based on: * * 1. Simple TCP/IP{v4,v6} (no options). * 2. IPSEC/IPQoS processing is not needed for the TCP connection. * 3. If the TCP connection is in ESTABLISHED state. * 4. The TCP is not detached. * * If any of the above conditions have changed during the * connection, stop using MDT and restore the stream head * parameters accordingly. */ if (tcp->tcp_mdt && ((tcp->tcp_ipversion == IPV4_VERSION && tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || (tcp->tcp_ipversion == IPV6_VERSION && tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || tcp->tcp_state != TCPS_ESTABLISHED || TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || IPP_ENABLED(IPP_LOCAL_OUT))) { tcp->tcp_connp->conn_mdt_ok = B_FALSE; tcp->tcp_mdt = B_FALSE; /* Anything other than detached is considered pathological */ if (!TCP_IS_DETACHED(tcp)) { TCP_STAT(tcp_mdt_conn_halted1); (void) tcp_maxpsz_set(tcp, B_TRUE); } } /* Use MDT if sendable amount is greater than the threshold */ if (tcp->tcp_mdt && (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && MBLKL(xmit_tail->b_cont) > mdt_thres)) && (tcp->tcp_valid_bits == 0 || tcp->tcp_valid_bits == TCP_FSS_VALID)) { ASSERT(tcp->tcp_connp->conn_mdt_ok); rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, local_time, mdt_thres); } else { rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, local_time, INT_MAX); } /* Pretend that all we were trying to send really got sent */ if (rc < 0 && tail_unsent < 0) { do { xmit_tail = xmit_tail->b_cont; xmit_tail->b_prev = local_time; ASSERT((uintptr_t)(xmit_tail->b_wptr - xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); tail_unsent += (int)(xmit_tail->b_wptr - xmit_tail->b_rptr); } while (tail_unsent < 0); } done:; tcp->tcp_xmit_tail = xmit_tail; tcp->tcp_xmit_tail_unsent = tail_unsent; len = tcp->tcp_snxt - snxt; if (len) { /* * If new data was sent, need to update the notsack * list, which is, afterall, data blocks that have * not been sack'ed by the receiver. New data is * not sack'ed. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { /* len is a negative value. */ tcp->tcp_pipe -= len; tcp_notsack_update(&(tcp->tcp_notsack_list), tcp->tcp_snxt, snxt, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); } tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; tcp->tcp_rack = tcp->tcp_rnxt; tcp->tcp_rack_cnt = 0; if ((snxt + len) == tcp->tcp_suna) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { /* * Didn't send anything. Make sure the timer is running * so that we will probe a zero window. */ TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } /* Note that len is the amount we just sent but with a negative sign */ tcp->tcp_unsent += len; if (tcp->tcp_flow_stopped) { if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { tcp_clrqfull(tcp); } } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { tcp_setqfull(tcp); } } /* * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the * outgoing TCP header with the template header, as well as other * options such as time-stamp, ECN and/or SACK. */ static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) { tcph_t *tcp_tmpl, *tcp_h; uint32_t *dst, *src; int hdrlen; ASSERT(OK_32PTR(rptr)); /* Template header */ tcp_tmpl = tcp->tcp_tcph; /* Header of outgoing packet */ tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); /* dst and src are opaque 32-bit fields, used for copying */ dst = (uint32_t *)rptr; src = (uint32_t *)tcp->tcp_iphc; hdrlen = tcp->tcp_hdr_len; /* Fill time-stamp option if needed */ if (tcp->tcp_snd_ts_ok) { U32_TO_BE32((uint32_t)now, (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); } else { ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); } /* * Copy the template header; is this really more efficient than * calling bcopy()? For simple IPv4/TCP, it may be the case, * but perhaps not for other scenarios. */ dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; if (hdrlen -= 40) { hdrlen >>= 2; dst += 10; src += 10; do { *dst++ = *src++; } while (--hdrlen); } /* * Set the ECN info in the TCP header if it is not a zero * window probe. Zero window probe is only sent in * tcp_wput_data() and tcp_timer(). */ if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { SET_ECT(tcp, rptr); if (tcp->tcp_ecn_echo_on) tcp_h->th_flags[0] |= TH_ECE; if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { tcp_h->th_flags[0] |= TH_CWR; tcp->tcp_ecn_cwr_sent = B_TRUE; } } /* Fill in SACK options */ if (num_sack_blk > 0) { uchar_t *wptr = rptr + tcp->tcp_hdr_len; sack_blk_t *tmp; int32_t i; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_SACK; wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * sizeof (sack_blk_t); wptr += TCPOPT_REAL_SACK_LEN; tmp = tcp->tcp_sack_list; for (i = 0; i < num_sack_blk; i++) { U32_TO_BE32(tmp[i].begin, wptr); wptr += sizeof (tcp_seq); U32_TO_BE32(tmp[i].end, wptr); wptr += sizeof (tcp_seq); } tcp_h->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); } } /* * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach * the destination address and SAP attribute, and if necessary, the * hardware checksum offload attribute to a Multidata message. */ static int tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, const uint32_t start, const uint32_t stuff, const uint32_t end, const uint32_t flags) { /* Add global destination address & SAP attribute */ if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { ip1dbg(("tcp_mdt_add_attrs: can't add global physical " "destination address+SAP\n")); if (dlmp != NULL) TCP_STAT(tcp_mdt_allocfail); return (-1); } /* Add global hwcksum attribute */ if (hwcksum && !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " "checksum attribute\n")); TCP_STAT(tcp_mdt_allocfail); return (-1); } return (0); } /* * Smaller and private version of pdescinfo_t used specifically for TCP, * which allows for only two payload spans per packet. */ typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; /* * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit * scheme, and returns one the following: * * -1 = failed allocation. * 0 = success; burst count reached, or usable send window is too small, * and that we'd rather wait until later before sending again. */ static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, const int mdt_thres) { mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; multidata_t *mmd; uint_t obsegs, obbytes, hdr_frag_sz; uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; int num_burst_seg, max_pld; pdesc_t *pkt; tcp_pdescinfo_t tcp_pkt_info; pdescinfo_t *pkt_info; int pbuf_idx, pbuf_idx_nxt; int seg_len, len, spill, af; boolean_t add_buffer, zcopy, clusterwide; boolean_t rconfirm = B_FALSE; boolean_t done = B_FALSE; uint32_t cksum; uint32_t hwcksum_flags; ire_t *ire; ill_t *ill; ipha_t *ipha; ip6_t *ip6h; ipaddr_t src, dst; ill_zerocopy_capab_t *zc_cap = NULL; uint16_t *up; int err; #ifdef _BIG_ENDIAN #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) #else #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) #endif #define PREP_NEW_MULTIDATA() { \ mmd = NULL; \ md_mp = md_hbuf = NULL; \ cur_hdr_off = 0; \ max_pld = tcp->tcp_mdt_max_pld; \ pbuf_idx = pbuf_idx_nxt = -1; \ add_buffer = B_TRUE; \ zcopy = B_FALSE; \ } #define PREP_NEW_PBUF() { \ md_pbuf = md_pbuf_nxt = NULL; \ pbuf_idx = pbuf_idx_nxt = -1; \ cur_pld_off = 0; \ first_snxt = *snxt; \ ASSERT(*tail_unsent > 0); \ base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ } ASSERT(mdt_thres >= mss); ASSERT(*usable > 0 && *usable > mdt_thres); ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); ASSERT(!TCP_IS_DETACHED(tcp)); ASSERT(tcp->tcp_valid_bits == 0 || tcp->tcp_valid_bits == TCP_FSS_VALID); ASSERT((tcp->tcp_ipversion == IPV4_VERSION && tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || (tcp->tcp_ipversion == IPV6_VERSION && tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); ASSERT(tcp->tcp_connp != NULL); ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp)); ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp)); /* * Note that tcp will only declare at most 2 payload spans per * packet, which is much lower than the maximum allowable number * of packet spans per Multidata. For this reason, we use the * privately declared and smaller descriptor info structure, in * order to save some stack space. */ pkt_info = (pdescinfo_t *)&tcp_pkt_info; af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; if (af == AF_INET) { dst = tcp->tcp_ipha->ipha_dst; src = tcp->tcp_ipha->ipha_src; ASSERT(!CLASSD(dst)); } ASSERT(af == AF_INET || !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); obsegs = obbytes = 0; num_burst_seg = tcp->tcp_snd_burst; md_mp_head = NULL; PREP_NEW_MULTIDATA(); /* * Before we go on further, make sure there is an IRE that we can * use, and that the ILL supports MDT. Otherwise, there's no point * in proceeding any further, and we should just hand everything * off to the legacy path. */ mutex_enter(&tcp->tcp_connp->conn_lock); ire = tcp->tcp_connp->conn_ire_cache; ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT)); if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { IRE_REFHOLD(ire); mutex_exit(&tcp->tcp_connp->conn_lock); } else { boolean_t cached = B_FALSE; /* force a recheck later on */ tcp->tcp_ire_ill_check_done = B_FALSE; TCP_DBGSTAT(tcp_ire_null1); tcp->tcp_connp->conn_ire_cache = NULL; mutex_exit(&tcp->tcp_connp->conn_lock); /* Release the old ire */ if (ire != NULL) IRE_REFRELE_NOTR(ire); ire = (af == AF_INET) ? ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) : ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, tcp->tcp_connp->conn_zoneid); if (ire == NULL) { TCP_STAT(tcp_ire_null); goto legacy_send_no_md; } IRE_REFHOLD_NOTR(ire); /* * Since we are inside the squeue, there cannot be another * thread in TCP trying to set the conn_ire_cache now. The * check for IRE_MARK_CONDEMNED ensures that an interface * unplumb thread has not yet started cleaning up the conns. * Hence we don't need to grab the conn lock. */ if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) { rw_enter(&ire->ire_bucket->irb_lock, RW_READER); if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { tcp->tcp_connp->conn_ire_cache = ire; cached = B_TRUE; } rw_exit(&ire->ire_bucket->irb_lock); } /* * We can continue to use the ire but since it was not * cached, we should drop the extra reference. */ if (!cached) IRE_REFRELE_NOTR(ire); } ASSERT(ire != NULL); ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); ASSERT(af == AF_INET || ire->ire_nce != NULL); ASSERT(!(ire->ire_type & IRE_BROADCAST)); /* * If we do support loopback for MDT (which requires modifications * to the receiving paths), the following assertions should go away, * and we would be sending the Multidata to loopback conn later on. */ ASSERT(!IRE_IS_LOCAL(ire)); ASSERT(ire->ire_stq != NULL); ill = ire_to_ill(ire); ASSERT(ill != NULL); ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); if (!tcp->tcp_ire_ill_check_done) { tcp_ire_ill_check(tcp, ire, ill, B_TRUE); tcp->tcp_ire_ill_check_done = B_TRUE; } /* * If the underlying interface conditions have changed, or if the * new interface does not support MDT, go back to legacy path. */ if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { /* don't go through this path anymore for this connection */ TCP_STAT(tcp_mdt_conn_halted2); tcp->tcp_mdt = B_FALSE; ip1dbg(("tcp_multisend: disabling MDT for connp %p on " "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name)); /* IRE will be released prior to returning */ goto legacy_send_no_md; } if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) zc_cap = ill->ill_zerocopy_capab; /* go to legacy path if interface doesn't support zerocopy */ if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { /* IRE will be released prior to returning */ goto legacy_send_no_md; } /* does the interface support hardware checksum offload? */ hwcksum_flags = 0; if (ILL_HCKSUM_CAPABLE(ill) && (ill->ill_hcksum_capab->ill_hcksum_txflags & (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM)) && dohwcksum) { if (ill->ill_hcksum_capab->ill_hcksum_txflags & HCKSUM_IPHDRCKSUM) hwcksum_flags = HCK_IPV4_HDRCKSUM; if (ill->ill_hcksum_capab->ill_hcksum_txflags & (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) hwcksum_flags |= HCK_FULLCKSUM; else if (ill->ill_hcksum_capab->ill_hcksum_txflags & HCKSUM_INET_PARTIAL) hwcksum_flags |= HCK_PARTIALCKSUM; } /* * Each header fragment consists of the leading extra space, * followed by the TCP/IP header, and the trailing extra space. * We make sure that each header fragment begins on a 32-bit * aligned memory address (tcp_mdt_hdr_head is already 32-bit * aligned in tcp_mdt_update). */ hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + tcp->tcp_mdt_hdr_tail), 4); /* are we starting from the beginning of data block? */ if (*tail_unsent == 0) { *xmit_tail = (*xmit_tail)->b_cont; ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); *tail_unsent = (int)MBLKL(*xmit_tail); } /* * Here we create one or more Multidata messages, each made up of * one header buffer and up to N payload buffers. This entire * operation is done within two loops: * * The outer loop mostly deals with creating the Multidata message, * as well as the header buffer that gets added to it. It also * links the Multidata messages together such that all of them can * be sent down to the lower layer in a single putnext call; this * linking behavior depends on the tcp_mdt_chain tunable. * * The inner loop takes an existing Multidata message, and adds * one or more (up to tcp_mdt_max_pld) payload buffers to it. It * packetizes those buffers by filling up the corresponding header * buffer fragments with the proper IP and TCP headers, and by * describing the layout of each packet in the packet descriptors * that get added to the Multidata. */ do { /* * If usable send window is too small, or data blocks in * transmit list are smaller than our threshold (i.e. app * performs large writes followed by small ones), we hand * off the control over to the legacy path. Note that we'll * get back the control once it encounters a large block. */ if (*usable < mss || (*tail_unsent <= mdt_thres && (*xmit_tail)->b_cont != NULL && MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { /* send down what we've got so far */ if (md_mp_head != NULL) { tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, &rconfirm); } /* * Pass control over to tcp_send(), but tell it to * return to us once a large-size transmission is * possible. */ TCP_STAT(tcp_mdt_legacy_small); if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, num_sack_blk, usable, snxt, tail_unsent, xmit_tail, local_time, mdt_thres)) <= 0) { /* burst count reached, or alloc failed */ IRE_REFRELE(ire); return (err); } /* tcp_send() may have sent everything, so check */ if (*usable <= 0) { IRE_REFRELE(ire); return (0); } TCP_STAT(tcp_mdt_legacy_ret); /* * We may have delivered the Multidata, so make sure * to re-initialize before the next round. */ md_mp_head = NULL; obsegs = obbytes = 0; num_burst_seg = tcp->tcp_snd_burst; PREP_NEW_MULTIDATA(); /* are we starting from the beginning of data block? */ if (*tail_unsent == 0) { *xmit_tail = (*xmit_tail)->b_cont; ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); *tail_unsent = (int)MBLKL(*xmit_tail); } } /* * max_pld limits the number of mblks in tcp's transmit * queue that can be added to a Multidata message. Once * this counter reaches zero, no more additional mblks * can be added to it. What happens afterwards depends * on whether or not we are set to chain the Multidata * messages. If we are to link them together, reset * max_pld to its original value (tcp_mdt_max_pld) and * prepare to create a new Multidata message which will * get linked to md_mp_head. Else, leave it alone and * let the inner loop break on its own. */ if (tcp_mdt_chain && max_pld == 0) PREP_NEW_MULTIDATA(); /* adding a payload buffer; re-initialize values */ if (add_buffer) PREP_NEW_PBUF(); /* * If we don't have a Multidata, either because we just * (re)entered this outer loop, or after we branched off * to tcp_send above, setup the Multidata and header * buffer to be used. */ if (md_mp == NULL) { int md_hbuflen; uint32_t start, stuff; /* * Calculate Multidata header buffer size large enough * to hold all of the headers that can possibly be * sent at this moment. We'd rather over-estimate * the size than running out of space; this is okay * since this buffer is small anyway. */ md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; /* * Start and stuff offset for partial hardware * checksum offload; these are currently for IPv4. * For full checksum offload, they are set to zero. */ if ((hwcksum_flags & HCK_PARTIALCKSUM)) { if (af == AF_INET) { start = IP_SIMPLE_HDR_LENGTH; stuff = IP_SIMPLE_HDR_LENGTH + TCP_CHECKSUM_OFFSET; } else { start = IPV6_HDR_LEN; stuff = IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET; } } else { start = stuff = 0; } /* * Create the header buffer, Multidata, as well as * any necessary attributes (destination address, * SAP and hardware checksum offload) that should * be associated with the Multidata message. */ ASSERT(cur_hdr_off == 0); if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || ((md_hbuf->b_wptr += md_hbuflen), (mmd = mmd_alloc(md_hbuf, &md_mp, KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, /* fastpath mblk */ (af == AF_INET) ? ire->ire_dlureq_mp : ire->ire_nce->nce_res_mp, /* hardware checksum enabled */ (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), /* hardware checksum offsets */ start, stuff, 0, /* hardware checksum flag */ hwcksum_flags) != 0)) { legacy_send: if (md_mp != NULL) { /* Unlink message from the chain */ if (md_mp_head != NULL) { err = (intptr_t)rmvb(md_mp_head, md_mp); /* * We can't assert that rmvb * did not return -1, since we * may get here before linkb * happens. We do, however, * check if we just removed the * only element in the list. */ if (err == 0) md_mp_head = NULL; } /* md_hbuf gets freed automatically */ TCP_STAT(tcp_mdt_discarded); freeb(md_mp); } else { /* Either allocb or mmd_alloc failed */ TCP_STAT(tcp_mdt_allocfail); if (md_hbuf != NULL) freeb(md_hbuf); } /* send down what we've got so far */ if (md_mp_head != NULL) { tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, &rconfirm); } legacy_send_no_md: if (ire != NULL) IRE_REFRELE(ire); /* * Too bad; let the legacy path handle this. * We specify INT_MAX for the threshold, since * we gave up with the Multidata processings * and let the old path have it all. */ TCP_STAT(tcp_mdt_legacy_all); return (tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, num_sack_blk, usable, snxt, tail_unsent, xmit_tail, local_time, INT_MAX)); } /* link to any existing ones, if applicable */ TCP_STAT(tcp_mdt_allocd); if (md_mp_head == NULL) { md_mp_head = md_mp; } else if (tcp_mdt_chain) { TCP_STAT(tcp_mdt_linked); linkb(md_mp_head, md_mp); } } ASSERT(md_mp_head != NULL); ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); ASSERT(md_mp != NULL && mmd != NULL); ASSERT(md_hbuf != NULL); /* * Packetize the transmittable portion of the data block; * each data block is essentially added to the Multidata * as a payload buffer. We also deal with adding more * than one payload buffers, which happens when the remaining * packetized portion of the current payload buffer is less * than MSS, while the next data block in transmit queue * has enough data to make up for one. This "spillover" * case essentially creates a split-packet, where portions * of the packet's payload fragments may span across two * virtually discontiguous address blocks. */ seg_len = mss; do { len = seg_len; ASSERT(len > 0); ASSERT(max_pld >= 0); ASSERT(!add_buffer || cur_pld_off == 0); /* * First time around for this payload buffer; note * in the case of a spillover, the following has * been done prior to adding the split-packet * descriptor to Multidata, and we don't want to * repeat the process. */ if (add_buffer) { ASSERT(mmd != NULL); ASSERT(md_pbuf == NULL); ASSERT(md_pbuf_nxt == NULL); ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); /* * Have we reached the limit? We'd get to * this case when we're not chaining the * Multidata messages together, and since * we're done, terminate this loop. */ if (max_pld == 0) break; /* done */ if ((md_pbuf = dupb(*xmit_tail)) == NULL) { TCP_STAT(tcp_mdt_allocfail); goto legacy_send; /* out_of_mem */ } if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && zc_cap != NULL) { if (!ip_md_zcopy_attr(mmd, NULL, zc_cap->ill_zerocopy_flags)) { freeb(md_pbuf); TCP_STAT(tcp_mdt_allocfail); /* out_of_mem */ goto legacy_send; } zcopy = B_TRUE; } md_pbuf->b_rptr += base_pld_off; /* * Add a payload buffer to the Multidata; this * operation must not fail, or otherwise our * logic in this routine is broken. There * is no memory allocation done by the * routine, so any returned failure simply * tells us that we've done something wrong. * * A failure tells us that either we're adding * the same payload buffer more than once, or * we're trying to add more buffers than * allowed (max_pld calculation is wrong). * None of the above cases should happen, and * we panic because either there's horrible * heap corruption, and/or programming mistake. */ pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); if (pbuf_idx < 0) { cmn_err(CE_PANIC, "tcp_multisend: " "payload buffer logic error " "detected for tcp %p mmd %p " "pbuf %p (%d)\n", (void *)tcp, (void *)mmd, (void *)md_pbuf, pbuf_idx); } ASSERT(max_pld > 0); --max_pld; add_buffer = B_FALSE; } ASSERT(md_mp_head != NULL); ASSERT(md_pbuf != NULL); ASSERT(md_pbuf_nxt == NULL); ASSERT(pbuf_idx != -1); ASSERT(pbuf_idx_nxt == -1); ASSERT(*usable > 0); /* * We spillover to the next payload buffer only * if all of the following is true: * * 1. There is not enough data on the current * payload buffer to make up `len', * 2. We are allowed to send `len', * 3. The next payload buffer length is large * enough to accomodate `spill'. */ if ((spill = len - *tail_unsent) > 0 && *usable >= len && MBLKL((*xmit_tail)->b_cont) >= spill && max_pld > 0) { md_pbuf_nxt = dupb((*xmit_tail)->b_cont); if (md_pbuf_nxt == NULL) { TCP_STAT(tcp_mdt_allocfail); goto legacy_send; /* out_of_mem */ } if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && zc_cap != NULL) { if (!ip_md_zcopy_attr(mmd, NULL, zc_cap->ill_zerocopy_flags)) { freeb(md_pbuf_nxt); TCP_STAT(tcp_mdt_allocfail); /* out_of_mem */ goto legacy_send; } zcopy = B_TRUE; } /* * See comments above on the first call to * mmd_addpldbuf for explanation on the panic. */ pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); if (pbuf_idx_nxt < 0) { panic("tcp_multisend: " "next payload buffer logic error " "detected for tcp %p mmd %p " "pbuf %p (%d)\n", (void *)tcp, (void *)mmd, (void *)md_pbuf_nxt, pbuf_idx_nxt); } ASSERT(max_pld > 0); --max_pld; } else if (spill > 0) { /* * If there's a spillover, but the following * xmit_tail couldn't give us enough octets * to reach "len", then stop the current * Multidata creation and let the legacy * tcp_send() path take over. We don't want * to send the tiny segment as part of this * Multidata for performance reasons; instead, * we let the legacy path deal with grouping * it with the subsequent small mblks. */ if (*usable >= len && MBLKL((*xmit_tail)->b_cont) < spill) { max_pld = 0; break; /* done */ } /* * We can't spillover, and we are near * the end of the current payload buffer, * so send what's left. */ ASSERT(*tail_unsent > 0); len = *tail_unsent; } /* tail_unsent is negated if there is a spillover */ *tail_unsent -= len; *usable -= len; ASSERT(*usable >= 0); if (*usable < mss) seg_len = *usable; /* * Sender SWS avoidance; see comments in tcp_send(); * everything else is the same, except that we only * do this here if there is no more data to be sent * following the current xmit_tail. We don't check * for 1-byte urgent data because we shouldn't get * here if TCP_URG_VALID is set. */ if (*usable > 0 && *usable < mss && ((md_pbuf_nxt == NULL && (*xmit_tail)->b_cont == NULL) || (md_pbuf_nxt != NULL && (*xmit_tail)->b_cont->b_cont == NULL)) && seg_len < (tcp->tcp_max_swnd >> 1) && (tcp->tcp_unsent - ((*snxt + len) - tcp->tcp_snxt)) > seg_len && !tcp->tcp_zero_win_probe) { if ((*snxt + len) == tcp->tcp_snxt && (*snxt + len) == tcp->tcp_suna) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } done = B_TRUE; } /* * Prime pump for IP's checksumming on our behalf; * include the adjustment for a source route if any. * Do this only for software/partial hardware checksum * offload, as this field gets zeroed out later for * the full hardware checksum offload case. */ if (!(hwcksum_flags & HCK_FULLCKSUM)) { cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; cksum = (cksum >> 16) + (cksum & 0xFFFF); U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); } U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); *snxt += len; tcp->tcp_tcph->th_flags[0] = TH_ACK; /* * We set the PUSH bit only if TCP has no more buffered * data to be transmitted (or if sender SWS avoidance * takes place), as opposed to setting it for every * last packet in the burst. */ if (done || (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) tcp->tcp_tcph->th_flags[0] |= TH_PUSH; /* * Set FIN bit if this is our last segment; snxt * already includes its length, and it will not * be adjusted after this point. */ if (tcp->tcp_valid_bits == TCP_FSS_VALID && *snxt == tcp->tcp_fss) { if (!tcp->tcp_fin_acked) { tcp->tcp_tcph->th_flags[0] |= TH_FIN; BUMP_MIB(&tcp_mib, tcpOutControl); } if (!tcp->tcp_fin_sent) { tcp->tcp_fin_sent = B_TRUE; /* * tcp state must be ESTABLISHED * in order for us to get here in * the first place. */ tcp->tcp_state = TCPS_FIN_WAIT_1; /* * Upon returning from this routine, * tcp_wput_data() will set tcp_snxt * to be equal to snxt + tcp_fin_sent. * This is essentially the same as * setting it to tcp_fss + 1. */ } } tcp->tcp_last_sent_len = (ushort_t)len; len += tcp_hdr_len; if (tcp->tcp_ipversion == IPV4_VERSION) tcp->tcp_ipha->ipha_length = htons(len); else tcp->tcp_ip6h->ip6_plen = htons(len - ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); /* setup header fragment */ PDESC_HDR_ADD(pkt_info, md_hbuf->b_rptr + cur_hdr_off, /* base */ tcp->tcp_mdt_hdr_head, /* head room */ tcp_hdr_len, /* len */ tcp->tcp_mdt_hdr_tail); /* tail room */ ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == hdr_frag_sz); ASSERT(MBLKIN(md_hbuf, (pkt_info->hdr_base - md_hbuf->b_rptr), PDESC_HDRSIZE(pkt_info))); /* setup first payload fragment */ PDESC_PLD_INIT(pkt_info); PDESC_PLD_SPAN_ADD(pkt_info, pbuf_idx, /* index */ md_pbuf->b_rptr + cur_pld_off, /* start */ tcp->tcp_last_sent_len); /* len */ /* create a split-packet in case of a spillover */ if (md_pbuf_nxt != NULL) { ASSERT(spill > 0); ASSERT(pbuf_idx_nxt > pbuf_idx); ASSERT(!add_buffer); md_pbuf = md_pbuf_nxt; md_pbuf_nxt = NULL; pbuf_idx = pbuf_idx_nxt; pbuf_idx_nxt = -1; cur_pld_off = spill; /* trim out first payload fragment */ PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); /* setup second payload fragment */ PDESC_PLD_SPAN_ADD(pkt_info, pbuf_idx, /* index */ md_pbuf->b_rptr, /* start */ spill); /* len */ if ((*xmit_tail)->b_next == NULL) { /* * Store the lbolt used for RTT * estimation. We can only record one * timestamp per mblk so we do it when * we reach the end of the payload * buffer. Also we only take a new * timestamp sample when the previous * timed data from the same mblk has * been ack'ed. */ (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; } first_snxt = *snxt - spill; /* * Advance xmit_tail; usable could be 0 by * the time we got here, but we made sure * above that we would only spillover to * the next data block if usable includes * the spilled-over amount prior to the * subtraction. Therefore, we are sure * that xmit_tail->b_cont can't be NULL. */ ASSERT((*xmit_tail)->b_cont != NULL); *xmit_tail = (*xmit_tail)->b_cont; ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); *tail_unsent = (int)MBLKL(*xmit_tail) - spill; } else { cur_pld_off += tcp->tcp_last_sent_len; } /* * Fill in the header using the template header, and * add options such as time-stamp, ECN and/or SACK, * as needed. */ tcp_fill_header(tcp, pkt_info->hdr_rptr, (clock_t)local_time, num_sack_blk); /* take care of some IP header businesses */ if (af == AF_INET) { ipha = (ipha_t *)pkt_info->hdr_rptr; ASSERT(OK_32PTR((uchar_t *)ipha)); ASSERT(PDESC_HDRL(pkt_info) >= IP_SIMPLE_HDR_LENGTH); ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); /* * Assign ident value for current packet; see * related comments in ip_wput_ire() about the * contract private interface with clustering * group. */ clusterwide = B_FALSE; if (cl_inet_ipident != NULL) { ASSERT(cl_inet_isclusterwide != NULL); if ((*cl_inet_isclusterwide)(IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src)) { ipha->ipha_ident = (*cl_inet_ipident) (IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, (uint8_t *)(uintptr_t)dst); clusterwide = B_TRUE; } } if (!clusterwide) { ipha->ipha_ident = (uint16_t) atomic_add_32_nv( &ire->ire_ident, 1); } #ifndef _BIG_ENDIAN ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); #endif } else { ip6h = (ip6_t *)pkt_info->hdr_rptr; ASSERT(OK_32PTR((uchar_t *)ip6h)); ASSERT(IPVER(ip6h) == IPV6_VERSION); ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); ASSERT(PDESC_HDRL(pkt_info) >= (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + TCP_CHECKSUM_SIZE)); ASSERT(tcp->tcp_ipversion == IPV6_VERSION); if (tcp->tcp_ip_forward_progress) { rconfirm = B_TRUE; tcp->tcp_ip_forward_progress = B_FALSE; } } /* at least one payload span, and at most two */ ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); /* add the packet descriptor to Multidata */ if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, KM_NOSLEEP)) == NULL) { /* * Any failure other than ENOMEM indicates * that we have passed in invalid pkt_info * or parameters to mmd_addpdesc, which must * not happen. * * EINVAL is a result of failure on boundary * checks against the pkt_info contents. It * should not happen, and we panic because * either there's horrible heap corruption, * and/or programming mistake. */ if (err != ENOMEM) { cmn_err(CE_PANIC, "tcp_multisend: " "pdesc logic error detected for " "tcp %p mmd %p pinfo %p (%d)\n", (void *)tcp, (void *)mmd, (void *)pkt_info, err); } TCP_STAT(tcp_mdt_addpdescfail); goto legacy_send; /* out_of_mem */ } ASSERT(pkt != NULL); /* calculate IP header and TCP checksums */ if (af == AF_INET) { /* calculate pseudo-header checksum */ cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); /* offset for TCP header checksum */ up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); } else { up = (uint16_t *)&ip6h->ip6_src; /* calculate pseudo-header checksum */ cksum = up[0] + up[1] + up[2] + up[3] + up[4] + up[5] + up[6] + up[7] + up[8] + up[9] + up[10] + up[11] + up[12] + up[13] + up[14] + up[15]; /* Fold the initial sum */ cksum = (cksum & 0xffff) + (cksum >> 16); up = (uint16_t *)(((uchar_t *)ip6h) + IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); } if (hwcksum_flags & HCK_FULLCKSUM) { /* clear checksum field for hardware */ *up = 0; } else if (hwcksum_flags & HCK_PARTIALCKSUM) { uint32_t sum; /* pseudo-header checksumming */ sum = *up + cksum + IP_TCP_CSUM_COMP; sum = (sum & 0xFFFF) + (sum >> 16); *up = (sum & 0xFFFF) + (sum >> 16); } else { /* software checksumming */ TCP_STAT(tcp_out_sw_cksum); TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, tcp->tcp_hdr_len + tcp->tcp_last_sent_len); *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, cksum + IP_TCP_CSUM_COMP); if (*up == 0) *up = 0xFFFF; } /* IPv4 header checksum */ if (af == AF_INET) { ipha->ipha_fragment_offset_and_flags |= (uint32_t)htons(ire->ire_frag_flag); if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { ipha->ipha_hdr_checksum = 0; } else { IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], ((uint16_t *)ipha)[4]); } } /* advance header offset */ cur_hdr_off += hdr_frag_sz; obbytes += tcp->tcp_last_sent_len; ++obsegs; } while (!done && *usable > 0 && --num_burst_seg > 0 && *tail_unsent > 0); if ((*xmit_tail)->b_next == NULL) { /* * Store the lbolt used for RTT estimation. We can only * record one timestamp per mblk so we do it when we * reach the end of the payload buffer. Also we only * take a new timestamp sample when the previous timed * data from the same mblk has been ack'ed. */ (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; } ASSERT(*tail_unsent >= 0); if (*tail_unsent > 0) { /* * We got here because we broke out of the above * loop due to of one of the following cases: * * 1. len < adjusted MSS (i.e. small), * 2. Sender SWS avoidance, * 3. max_pld is zero. * * We are done for this Multidata, so trim our * last payload buffer (if any) accordingly. */ if (md_pbuf != NULL) md_pbuf->b_wptr -= *tail_unsent; } else if (*usable > 0) { *xmit_tail = (*xmit_tail)->b_cont; ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); *tail_unsent = (int)MBLKL(*xmit_tail); add_buffer = B_TRUE; } } while (!done && *usable > 0 && num_burst_seg > 0 && (tcp_mdt_chain || max_pld > 0)); /* send everything down */ tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, &rconfirm); #undef PREP_NEW_MULTIDATA #undef PREP_NEW_PBUF #undef IPVER IRE_REFRELE(ire); return (0); } /* * A wrapper function for sending one or more Multidata messages down to * the module below ip; this routine does not release the reference of the * IRE (caller does that). This routine is analogous to tcp_send_data(). */ static void tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) { uint64_t delta; nce_t *nce; ASSERT(ire != NULL && ill != NULL); ASSERT(ire->ire_stq != NULL); ASSERT(md_mp_head != NULL); ASSERT(rconfirm != NULL); /* adjust MIBs and IRE timestamp */ TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); tcp->tcp_obsegs += obsegs; UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); if (tcp->tcp_ipversion == IPV4_VERSION) { TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); } else { TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); } ire->ire_ob_pkt_count += obsegs; if (ire->ire_ipif != NULL) atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); ire->ire_last_used_time = lbolt; /* send it down */ putnext(ire->ire_stq, md_mp_head); /* we're done for TCP/IPv4 */ if (tcp->tcp_ipversion == IPV4_VERSION) return; nce = ire->ire_nce; ASSERT(nce != NULL); ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); ASSERT(nce->nce_state != ND_INCOMPLETE); /* reachability confirmation? */ if (*rconfirm) { nce->nce_last = TICK_TO_MSEC(lbolt64); if (nce->nce_state != ND_REACHABLE) { mutex_enter(&nce->nce_lock); nce->nce_state = ND_REACHABLE; nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; mutex_exit(&nce->nce_lock); (void) untimeout(nce->nce_timeout_id); if (ip_debug > 2) { /* ip1dbg */ pr_addr_dbg("tcp_multisend_data: state " "for %s changed to REACHABLE\n", AF_INET6, &ire->ire_addr_v6); } } /* reset transport reachability confirmation */ *rconfirm = B_FALSE; } delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; ip1dbg(("tcp_multisend_data: delta = %" PRId64 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); if (delta > (uint64_t)ill->ill_reachable_time) { mutex_enter(&nce->nce_lock); switch (nce->nce_state) { case ND_REACHABLE: case ND_STALE: /* * ND_REACHABLE is identical to ND_STALE in this * specific case. If reachable time has expired for * this neighbor (delta is greater than reachable * time), conceptually, the neighbor cache is no * longer in REACHABLE state, but already in STALE * state. So the correct transition here is to * ND_DELAY. */ nce->nce_state = ND_DELAY; mutex_exit(&nce->nce_lock); NDP_RESTART_TIMER(nce, delay_first_probe_time); if (ip_debug > 3) { /* ip2dbg */ pr_addr_dbg("tcp_multisend_data: state " "for %s changed to DELAY\n", AF_INET6, &ire->ire_addr_v6); } break; case ND_DELAY: case ND_PROBE: mutex_exit(&nce->nce_lock); /* Timers have already started */ break; case ND_UNREACHABLE: /* * ndp timer has detected that this nce is * unreachable and initiated deleting this nce * and all its associated IREs. This is a race * where we found the ire before it was deleted * and have just sent out a packet using this * unreachable nce. */ mutex_exit(&nce->nce_lock); break; default: ASSERT(0); } } } /* * tcp_send() is called by tcp_wput_data() for non-Multidata transmission * scheme, and returns one of the following: * * -1 = failed allocation. * 0 = success; burst count reached, or usable send window is too small, * and that we'd rather wait until later before sending again. * 1 = success; we are called from tcp_multisend(), and both usable send * window and tail_unsent are greater than the MDT threshold, and thus * Multidata Transmit should be used instead. */ static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, const int mdt_thres) { int num_burst_seg = tcp->tcp_snd_burst; for (;;) { struct datab *db; tcph_t *tcph; uint32_t sum; mblk_t *mp, *mp1; uchar_t *rptr; int len; /* * If we're called by tcp_multisend(), and the amount of * sendable data as well as the size of current xmit_tail * is beyond the MDT threshold, return to the caller and * let the large data transmit be done using MDT. */ if (*usable > 0 && *usable > mdt_thres && (*tail_unsent > mdt_thres || (*tail_unsent == 0 && MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { ASSERT(tcp->tcp_mdt); return (1); /* success; do large send */ } if (num_burst_seg-- == 0) break; /* success; burst count reached */ len = mss; if (len > *usable) { len = *usable; if (len <= 0) { /* Terminate the loop */ break; /* success; too small */ } /* * Sender silly-window avoidance. * Ignore this if we are going to send a * zero window probe out. * * TODO: force data into microscopic window? * ==> (!pushed || (unsent > usable)) */ if (len < (tcp->tcp_max_swnd >> 1) && (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && !((tcp->tcp_valid_bits & TCP_URG_VALID) && len == 1) && (! tcp->tcp_zero_win_probe)) { /* * If the retransmit timer is not running * we start it so that we will retransmit * in the case when the the receiver has * decremented the window. */ if (*snxt == tcp->tcp_snxt && *snxt == tcp->tcp_suna) { /* * We are not supposed to send * anything. So let's wait a little * bit longer before breaking SWS * avoidance. * * What should the value be? * Suggestion: MAX(init rexmit time, * tcp->tcp_rto) */ TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } break; /* success; too small */ } } tcph = tcp->tcp_tcph; *usable -= len; /* Approximate - can be adjusted later */ if (*usable > 0) tcph->th_flags[0] = TH_ACK; else tcph->th_flags[0] = (TH_ACK | TH_PUSH); /* * Prime pump for IP's checksumming on our behalf * Include the adjustment for a source route if any. */ sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; sum = (sum >> 16) + (sum & 0xFFFF); U16_TO_ABE16(sum, tcph->th_sum); U32_TO_ABE32(*snxt, tcph->th_seq); /* * Branch off to tcp_xmit_mp() if any of the VALID bits is * set. For the case when TCP_FSS_VALID is the only valid * bit (normal active close), branch off only when we think * that the FIN flag needs to be set. Note for this case, * that (snxt + len) may not reflect the actual seg_len, * as len may be further reduced in tcp_xmit_mp(). If len * gets modified, we will end up here again. */ if (tcp->tcp_valid_bits != 0 && (tcp->tcp_valid_bits != TCP_FSS_VALID || ((*snxt + len) == tcp->tcp_fss))) { uchar_t *prev_rptr; uint32_t prev_snxt = tcp->tcp_snxt; if (*tail_unsent == 0) { ASSERT((*xmit_tail)->b_cont != NULL); *xmit_tail = (*xmit_tail)->b_cont; prev_rptr = (*xmit_tail)->b_rptr; *tail_unsent = (int)((*xmit_tail)->b_wptr - (*xmit_tail)->b_rptr); } else { prev_rptr = (*xmit_tail)->b_rptr; (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - *tail_unsent; } mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); /* Restore tcp_snxt so we get amount sent right. */ tcp->tcp_snxt = prev_snxt; if (prev_rptr == (*xmit_tail)->b_rptr) { /* * If the previous timestamp is still in use, * don't stomp on it. */ if ((*xmit_tail)->b_next == NULL) { (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt); } } else (*xmit_tail)->b_rptr = prev_rptr; if (mp == NULL) return (-1); mp1 = mp->b_cont; tcp->tcp_last_sent_len = (ushort_t)len; while (mp1->b_cont) { *xmit_tail = (*xmit_tail)->b_cont; (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt); mp1 = mp1->b_cont; } *snxt += len; *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcp_mib, tcpOutDataSegs); UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, q, mp); continue; } *snxt += len; /* Adjust later if we don't send all of len */ BUMP_MIB(&tcp_mib, tcpOutDataSegs); UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); if (*tail_unsent) { /* Are the bytes above us in flight? */ rptr = (*xmit_tail)->b_wptr - *tail_unsent; if (rptr != (*xmit_tail)->b_rptr) { *tail_unsent -= len; tcp->tcp_last_sent_len = (ushort_t)len; len += tcp_hdr_len; if (tcp->tcp_ipversion == IPV4_VERSION) tcp->tcp_ipha->ipha_length = htons(len); else tcp->tcp_ip6h->ip6_plen = htons(len - ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); mp = dupb(*xmit_tail); if (!mp) return (-1); /* out_of_mem */ mp->b_rptr = rptr; /* * If the old timestamp is no longer in use, * sample a new timestamp now. */ if ((*xmit_tail)->b_next == NULL) { (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt-len); } goto must_alloc; } } else { *xmit_tail = (*xmit_tail)->b_cont; ASSERT((uintptr_t)((*xmit_tail)->b_wptr - (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); *tail_unsent = (int)((*xmit_tail)->b_wptr - (*xmit_tail)->b_rptr); } (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); *tail_unsent -= len; tcp->tcp_last_sent_len = (ushort_t)len; len += tcp_hdr_len; if (tcp->tcp_ipversion == IPV4_VERSION) tcp->tcp_ipha->ipha_length = htons(len); else tcp->tcp_ip6h->ip6_plen = htons(len - ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); mp = dupb(*xmit_tail); if (!mp) return (-1); /* out_of_mem */ len = tcp_hdr_len; /* * There are four reasons to allocate a new hdr mblk: * 1) The bytes above us are in use by another packet * 2) We don't have good alignment * 3) The mblk is being shared * 4) We don't have enough room for a header */ rptr = mp->b_rptr - len; if (!OK_32PTR(rptr) || ((db = mp->b_datap), db->db_ref != 2) || rptr < db->db_base) { /* NOTE: we assume allocb returns an OK_32PTR */ must_alloc:; mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, BPRI_MED); if (!mp1) { freemsg(mp); return (-1); /* out_of_mem */ } mp1->b_cont = mp; mp = mp1; /* Leave room for Link Level header */ len = tcp_hdr_len; rptr = &mp->b_rptr[tcp_wroff_xtra]; mp->b_wptr = &rptr[len]; } /* * Fill in the header using the template header, and add * options such as time-stamp, ECN and/or SACK, as needed. */ tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); mp->b_rptr = rptr; if (*tail_unsent) { int spill = *tail_unsent; mp1 = mp->b_cont; if (!mp1) mp1 = mp; /* * If we're a little short, tack on more mblks until * there is no more spillover. */ while (spill < 0) { mblk_t *nmp; int nmpsz; nmp = (*xmit_tail)->b_cont; nmpsz = MBLKL(nmp); /* * Excess data in mblk; can we split it? * If MDT is enabled for the connection, * keep on splitting as this is a transient * send path. */ if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { /* * Don't split if stream head was * told to break up larger writes * into smaller ones. */ if (tcp->tcp_maxpsz > 0) break; /* * Next mblk is less than SMSS/2 * rounded up to nearest 64-byte; * let it get sent as part of the * next segment. */ if (tcp->tcp_localnet && !tcp->tcp_cork && (nmpsz < roundup((mss >> 1), 64))) break; } *xmit_tail = nmp; ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); /* Stash for rtt use later */ (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); mp1->b_cont = dupb(*xmit_tail); mp1 = mp1->b_cont; spill += nmpsz; if (mp1 == NULL) { *tail_unsent = spill; freemsg(mp); return (-1); /* out_of_mem */ } } /* Trim back any surplus on the last mblk */ if (spill >= 0) { mp1->b_wptr -= spill; *tail_unsent = spill; } else { /* * We did not send everything we could in * order to remain within the b_cont limit. */ *usable -= spill; *snxt += spill; tcp->tcp_last_sent_len += spill; UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); /* * Adjust the checksum */ tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); sum += spill; sum = (sum >> 16) + (sum & 0xFFFF); U16_TO_ABE16(sum, tcph->th_sum); if (tcp->tcp_ipversion == IPV4_VERSION) { sum = ntohs( ((ipha_t *)rptr)->ipha_length) + spill; ((ipha_t *)rptr)->ipha_length = htons(sum); } else { sum = ntohs( ((ip6_t *)rptr)->ip6_plen) + spill; ((ip6_t *)rptr)->ip6_plen = htons(sum); } *tail_unsent = 0; } } if (tcp->tcp_ip_forward_progress) { ASSERT(tcp->tcp_ipversion == IPV6_VERSION); *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; tcp->tcp_ip_forward_progress = B_FALSE; } TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, q, mp); BUMP_LOCAL(tcp->tcp_obsegs); } return (0); } /* Unlink and return any mblk that looks like it contains a MDT info */ static mblk_t * tcp_mdt_info_mp(mblk_t *mp) { mblk_t *prev_mp; for (;;) { prev_mp = mp; /* no more to process? */ if ((mp = mp->b_cont) == NULL) break; switch (DB_TYPE(mp)) { case M_CTL: if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) continue; ASSERT(prev_mp != NULL); prev_mp->b_cont = mp->b_cont; mp->b_cont = NULL; return (mp); default: break; } } return (mp); } /* MDT info update routine, called when IP notifies us about MDT */ static void tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) { boolean_t prev_state; /* * IP is telling us to abort MDT on this connection? We know * this because the capability is only turned off when IP * encounters some pathological cases, e.g. link-layer change * where the new driver doesn't support MDT, or in situation * where MDT usage on the link-layer has been switched off. * IP would not have sent us the initial MDT_IOC_INFO_UPDATE * if the link-layer doesn't support MDT, and if it does, it * will indicate that the feature is to be turned on. */ prev_state = tcp->tcp_mdt; tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); if (!tcp->tcp_mdt && !first) { TCP_STAT(tcp_mdt_conn_halted3); ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", (void *)tcp->tcp_connp)); } /* * We currently only support MDT on simple TCP/{IPv4,IPv6}, * so disable MDT otherwise. The checks are done here * and in tcp_wput_data(). */ if (tcp->tcp_mdt && (tcp->tcp_ipversion == IPV4_VERSION && tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || (tcp->tcp_ipversion == IPV6_VERSION && tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) tcp->tcp_mdt = B_FALSE; if (tcp->tcp_mdt) { if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " "version (%d), expected version is %d", mdt_capab->ill_mdt_version, MDT_VERSION_2); tcp->tcp_mdt = B_FALSE; return; } /* * We need the driver to be able to handle at least three * spans per packet in order for tcp MDT to be utilized. * The first is for the header portion, while the rest are * needed to handle a packet that straddles across two * virtually non-contiguous buffers; a typical tcp packet * therefore consists of only two spans. Note that we take * a zero as "don't care". */ if (mdt_capab->ill_mdt_span_limit > 0 && mdt_capab->ill_mdt_span_limit < 3) { tcp->tcp_mdt = B_FALSE; return; } /* a zero means driver wants default value */ tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, tcp_mdt_max_pbufs); if (tcp->tcp_mdt_max_pld == 0) tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; /* ensure 32-bit alignment */ tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, mdt_capab->ill_mdt_hdr_head), 4); tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, mdt_capab->ill_mdt_hdr_tail), 4); if (!first && !prev_state) { TCP_STAT(tcp_mdt_conn_resumed2); ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", (void *)tcp->tcp_connp)); } } } static void tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) { conn_t *connp = tcp->tcp_connp; ASSERT(ire != NULL); /* * We may be in the fastpath here, and although we essentially do * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, * we try to keep things as brief as possible. After all, these * are only best-effort checks, and we do more thorough ones prior * to calling tcp_multisend(). */ if (ip_multidata_outbound && check_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && ill != NULL && ILL_MDT_CAPABLE(ill) && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && CONN_IS_MD_FASTPATH(connp)) { /* Remember the result */ connp->conn_mdt_ok = B_TRUE; ASSERT(ill->ill_mdt_capab != NULL); if (!ill->ill_mdt_capab->ill_mdt_on) { /* * If MDT has been previously turned off in the past, * and we currently can do MDT (due to IPQoS policy * removal, etc.) then enable it for this interface. */ ill->ill_mdt_capab->ill_mdt_on = 1; ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " "interface %s\n", (void *)connp, ill->ill_name)); } tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); } /* * The goal is to reduce the number of generated tcp segments by * setting the maxpsz multiplier to 0; this will have an affect on * tcp_maxpsz_set(). With this behavior, tcp will pack more data * into each packet, up to SMSS bytes. Doing this reduces the number * of outbound segments and incoming ACKs, thus allowing for better * network and system performance. In contrast the legacy behavior * may result in sending less than SMSS size, because the last mblk * for some packets may have more data than needed to make up SMSS, * and the legacy code refused to "split" it. * * We apply the new behavior on following situations: * * 1) Loopback connections, * 2) Connections in which the remote peer is not on local subnet, * 3) Local subnet connections over the bge interface (see below). * * Ideally, we would like this behavior to apply for interfaces other * than bge. However, doing so would negatively impact drivers which * perform dynamic mapping and unmapping of DMA resources, which are * increased by setting the maxpsz multiplier to 0 (more mblks per * packet will be generated by tcp). The bge driver does not suffer * from this, as it copies the mblks into pre-mapped buffers, and * therefore does not require more I/O resources than before. * * Otherwise, this behavior is present on all network interfaces when * the destination endpoint is non-local, since reducing the number * of packets in general is good for the network. * * TODO We need to remove this hard-coded conditional for bge once * a better "self-tuning" mechanism, or a way to comprehend * the driver transmit strategy is devised. Until the solution * is found and well understood, we live with this hack. */ if (!tcp_static_maxpsz && (tcp->tcp_loopback || !tcp->tcp_localnet || (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { /* override the default value */ tcp->tcp_maxpsz = 0; ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " "interface %s\n", (void *)connp, tcp->tcp_maxpsz, ill != NULL ? ill->ill_name : ipif_loopback_name)); } /* set the stream head parameters accordingly */ (void) tcp_maxpsz_set(tcp, B_TRUE); } /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp) { uchar_t fval = *mp->b_rptr; mblk_t *tail; queue_t *q = tcp->tcp_wq; /* TODO: How should flush interact with urgent data? */ if ((fval & FLUSHW) && tcp->tcp_xmit_head && !(tcp->tcp_valid_bits & TCP_URG_VALID)) { /* * Flush only data that has not yet been put on the wire. If * we flush data that we have already transmitted, life, as we * know it, may come to an end. */ tail = tcp->tcp_xmit_tail; tail->b_wptr -= tcp->tcp_xmit_tail_unsent; tcp->tcp_xmit_tail_unsent = 0; tcp->tcp_unsent = 0; if (tail->b_wptr != tail->b_rptr) tail = tail->b_cont; if (tail) { mblk_t **excess = &tcp->tcp_xmit_head; for (;;) { mblk_t *mp1 = *excess; if (mp1 == tail) break; tcp->tcp_xmit_tail = mp1; tcp->tcp_xmit_last = mp1; excess = &mp1->b_cont; } *excess = NULL; tcp_close_mpp(&tail); if (tcp->tcp_snd_zcopy_aware) tcp_zcopy_notify(tcp); } /* * We have no unsent data, so unsent must be less than * tcp_xmit_lowater, so re-enable flow. */ if (tcp->tcp_flow_stopped) { tcp_clrqfull(tcp); } } /* * TODO: you can't just flush these, you have to increase rwnd for one * thing. For another, how should urgent data interact? */ if (fval & FLUSHR) { *mp->b_rptr = fval & ~FLUSHW; /* XXX */ qreply(q, mp); return; } freemsg(mp); } /* * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA * messages. */ static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) { mblk_t *mp1; STRUCT_HANDLE(strbuf, sb); uint16_t port; queue_t *q = tcp->tcp_wq; in6_addr_t v6addr; ipaddr_t v4addr; uint32_t flowinfo = 0; int addrlen; /* Make sure it is one of ours. */ switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { case TI_GETMYNAME: case TI_GETPEERNAME: break; default: CALL_IP_WPUT(tcp->tcp_connp, q, mp); return; } switch (mi_copy_state(q, mp, &mp1)) { case -1: return; case MI_COPY_CASE(MI_COPY_IN, 1): break; case MI_COPY_CASE(MI_COPY_OUT, 1): /* Copy out the strbuf. */ mi_copyout(q, mp); return; case MI_COPY_CASE(MI_COPY_OUT, 2): /* All done. */ mi_copy_done(q, mp, 0); return; default: mi_copy_done(q, mp, EPROTO); return; } /* Check alignment of the strbuf */ if (!OK_32PTR(mp1->b_rptr)) { mi_copy_done(q, mp, EINVAL); return; } STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, (void *)mp1->b_rptr); addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); if (STRUCT_FGET(sb, maxlen) < addrlen) { mi_copy_done(q, mp, EINVAL); return; } switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { case TI_GETMYNAME: if (tcp->tcp_family == AF_INET) { if (tcp->tcp_ipversion == IPV4_VERSION) { v4addr = tcp->tcp_ipha->ipha_src; } else { /* can't return an address in this case */ v4addr = 0; } } else { /* tcp->tcp_family == AF_INET6 */ if (tcp->tcp_ipversion == IPV4_VERSION) { IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6addr); } else { v6addr = tcp->tcp_ip6h->ip6_src; } } port = tcp->tcp_lport; break; case TI_GETPEERNAME: if (tcp->tcp_family == AF_INET) { if (tcp->tcp_ipversion == IPV4_VERSION) { IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, v4addr); } else { /* can't return an address in this case */ v4addr = 0; } } else { /* tcp->tcp_family == AF_INET6) */ v6addr = tcp->tcp_remote_v6; if (tcp->tcp_ipversion == IPV6_VERSION) { /* * No flowinfo if tcp->tcp_ipversion is v4. * * flowinfo was already initialized to zero * where it was declared above, so only * set it if ipversion is v6. */ flowinfo = tcp->tcp_ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; } } port = tcp->tcp_fport; break; default: mi_copy_done(q, mp, EPROTO); return; } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); if (!mp1) return; if (tcp->tcp_family == AF_INET) { sin_t *sin; STRUCT_FSET(sb, len, (int)sizeof (sin_t)); sin = (sin_t *)mp1->b_rptr; mp1->b_wptr = (uchar_t *)&sin[1]; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = v4addr; sin->sin_port = port; } else { /* tcp->tcp_family == AF_INET6 */ sin6_t *sin6; STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); sin6 = (sin6_t *)mp1->b_rptr; mp1->b_wptr = (uchar_t *)&sin6[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_flowinfo = flowinfo; sin6->sin6_addr = v6addr; sin6->sin6_port = port; } /* Copy out the address */ mi_copyout(q, mp); } /* * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL * messages. */ /* ARGSUSED */ static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; queue_t *q = tcp->tcp_wq; struct iocblk *iocp; ASSERT(DB_TYPE(mp) == M_IOCTL); /* * Try and ASSERT the minimum possible references on the * conn early enough. Since we are executing on write side, * the connection is obviously not detached and that means * there is a ref each for TCP and IP. Since we are behind * the squeue, the minimum references needed are 3. If the * conn is in classifier hash list, there should be an * extra ref for that (we check both the possibilities). */ ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); iocp = (struct iocblk *)mp->b_rptr; switch (iocp->ioc_cmd) { case TCP_IOC_DEFAULT_Q: /* Wants to be the default wq. */ if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { iocp->ioc_error = EPERM; iocp->ioc_count = 0; mp->b_datap->db_type = M_IOCACK; qreply(q, mp); return; } tcp_def_q_set(tcp, mp); return; case _SIOCSOCKFALLBACK: /* * Either sockmod is about to be popped and the socket * would now be treated as a plain stream, or a module * is about to be pushed so we could no longer use read- * side synchronous streams for fused loopback tcp. * Drain any queued data and disable direct sockfs * interface from now on. */ if (!tcp->tcp_issocket) { DB_TYPE(mp) = M_IOCNAK; iocp->ioc_error = EINVAL; } else { #ifdef _ILP32 