/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990 Mentat Inc. */ /* * This file contains routines that manipulate Internet Routing Entries (IREs). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct kmem_cache *rt_entry_cache; typedef struct nce_clookup_s { ipaddr_t ncecl_addr; boolean_t ncecl_found; } nce_clookup_t; /* * Synchronization notes: * * The fields of the ire_t struct are protected in the following way : * * ire_next/ire_ptpn * * - bucket lock of the forwarding table in which is ire stored. * * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask, * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, * ire_bucket * * - Set in ire_create_v4/v6 and never changes after that. Thus, * we don't need a lock whenever these fields are accessed. * * - ire_bucket and ire_masklen (also set in ire_create) is set in * ire_add before inserting in the bucket and never * changes after that. Thus we don't need a lock whenever these * fields are accessed. * * ire_gateway_addr_v4[v6] * * - ire_gateway_addr_v4[v6] is set during ire_create and later modified * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to * it assumed to be atomic and hence the other parts of the code * does not use any locks. ire_gateway_addr_v6 updates are not atomic * and hence any access to it uses ire_lock to get/set the right value. * * ire_refcnt, ire_identical_ref * * - Updated atomically using atomic_add_32 * * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count * * - Assumes that 32 bit writes are atomic. No locks. ire_lock is * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. * * ire_generation * - Under ire_lock * * ire_nce_cache * - Under ire_lock * * ire_dep_parent (To next IRE in recursive lookup chain) * - Under ips_ire_dep_lock. Write held when modifying. Read held when * walking. We also hold ire_lock when modifying to allow the data path * to only acquire ire_lock. * * ire_dep_parent_generation (Generation number from ire_dep_parent) * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock * and ire_lock held when modifying) * * ire_dep_children (From parent to first child) * ire_dep_sib_next (linked list of siblings) * ire_dep_sib_ptpn (linked list of siblings) * - Under ips_ire_dep_lock. Write held when modifying. Read held when * walking. * * As we always hold the bucket locks in all the places while accessing * the above values, it is natural to use them for protecting them. * * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t * structures. ip_forwarding_table_v6 is allocated dynamically in * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads * initializing the same bucket. Once a bucket is initialized, it is never * de-alloacted. This assumption enables us to access * ip_forwarding_table_v6[i] without any locks. * * The forwarding table for IPv4 is a radix tree whose leaves * are rt_entry structures containing the irb_t for the rt_dst. The irb_t * for IPv4 is dynamically allocated and freed. * * Each irb_t - ire bucket structure has a lock to protect * a bucket and the ires residing in the bucket have a back pointer to * the bucket structure. It also has a reference count for the number * of threads walking the bucket - irb_refcnt which is bumped up * using the irb_refhold function. The flags irb_marks can be * set to IRB_MARK_CONDEMNED indicating that there are some ires * in this bucket that are IRE_IS_CONDEMNED and the * last thread to leave the bucket should delete the ires. Usually * this is done by the irb_refrele function which is used to decrement * the reference count on a bucket. See comments above irb_t structure * definition in ip.h for further details. * * The ire_refhold/ire_refrele functions operate on the ire which increments/ * decrements the reference count, ire_refcnt, atomically on the ire. * ire_refcnt is modified only using those functions. Operations on the IRE * could be described as follows : * * CREATE an ire with reference count initialized to 1. * * ADDITION of an ire holds the bucket lock, checks for duplicates * and then adds the ire. ire_add returns the ire after * bumping up once more i.e the reference count is 2. This is to avoid * an extra lookup in the functions calling ire_add which wants to * work with the ire after adding. * * LOOKUP of an ire bumps up the reference count using ire_refhold * function. It is valid to bump up the referece count of the IRE, * after the lookup has returned an ire. Following are the lookup * functions that return an HELD ire : * * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6] * * DELETION of an ire holds the bucket lock, removes it from the list * and then decrements the reference count for having removed from the list * by using the ire_refrele function. If some other thread has looked up * the ire, the reference count would have been bumped up and hence * this ire will not be freed once deleted. It will be freed once the * reference count drops to zero. * * Add and Delete acquires the bucket lock as RW_WRITER, while all the * lookups acquire the bucket lock as RW_READER. * * The general rule is to do the ire_refrele in the function * that is passing the ire as an argument. * * In trying to locate ires the following points are to be noted. * * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is * to be ignored when walking the ires using ire_next. * * Zones note: * Walking IREs within a given zone also walks certain ires in other * zones. This is done intentionally. IRE walks with a specified * zoneid are used only when doing informational reports, and * zone users want to see things that they can access. See block * comment in ire_walk_ill_match(). */ /* * The size of the forwarding table. We will make sure that it is a * power of 2 in ip_ire_init(). * Setable in /etc/system */ uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; struct kmem_cache *ire_cache; struct kmem_cache *ncec_cache; struct kmem_cache *nce_cache; static ire_t ire_null; static ire_t *ire_add_v4(ire_t *ire); static void ire_delete_v4(ire_t *ire); static void ire_dep_invalidate_children(ire_t *child); static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, ip_stack_t *); static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, uchar_t vers, ill_t *ill); #ifdef DEBUG static void ire_trace_cleanup(const ire_t *); #endif static void ire_dep_incr_generation_locked(ire_t *); /* * Following are the functions to increment/decrement the reference * count of the IREs and IRBs (ire bucket). * * 1) We bump up the reference count of an IRE to make sure that * it does not get deleted and freed while we are using it. * Typically all the lookup functions hold the bucket lock, * and look for the IRE. If it finds an IRE, it bumps up the * reference count before dropping the lock. Sometimes we *may* want * to bump up the reference count after we *looked* up i.e without * holding the bucket lock. So, the ire_refhold function does not assert * on the bucket lock being held. Any thread trying to delete from * the hash bucket can still do so but cannot free the IRE if * ire_refcnt is not 0. * * 2) We bump up the reference count on the bucket where the IRE resides * (IRB), when we want to prevent the IREs getting deleted from a given * hash bucket. This makes life easier for ire_walk type functions which * wants to walk the IRE list, call a function, but needs to drop * the bucket lock to prevent recursive rw_enters. While the * lock is dropped, the list could be changed by other threads or * the same thread could end up deleting the ire or the ire pointed by * ire_next. ire_refholding the ire or ire_next is not sufficient as * a delete will still remove the ire from the bucket while we have * dropped the lock and hence the ire_next would be NULL. Thus, we * need a mechanism to prevent deletions from a given bucket. * * To prevent deletions, we bump up the reference count on the * bucket. If the bucket is held, ire_delete just marks both * the ire and irb as CONDEMNED. When the * reference count on the bucket drops to zero, all the CONDEMNED ires * are deleted. We don't have to bump up the reference count on the * bucket if we are walking the bucket and never have to drop the bucket * lock. Note that irb_refhold does not prevent addition of new ires * in the list. It is okay because addition of new ires will not cause * ire_next to point to freed memory. We do irb_refhold only when * all of the 3 conditions are true : * * 1) The code needs to walk the IRE bucket from start to end. * 2) It may have to drop the bucket lock sometimes while doing (1) * 3) It does not want any ires to be deleted meanwhile. */ /* * Bump up the reference count on the hash bucket - IRB to * prevent ires from being deleted in this bucket. */ void irb_refhold(irb_t *irb) { rw_enter(&irb->irb_lock, RW_WRITER); irb->irb_refcnt++; ASSERT(irb->irb_refcnt != 0); rw_exit(&irb->irb_lock); } void irb_refhold_locked(irb_t *irb) { ASSERT(RW_WRITE_HELD(&irb->irb_lock)); irb->irb_refcnt++; ASSERT(irb->irb_refcnt != 0); } /* * Note: when IRB_MARK_DYNAMIC is not set the irb_t * is statically allocated, so that when the irb_refcnt goes to 0, * we simply clean up the ire list and continue. */ void irb_refrele(irb_t *irb) { if (irb->irb_marks & IRB_MARK_DYNAMIC) { irb_refrele_ftable(irb); } else { rw_enter(&irb->irb_lock, RW_WRITER); ASSERT(irb->irb_refcnt != 0); if (--irb->irb_refcnt == 0 && (irb->irb_marks & IRB_MARK_CONDEMNED)) { ire_t *ire_list; ire_list = ire_unlink(irb); rw_exit(&irb->irb_lock); ASSERT(ire_list != NULL); ire_cleanup(ire_list); } else { rw_exit(&irb->irb_lock); } } } /* * Bump up the reference count on the IRE. We cannot assert that the * bucket lock is being held as it is legal to bump up the reference * count after the first lookup has returned the IRE without * holding the lock. */ void ire_refhold(ire_t *ire) { atomic_add_32(&(ire)->ire_refcnt, 1); ASSERT((ire)->ire_refcnt != 0); #ifdef DEBUG ire_trace_ref(ire); #endif } void ire_refhold_notr(ire_t *ire) { atomic_add_32(&(ire)->ire_refcnt, 1); ASSERT((ire)->ire_refcnt != 0); } void ire_refhold_locked(ire_t *ire) { #ifdef DEBUG ire_trace_ref(ire); #endif ire->ire_refcnt++; } /* * Release a ref on an IRE. * * Must not be called while holding any locks. Otherwise if this is * the last reference to be released there is a chance of recursive mutex * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying * to restart an ioctl. The one exception is when the caller is sure that * this is not the last reference to be released. Eg. if the caller is * sure that the ire has not been deleted and won't be deleted. * * In architectures e.g sun4u, where atomic_add_32_nv is just * a cas, we need to maintain the right memory barrier semantics * as that of mutex_exit i.e all the loads and stores should complete * before the cas is executed. membar_exit() does that here. */ void ire_refrele(ire_t *ire) { #ifdef DEBUG ire_untrace_ref(ire); #endif ASSERT((ire)->ire_refcnt != 0); membar_exit(); if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) ire_inactive(ire); } void ire_refrele_notr(ire_t *ire) { ASSERT((ire)->ire_refcnt != 0); membar_exit(); if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) ire_inactive(ire); } /* * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is * having problems reaching a particular destination. * This will make IP consider alternate routes (e.g., when there are * muliple default routes), and it will also make IP