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); #else tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; #endif /* * Insert this socket into the acceptor hash. * We might need it for T_CONN_RES message */ tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); if (tcp->tcp_fused) { /* * This is a fused loopback tcp; disable * read-side synchronous streams interface * and drain any queued data. It is okay * to do this for non-synchronous streams * fused tcp as well. */ tcp_fuse_disable_pair(tcp, B_FALSE); } tcp->tcp_issocket = B_FALSE; TCP_STAT(tcp_sock_fallback); DB_TYPE(mp) = M_IOCACK; iocp->ioc_error = 0; } iocp->ioc_count = 0; iocp->ioc_rval = 0; qreply(q, mp); return; } CALL_IP_WPUT(connp, q, mp); } /* * This routine is called by tcp_wput() to handle all TPI requests. */ /* ARGSUSED */ static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; union T_primitives *tprim = (union T_primitives *)mp->b_rptr; uchar_t *rptr; t_scalar_t type; int len; cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); /* * Try and ASSERT the minimum possible references on the * conn early enough. Since we are executing on write side, * the connection is obviously not detached and that means * there is a ref each for TCP and IP. Since we are behind * the squeue, the minimum references needed are 3. If the * conn is in classifier hash list, there should be an * extra ref for that (we check both the possibilities). */ ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); rptr = mp->b_rptr; ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { type = ((union T_primitives *)rptr)->type; if (type == T_EXDATA_REQ) { uint32_t msize = msgdsize(mp->b_cont); len = msize - 1; if (len < 0) { freemsg(mp); return; } /* * Try to force urgent data out on the wire. * Even if we have unsent data this will * at least send the urgent flag. * XXX does not handle more flag correctly. */ len += tcp->tcp_unsent; len += tcp->tcp_snxt; tcp->tcp_urg = len; tcp->tcp_valid_bits |= TCP_URG_VALID; /* Bypass tcp protocol for fused tcp loopback */ if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) return; } else if (type != T_DATA_REQ) { goto non_urgent_data; } /* TODO: options, flags, ... from user */ /* Set length to zero for reclamation below */ tcp_wput_data(tcp, mp->b_cont, B_TRUE); freeb(mp); return; } else { if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_wput_proto, dropping one..."); } freemsg(mp); return; } non_urgent_data: switch ((int)tprim->type) { case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ /* * save the kssl_ent_t from the next block, and convert this * back to a normal bind_req. */ if (mp->b_cont != NULL) { ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); if (tcp->tcp_kssl_ent != NULL) { kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); tcp->tcp_kssl_ent = NULL; } bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, sizeof (kssl_ent_t)); kssl_hold_ent(tcp->tcp_kssl_ent); freemsg(mp->b_cont); mp->b_cont = NULL; } tprim->type = T_BIND_REQ; /* FALLTHROUGH */ case O_T_BIND_REQ: /* bind request */ case T_BIND_REQ: /* new semantics bind request */ tcp_bind(tcp, mp); break; case T_UNBIND_REQ: /* unbind request */ tcp_unbind(tcp, mp); break; case O_T_CONN_RES: /* old connection response XXX */ case T_CONN_RES: /* connection response */ tcp_accept(tcp, mp); break; case T_CONN_REQ: /* connection request */ tcp_connect(tcp, mp); break; case T_DISCON_REQ: /* disconnect request */ tcp_disconnect(tcp, mp); break; case T_CAPABILITY_REQ: tcp_capability_req(tcp, mp); /* capability request */ break; case T_INFO_REQ: /* information request */ tcp_info_req(tcp, mp); break; case T_SVR4_OPTMGMT_REQ: /* manage options req */ /* Only IP is allowed to return meaningful value */ (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); break; case T_OPTMGMT_REQ: /* * Note: no support for snmpcom_req() through new * T_OPTMGMT_REQ. See comments in ip.c */ /* Only IP is allowed to return meaningful value */ (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); break; case T_UNITDATA_REQ: /* unitdata request */ tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); break; case T_ORDREL_REQ: /* orderly release req */ freemsg(mp); if (tcp->tcp_fused) tcp_unfuse(tcp); if (tcp_xmit_end(tcp) != 0) { /* * We were crossing FINs and got a reset from * the other side. Just ignore it. */ if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_wput_proto, T_ORDREL_REQ out of " "state %s", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); } } break; case T_ADDR_REQ: tcp_addr_req(tcp, mp); break; default: if (tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_wput_proto, bogus TPI msg, type %d", tprim->type); } /* * We used to M_ERROR. Sending TNOTSUPPORT gives the user * to recover. */ tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); break; } } /* * The TCP write service routine should never be called... */ /* ARGSUSED */ static void tcp_wsrv(queue_t *q) { TCP_STAT(tcp_wsrv_called); } /* Non overlapping byte exchanger */ static void tcp_xchg(uchar_t *a, uchar_t *b, int len) { uchar_t uch; while (len-- > 0) { uch = a[len]; a[len] = b[len]; b[len] = uch; } } /* * Send out a control packet on the tcp connection specified. This routine * is typically called where we need a simple ACK or RST generated. */ static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) { uchar_t *rptr; tcph_t *tcph; ipha_t *ipha = NULL; ip6_t *ip6h = NULL; uint32_t sum; int tcp_hdr_len; int tcp_ip_hdr_len; mblk_t *mp; /* * Save sum for use in source route later. */ ASSERT(tcp != NULL); sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; tcp_hdr_len = tcp->tcp_hdr_len; tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; /* If a text string is passed in with the request, pass it to strlog. */ if (str != NULL && tcp->tcp_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", str, seq, ack, ctl); } mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, BPRI_MED); if (mp == NULL) { return; } rptr = &mp->b_rptr[tcp_wroff_xtra]; mp->b_rptr = rptr; mp->b_wptr = &rptr[tcp_hdr_len]; bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); if (tcp->tcp_ipversion == IPV4_VERSION) { ipha = (ipha_t *)rptr; ipha->ipha_length = htons(tcp_hdr_len); } else { ip6h = (ip6_t *)rptr; ASSERT(tcp != NULL); ip6h->ip6_plen = htons(tcp->tcp_hdr_len - ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); } tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; tcph->th_flags[0] = (uint8_t)ctl; if (ctl & TH_RST) { BUMP_MIB(&tcp_mib, tcpOutRsts); BUMP_MIB(&tcp_mib, tcpOutControl); /* * Don't send TSopt w/ TH_RST packets per RFC 1323. */ if (tcp->tcp_snd_ts_ok && tcp->tcp_state > TCPS_SYN_SENT) { mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; *(mp->b_wptr) = TCPOPT_EOL; if (tcp->tcp_ipversion == IPV4_VERSION) { ipha->ipha_length = htons(tcp_hdr_len - TCPOPT_REAL_TS_LEN); } else { ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - TCPOPT_REAL_TS_LEN); } tcph->th_offset_and_rsrvd[0] -= (3 << 4); sum -= TCPOPT_REAL_TS_LEN; } } if (ctl & TH_ACK) { if (tcp->tcp_snd_ts_ok) { U32_TO_BE32(lbolt, (char *)tcph+TCP_MIN_HEADER_LENGTH+4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcph+TCP_MIN_HEADER_LENGTH+8); } /* Update the latest receive window size in TCP header. */ U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcph->th_win); tcp->tcp_rack = ack; tcp->tcp_rack_cnt = 0; BUMP_MIB(&tcp_mib, tcpOutAck); } BUMP_LOCAL(tcp->tcp_obsegs); U32_TO_BE32(seq, tcph->th_seq); U32_TO_BE32(ack, tcph->th_ack); /* * Include the adjustment for a source route if any. */ sum = (sum >> 16) + (sum & 0xFFFF); U16_TO_BE16(sum, tcph->th_sum); TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, mp); } /* * If this routine returns B_TRUE, TCP can generate a RST in response * to a segment. If it returns B_FALSE, TCP should not respond. */ static boolean_t tcp_send_rst_chk(void) { clock_t now; /* * TCP needs to protect itself from generating too many RSTs. * This can be a DoS attack by sending us random segments * soliciting RSTs. * * What we do here is to have a limit of tcp_rst_sent_rate RSTs * in each 1 second interval. In this way, TCP still generate * RSTs in normal cases but when under attack, the impact is * limited. */ if (tcp_rst_sent_rate_enabled != 0) { now = lbolt; /* lbolt can wrap around. */ if ((tcp_last_rst_intrvl > now) || (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { tcp_last_rst_intrvl = now; tcp_rst_cnt = 1; } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { return (B_FALSE); } } return (B_TRUE); } /* * Send down the advice IP ioctl to tell IP to mark an IRE temporary. */ static void tcp_ip_ire_mark_advice(tcp_t *tcp) { mblk_t *mp; ipic_t *ipic; if (tcp->tcp_ipversion == IPV4_VERSION) { mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, &ipic); } else { mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, &ipic); } if (mp == NULL) return; ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); } /* * Return an IP advice ioctl mblk and set ipic to be the pointer * to the advice structure. */ static mblk_t * tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) { struct iocblk *ioc; mblk_t *mp, *mp1; mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); if (mp == NULL) return (NULL); bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); *ipic = (ipic_t *)mp->b_rptr; (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; (*ipic)->ipic_addr_offset = sizeof (ipic_t); bcopy(addr, *ipic + 1, addr_len); (*ipic)->ipic_addr_length = addr_len; mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; mp1 = mkiocb(IP_IOCTL); if (mp1 == NULL) { freemsg(mp); return (NULL); } mp1->b_cont = mp; ioc = (struct iocblk *)mp1->b_rptr; ioc->ioc_count = sizeof (ipic_t) + addr_len; return (mp1); } /* * Generate a reset based on an inbound packet for which there is no active * tcp state that we can find. * * IPSEC NOTE : Try to send the reply with the same protection as it came * in. We still have the ipsec_mp that the packet was attached to. Thus * the packet will go out at the same level of protection as it came in by * converting the IPSEC_IN to IPSEC_OUT. */ static void tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len) { ipha_t *ipha = NULL; ip6_t *ip6h = NULL; ushort_t len; tcph_t *tcph; int i; mblk_t *ipsec_mp; boolean_t mctl_present; ipic_t *ipic; ipaddr_t v4addr; in6_addr_t v6addr; int addr_len; void *addr; queue_t *q = tcp_g_q; tcp_t *tcp = Q_TO_TCP(q); if (!tcp_send_rst_chk()) { tcp_rst_unsent++; freemsg(mp); return; } if (mp->b_datap->db_type == M_CTL) { ipsec_mp = mp; mp = mp->b_cont; mctl_present = B_TRUE; } else { ipsec_mp = mp; mctl_present = B_FALSE; } if (str && q && tcp_dbg) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " "flags 0x%x", str, seq, ack, ctl); } if (mp->b_datap->db_ref != 1) { mblk_t *mp1 = copyb(mp); freemsg(mp); mp = mp1; if (!mp) { if (mctl_present) freeb(ipsec_mp); return; } else { if (mctl_present) { ipsec_mp->b_cont = mp; } else { ipsec_mp = mp; } } } else if (mp->b_cont) { freemsg(mp->b_cont); mp->b_cont = NULL; } /* * We skip reversing source route here. * (for now we replace all IP options with EOL) */ if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { ipha = (ipha_t *)mp->b_rptr; for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) mp->b_rptr[i] = IPOPT_EOL; /* * Make sure that src address isn't flagrantly invalid. * Not all broadcast address checking for the src address * is possible, since we don't know the netmask of the src * addr. No check for destination address is done, since * IP will not pass up a packet with a broadcast dest * address to TCP. Similar checks are done below for IPv6. */ if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || CLASSD(ipha->ipha_src)) { freemsg(ipsec_mp); BUMP_MIB(&ip_mib, ipInDiscards); return; } } else { ip6h = (ip6_t *)mp->b_rptr; if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { freemsg(ipsec_mp); BUMP_MIB(&ip6_mib, ipv6InDiscards); return; } /* Remove any extension headers assuming partial overlay */ if (ip_hdr_len > IPV6_HDR_LEN) { uint8_t *to; to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; ovbcopy(ip6h, to, IPV6_HDR_LEN); mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; ip_hdr_len = IPV6_HDR_LEN; ip6h = (ip6_t *)mp->b_rptr; ip6h->ip6_nxt = IPPROTO_TCP; } } tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; if (tcph->th_flags[0] & TH_RST) { freemsg(ipsec_mp); return; } tcph->th_offset_and_rsrvd[0] = (5 << 4); len = ip_hdr_len + sizeof (tcph_t); mp->b_wptr = &mp->b_rptr[len]; if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { ipha->ipha_length = htons(len); /* Swap addresses */ v4addr = ipha->ipha_src; ipha->ipha_src = ipha->ipha_dst; ipha->ipha_dst = v4addr; ipha->ipha_ident = 0; ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; addr_len = IP_ADDR_LEN; addr = &v4addr; } else { /* No ip6i_t in this case */ ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); /* Swap addresses */ v6addr = ip6h->ip6_src; ip6h->ip6_src = ip6h->ip6_dst; ip6h->ip6_dst = v6addr; ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; addr_len = IPV6_ADDR_LEN; addr = &v6addr; } tcp_xchg(tcph->th_fport, tcph->th_lport, 2); U32_TO_BE32(ack, tcph->th_ack); U32_TO_BE32(seq, tcph->th_seq); U16_TO_BE16(0, tcph->th_win); U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); tcph->th_flags[0] = (uint8_t)ctl; if (ctl & TH_RST) { BUMP_MIB(&tcp_mib, tcpOutRsts); BUMP_MIB(&tcp_mib, tcpOutControl); } if (mctl_present) { ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; ASSERT(ii->ipsec_in_type == IPSEC_IN); if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { return; } } /* * NOTE: one might consider tracing a TCP packet here, but * this function has no active TCP state nd no tcp structure * which has trace buffer. If we traced here, we would have * to keep a local trace buffer in tcp_record_trace(). */ CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); /* * Tell IP to mark the IRE used for this destination temporary. * This way, we can limit our exposure to DoS attack because IP * creates an IRE for each destination. If there are too many, * the time to do any routing lookup will be extremely long. And * the lookup can be in interrupt context. * * Note that in normal circumstances, this marking should not * affect anything. It would be nice if only 1 message is * needed to inform IP that the IRE created for this RST should * not be added to the cache table. But there is currently * not such communication mechanism between TCP and IP. So * the best we can do now is to send the advice ioctl to IP * to mark the IRE temporary. */ if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); } } /* * Initiate closedown sequence on an active connection. (May be called as * writer.) Return value zero for OK return, non-zero for error return. */ static int tcp_xmit_end(tcp_t *tcp) { ipic_t *ipic; mblk_t *mp; if (tcp->tcp_state < TCPS_SYN_RCVD || tcp->tcp_state > TCPS_CLOSE_WAIT) { /* * Invalid state, only states TCPS_SYN_RCVD, * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid */ return (-1); } tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; tcp->tcp_valid_bits |= TCP_FSS_VALID; /* * If there is nothing more unsent, send the FIN now. * Otherwise, it will go out with the last segment. */ if (tcp->tcp_unsent == 0) { mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, tcp->tcp_fss, B_FALSE, NULL, B_FALSE); if (mp) { TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); tcp_send_data(tcp, tcp->tcp_wq, mp); } else { /* * Couldn't allocate msg. Pretend we got it out. * Wait for rexmit timeout. */ tcp->tcp_snxt = tcp->tcp_fss + 1; TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } /* * If needed, update tcp_rexmit_snxt as tcp_snxt is * changed. */ if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { tcp->tcp_rexmit_nxt = tcp->tcp_snxt; } } else { /* * If tcp->tcp_cork is set, then the data will not get sent, * so we have to check that and unset it first. */ if (tcp->tcp_cork) tcp->tcp_cork = B_FALSE; tcp_wput_data(tcp, NULL, B_FALSE); } /* * If TCP does not get enough samples of RTT or tcp_rtt_updates * is 0, don't update the cache. */ if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) return (0); /* * NOTE: should not update if source routes i.e. if tcp_remote if * different from the destination. */ if (tcp->tcp_ipversion == IPV4_VERSION) { if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { return (0); } mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, &ipic); } else { if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, &tcp->tcp_ip6h->ip6_dst))) { return (0); } mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, &ipic); } /* Record route attributes in the IRE for use by future connections. */ if (mp == NULL) return (0); /* * We do not have a good algorithm to update ssthresh at this time. * So don't do any update. */ ipic->ipic_rtt = tcp->tcp_rtt_sa; ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); return (0); } /* * Generate a "no listener here" RST in response to an "unknown" segment. * Note that we are reusing the incoming mp to construct the outgoing * RST. */ void tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) { uchar_t *rptr; uint32_t seg_len; tcph_t *tcph; uint32_t seg_seq; uint32_t seg_ack; uint_t flags; mblk_t *ipsec_mp; ipha_t *ipha; ip6_t *ip6h; boolean_t mctl_present = B_FALSE; boolean_t check = B_TRUE; boolean_t policy_present; TCP_STAT(tcp_no_listener); ipsec_mp = mp; if (mp->b_datap->db_type == M_CTL) { ipsec_in_t *ii; mctl_present = B_TRUE; mp = mp->b_cont; ii = (ipsec_in_t *)ipsec_mp->b_rptr; ASSERT(ii->ipsec_in_type == IPSEC_IN); if (ii->ipsec_in_dont_check) { check = B_FALSE; if (!ii->ipsec_in_secure) { freeb(ipsec_mp); mctl_present = B_FALSE; ipsec_mp = mp; } } } if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { policy_present = ipsec_inbound_v4_policy_present; ipha = (ipha_t *)mp->b_rptr; ip6h = NULL; } else { policy_present = ipsec_inbound_v6_policy_present; ipha = NULL; ip6h = (ip6_t *)mp->b_rptr; } if (check && policy_present) { /* * The conn_t parameter is NULL because we already know * nobody's home. */ ipsec_mp = ipsec_check_global_policy( ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); if (ipsec_mp == NULL) return; } rptr = mp->b_rptr; tcph = (tcph_t *)&rptr[ip_hdr_len]; seg_seq = BE32_TO_U32(tcph->th_seq); seg_ack = BE32_TO_U32(tcph->th_ack); flags = tcph->th_flags[0]; seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); if (flags & TH_RST) { freemsg(ipsec_mp); } else if (flags & TH_ACK) { tcp_xmit_early_reset("no tcp, reset", ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); } else { if (flags & TH_SYN) { seg_len++; } else { /* * Here we violate the RFC. Note that a normal * TCP will never send a segment without the ACK * flag, except for RST or SYN segment. This * segment is neither. Just drop it on the * floor. */ freemsg(ipsec_mp); tcp_rst_unsent++; return; } tcp_xmit_early_reset("no tcp, reset/ack", ipsec_mp, 0, seg_seq + seg_len, TH_RST | TH_ACK, ip_hdr_len); } } /* * tcp_xmit_mp is called to return a pointer to an mblk chain complete with * ip and tcp header ready to pass down to IP. If the mp passed in is * non-NULL, then up to max_to_send bytes of data will be dup'ed off that * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary * otherwise it will dup partial mblks.) * Otherwise, an appropriate ACK packet will be generated. This * routine is not usually called to send new data for the first time. It * is mostly called out of the timer for retransmits, and to generate ACKs. * * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will * be adjusted by *offset. And after dupb(), the offset and the ending mblk * of the original mblk chain will be returned in *offset and *end_mp. */ static mblk_t * tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, boolean_t rexmit) { int data_length; int32_t off = 0; uint_t flags; mblk_t *mp1; mblk_t *mp2; uchar_t *rptr; tcph_t *tcph; int32_t num_sack_blk = 0; int32_t sack_opt_len = 0; /* Allocate for our maximum TCP header + link-level */ mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, BPRI_MED); if (!mp1) return (NULL); data_length = 0; /* * Note that tcp_mss has been adjusted to take into account the * timestamp option if applicable. Because SACK options do not * appear in every TCP segments and they are of variable lengths, * they cannot be included in tcp_mss. Thus we need to calculate * the actual segment length when we need to send a segment which * includes SACK options. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { num_sack_blk = MIN(tcp->tcp_max_sack_blk, tcp->tcp_num_sack_blk); sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; if (max_to_send + sack_opt_len > tcp->tcp_mss) max_to_send -= sack_opt_len; } if (offset != NULL) { off = *offset; /* We use offset as an indicator that end_mp is not NULL. */ *end_mp = NULL; } for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { /* This could be faster with cooperation from downstream */ if (mp2 != mp1 && !sendall && data_length + (int)(mp->b_wptr - mp->b_rptr) > max_to_send) /* * Don't send the next mblk since the whole mblk * does not fit. */ break; mp2->b_cont = dupb(mp); mp2 = mp2->b_cont; if (!mp2) { freemsg(mp1); return (NULL); } mp2->b_rptr += off; ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= (uintptr_t)INT_MAX); data_length += (int)(mp2->b_wptr - mp2->b_rptr); if (data_length > max_to_send) { mp2->b_wptr -= data_length - max_to_send; data_length = max_to_send; off = mp2->b_wptr - mp->b_rptr; break; } else { off = 0; } } if (offset != NULL) { *offset = off; *end_mp = mp; } if (seg_len != NULL) { *seg_len = data_length; } /* Update the latest receive window size in TCP header. */ U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); rptr = mp1->b_rptr + tcp_wroff_xtra; mp1->b_rptr = rptr; mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; U32_TO_ABE32(seq, tcph->th_seq); /* * Use tcp_unsent to determine if the PUSH bit should be used assumes * that this function was called from tcp_wput_data. Thus, when called * to retransmit data the setting of the PUSH bit may appear some * what random in that it might get set when it should not. This * should not pose any performance issues. */ if (data_length != 0 && (tcp->tcp_unsent == 0 || tcp->tcp_unsent == data_length)) { flags = TH_ACK | TH_PUSH; } else { flags = TH_ACK; } if (tcp->tcp_ecn_ok) { if (tcp->tcp_ecn_echo_on) flags |= TH_ECE; /* * Only set ECT bit and ECN_CWR if a segment contains new data. * There is no TCP flow control for non-data segments, and * only data segment is transmitted reliably. */ if (data_length > 0 && !rexmit) { SET_ECT(tcp, rptr); if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { flags |= TH_CWR; tcp->tcp_ecn_cwr_sent = B_TRUE; } } } if (tcp->tcp_valid_bits) { uint32_t u1; if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && seq == tcp->tcp_iss) { uchar_t *wptr; /* * If TCP_ISS_VALID and the seq number is tcp_iss, * TCP can only be in SYN-SENT, SYN-RCVD or * FIN-WAIT-1 state. It can be FIN-WAIT-1 if * our SYN is not ack'ed but the app closes this * TCP connection. */ ASSERT(tcp->tcp_state == TCPS_SYN_SENT || tcp->tcp_state == TCPS_SYN_RCVD || tcp->tcp_state == TCPS_FIN_WAIT_1); /* * Tack on the MSS option. It is always needed * for both active and passive open. * * MSS option value should be interface MTU - MIN * TCP/IP header according to RFC 793 as it means * the maximum segment size TCP can receive. But * to get around some broken middle boxes/end hosts * out there, we allow the option value to be the * same as the MSS option size on the peer side. * In this way, the other side will not send * anything larger than they can receive. * * Note that for SYN_SENT state, the ndd param * tcp_use_smss_as_mss_opt has no effect as we * don't know the peer's MSS option value. So * the only case we need to take care of is in * SYN_RCVD state, which is done later. */ wptr = mp1->b_wptr; wptr[0] = TCPOPT_MAXSEG; wptr[1] = TCPOPT_MAXSEG_LEN; wptr += 2; u1 = tcp->tcp_if_mtu - (tcp->tcp_ipversion == IPV4_VERSION ? IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - TCP_MIN_HEADER_LENGTH; U16_TO_BE16(u1, wptr); mp1->b_wptr = wptr + 2; /* Update the offset to cover the additional word */ tcph->th_offset_and_rsrvd[0] += (1 << 4); /* * Note that the following way of filling in * TCP options are not optimal. Some NOPs can * be saved. But there is no need at this time * to optimize it. When it is needed, we will * do it. */ switch (tcp->tcp_state) { case TCPS_SYN_SENT: flags = TH_SYN; if (tcp->tcp_snd_ts_ok) { uint32_t llbolt = (uint32_t)lbolt; wptr = mp1->b_wptr; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_TSTAMP; wptr[3] = TCPOPT_TSTAMP_LEN; wptr += 4; U32_TO_BE32(llbolt, wptr); wptr += 4; ASSERT(tcp->tcp_ts_recent == 0); U32_TO_BE32(0L, wptr); mp1->b_wptr += TCPOPT_REAL_TS_LEN; tcph->th_offset_and_rsrvd[0] += (3 << 4); } /* * Set up all the bits to tell other side * we are ECN capable. */ if (tcp->tcp_ecn_ok) { flags |= (TH_ECE | TH_CWR); } break; case TCPS_SYN_RCVD: flags |= TH_SYN; /* * Reset the MSS option value to be SMSS * We should probably add back the bytes * for timestamp option and IPsec. We * don't do that as this is a workaround * for broken middle boxes/end hosts, it * is better for us to be more cautious. * They may not take these things into * account in their SMSS calculation. Thus * the peer's calculated SMSS may be smaller * than what it can be. This should be OK. */ if (tcp_use_smss_as_mss_opt) { u1 = tcp->tcp_mss; U16_TO_BE16(u1, wptr); } /* * If the other side is ECN capable, reply * that we are also ECN capable. */ if (tcp->tcp_ecn_ok) flags |= TH_ECE; break; default: /* * The above ASSERT() makes sure that this * must be FIN-WAIT-1 state. Our SYN has * not been ack'ed so retransmit it. */ flags |= TH_SYN; break; } if (tcp->tcp_snd_ws_ok) { wptr = mp1->b_wptr; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_WSCALE; wptr[2] = TCPOPT_WS_LEN; wptr[3] = (uchar_t)tcp->tcp_rcv_ws; mp1->b_wptr += TCPOPT_REAL_WS_LEN; tcph->th_offset_and_rsrvd[0] += (1 << 4); } if (tcp->tcp_snd_sack_ok) { wptr = mp1->b_wptr; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_SACK_PERMITTED; wptr[3] = TCPOPT_SACK_OK_LEN; mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; tcph->th_offset_and_rsrvd[0] += (1 << 4); } /* allocb() of adequate mblk assures space */ ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); u1 = (int)(mp1->b_wptr - mp1->b_rptr); /* * Get IP set to checksum on our behalf * Include the adjustment for a source route if any. */ u1 += tcp->tcp_sum; u1 = (u1 >> 16) + (u1 & 0xFFFF); U16_TO_BE16(u1, tcph->th_sum); BUMP_MIB(&tcp_mib, tcpOutControl); } if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (seq + data_length) == tcp->tcp_fss) { if (!tcp->tcp_fin_acked) { flags |= TH_FIN; BUMP_MIB(&tcp_mib, tcpOutControl); } if (!tcp->tcp_fin_sent) { tcp->tcp_fin_sent = B_TRUE; switch (tcp->tcp_state) { case TCPS_SYN_RCVD: case TCPS_ESTABLISHED: tcp->tcp_state = TCPS_FIN_WAIT_1; break; case TCPS_CLOSE_WAIT: tcp->tcp_state = TCPS_LAST_ACK; break; } if (tcp->tcp_suna == tcp->tcp_snxt) TCP_TIMER_RESTART(tcp, tcp->tcp_rto); tcp->tcp_snxt = tcp->tcp_fss + 1; } } /* * Note the trick here. u1 is unsigned. When tcp_urg * is smaller than seq, u1 will become a very huge value. * So the comparison will fail. Also note that tcp_urp * should be positive, see RFC 793 page 17. */ u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && u1 < (uint32_t)(64 * 1024)) { flags |= TH_URG; BUMP_MIB(&tcp_mib, tcpOutUrg); U32_TO_ABE16(u1, tcph->th_urp); } } tcph->th_flags[0] = (uchar_t)flags; tcp->tcp_rack = tcp->tcp_rnxt; tcp->tcp_rack_cnt = 0; if (tcp->tcp_snd_ts_ok) { if (tcp->tcp_state != TCPS_SYN_SENT) { uint32_t llbolt = (uint32_t)lbolt; U32_TO_BE32(llbolt, (char *)tcph+TCP_MIN_HEADER_LENGTH+4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcph+TCP_MIN_HEADER_LENGTH+8); } } if (num_sack_blk > 0) { uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; sack_blk_t *tmp; int32_t i; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_SACK; wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * sizeof (sack_blk_t); wptr += TCPOPT_REAL_SACK_LEN; tmp = tcp->tcp_sack_list; for (i = 0; i < num_sack_blk; i++) { U32_TO_BE32(tmp[i].begin, wptr); wptr += sizeof (tcp_seq); U32_TO_BE32(tmp[i].end, wptr); wptr += sizeof (tcp_seq); } tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); } ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); data_length += (int)(mp1->b_wptr - rptr); if (tcp->tcp_ipversion == IPV4_VERSION) { ((ipha_t *)rptr)->ipha_length = htons(data_length); } else { ip6_t *ip6 = (ip6_t *)(rptr + (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? sizeof (ip6i_t) : 0)); ip6->ip6_plen = htons(data_length - ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); } /* * Prime pump for IP * Include the adjustment for a source route if any. */ data_length -= tcp->tcp_ip_hdr_len; data_length += tcp->tcp_sum; data_length = (data_length >> 16) + (data_length & 0xFFFF); U16_TO_ABE16(data_length, tcph->th_sum); if (tcp->tcp_ip_forward_progress) { ASSERT(tcp->tcp_ipversion == IPV6_VERSION); *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; tcp->tcp_ip_forward_progress = B_FALSE; } return (mp1); } /* This function handles the push timeout. */ void tcp_push_timer(void *arg) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; TCP_DBGSTAT(tcp_push_timer_cnt); ASSERT(tcp->tcp_listener == NULL); /* * We need to stop synchronous streams temporarily to prevent a race * with tcp_fuse_rrw() or tcp_fusion rinfop(). It is safe to access * tcp_rcv_list here because those entry points will return right * away when synchronous streams is stopped. */ TCP_FUSE_SYNCSTR_STOP(tcp); tcp->tcp_push_tid = 0; if ((tcp->tcp_rcv_list != NULL) && (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); TCP_FUSE_SYNCSTR_RESUME(tcp); } /* * This function handles delayed ACK timeout. */ static void tcp_ack_timer(void *arg) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; mblk_t *mp; TCP_DBGSTAT(tcp_ack_timer_cnt); tcp->tcp_ack_tid = 0; if (tcp->tcp_fused) return; /* * Do not send ACK if there is no outstanding unack'ed data. */ if (tcp->tcp_rnxt == tcp->tcp_rack) { return; } if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { /* * Make sure we don't allow deferred ACKs to result in * timer-based ACKing. If we have held off an ACK * when there was more than an mss here, and the timer * goes off, we have to worry about the possibility * that the sender isn't doing slow-start, or is out * of step with us for some other reason. We fall * permanently back in the direction of * ACK-every-other-packet as suggested in RFC 1122. */ if (tcp->tcp_rack_abs_max > 2) tcp->tcp_rack_abs_max--; tcp->tcp_rack_cur_max = 2; } mp = tcp_ack_mp(tcp); if (mp != NULL) { TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcp_mib, tcpOutAck); BUMP_MIB(&tcp_mib, tcpOutAckDelayed); tcp_send_data(tcp, tcp->tcp_wq, mp); } } /* Generate an ACK-only (no data) segment for a TCP endpoint */ static mblk_t * tcp_ack_mp(tcp_t *tcp) { uint32_t seq_no; /* * There are a few cases to be considered while setting the sequence no. * Essentially, we can come here while processing an unacceptable pkt * in the TCPS_SYN_RCVD state, in which case we set the sequence number * to snxt (per RFC 793), note the swnd wouldn't have been set yet. * If we are here for a zero window probe, stick with suna. In all * other cases, we check if suna + swnd encompasses snxt and set * the sequence number to snxt, if so. If snxt falls outside the * window (the receiver probably shrunk its window), we will go with * suna + swnd, otherwise the sequence no will be unacceptable to the * receiver. */ if (tcp->tcp_zero_win_probe) { seq_no = tcp->tcp_suna; } else if (tcp->tcp_state == TCPS_SYN_RCVD) { ASSERT(tcp->tcp_swnd == 0); seq_no = tcp->tcp_snxt; } else { seq_no = SEQ_GT(tcp->tcp_snxt, (tcp->tcp_suna + tcp->tcp_swnd)) ? (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; } if (tcp->tcp_valid_bits) { /* * For the complex case where we have to send some * controls (FIN or SYN), let tcp_xmit_mp do it. */ return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, NULL, B_FALSE)); } else { /* Generate a simple ACK */ int data_length; uchar_t *rptr; tcph_t *tcph; mblk_t *mp1; int32_t tcp_hdr_len; int32_t tcp_tcp_hdr_len; int32_t num_sack_blk = 0; int32_t sack_opt_len; /* * Allocate space for TCP + IP headers * and link-level header */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { num_sack_blk = MIN(tcp->tcp_max_sack_blk, tcp->tcp_num_sack_blk); sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; } else { tcp_hdr_len = tcp->tcp_hdr_len; tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; } mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); if (!mp1) return (NULL); /* Update the latest receive window size in TCP header. */ U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); /* copy in prototype TCP + IP header */ rptr = mp1->b_rptr + tcp_wroff_xtra; mp1->b_rptr = rptr; mp1->b_wptr = rptr + tcp_hdr_len; bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; /* Set the TCP sequence number. */ U32_TO_ABE32(seq_no, tcph->th_seq); /* Set up the TCP flag field. */ tcph->th_flags[0] = (uchar_t)TH_ACK; if (tcp->tcp_ecn_echo_on) tcph->th_flags[0] |= TH_ECE; tcp->tcp_rack = tcp->tcp_rnxt; tcp->tcp_rack_cnt = 0; /* fill in timestamp option if in use */ if (tcp->tcp_snd_ts_ok) { uint32_t llbolt = (uint32_t)lbolt; U32_TO_BE32(llbolt, (char *)tcph+TCP_MIN_HEADER_LENGTH+4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcph+TCP_MIN_HEADER_LENGTH+8); } /* Fill in SACK options */ if (num_sack_blk > 0) { uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; sack_blk_t *tmp; int32_t i; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_SACK; wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * sizeof (sack_blk_t); wptr += TCPOPT_REAL_SACK_LEN; tmp = tcp->tcp_sack_list; for (i = 0; i < num_sack_blk; i++) { U32_TO_BE32(tmp[i].begin, wptr); wptr += sizeof (tcp_seq); U32_TO_BE32(tmp[i].end, wptr); wptr += sizeof (tcp_seq); } tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); } if (tcp->tcp_ipversion == IPV4_VERSION) { ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); } else { /* Check for ip6i_t header in sticky hdrs */ ip6_t *ip6 = (ip6_t *)(rptr + (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? sizeof (ip6i_t) : 0)); ip6->ip6_plen = htons(tcp_hdr_len - ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); } /* * Prime pump for checksum calculation in IP. Include the * adjustment for a source route if any. */ data_length = tcp_tcp_hdr_len + tcp->tcp_sum; data_length = (data_length >> 16) + (data_length & 0xFFFF); U16_TO_ABE16(data_length, tcph->th_sum); if (tcp->tcp_ip_forward_progress) { ASSERT(tcp->tcp_ipversion == IPV6_VERSION); *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; tcp->tcp_ip_forward_progress = B_FALSE; } return (mp1); } } /* * To create a temporary tcp structure for inserting into bind hash list. * The parameter is assumed to be in network byte order, ready for use. */ /* ARGSUSED */ static tcp_t * tcp_alloc_temp_tcp(in_port_t port) { conn_t *connp; tcp_t *tcp; connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); if (connp == NULL) return (NULL); tcp = connp->conn_tcp; /* * Only initialize the necessary info in those structures. Note * that since INADDR_ANY is all 0, we do not need to set * tcp_bound_source to INADDR_ANY here. */ tcp->tcp_state = TCPS_BOUND; tcp->tcp_lport = port; tcp->tcp_exclbind = 1; tcp->tcp_reserved_port = 1; /* Just for place holding... */ tcp->tcp_ipversion = IPV4_VERSION; return (tcp); } /* * To remove a port range specified by lo_port and hi_port from the * reserved port ranges. This is one of the three public functions of * the reserved port interface. Note that a port range has to be removed * as a whole. Ports in a range cannot be removed individually. * * Params: * in_port_t lo_port: the beginning port of the reserved port range to * be deleted. * in_port_t hi_port: the ending port of the reserved port range to * be deleted. * * Return: * B_TRUE if the deletion is successful, B_FALSE otherwise. */ boolean_t tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) { int i, j; int size; tcp_t **temp_tcp_array; tcp_t *tcp; rw_enter(&tcp_reserved_port_lock, RW_WRITER); /* First make sure that the port ranage is indeed reserved. */ for (i = 0; i < tcp_reserved_port_array_size; i++) { if (tcp_reserved_port[i].lo_port == lo_port) { hi_port = tcp_reserved_port[i].hi_port; temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; break; } } if (i == tcp_reserved_port_array_size) { rw_exit(&tcp_reserved_port_lock); return (B_FALSE); } /* * Remove the range from the array. This simple loop is possible * because port ranges are inserted in ascending order. */ for (j = i; j < tcp_reserved_port_array_size - 1; j++) { tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; tcp_reserved_port[j].temp_tcp_array = tcp_reserved_port[j+1].temp_tcp_array; } /* Remove all the temporary tcp structures. */ size = hi_port - lo_port + 1; while (size > 0) { tcp = temp_tcp_array[size - 1]; ASSERT(tcp != NULL); tcp_bind_hash_remove(tcp); CONN_DEC_REF(tcp->tcp_connp); size--; } kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); tcp_reserved_port_array_size--; rw_exit(&tcp_reserved_port_lock); return (B_TRUE); } /* * Macro to remove temporary tcp structure from the bind hash list. The * first parameter is the list of tcp to be removed. The second parameter * is the number of tcps in the array. */ #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ { \ while ((num) > 0) { \ tcp_t *tcp = (tcp_array)[(num) - 1]; \ tf_t *tbf; \ tcp_t *tcpnext; \ tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ mutex_enter(&tbf->tf_lock); \ tcpnext = tcp->tcp_bind_hash; \ if (tcpnext) { \ tcpnext->tcp_ptpbhn = \ tcp->tcp_ptpbhn; \ } \ *tcp->tcp_ptpbhn = tcpnext; \ mutex_exit(&tbf->tf_lock); \ kmem_free(tcp, sizeof (tcp_t)); \ (tcp_array)[(num) - 1] = NULL; \ (num)--; \ } \ } /* * The public interface for other modules to call to reserve a port range * in TCP. The caller passes in how large a port range it wants. TCP * will try to find a range and return it via lo_port and hi_port. This is * used by NCA's nca_conn_init. * NCA can only be used in the global zone so this only affects the global * zone's ports. * * Params: * int size: the size of the port range to be reserved. * in_port_t *lo_port (referenced): returns the beginning port of the * reserved port range added. * in_port_t *hi_port (referenced): returns the ending port of the * reserved port range added. * * Return: * B_TRUE if the port reservation is successful, B_FALSE otherwise. */ boolean_t tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) { tcp_t *tcp; tcp_t *tmp_tcp; tcp_t **temp_tcp_array; tf_t *tbf; in_port_t net_port; in_port_t port; int32_t cur_size; int i, j; boolean_t used; tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; zoneid_t zoneid = GLOBAL_ZONEID; /* Sanity check. */ if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { return (B_FALSE); } rw_enter(&tcp_reserved_port_lock, RW_WRITER); if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { rw_exit(&tcp_reserved_port_lock); return (B_FALSE); } /* * Find the starting port to try. Since the port ranges are ordered * in the reserved port array, we can do a simple search here. */ *lo_port = TCP_SMALLEST_RESERVED_PORT; *hi_port = TCP_LARGEST_RESERVED_PORT; for (i = 0; i < tcp_reserved_port_array_size; *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { if (tcp_reserved_port[i].lo_port - *lo_port >= size) { *hi_port = tcp_reserved_port[i].lo_port - 1; break; } } /* No available port range. */ if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { rw_exit(&tcp_reserved_port_lock); return (B_FALSE); } temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); if (temp_tcp_array == NULL) { rw_exit(&tcp_reserved_port_lock); return (B_FALSE); } /* Go thru the port range to see if some ports are already bound. */ for (port = *lo_port, cur_size = 0; cur_size < size && port <= *hi_port; cur_size++, port++) { used = B_FALSE; net_port = htons(port); tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; mutex_enter(&tbf->tf_lock); for (tcp = tbf->tf_tcp; tcp != NULL; tcp = tcp->tcp_bind_hash) { if (zoneid == tcp->tcp_connp->conn_zoneid && net_port == tcp->tcp_lport) { /* * A port is already bound. Search again * starting from port + 1. Release all * temporary tcps. */ mutex_exit(&tbf->tf_lock); TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); *lo_port = port + 1; cur_size = -1; used = B_TRUE; break; } } if (!used) { if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { /* * Allocation failure. Just fail the request. * Need to remove all those temporary tcp * structures. */ mutex_exit(&tbf->tf_lock); TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); rw_exit(&tcp_reserved_port_lock); kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); return (B_FALSE); } temp_tcp_array[cur_size] = tmp_tcp; tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); mutex_exit(&tbf->tf_lock); } } /* * The current range is not large enough. We can actually do another * search if this search is done between 2 reserved port ranges. But * for first release, we just stop here and return saying that no port * range is available. */ if (cur_size < size) { TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); rw_exit(&tcp_reserved_port_lock); kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); return (B_FALSE); } *hi_port = port - 1; /* * Insert range into array in ascending order. Since this function * must not be called often, we choose to use the simplest method. * The above array should not consume excessive stack space as * the size must be very small. If in future releases, we find * that we should provide more reserved port ranges, this function * has to be modified to be more efficient. */ if (tcp_reserved_port_array_size == 0) { tcp_reserved_port[0].lo_port = *lo_port; tcp_reserved_port[0].hi_port = *hi_port; tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; } else { for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { tmp_ports[j].lo_port = *lo_port; tmp_ports[j].hi_port = *hi_port; tmp_ports[j].temp_tcp_array = temp_tcp_array; j++; } tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; tmp_ports[j].temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; } if (j == i) { tmp_ports[j].lo_port = *lo_port; tmp_ports[j].hi_port = *hi_port; tmp_ports[j].temp_tcp_array = temp_tcp_array; } bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); } tcp_reserved_port_array_size++; rw_exit(&tcp_reserved_port_lock); return (B_TRUE); } /* * Check to see if a port is in any reserved port range. * * Params: * in_port_t port: the port to be verified. * * Return: * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. */ boolean_t tcp_reserved_port_check(in_port_t port) { int i; rw_enter(&tcp_reserved_port_lock, RW_READER); for (i = 0; i < tcp_reserved_port_array_size; i++) { if (port >= tcp_reserved_port[i].lo_port || port <= tcp_reserved_port[i].hi_port) { rw_exit(&tcp_reserved_port_lock); return (B_TRUE); } } rw_exit(&tcp_reserved_port_lock); return (B_FALSE); } /* * To list all reserved port ranges. This is the function to handle * ndd tcp_reserved_port_list. */ /* ARGSUSED */ static int tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { int i; rw_enter(&tcp_reserved_port_lock, RW_READER); if (tcp_reserved_port_array_size > 0) (void) mi_mpprintf(mp, "The following ports are reserved:"); else (void) mi_mpprintf(mp, "No port is reserved."); for (i = 0; i < tcp_reserved_port_array_size; i++) { (void) mi_mpprintf(mp, "%d-%d", tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); } rw_exit(&tcp_reserved_port_lock); return (0); } /* * Hash list insertion routine for tcp_t structures. * Inserts entries with the ones bound to a specific IP address first * followed by those bound to INADDR_ANY. */ static void tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) { tcp_t **tcpp; tcp_t *tcpnext; if (tcp->tcp_ptpbhn != NULL) { ASSERT(!caller_holds_lock); tcp_bind_hash_remove(tcp); } tcpp = &tbf->tf_tcp; if (!caller_holds_lock) { mutex_enter(&tbf->tf_lock); } else { ASSERT(MUTEX_HELD(&tbf->tf_lock)); } tcpnext = tcpp[0]; if (tcpnext) { /* * If the new tcp bound to the INADDR_ANY address * and the first one in the list is not bound to * INADDR_ANY we skip all entries until we find the * first one bound to INADDR_ANY. * This makes sure that applications binding to a * specific address get preference over those binding to * INADDR_ANY. */ if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { while ((tcpnext = tcpp[0]) != NULL && !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) tcpp = &(tcpnext->tcp_bind_hash); if (tcpnext) tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; } else tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; } tcp->tcp_bind_hash = tcpnext; tcp->tcp_ptpbhn = tcpp; tcpp[0] = tcp; if (!caller_holds_lock) mutex_exit(&tbf->tf_lock); } /* * Hash list removal routine for tcp_t structures. */ static void tcp_bind_hash_remove(tcp_t *tcp) { tcp_t *tcpnext; kmutex_t *lockp; if (tcp->tcp_ptpbhn == NULL) return; /* * Extract the lock pointer in case there are concurrent * hash_remove's for this instance. */ ASSERT(tcp->tcp_lport != 0); lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; ASSERT(lockp != NULL); mutex_enter(lockp); if (tcp->tcp_ptpbhn) { tcpnext = tcp->tcp_bind_hash; if (tcpnext) { tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; tcp->tcp_bind_hash = NULL; } *tcp->tcp_ptpbhn = tcpnext; tcp->tcp_ptpbhn = NULL; } mutex_exit(lockp); } /* * Hash list lookup routine for tcp_t structures. * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. */ static tcp_t * tcp_acceptor_hash_lookup(t_uscalar_t id) { tf_t *tf; tcp_t *tcp; tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; mutex_enter(&tf->tf_lock); for (tcp = tf->tf_tcp; tcp != NULL; tcp = tcp->tcp_acceptor_hash) { if (tcp->tcp_acceptor_id == id) { CONN_INC_REF(tcp->tcp_connp); mutex_exit(&tf->tf_lock); return (tcp); } } mutex_exit(&tf->tf_lock); return (NULL); } /* * Hash list insertion routine for tcp_t structures. */ void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) { tf_t *tf; tcp_t **tcpp; tcp_t *tcpnext; tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; if (tcp->tcp_ptpahn != NULL) tcp_acceptor_hash_remove(tcp); tcpp = &tf->tf_tcp; mutex_enter(&tf->tf_lock); tcpnext = tcpp[0]; if (tcpnext) tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; tcp->tcp_acceptor_hash = tcpnext; tcp->tcp_ptpahn = tcpp; tcpp[0] = tcp; tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ mutex_exit(&tf->tf_lock); } /* * Hash list removal routine for tcp_t structures. */ static void tcp_acceptor_hash_remove(tcp_t *tcp) { tcp_t *tcpnext; kmutex_t *lockp; /* * Extract the lock pointer in case there are concurrent * hash_remove's for this instance. */ lockp = tcp->tcp_acceptor_lockp; if (tcp->tcp_ptpahn == NULL) return; ASSERT(lockp != NULL); mutex_enter(lockp); if (tcp->tcp_ptpahn) { tcpnext = tcp->tcp_acceptor_hash; if (tcpnext) { tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; tcp->tcp_acceptor_hash = NULL; } *tcp->tcp_ptpahn = tcpnext; tcp->tcp_ptpahn = NULL; } mutex_exit(lockp); tcp->tcp_acceptor_lockp = NULL; } /* ARGSUSED */ static int tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) { int error = 0; int retval; char *end; tcp_hsp_t *hsp; tcp_hsp_t *hspprev; ipaddr_t addr = 0; /* Address we're looking for */ in6_addr_t v6addr; /* Address we're looking for */ uint32_t hash; /* Hash of that address */ /* * If the following variables are still zero after parsing the input * string, the user didn't specify them and we don't change them in * the HSP. */ ipaddr_t mask = 0; /* Subnet mask */ in6_addr_t v6mask; long sendspace = 0; /* Send buffer size */ long recvspace = 0; /* Receive buffer size */ long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ boolean_t delete = B_FALSE; /* User asked to delete this HSP */ rw_enter(&tcp_hsp_lock, RW_WRITER); /* Parse and validate address */ if (af == AF_INET) { retval = inet_pton(af, value, &addr); if (retval == 1) IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); } else if (af == AF_INET6) { retval = inet_pton(af, value, &v6addr); } else { error = EINVAL; goto done; } if (retval == 0) { error = EINVAL; goto done; } while ((*value) && *value != ' ') value++; /* Parse individual keywords, set variables if found */ while (*value) { /* Skip leading blanks */ while (*value == ' ' || *value == '\t') value++; /* If at end of string, we're done */ if (!*value) break; /* We have a word, figure out what it is */ if (strncmp("mask", value, 4) == 0) { value += 4; while (*value == ' ' || *value == '\t') value++; /* Parse subnet mask */ if (af == AF_INET) { retval = inet_pton(af, value, &mask); if (retval == 1) { V4MASK_TO_V6(mask, v6mask); } } else if (af == AF_INET6) { retval = inet_pton(af, value, &v6mask); } if (retval != 1) { error = EINVAL; goto done; } while ((*value) && *value != ' ') value++; } else if (strncmp("sendspace", value, 9) == 0) { value += 9; if (ddi_strtol(value, &end, 0, &sendspace) != 0 || sendspace < TCP_XMIT_HIWATER || sendspace >= (1L<<30)) { error = EINVAL; goto done; } value = end; } else if (strncmp("recvspace", value, 9) == 0) { value += 9; if (ddi_strtol(value, &end, 0, &recvspace) != 0 || recvspace < TCP_RECV_HIWATER || recvspace >= (1L<<30)) { error = EINVAL; goto done; } value = end; } else if (strncmp("timestamp", value, 9) == 0) { value += 9; if (ddi_strtol(value, &end, 0, ×tamp) != 0 || timestamp < 0 || timestamp > 1) { error = EINVAL; goto done; } /* * We increment timestamp so we know it's been set; * this is undone when we put it in the HSP */ timestamp++; value = end; } else if (strncmp("delete", value, 6) == 0) { value += 6; delete = B_TRUE; } else { error = EINVAL; goto done; } } /* Hash address for lookup */ hash = TCP_HSP_HASH(addr); if (delete) { /* * Note that deletes don't return an error if the thing * we're trying to delete isn't there. */ if (tcp_hsp_hash == NULL) goto done; hsp = tcp_hsp_hash[hash]; if (hsp) { if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) { tcp_hsp_hash[hash] = hsp->tcp_hsp_next; mi_free((char *)hsp); } else { hspprev = hsp; while ((hsp = hsp->tcp_hsp_next) != NULL) { if (IN6_ARE_ADDR_EQUAL( &hsp->tcp_hsp_addr_v6, &v6addr)) { hspprev->tcp_hsp_next = hsp->tcp_hsp_next; mi_free((char *)hsp); break; } hspprev = hsp; } } } } else { /* * We're adding/modifying an HSP. If we haven't already done * so, allocate the hash table. */ if (!tcp_hsp_hash) { tcp_hsp_hash = (tcp_hsp_t **) mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); if (!tcp_hsp_hash) { error = EINVAL; goto done; } } /* Get head of hash chain */ hsp = tcp_hsp_hash[hash]; /* Try to find pre-existing hsp on hash chain */ /* Doesn't handle CIDR prefixes. */ while (hsp) { if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) break; hsp = hsp->tcp_hsp_next; } /* * If we didn't, create one with default values and put it * at head of hash chain */ if (!hsp) { hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); if (!hsp) { error = EINVAL; goto done; } hsp->tcp_hsp_next = tcp_hsp_hash[hash]; tcp_hsp_hash[hash] = hsp; } /* Set values that the user asked us to change */ hsp->tcp_hsp_addr_v6 = v6addr; if (IN6_IS_ADDR_V4MAPPED(&v6addr)) hsp->tcp_hsp_vers = IPV4_VERSION; else hsp->tcp_hsp_vers = IPV6_VERSION; hsp->tcp_hsp_subnet_v6 = v6mask; if (sendspace > 0) hsp->tcp_hsp_sendspace = sendspace; if (recvspace > 0) hsp->tcp_hsp_recvspace = recvspace; if (timestamp > 0) hsp->tcp_hsp_tstamp = timestamp - 1; } done: rw_exit(&tcp_hsp_lock); return (error); } /* Set callback routine passed to nd_load by tcp_param_register. */ /* ARGSUSED */ static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); } /* ARGSUSED */ static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); } /* TCP host parameters report triggered via the Named Dispatch mechanism. */ /* ARGSUSED */ static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { tcp_hsp_t *hsp; int i; char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; rw_enter(&tcp_hsp_lock, RW_READER); (void) mi_mpprintf(mp, "Hash HSP " MI_COL_HDRPAD_STR "Address Subnet Mask Send Receive TStamp"); if (tcp_hsp_hash) { for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { hsp = tcp_hsp_hash[i]; while (hsp) { if (hsp->tcp_hsp_vers == IPV4_VERSION) { (void) inet_ntop(AF_INET, &hsp->tcp_hsp_addr, addrbuf, sizeof (addrbuf)); (void) inet_ntop(AF_INET, &hsp->tcp_hsp_subnet, subnetbuf, sizeof (subnetbuf)); } else { (void) inet_ntop(AF_INET6, &hsp->tcp_hsp_addr_v6, addrbuf, sizeof (addrbuf)); (void) inet_ntop(AF_INET6, &hsp->tcp_hsp_subnet_v6, subnetbuf, sizeof (subnetbuf)); } (void) mi_mpprintf(mp, " %03d " MI_COL_PTRFMT_STR "%s %s %010d %010d %d", i, (void *)hsp, addrbuf, subnetbuf, hsp->tcp_hsp_sendspace, hsp->tcp_hsp_recvspace, hsp->tcp_hsp_tstamp); hsp = hsp->tcp_hsp_next; } } } rw_exit(&tcp_hsp_lock); return (0); } /* Data for fast netmask macro used by tcp_hsp_lookup */ static ipaddr_t netmasks[] = { IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ }; #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) /* * XXX This routine should go away and instead we should use the metrics * associated with the routes to determine the default sndspace and rcvspace. */ static tcp_hsp_t * tcp_hsp_lookup(ipaddr_t addr) { tcp_hsp_t *hsp = NULL; /* Quick check without acquiring the lock. */ if (tcp_hsp_hash == NULL) return (NULL); rw_enter(&tcp_hsp_lock, RW_READER); /* This routine finds the best-matching HSP for address addr. */ if (tcp_hsp_hash) { int i; ipaddr_t srchaddr; tcp_hsp_t *hsp_net; /* We do three passes: host, network, and subnet. */ srchaddr = addr; for (i = 1; i <= 3; i++) { /* Look for exact match on srchaddr */ hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; while (hsp) { if (hsp->tcp_hsp_vers == IPV4_VERSION && hsp->tcp_hsp_addr == srchaddr) break; hsp = hsp->tcp_hsp_next; } ASSERT(hsp == NULL || hsp->tcp_hsp_vers == IPV4_VERSION); /* * If this is the first pass: * If we found a match, great, return it. * If not, search for the network on the second pass. */ if (i == 1) if (hsp) break; else { srchaddr = addr & netmask(addr); continue; } /* * If this is the second pass: * If we found a match, but there's a subnet mask, * save the match but try again using the subnet * mask on the third pass. * Otherwise, return whatever we found. */ if (i == 2) { if (hsp && hsp->tcp_hsp_subnet) { hsp_net = hsp; srchaddr = addr & hsp->tcp_hsp_subnet; continue; } else { break; } } /* * This must be the third pass. If we didn't find * anything, return the saved network HSP instead. */ if (!hsp) hsp = hsp_net; } } rw_exit(&tcp_hsp_lock); return (hsp); } /* * XXX Equally broken as the IPv4 routine. Doesn't handle longest * match lookup. */ static tcp_hsp_t * tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) { tcp_hsp_t *hsp = NULL; /* Quick check without acquiring the lock. */ if (tcp_hsp_hash == NULL) return (NULL); rw_enter(&tcp_hsp_lock, RW_READER); /* This routine finds the best-matching HSP for address addr. */ if (tcp_hsp_hash) { int i; in6_addr_t v6srchaddr; tcp_hsp_t *hsp_net; /* We do three passes: host, network, and subnet. */ v6srchaddr = *v6addr; for (i = 1; i <= 3; i++) { /* Look for exact match on srchaddr */ hsp = tcp_hsp_hash[TCP_HSP_HASH( V4_PART_OF_V6(v6srchaddr))]; while (hsp) { if (hsp->tcp_hsp_vers == IPV6_VERSION && IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6srchaddr)) break; hsp = hsp->tcp_hsp_next; } /* * If this is the first pass: * If we found a match, great, return it. * If not, search for the network on the second pass. */ if (i == 1) if (hsp) break; else { /* Assume a 64 bit mask */ v6srchaddr.s6_addr32[0] = v6addr->s6_addr32[0]; v6srchaddr.s6_addr32[1] = v6addr->s6_addr32[1]; v6srchaddr.s6_addr32[2] = 0; v6srchaddr.s6_addr32[3] = 0; continue; } /* * If this is the second pass: * If we found a match, but there's a subnet mask, * save the match but try again using the subnet * mask on the third pass. * Otherwise, return whatever we found. */ if (i == 2) { ASSERT(hsp == NULL || hsp->tcp_hsp_vers == IPV6_VERSION); if (hsp && !IN6_IS_ADDR_UNSPECIFIED( &hsp->tcp_hsp_subnet_v6)) { hsp_net = hsp; V6_MASK_COPY(*v6addr, hsp->tcp_hsp_subnet_v6, v6srchaddr); continue; } else { break; } } /* * This must be the third pass. If we didn't find * anything, return the saved network HSP instead. */ if (!hsp) hsp = hsp_net; } } rw_exit(&tcp_hsp_lock); return (hsp); } /* * Type three generator adapted from the random() function in 4.4 BSD: */ /* * Copyright (c) 1983, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Type 3 -- x**31 + x**3 + 1 */ #define DEG_3 