discard any (potentially) * stale redirect. * Management processes may want to use the version that generates a reply. * * With the use of NUD like behavior for IPv4/ARP in addition to IPv6 * this function shouldn't be necessary for IP to recover from a bad redirect, * a bad default router (when there are multiple default routers), or * a stale ND/ARP entry. But we retain it in any case. * For instance, this is helpful when TCP suspects a failure before NUD does. */ int ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) { uchar_t *addr_ucp; uint_t ipversion; sin_t *sin; sin6_t *sin6; ipaddr_t v4addr; in6_addr_t v6addr; ire_t *ire; ipid_t *ipid; zoneid_t zoneid; ip_stack_t *ipst; ASSERT(q->q_next == NULL); zoneid = IPCL_ZONEID(Q_TO_CONN(q)); ipst = CONNQ_TO_IPST(q); /* * Check privilege using the ioctl credential; if it is NULL * then this is a kernel message and therefor privileged. */ if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0) return (EPERM); ipid = (ipid_t *)mp->b_rptr; addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, ipid->ipid_addr_length); if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) return (EINVAL); switch (ipid->ipid_addr_length) { case sizeof (sin_t): /* * got complete (sockaddr) address - increment addr_ucp to point * at the ip_addr field. */ sin = (sin_t *)addr_ucp; addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; ipversion = IPV4_VERSION; break; case sizeof (sin6_t): /* * got complete (sockaddr) address - increment addr_ucp to point * at the ip_addr field. */ sin6 = (sin6_t *)addr_ucp; addr_ucp = (uchar_t *)&sin6->sin6_addr; ipversion = IPV6_VERSION; break; default: return (EINVAL); } if (ipversion == IPV4_VERSION) { /* Extract the destination address. */ bcopy(addr_ucp, &v4addr, IP_ADDR_LEN); ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); } else { /* Extract the destination address. */ bcopy(addr_ucp, &v6addr, IPV6_ADDR_LEN); ire = ire_ftable_lookup_v6(&v6addr, NULL, NULL, 0, NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); } if (ire != NULL) { if (ipversion == IPV4_VERSION) { ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, ire->ire_mask, (Q_TO_CONN(q))->conn_laddr_v4, 0, 0, 0, (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ire->ire_ipst); } (void) ire_no_good(ire); ire_refrele(ire); } return (0); } /* * Initialize the ire that is specific to IPv4 part and call * ire_init_common to finish it. * Returns zero or errno. */ int ire_init_v4(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *gateway, ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst) { int error; /* * Reject IRE security attribute creation/initialization * if system is not running in Trusted mode. */ if (gc != NULL && !is_system_labeled()) return (EINVAL); BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced); if (addr != NULL) bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); if (gateway != NULL) bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); /* Make sure we don't have stray values in some fields */ switch (type) { case IRE_LOOPBACK: case IRE_HOST: case IRE_BROADCAST: case IRE_LOCAL: case IRE_IF_CLONE: ire->ire_mask = IP_HOST_MASK; ire->ire_masklen = IPV4_ABITS; break; case IRE_PREFIX: case IRE_DEFAULT: case IRE_IF_RESOLVER: case IRE_IF_NORESOLVER: if (mask != NULL) { bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); } break; case IRE_MULTICAST: case IRE_NOROUTE: ASSERT(mask == NULL); break; default: ASSERT(0); return (EINVAL); } error = ire_init_common(ire, type, ill, zoneid, flags, IPV4_VERSION, gc, ipst); if (error != NULL) return (error); /* Determine which function pointers to use */ ire->ire_postfragfn = ip_xmit; /* Common case */ switch (ire->ire_type) { case IRE_LOCAL: ire->ire_sendfn = ire_send_local_v4; ire->ire_recvfn = ire_recv_local_v4; ASSERT(ire->ire_ill != NULL); if (ire->ire_ill->ill_flags & ILLF_NOACCEPT) ire->ire_recvfn = ire_recv_noaccept_v6; break; case IRE_LOOPBACK: ire->ire_sendfn = ire_send_local_v4; ire->ire_recvfn = ire_recv_loopback_v4; break; case IRE_BROADCAST: ire->ire_postfragfn = ip_postfrag_loopcheck; ire->ire_sendfn = ire_send_broadcast_v4; ire->ire_recvfn = ire_recv_broadcast_v4; break; case IRE_MULTICAST: ire->ire_postfragfn = ip_postfrag_loopcheck; ire->ire_sendfn = ire_send_multicast_v4; ire->ire_recvfn = ire_recv_multicast_v4; break; default: /* * For IRE_IF_ALL and IRE_OFFLINK we forward received * packets by default. */ ire->ire_sendfn = ire_send_wire_v4; ire->ire_recvfn = ire_recv_forward_v4; break; } if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { ire->ire_sendfn = ire_send_noroute_v4; ire->ire_recvfn = ire_recv_noroute_v4; } else if (ire->ire_flags & RTF_MULTIRT) { ire->ire_postfragfn = ip_postfrag_multirt_v4; ire->ire_sendfn = ire_send_multirt_v4; /* Multirt receive of broadcast uses ire_recv_broadcast_v4 */ if (ire->ire_type != IRE_BROADCAST) ire->ire_recvfn = ire_recv_multirt_v4; } ire->ire_nce_capable = ire_determine_nce_capable(ire); return (0); } /* * Determine ire_nce_capable */ boolean_t ire_determine_nce_capable(ire_t *ire) { int max_masklen; if ((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || (ire->ire_type & IRE_MULTICAST)) return (B_TRUE); if (ire->ire_ipversion == IPV4_VERSION) max_masklen = IPV4_ABITS; else max_masklen = IPV6_ABITS; if ((ire->ire_type & IRE_ONLINK) && ire->ire_masklen == max_masklen) return (B_TRUE); return (B_FALSE); } /* * ire_create is called to allocate and initialize a new IRE. * * NOTE : This is called as writer sometimes though not required * by this function. */ ire_t * ire_create(uchar_t *addr, uchar_t *mask, uchar_t *gateway, ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst) { ire_t *ire; int error; ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); if (ire == NULL) { DTRACE_PROBE(kmem__cache__alloc); return (NULL); } *ire = ire_null; error = ire_init_v4(ire, addr, mask, gateway, type, ill, zoneid, flags, gc, ipst); if (error != 0) { DTRACE_PROBE2(ire__init, ire_t *, ire, int, error); kmem_cache_free(ire_cache, ire); return (NULL); } return (ire); } /* * Common to IPv4 and IPv6 * Returns zero or errno. */ int ire_init_common(ire_t *ire, ushort_t type, ill_t *ill, zoneid_t zoneid, uint_t flags, uchar_t ipversion, tsol_gc_t *gc, ip_stack_t *ipst) { int error; #ifdef DEBUG if (ill != NULL) { if (ill->ill_isv6) ASSERT(ipversion == IPV6_VERSION); else ASSERT(ipversion == IPV4_VERSION); } #endif /* DEBUG */ /* * Create/initialize IRE security attribute only in Trusted mode; * if the passed in gc is non-NULL, we expect that the caller * has held a reference to it and will release it when this routine * returns a failure, otherwise we own the reference. We do this * prior to initializing the rest IRE fields. */ if (is_system_labeled()) { if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | IRE_IF_ALL | IRE_MULTICAST | IRE_NOROUTE)) != 0) { /* release references on behalf of caller */ if (gc != NULL) GC_REFRELE(gc); } else { error = tsol_ire_init_gwattr(ire, ipversion, gc); if (error != 0) return (error); } } ire->ire_type = type; ire->ire_flags = RTF_UP | flags; ire->ire_create_time = (uint32_t)gethrestime_sec(); ire->ire_generation = IRE_GENERATION_INITIAL; /* * The ill_ire_cnt isn't increased until * the IRE is added to ensure that a walker will find * all IREs that hold a reference on an ill. * * Note that ill_ire_multicast doesn't hold a ref on the ill since * ire_add() is not called for the IRE_MULTICAST. */ ire->ire_ill = ill; ire->ire_zoneid = zoneid; ire->ire_ipversion = ipversion; mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); ire->ire_refcnt = 1; ire->ire_identical_ref = 