31 #define SEP_3 3 /* Protected by tcp_random_lock */ static int tcp_randtbl[DEG_3 + 1]; static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; static int *tcp_random_rptr = &tcp_randtbl[1]; static int *tcp_random_state = &tcp_randtbl[1]; static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; kmutex_t tcp_random_lock; void tcp_random_init(void) { int i; hrtime_t hrt; time_t wallclock; uint64_t result; /* * Use high-res timer and current time for seed. Gethrtime() returns * a longlong, which may contain resolution down to nanoseconds. * The current time will either be a 32-bit or a 64-bit quantity. * XOR the two together in a 64-bit result variable. * Convert the result to a 32-bit value by multiplying the high-order * 32-bits by the low-order 32-bits. */ hrt = gethrtime(); (void) drv_getparm(TIME, &wallclock); result = (uint64_t)wallclock ^ (uint64_t)hrt; mutex_enter(&tcp_random_lock); tcp_random_state[0] = ((result >> 32) & 0xffffffff) * (result & 0xffffffff); for (i = 1; i < DEG_3; i++) tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] + 12345; tcp_random_fptr = &tcp_random_state[SEP_3]; tcp_random_rptr = &tcp_random_state[0]; mutex_exit(&tcp_random_lock); for (i = 0; i < 10 * DEG_3; i++) (void) tcp_random(); } /* * tcp_random: Return a random number in the range [1 - (128K + 1)]. * This range is selected to be approximately centered on TCP_ISS / 2, * and easy to compute. We get this value by generating a 32-bit random * number, selecting out the high-order 17 bits, and then adding one so * that we never return zero. */ int tcp_random(void) { int i; mutex_enter(&tcp_random_lock); *tcp_random_fptr += *tcp_random_rptr; /* * The high-order bits are more random than the low-order bits, * so we select out the high-order 17 bits and add one so that * we never return zero. */ i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; if (++tcp_random_fptr >= tcp_random_end_ptr) { tcp_random_fptr = tcp_random_state; ++tcp_random_rptr; } else if (++tcp_random_rptr >= tcp_random_end_ptr) tcp_random_rptr = tcp_random_state; mutex_exit(&tcp_random_lock); return (i); } /* * XXX This will go away when TPI is extended to send * info reqs to sockfs/timod ..... * Given a queue, set the max packet size for the write * side of the queue below stream head. This value is * cached on the stream head. * Returns 1 on success, 0 otherwise. */ static int setmaxps(queue_t *q, int maxpsz) { struct stdata *stp; queue_t *wq; stp = STREAM(q); /* * At this point change of a queue parameter is not allowed * when a multiplexor is sitting on top. */ if (stp->sd_flag & STPLEX) return (0); claimstr(stp->sd_wrq); wq = stp->sd_wrq->q_next; ASSERT(wq != NULL); (void) strqset(wq, QMAXPSZ, 0, maxpsz); releasestr(stp->sd_wrq); return (1); } static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, int *t_errorp, int *sys_errorp) { int error; int is_absreq_failure; t_scalar_t *opt_lenp; t_scalar_t opt_offset; int prim_type; struct T_conn_req *tcreqp; struct T_conn_res *tcresp; cred_t *cr; cr = DB_CREDDEF(mp, tcp->tcp_cred); prim_type = ((union T_primitives *)mp->b_rptr)->type; ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || prim_type == T_CONN_RES); switch (prim_type) { case T_CONN_REQ: tcreqp = (struct T_conn_req *)mp->b_rptr; opt_offset = tcreqp->OPT_offset; opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; break; case O_T_CONN_RES: case T_CONN_RES: tcresp = (struct T_conn_res *)mp->b_rptr; opt_offset = tcresp->OPT_offset; opt_lenp = (t_scalar_t *)&tcresp->OPT_length; break; } *t_errorp = 0; *sys_errorp = 0; *do_disconnectp = 0; error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, opt_offset, cr, &tcp_opt_obj, NULL, &is_absreq_failure); switch (error) { case 0: /* no error */ ASSERT(is_absreq_failure == 0); return (0); case ENOPROTOOPT: *t_errorp = TBADOPT; break; case EACCES: *t_errorp = TACCES; break; default: *t_errorp = TSYSERR; *sys_errorp = error; break; } if (is_absreq_failure != 0) { /* * The connection request should get the local ack * T_OK_ACK and then a T_DISCON_IND. */ *do_disconnectp = 1; } return (-1); } /* * Split this function out so that if the secret changes, I'm okay. * * Initialize the tcp_iss_cookie and tcp_iss_key. */ #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ static void tcp_iss_key_init(uint8_t *phrase, int len) { struct { int32_t current_time; uint32_t randnum; uint16_t pad; uint8_t ether[6]; uint8_t passwd[PASSWD_SIZE]; } tcp_iss_cookie; time_t t; /* * Start with the current absolute time. */ (void) drv_getparm(TIME, &t); tcp_iss_cookie.current_time = t; /* * XXX - Need a more random number per RFC 1750, not this crap. * OTOH, if what follows is pretty random, then I'm in better shape. */ tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ /* * The cpu_type_info is pretty non-random. Ugggh. It does serve * as a good template. */ bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); /* * The pass-phrase. Normally this is supplied by user-called NDD. */ bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); /* * See 4010593 if this section becomes a problem again, * but the local ethernet address is useful here. */ (void) localetheraddr(NULL, (struct ether_addr *)&tcp_iss_cookie.ether); /* * Hash 'em all together. The MD5Final is called per-connection. */ mutex_enter(&tcp_iss_key_lock); MD5Init(&tcp_iss_key); MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, sizeof (tcp_iss_cookie)); mutex_exit(&tcp_iss_key_lock); } /* * Set the RFC 1948 pass phrase */ /* ARGSUSED */ static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { /* * Basically, value contains a new pass phrase. Pass it along! */ tcp_iss_key_init((uint8_t *)value, strlen(value)); return (0); } /* ARGSUSED */ static int tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) { bzero(buf, sizeof (tcp_sack_info_t)); return (0); } /* ARGSUSED */ static int tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) { bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); return (0); } void tcp_ddi_init(void) { int i; /* Initialize locks */ rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, MUTEX_DEFAULT, NULL); } for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, MUTEX_DEFAULT, NULL); } /* TCP's IPsec code calls the packet dropper. */ ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); if (!tcp_g_nd) { if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { nd_free(&tcp_g_nd); } } /* * Note: To really walk the device tree you need the devinfo * pointer to your device which is only available after probe/attach. * The following is safe only because it uses ddi_root_node() */ tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, tcp_opt_obj.odb_opt_arr_cnt); tcp_timercache = kmem_cache_create("tcp_timercache", sizeof (tcp_timer_t) + sizeof (mblk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", sizeof (tcp_sack_info_t), 0, tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", TCP_MAX_COMBINED_HEADER_LENGTH, 0, tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); ip_squeue_init(tcp_squeue_add); /* Initialize the random number generator */ tcp_random_init(); /* * Initialize RFC 1948 secret values. This will probably be reset once * by the boot scripts. * * Use NULL name, as the name is caught by the new lockstats. * * Initialize with some random, non-guessable string, like the global * T_INFO_ACK. */ tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, sizeof (tcp_g_t_info_ack)); if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", "net", KSTAT_TYPE_NAMED, sizeof (tcp_statistics) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) { tcp_kstat->ks_data = &tcp_statistics; kstat_install(tcp_kstat); } tcp_kstat_init(); } void tcp_ddi_destroy(void) { int i; nd_free(&tcp_g_nd); for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { mutex_destroy(&tcp_bind_fanout[i].tf_lock); } for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); } mutex_destroy(&tcp_iss_key_lock); rw_destroy(&tcp_hsp_lock); mutex_destroy(&tcp_g_q_lock); mutex_destroy(&tcp_random_lock); mutex_destroy(&tcp_epriv_port_lock); rw_destroy(&tcp_reserved_port_lock); ip_drop_unregister(&tcp_dropper); kmem_cache_destroy(tcp_timercache); kmem_cache_destroy(tcp_sack_info_cache); kmem_cache_destroy(tcp_iphc_cache); tcp_kstat_fini(); } /* * Generate ISS, taking into account NDD changes may happen halfway through. * (If the iss is not zero, set it.) */ static void tcp_iss_init(tcp_t *tcp) { MD5_CTX context; struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; uint32_t answer[4]; tcp_iss_incr_extra += (ISS_INCR >> 1); tcp->tcp_iss = tcp_iss_incr_extra; switch (tcp_strong_iss) { case 2: mutex_enter(&tcp_iss_key_lock); context = tcp_iss_key; mutex_exit(&tcp_iss_key_lock); arg.ports = tcp->tcp_ports; if (tcp->tcp_ipversion == IPV4_VERSION) { IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &arg.src); IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, &arg.dst); } else { arg.src = tcp->tcp_ip6h->ip6_src; arg.dst = tcp->tcp_ip6h->ip6_dst; } MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); MD5Final((uchar_t *)answer, &context); tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; /* * Now that we've hashed into a unique per-connection sequence * space, add a random increment per strong_iss == 1. So I * guess we'll have to... */ /* FALLTHRU */ case 1: tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); break; default: tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; break; } tcp->tcp_valid_bits = TCP_ISS_VALID; tcp->tcp_fss = tcp->tcp_iss - 1; tcp->tcp_suna = tcp->tcp_iss; tcp->tcp_snxt = tcp->tcp_iss + 1; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_csuna = tcp->tcp_snxt; } /* * Exported routine for extracting active tcp connection status. * * This is used by the Solaris Cluster Networking software to * gather a list of connections that need to be forwarded to * specific nodes in the cluster when configuration changes occur. * * The callback is invoked for each tcp_t structure. Returning * non-zero from the callback routine terminates the search. */ int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) { tcp_t *tcp; cl_tcp_info_t cl_tcpi; connf_t *connfp; conn_t *connp; int i; ASSERT(callback != NULL); for (i = 0; i < CONN_G_HASH_SIZE; i++) { connfp = &ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { tcp = connp->conn_tcp; cl_tcpi.cl_tcpi_version = CL_TCPI_V1; cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; cl_tcpi.cl_tcpi_state = tcp->tcp_state; cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; /* * The macros tcp_laddr and tcp_faddr give the IPv4 * addresses. They are copied implicitly below as * mapped addresses. */ cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; if (tcp->tcp_ipversion == IPV4_VERSION) { cl_tcpi.cl_tcpi_faddr = tcp->tcp_ipha->ipha_dst; } else { cl_tcpi.cl_tcpi_faddr_v6 = tcp->tcp_ip6h->ip6_dst; } /* * If the callback returns non-zero * we terminate the traversal. */ if ((*callback)(&cl_tcpi, arg) != 0) { CONN_DEC_REF(tcp->tcp_connp); return (1); } } } return (0); } /* * Macros used for accessing the different types of sockaddr * structures inside a tcp_ioc_abort_conn_t. */ #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) /* * Return the correct error code to mimic the behavior * of a connection reset. */ #define TCP_AC_GET_ERRCODE(state, err) { \ switch ((state)) { \ case TCPS_SYN_SENT: \ case TCPS_SYN_RCVD: \ (err) = ECONNREFUSED; \ break; \ case TCPS_ESTABLISHED: \ case TCPS_FIN_WAIT_1: \ case TCPS_FIN_WAIT_2: \ case TCPS_CLOSE_WAIT: \ (err) = ECONNRESET; \ break; \ case TCPS_CLOSING: \ case TCPS_LAST_ACK: \ case TCPS_TIME_WAIT: \ (err) = 0; \ break; \ default: \ (err) = ENXIO; \ } \ } /* * Check if a tcp structure matches the info in acp. */ #define TCP_AC_ADDR_MATCH(acp, tcp) \ (((acp)->ac_local.ss_family == AF_INET) ? \ ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ (TCP_AC_V4LPORT((acp)) == 0 || \ TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ (TCP_AC_V4RPORT((acp)) == 0 || \ TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ (acp)->ac_start <= (tcp)->tcp_state && \ (acp)->ac_end >= (tcp)->tcp_state) : \ ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ &(tcp)->tcp_ip_src_v6)) && \ (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ &(tcp)->tcp_remote_v6)) && \ (TCP_AC_V6LPORT((acp)) == 0 || \ TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ (TCP_AC_V6RPORT((acp)) == 0 || \ TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ (acp)->ac_start <= (tcp)->tcp_state && \ (acp)->ac_end >= (tcp)->tcp_state)) #define TCP_AC_MATCH(acp, tcp) \ (((acp)->ac_zoneid == ALL_ZONES || \ (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ TCP_AC_ADDR_MATCH(acp, tcp) : 0) /* * Build a message containing a tcp_ioc_abort_conn_t structure * which is filled in with information from acp and tp. */ static mblk_t * tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) { mblk_t *mp; tcp_ioc_abort_conn_t *tacp; mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); if (mp == NULL) return (NULL); mp->b_datap->db_type = M_CTL; *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + sizeof (uint32_t)); tacp->ac_start = acp->ac_start; tacp->ac_end = acp->ac_end; tacp->ac_zoneid = acp->ac_zoneid; if (acp->ac_local.ss_family == AF_INET) { tacp->ac_local.ss_family = AF_INET; tacp->ac_remote.ss_family = AF_INET; TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; TCP_AC_V4LPORT(tacp) = tp->tcp_lport; TCP_AC_V4RPORT(tacp) = tp->tcp_fport; } else { tacp->ac_local.ss_family = AF_INET6; tacp->ac_remote.ss_family = AF_INET6; TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; TCP_AC_V6LPORT(tacp) = tp->tcp_lport; TCP_AC_V6RPORT(tacp) = tp->tcp_fport; } mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); return (mp); } /* * Print a tcp_ioc_abort_conn_t structure. */ static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) { char lbuf[128]; char rbuf[128]; sa_family_t af; in_port_t lport, rport; ushort_t logflags; af = acp->ac_local.ss_family; if (af == AF_INET) { (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), lbuf, 128); (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), rbuf, 128); lport = ntohs(TCP_AC_V4LPORT(acp)); rport = ntohs(TCP_AC_V4RPORT(acp)); } else { (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), lbuf, 128); (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), rbuf, 128); lport = ntohs(TCP_AC_V6LPORT(acp)); rport = ntohs(TCP_AC_V6RPORT(acp)); } logflags = SL_TRACE | SL_NOTE; /* * Don't print this message to the console if the operation was done * to a non-global zone. */ if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) logflags |= SL_CONSOLE; (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " "start = %d, end = %d\n", lbuf, lport, rbuf, rport, acp->ac_start, acp->ac_end); } /* * Called inside tcp_rput when a message built using * tcp_ioctl_abort_build_msg is put into a queue. * Note that when we get here there is no wildcard in acp any more. */ static void tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) { tcp_ioc_abort_conn_t *acp; acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); if (tcp->tcp_state <= acp->ac_end) { /* * If we get here, we are already on the correct * squeue. This ioctl follows the following path * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn * ->tcp_ioctl_abort->squeue_fill (if on a * different squeue) */ int errcode; TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); (void) tcp_clean_death(tcp, errcode, 26); } freemsg(mp); } /* * Abort all matching connections on a hash chain. */ static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, boolean_t exact) { int nmatch, err = 0; tcp_t *tcp; MBLKP mp, last, listhead = NULL; conn_t *tconnp; connf_t *connfp = &ipcl_conn_fanout[index]; startover: nmatch = 0; mutex_enter(&connfp->connf_lock); for (tconnp = connfp->connf_head; tconnp != NULL; tconnp = tconnp->conn_next) { tcp = tconnp->conn_tcp; if (TCP_AC_MATCH(acp, tcp)) { CONN_INC_REF(tcp->tcp_connp); mp = tcp_ioctl_abort_build_msg(acp, tcp); if (mp == NULL) { err = ENOMEM; CONN_DEC_REF(tcp->tcp_connp); break; } mp->b_prev = (mblk_t *)tcp; if (listhead == NULL) { listhead = mp; last = mp; } else { last->b_next = mp; last = mp; } nmatch++; if (exact) break; } /* Avoid holding lock for too long. */ if (nmatch >= 500) break; } mutex_exit(&connfp->connf_lock); /* Pass mp into the correct tcp */ while ((mp = listhead) != NULL) { listhead = listhead->b_next; tcp = (tcp_t *)mp->b_prev; mp->b_next = mp->b_prev = NULL; squeue_fill(tcp->tcp_connp->conn_sqp, mp, tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); } *count += nmatch; if (nmatch >= 500 && err == 0) goto startover; return (err); } /* * Abort all connections that matches the attributes specified in acp. */ static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) { sa_family_t af; uint32_t ports; uint16_t *pports; int err = 0, count = 0; boolean_t exact = B_FALSE; /* set when there is no wildcard */ int index = -1; ushort_t logflags; af = acp->ac_local.ss_family; if (af == AF_INET) { if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { pports = (uint16_t *)&ports; pports[1] = TCP_AC_V4LPORT(acp); pports[0] = TCP_AC_V4RPORT(acp); exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); } } else { if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { pports = (uint16_t *)&ports; pports[1] = TCP_AC_V6LPORT(acp); pports[0] = TCP_AC_V6RPORT(acp); exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); } } /* * For cases where remote addr, local port, and remote port are non- * wildcards, tcp_ioctl_abort_bucket will only be called once. */ if (index != -1) { err = tcp_ioctl_abort_bucket(acp, index, &count, exact); } else { /* * loop through all entries for wildcard case */ for (index = 0; index < ipcl_conn_fanout_size; index++) { err = tcp_ioctl_abort_bucket(acp, index, &count, exact); if (err != 0) break; } } logflags = SL_TRACE | SL_NOTE; /* * Don't print this message to the console if the operation was done * to a non-global zone. */ if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) logflags |= SL_CONSOLE; (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); if (err == 0 && count == 0) err = ENOENT; return (err); } /* * Process the TCP_IOC_ABORT_CONN ioctl request. */ static void tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) { int err; IOCP iocp; MBLKP mp1; sa_family_t laf, raf; tcp_ioc_abort_conn_t *acp; zone_t *zptr; zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; iocp = (IOCP)mp->b_rptr; if ((mp1 = mp->b_cont) == NULL || iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { err = EINVAL; goto out; } /* check permissions */ if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { err = EPERM; goto out; } if (mp1->b_cont != NULL) { freemsg(mp1->b_cont); mp1->b_cont = NULL; } acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; laf = acp->ac_local.ss_family; raf = acp->ac_remote.ss_family; /* check that