1; /* Number of ire_delete's needed */ ire->ire_ipst = ipst; /* No netstack_hold */ ire->ire_trace_disable = B_FALSE; return (0); } /* * This creates an IRE_BROADCAST based on the arguments. * A mirror is ire_lookup_bcast(). * * Any supression of unneeded ones is done in ire_add_v4. * We add one IRE_BROADCAST per address. ire_send_broadcast_v4() * takes care of generating a loopback copy of the packet. */ ire_t ** ire_create_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid, ire_t **irep) { ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_ILL(ill)); *irep++ = ire_create( (uchar_t *)&addr, /* dest addr */ (uchar_t *)&ip_g_all_ones, /* mask */ NULL, /* no gateway */ IRE_BROADCAST, ill, zoneid, RTF_KERNEL, NULL, ipst); return (irep); } /* * This looks up an IRE_BROADCAST based on the arguments. * Mirrors ire_create_bcast(). */ ire_t * ire_lookup_bcast(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) { ire_t *ire; int match_args; match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_GW | MATCH_IRE_MASK | MATCH_IRE_ZONEONLY; if (IS_UNDER_IPMP(ill)) match_args |= MATCH_IRE_TESTHIDDEN; ire = ire_ftable_lookup_v4( addr, /* dest addr */ ip_g_all_ones, /* mask */ 0, /* no gateway */ IRE_BROADCAST, ill, zoneid, NULL, match_args, 0, ill->ill_ipst, NULL); return (ire); } /* Arrange to call the specified function for every IRE in the world. */ void ire_walk(pfv_t func, void *arg, ip_stack_t *ipst) { ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst); } void ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) { ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst); } void ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) { ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst); } /* * Walk a particular version. version == 0 means both v4 and v6. */ static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid, ip_stack_t *ipst) { if (vers != IPV6_VERSION) { /* * ip_forwarding_table variable doesn't matter for IPv4 since * ire_walk_ill_tables uses ips_ip_ftable for IPv4. */ ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 0, NULL, NULL, zoneid, ipst); } if (vers != IPV4_VERSION) { ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, ipst->ips_ip_forwarding_table_v6, NULL, zoneid, ipst); } } /* * Arrange to call the specified function for every IRE that matches the ill. */ void ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, ill_t *ill) { uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION); ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill); } /* * Walk a particular ill and version. */ static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, uchar_t vers, ill_t *ill) { ip_stack_t *ipst = ill->ill_ipst; if (vers == IPV4_VERSION) { ire_walk_ill_tables(match_flags, ire_type, func, arg, IP_MASK_TABLE_SIZE, 0, NULL, ill, ALL_ZONES, ipst); } if (vers != IPV4_VERSION) { ire_walk_ill_tables(match_flags, ire_type, func, arg, IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size, ipst->ips_ip_forwarding_table_v6, ill, ALL_ZONES, ipst); } } /* * Do the specific matching of IREs to shared-IP zones. * * We have the same logic as in ire_match_args but implemented slightly * differently. */ boolean_t ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) { ill_t *dst_ill = ire->ire_ill; ASSERT(match_flags != 0 || zoneid != ALL_ZONES); if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { /* * We're walking the IREs for a specific zone. The only relevant * IREs are: * - all IREs with a matching ire_zoneid * - IRE_IF_ALL IREs for interfaces with a usable source addr * with a matching zone * - IRE_OFFLINK with a gateway reachable from the zone * Note that ealier we only did the IRE_OFFLINK check for * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs). */ if (ire->ire_type & IRE_ONLINK) { uint_t