a zone with the supplied zoneid exists */ if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { zptr = zone_find_by_id(zoneid); if (zptr != NULL) { zone_rele(zptr); } else { err = EINVAL; goto out; } } if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || acp->ac_start > acp->ac_end || laf != raf || (laf != AF_INET && laf != AF_INET6)) { err = EINVAL; goto out; } tcp_ioctl_abort_dump(acp); err = tcp_ioctl_abort(acp); out: if (mp1 != NULL) { freemsg(mp1); mp->b_cont = NULL; } if (err != 0) miocnak(q, mp, 0, err); else miocack(q, mp, 0, 0); } /* * tcp_time_wait_processing() handles processing of incoming packets when * the tcp is in the TIME_WAIT state. * A TIME_WAIT tcp that has an associated open TCP stream is never put * on the time wait list. */ void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcph_t *tcph) { int32_t bytes_acked; int32_t gap; int32_t rgap; tcp_opt_t tcpopt; uint_t flags; uint32_t new_swnd = 0; conn_t *connp; BUMP_LOCAL(tcp->tcp_ibsegs); TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); flags = (unsigned int)tcph->th_flags[0] & 0xFF; new_swnd = BE16_TO_U16(tcph->th_win) << ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); if (tcp->tcp_snd_ts_ok) { if (!tcp_paws_check(tcp, tcph, &tcpopt)) { tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); goto done; } } gap = seg_seq - tcp->tcp_rnxt; rgap = tcp->tcp_rwnd - (gap + seg_len); if (gap < 0) { BUMP_MIB(&tcp_mib, tcpInDataDupSegs); UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, (seg_len > -gap ? -gap : seg_len)); seg_len += gap; if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { if (flags & TH_RST) { goto done; } if ((flags & TH_FIN) && seg_len == -1) { /* * When TCP receives a duplicate FIN in * TIME_WAIT state, restart the 2 MSL timer. * See page 73 in RFC 793. Make sure this TCP * is already on the TIME_WAIT list. If not, * just restart the timer. */ if (TCP_IS_DETACHED(tcp)) { tcp_time_wait_remove(tcp, NULL); tcp_time_wait_append(tcp); TCP_DBGSTAT(tcp_rput_time_wait); } else { ASSERT(tcp != NULL); TCP_TIMER_RESTART(tcp, tcp_time_wait_interval); } tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); goto done; } flags |= TH_ACK_NEEDED; seg_len = 0; goto process_ack; } /* Fix seg_seq, and chew the gap off the front. */ seg_seq = tcp->tcp_rnxt; } if ((flags & TH_SYN) && gap > 0 && rgap < 0) { /* * Make sure that when we accept the connection, pick * an ISS greater than (tcp_snxt + ISS_INCR/2) for the * old connection. * * The next ISS generated is equal to tcp_iss_incr_extra * + ISS_INCR/2 + other components depending on the * value of tcp_strong_iss. We pre-calculate the new * ISS here and compare with tcp_snxt to determine if * we need to make adjustment to tcp_iss_incr_extra. * * The above calculation is ugly and is a * waste of CPU cycles... */ uint32_t new_iss = tcp_iss_incr_extra; int32_t adj; switch (tcp_strong_iss) { case 2: { /* Add time and MD5 components. */ uint32_t answer[4]; struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; MD5_CTX context; mutex_enter(&tcp_iss_key_lock); context = tcp_iss_key; mutex_exit(&tcp_iss_key_lock); arg.ports = tcp->tcp_ports; /* We use MAPPED addresses in tcp_iss_init */ arg.src = tcp->tcp_ip_src_v6; if (tcp->tcp_ipversion == IPV4_VERSION) { IN6_IPADDR_TO_V4MAPPED( tcp->tcp_ipha->ipha_dst, &arg.dst); } else { arg.dst = tcp->tcp_ip6h->ip6_dst; } MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); MD5Final((uchar_t *)answer, &context); answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; break; } case 1: /* Add time component and min random (i.e. 1). */ new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; break; default: /* Add only time component. */ new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; break; } if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { /* * New ISS not guaranteed to be ISS_INCR/2 * ahead of the current tcp_snxt, so add the * difference to tcp_iss_incr_extra. */ tcp_iss_incr_extra += adj; } /* * If tcp_clean_death() can not perform the task now, * drop the SYN packet and let the other side re-xmit. * Otherwise pass the SYN packet back in, since the * old tcp state has been cleaned up or freed. */ if (tcp_clean_death(tcp, 0, 27) == -1) goto done; /* * We will come back to tcp_rput_data * on the global queue. Packets destined * for the global queue will be checked * with global policy. But the policy for * this packet has already been checked as * this was destined for the detached * connection. We need to bypass policy * check this time by attaching a dummy * ipsec_in with ipsec_in_dont_check set. */ if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != NULL) { TCP_STAT(tcp_time_wait_syn_success); tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); return; } goto done; } /* * rgap is the amount of stuff received out of window. A negative * value is the amount out of window. */ if (rgap < 0) { BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); /* Fix seg_len and make sure there is something left. */ seg_len += rgap; if (seg_len <= 0) { if (flags & TH_RST) { goto done; } flags |= TH_ACK_NEEDED; seg_len = 0; goto process_ack; } } /* * Check whether we can update tcp_ts_recent. This test is * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP * Extensions for High Performance: An Update", Internet Draft. */ if (tcp->tcp_snd_ts_ok && TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && SEQ_LEQ(seg_seq, tcp->tcp_rack)) { tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; tcp->tcp_last_rcv_lbolt = lbolt64; } if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { /* Always ack out of order packets */ flags |= TH_ACK_NEEDED; seg_len = 0; } else if (seg_len > 0) { BUMP_MIB(&tcp_mib, tcpInClosed); BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); } if (flags & TH_RST) { (void) tcp_clean_death(tcp, 0, 28); goto done; } if (flags & TH_SYN) { tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, TH_RST|TH_ACK); /* * Do not delete the TCP structure if it is in * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. */ goto done; } process_ack: if (flags & TH_ACK) { bytes_acked = (int)(seg_ack - tcp->tcp_suna); if (bytes_acked <= 0) { if (bytes_acked == 0 && seg_len == 0 && new_swnd == tcp->tcp_swnd) BUMP_MIB(&tcp_mib, tcpInDupAck); } else { /* Acks something not sent */ flags |= TH_ACK_NEEDED; } } if (flags & TH_ACK_NEEDED) { /* * Time to send an ack for some reason. */ tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); } done: if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { DB_CKSUMSTART(mp) = 0; mp->b_datap->db_struioflag &= ~STRUIO_EAGER; TCP_STAT(tcp_time_wait_syn_fail); } freemsg(mp); } /* * Return zero if the buffers are identical in length and content. * This is used for comparing extension header buffers. * Note that an extension header would be declared different * even if all that changed was the next header value in that header i.e. * what really changed is the next extension header. */ static boolean_t tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen) { if (!b_valid) blen = 0; if (alen != blen) return (B_TRUE); if (alen == 0) return (B_FALSE); /* Both zero length */ return (bcmp(a, b, alen)); } /* * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok. * Return B_FALSE if memory allocation fails - don't change any state! */ static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, void *src, uint_t srclen) { void *dst; if (!src_valid) srclen = 0; ASSERT(*dstlenp == 0); if (src != NULL && srclen != 0) { dst = mi_alloc(srclen, BPRI_MED); if (dst == NULL) return (B_FALSE); } else { dst = NULL; } if (*dstp != NULL) { mi_free(*dstp); *dstp = NULL; *dstlenp = 0; } *dstp = dst; if (dst != NULL) *dstlenp = srclen; else *dstlenp = 0; return (B_TRUE); } /* * Replace what is in *dst, *dstlen with the source. * Assumes tcp_allocbuf has already been called. */ static void tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, void *src, uint_t srclen) { if (!src_valid) srclen = 0; ASSERT(*dstlenp == srclen); if (src != NULL && srclen != 0) { bcopy(src, *dstp, srclen); } } /* * Allocate a T_SVR4_OPTMGMT_REQ. * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so * that tcp_rput_other can drop the acks. */ static mblk_t * tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) { mblk_t *mp; struct T_optmgmt_req *tor; struct opthdr *oh; uint_t size; char *optptr; size = sizeof (*tor) + sizeof (*oh) + optlen; mp = allocb(size, BPRI_MED); if (mp == NULL) return (NULL); mp->b_wptr += size; mp->b_datap->db_type = M_PROTO; tor = (struct T_optmgmt_req *)mp->b_rptr; tor->PRIM_type = T_SVR4_OPTMGMT_REQ; tor->MGMT_flags = T_NEGOTIATE; tor->OPT_length = sizeof (*oh) + optlen; tor->OPT_offset = (t_scalar_t)sizeof (*tor); oh = (struct opthdr *)&tor[1]; oh->level = level; oh->name = cmd; oh->len = optlen; if (optlen != 0) { optptr = (char *)&oh[1]; bcopy(opt, optptr, optlen); } return (mp); } /* * TCP Timers Implementation. */ timeout_id_t tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) { mblk_t *mp; tcp_timer_t *tcpt; tcp_t *tcp = connp->conn_tcp; ASSERT(connp->conn_sqp != NULL); TCP_DBGSTAT(tcp_timeout_calls); if (tcp->tcp_timercache == NULL) { mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); } else { TCP_DBGSTAT(tcp_timeout_cached_alloc); mp = tcp->tcp_timercache; tcp->tcp_timercache = mp->b_next; mp->b_next = NULL; ASSERT(mp->b_wptr == NULL); } CONN_INC_REF(connp); tcpt = (tcp_timer_t *)mp->b_rptr; tcpt->connp = connp; tcpt->tcpt_proc = f; tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); return ((timeout_id_t)mp); } static void tcp_timer_callback(void *arg) { mblk_t *mp = (mblk_t *)arg; tcp_timer_t *tcpt; conn_t *connp; tcpt = (tcp_timer_t *)mp->b_rptr; connp = tcpt->connp; squeue_fill(connp->conn_sqp, mp, tcp_timer_handler, connp, SQTAG_TCP_TIMER); } static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) { tcp_timer_t *tcpt; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; tcpt = (tcp_timer_t *)mp->b_rptr; ASSERT(connp == tcpt->connp); ASSERT((squeue_t *)arg2 == connp->conn_sqp); /* * If the TCP has reached the closed state, don't proceed any * further. This TCP logically does not exist on the system. * tcpt_proc could for example access queues, that have already * been qprocoff'ed off. Also see comments at the start of tcp_input */ if (tcp->tcp_state != TCPS_CLOSED) { (*tcpt->tcpt_proc)(connp); } else { tcp->tcp_timer_tid = 0; } tcp_timer_free(connp->conn_tcp, mp); } /* * There is potential race with untimeout and the handler firing at the same * time. The mblock may be freed by the handler while we are trying to use * it. But since both should execute on the same squeue, this race should not * occur. */ clock_t tcp_timeout_cancel(conn_t *connp, timeout_id_t id) { mblk_t *mp = (mblk_t *)id; tcp_timer_t *tcpt; clock_t delta; TCP_DBGSTAT(tcp_timeout_cancel_reqs); if (mp == NULL) return (-1); tcpt = (tcp_timer_t *)mp->b_rptr; ASSERT(tcpt->connp == connp); delta = untimeout(tcpt->tcpt_tid); if (delta >= 0) { TCP_DBGSTAT(tcp_timeout_canceled); tcp_timer_free(connp->conn_tcp, mp); CONN_DEC_REF(connp); } return (delta); } /* * Allocate space for the timer event. The allocation looks like mblk, but it is * not a proper mblk. To avoid confusion we set b_wptr to NULL. * * Dealing with failures: If we can't allocate from the timer cache we try * allocating from dblock caches using allocb_tryhard(). In this case b_wptr * points to b_rptr. * If we can't allocate anything using allocb_tryhard(), we perform a last * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and * save the actual allocation size in b_datap. */ mblk_t * tcp_timermp_alloc(int kmflags) { mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, kmflags & ~KM_PANIC); if (mp != NULL) { mp->b_next = mp->b_prev = NULL; mp->b_rptr = (uchar_t *)(&mp[1]); mp->b_wptr = NULL; mp->b_datap = NULL; mp->b_queue = NULL; } else if (kmflags & KM_PANIC) { /* * Failed to allocate memory for the timer. Try allocating from * dblock caches. */ TCP_STAT(tcp_timermp_allocfail); mp = allocb_tryhard(sizeof (tcp_timer_t)); if (mp == NULL) { size_t size = 0; /* * Memory is really low. Try tryhard allocation. */ TCP_STAT(tcp_timermp_allocdblfail); mp = kmem_alloc_tryhard(sizeof (mblk_t) + sizeof (tcp_timer_t), &size, kmflags); mp->b_rptr = (uchar_t *)(&mp[1]); mp->b_next = mp->b_prev = NULL; mp->b_wptr = (uchar_t *)-1; mp->b_datap = (dblk_t *)size; mp->b_queue = NULL; } ASSERT(mp->b_wptr != NULL); } TCP_DBGSTAT(tcp_timermp_alloced); return (mp); } /* * Free per-tcp timer cache. * It can only contain entries from tcp_timercache. */ void tcp_timermp_free(tcp_t *tcp) { mblk_t *mp; while ((mp = tcp->tcp_timercache) != NULL) { ASSERT(mp->b_wptr == NULL); tcp->tcp_timercache = tcp->tcp_timercache->b_next; kmem_cache_free(tcp_timercache, mp); } } /* * Free timer event. Put it on the per-tcp timer cache if there is not too many * events there already (currently at most two events are cached). * If the event is not allocated from the timer cache, free it right away. */ static void tcp_timer_free(tcp_t *tcp, mblk_t *mp) { mblk_t *mp1 = tcp->tcp_timercache; if (mp->b_wptr != NULL) { /* * This allocation is not from a timer cache, free it right * away. */ if (mp->b_wptr != (uchar_t *)-1) freeb(mp); else kmem_free(mp, (size_t)mp->b_datap); } else if (mp1 == NULL || mp1->b_next == NULL) { /* Cache this timer block for future allocations */ mp->b_rptr = (uchar_t *)(&mp[1]); mp->b_next = mp1; tcp->tcp_timercache = mp; } else { kmem_cache_free(tcp_timercache, mp); TCP_DBGSTAT(tcp_timermp_freed); } } /* * End of TCP Timers implementation. */ /* * tcp_{set,clr}qfull() functions are used to either set or clear QFULL * on the specified backing STREAMS q. Note, the caller may make the * decision to call based on the tcp_t.tcp_flow_stopped value which * when check outside the q's lock is only an advisory check ... */ void tcp_setqfull(tcp_t *tcp) { queue_t *q = tcp->tcp_wq; if (!(q->q_flag & QFULL)) { mutex_enter(QLOCK(q)); if (!(q->q_flag & QFULL)) { /* still need to set QFULL */ q->q_flag |= QFULL; tcp->tcp_flow_stopped = B_TRUE; mutex_exit(QLOCK(q)); TCP_STAT(tcp_flwctl_on); } else { mutex_exit(QLOCK(q)); } } } void tcp_clrqfull(tcp_t *tcp) { queue_t *q = tcp->tcp_wq; if (q->q_flag & QFULL) { mutex_enter(QLOCK(q)); if (q->q_flag & QFULL) { q->q_flag &= ~QFULL; tcp->tcp_flow_stopped = B_FALSE; mutex_exit(QLOCK(q)); if (q->q_flag & QWANTW) qbackenable(q, 0); } else { mutex_exit(QLOCK(q)); } } } /* * TCP Kstats implementation */ static void tcp_kstat_init(void) { tcp_named_kstat_t template = { { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, { "rtoMin", KSTAT_DATA_INT32, 0 }, { "rtoMax", KSTAT_DATA_INT32, 0 }, { "maxConn", KSTAT_DATA_INT32, 0 }, { "activeOpens", KSTAT_DATA_UINT32, 0 }, { "passiveOpens", KSTAT_DATA_UINT32, 0 }, { "attemptFails", KSTAT_DATA_UINT32, 0 }, { "estabResets", KSTAT_DATA_UINT32, 0 }, { "currEstab", KSTAT_DATA_UINT32, 0 }, { "inSegs", KSTAT_DATA_UINT32, 0 }, { "outSegs", KSTAT_DATA_UINT32, 0 }, { "retransSegs", KSTAT_DATA_UINT32, 0 }, { "connTableSize", KSTAT_DATA_INT32, 0 }, { "outRsts", KSTAT_DATA_UINT32, 0 }, { "outDataSegs", KSTAT_DATA_UINT32, 0 }, { "outDataBytes", KSTAT_DATA_UINT32, 0 }, { "retransBytes", KSTAT_DATA_UINT32, 0 }, { "outAck", KSTAT_DATA_UINT32, 0 }, { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, { "outUrg", KSTAT_DATA_UINT32, 0 }, { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, { "outWinProbe", KSTAT_DATA_UINT32, 0 }, { "outControl", KSTAT_DATA_UINT32, 0 }, { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, { "inAckSegs", KSTAT_DATA_UINT32, 0 }, { "inAckBytes", KSTAT_DATA_UINT32, 0 }, { "inDupAck", KSTAT_DATA_UINT32, 0 }, { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, { "inWinProbe", KSTAT_DATA_UINT32, 0 }, { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, { "inClosed", KSTAT_DATA_UINT32, 0 }, { "rttUpdate", KSTAT_DATA_UINT32, 0 }, { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, { "timRetrans", KSTAT_DATA_UINT32, 0 }, { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, { "timKeepalive", KSTAT_DATA_UINT32, 0 }, { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, { "listenDrop", KSTAT_DATA_UINT32, 0 }, { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, { "connTableSize6", KSTAT_DATA_INT32, 0 } }; tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); if (tcp_mibkp == NULL) return; template.rtoAlgorithm.value.ui32 = 4; template.rtoMin.value.ui32 = tcp_rexmit_interval_min; template.rtoMax.value.ui32 = tcp_rexmit_interval_max; template.maxConn.value.i32 = -1; bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); tcp_mibkp->ks_update = tcp_kstat_update; kstat_install(tcp_mibkp); } static void tcp_kstat_fini(void) { if (tcp_mibkp != NULL) { kstat_delete(tcp_mibkp); tcp_mibkp = NULL; } } static int tcp_kstat_update(kstat_t *kp, int rw) { tcp_named_kstat_t *tcpkp; tcp_t *tcp; connf_t *connfp; conn_t *connp; int i; if (!kp || !kp->ks_data) return (EIO); if (rw == KSTAT_WRITE) return (EACCES); tcpkp = (tcp_named_kstat_t *)kp->ks_data; tcpkp->currEstab.value.ui32 = 0; for (i = 0; i < CONN_G_HASH_SIZE; i++) { connfp = &ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { tcp = connp->conn_tcp; switch (tcp_snmp_state(tcp)) { case MIB2_TCP_established: case MIB2_TCP_closeWait: tcpkp->currEstab.value.ui32++; break; } } } tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; return (0); } void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) { uint16_t hdr_len; ipha_t *ipha; uint8_t *nexthdrp; tcph_t *tcph; /* Already has an eager */ if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { TCP_STAT(tcp_reinput_syn); squeue_enter(connp->conn_sqp, mp, connp->conn_recv, connp, SQTAG_TCP_REINPUT_EAGER); return; } switch (IPH_HDR_VERSION(mp->b_rptr)) { case IPV4_VERSION: ipha = (ipha_t *)mp->b_rptr; hdr_len = IPH_HDR_LENGTH(ipha); break; case IPV6_VERSION: if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, &hdr_len, &nexthdrp)) { CONN_DEC_REF(connp); freemsg(mp); return; } break; } tcph = (tcph_t *)&mp->b_rptr[hdr_len]; if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { mp->b_datap->db_struioflag |= STRUIO_EAGER; DB_CKSUMSTART(mp) = (intptr_t)sqp; } squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, SQTAG_TCP_REINPUT); } static squeue_func_t tcp_squeue_switch(int val) { squeue_func_t rval = squeue_fill; switch (val) { case 1: rval = squeue_enter_nodrain; break; case 2: rval = squeue_enter; break; default: break; } return (rval); } static void tcp_squeue_add(squeue_t *sqp) { tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( sizeof (tcp_squeue_priv_t), KM_SLEEP); *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); if (tcp_free_list_max_cnt == 0) { int tcp_ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus); /* * Limit number of entries to 1% of availble memory / tcp_ncpus */ tcp_free_list_max_cnt = (freemem * PAGESIZE) / (tcp_ncpus * sizeof (tcp_t) * 100); } tcp_time_wait->tcp_free_list_cnt = 0; }