ifindex; /* * Note there is no IRE_INTERFACE on vniN thus * can't do an IRE lookup for a matching route. */ ifindex = dst_ill->ill_usesrc_ifindex; if (ifindex == 0) return (B_FALSE); /* * If there is a usable source address in the * zone, then it's ok to return an * IRE_INTERFACE */ if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, zoneid, ipst)) { return (B_FALSE); } } if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { ipif_t *tipif; mutex_enter(&dst_ill->ill_lock); for (tipif = dst_ill->ill_ipif; tipif != NULL; tipif = tipif->ipif_next) { if (!IPIF_IS_CONDEMNED(tipif) && (tipif->ipif_flags & IPIF_UP) && (tipif->ipif_zoneid == zoneid || tipif->ipif_zoneid == ALL_ZONES)) break; } mutex_exit(&dst_ill->ill_lock); if (tipif == NULL) { return (B_FALSE); } } } /* * Except for ALL_ZONES, we only match the offlink routes * where ire_gateway_addr has an IRE_INTERFACE for the zoneid. * Since we can have leftover routes after the IP addresses have * changed, the global zone will also match offlink routes where the * gateway is unreachable from any zone. */ if ((ire->ire_type & IRE_OFFLINK) && zoneid != ALL_ZONES) { in6_addr_t gw_addr_v6; boolean_t reach; if (ire->ire_ipversion == IPV4_VERSION) { reach = ire_gateway_ok_zone_v4(ire->ire_gateway_addr, zoneid, dst_ill, NULL, ipst, B_FALSE); } else { ASSERT(ire->ire_ipversion == IPV6_VERSION); mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); reach = ire_gateway_ok_zone_v6(&gw_addr_v6, zoneid, dst_ill, NULL, ipst, B_FALSE); } if (!reach) { if (zoneid != GLOBAL_ZONEID) return (B_FALSE); /* * Check if ALL_ZONES reachable - if not then let the * global zone see it. */ if (ire->ire_ipversion == IPV4_VERSION) { reach = ire_gateway_ok_zone_v4( ire->ire_gateway_addr, ALL_ZONES, dst_ill, NULL, ipst, B_FALSE); } else { reach = ire_gateway_ok_zone_v6(&gw_addr_v6, ALL_ZONES, dst_ill, NULL, ipst, B_FALSE); } if (reach) { /* * Some other zone could see it, hence hide it * in the global zone. */ return (B_FALSE); } } } if (((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & ire_type)) && ((!(match_flags & MATCH_IRE_ILL)) || (dst_ill == ill || dst_ill != NULL && IS_IN_SAME_ILLGRP(dst_ill, ill)))) { return (B_TRUE); } return (B_FALSE); } int rtfunc(struct radix_node *rn, void *arg) { struct rtfuncarg *rtf = arg; struct rt_entry *rt; irb_t *irb; ire_t *ire; boolean_t ret; rt = (struct rt_entry *)rn; ASSERT(rt != NULL); irb = &rt->rt_irb; for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if ((rtf->rt_match_flags != 0) || (rtf->rt_zoneid != ALL_ZONES)) { ret = ire_walk_ill_match(rtf->rt_match_flags, rtf->rt_ire_type, ire, rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst); } else { ret = B_TRUE; } if (ret) (*rtf->rt_func)(ire, rtf->rt_arg); } return (0); } /* * Walk the ftable entries that match the ill. */ void ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst) { irb_t *irb_ptr; irb_t *irb; ire_t *ire; int i, j; boolean_t ret; struct rtfuncarg rtfarg; ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL)); ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); /* knobs such that routine is called only for v6 case */ if (ipftbl == ipst->ips_ip_forwarding_table_v6) { for (i = (ftbl_sz - 1); i >= 0; i--) { if ((irb_ptr = ipftbl[i]) == NULL) continue; for (j = 0; j < htbl_sz; j++) { irb = &irb_ptr[j]; if (irb->irb_ire == NULL) continue; irb_refhold(irb); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (match_flags == 0 && zoneid == ALL_ZONES) { ret = B_TRUE; } else { ret = ire_walk_ill_match( match_flags, ire_type, ire, ill, zoneid, ipst); } if (ret) (*func)(ire, arg); } irb_refrele(irb); } } } else { bzero(&rtfarg, sizeof (rtfarg)); rtfarg.rt_func = func; rtfarg.rt_arg = arg; if (match_flags != 0) { rtfarg.rt_match_flags = match_flags; } rtfarg.rt_ire_type = ire_type; rtfarg.rt_ill = ill; rtfarg.rt_zoneid = zoneid; rtfarg.rt_ipst = ipst; /* No netstack_hold */ (void) ipst->ips_ip_ftable->rnh_walktree_mt( ipst->ips_ip_ftable, rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); } } /* * This function takes a mask and returns * number of bits set in the mask. If no * bit is set it returns 0. * Assumes a contiguous mask. */ int ip_mask_to_plen(ipaddr_t mask) { return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); } /* * Convert length for a mask to the mask. */ ipaddr_t ip_plen_to_mask(uint_t masklen) { if (masklen == 0) return (0); return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); } void ire_atomic_end(irb_t *irb_ptr, ire_t *ire) { ill_t *ill; ill = ire->ire_ill; if (ill != NULL) mutex_exit(&ill->ill_lock); rw_exit(&irb_ptr->irb_lock); } /* * ire_add_v[46] atomically make sure that the ill associated * with the new ire is not going away i.e., we check ILL_CONDEMNED. */ int ire_atomic_start(irb_t *irb_ptr, ire_t *ire) { ill_t *ill; ill = ire->ire_ill; rw_enter(&irb_ptr->irb_lock, RW_WRITER); if (ill != NULL) { mutex_enter(&ill->ill_lock); /* * Don't allow IRE's to be created on dying ills. */ if (ill->ill_state_flags & ILL_CONDEMNED) { ire_atomic_end(irb_ptr, ire); return (ENXIO); } if (IS_UNDER_IPMP(ill)) { int error = 0; mutex_enter(&ill->ill_phyint->phyint_lock); if (!ipmp_ill_is_active(ill) && IRE_HIDDEN_TYPE(ire->ire_type) && !ire->ire_testhidden) { error = EINVAL; } mutex_exit(&ill->ill_phyint->phyint_lock); if (error != 0) { ire_atomic_end(irb_ptr, ire); return (error); } } } return (0); } /* * Add a fully initialized IRE to the forwarding table. * This returns NULL on failure, or a held IRE on success. * Normally the returned IRE is the same as the argument. But a different * IRE will be returned if the added IRE is deemed identical to an existing * one. In that case ire_identical_ref will be increased. * The caller always needs to do an ire_refrele() on the returned IRE. */ ire_t * ire_add(ire_t *ire) { if (IRE_HIDDEN_TYPE(ire->ire_type) && ire->ire_ill != NULL && IS_UNDER_IPMP(ire->ire_ill)) { /* * IREs hosted on interfaces that are under IPMP * should be hidden so that applications don't * accidentally end up sending packets with test * addresses as their source addresses, or * sending out interfaces that are e.g. IFF_INACTIVE. * Hide them here. */ ire->ire_testhidden = B_TRUE; } if (ire->ire_ipversion == IPV6_VERSION) return (ire_add_v6(ire)); else return (ire_add_v4(ire)); } /* * Add a fully initialized IPv4 IRE to the forwarding table. * This returns NULL on failure, or a held IRE on success. * Normally the returned IRE is the same as the argument. But a different * IRE will be returned if the added IRE is deemed identical to an existing * one. In that case ire_identical_ref will be increased. * The caller always needs to do an ire_refrele() on the returned IRE. */ static ire_t * ire_add_v4(ire_t *ire) { ire_t *ire1; irb_t *irb_ptr; ire_t **irep; int match_flags; int error; ip_stack_t *ipst = ire->ire_ipst; if (ire->ire_ill != NULL) ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); ASSERT(ire->ire_ipversion == IPV4_VERSION); /* Make sure the address is properly masked. */ ire->ire_addr &= ire->ire_mask; match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); if (ire->ire_ill != NULL) { match_flags |= MATCH_IRE_ILL; } irb_ptr = ire_get_bucket(ire); if (irb_ptr == NULL) { printf("no bucket for %p\n", (void *)ire); ire_delete(ire); return (NULL); } /* * Start the atomic add of the ire. Grab the ill lock, * the bucket lock. Check for condemned. */ error = ire_atomic_start(irb_ptr, ire); if (error != 0) { printf("no ire_atomic_start for %p\n", (void *)ire); ire_delete(ire); irb_refrele(irb_ptr); return (NULL); } /* * If we are creating a hidden IRE, make sure we search for * hidden IREs when searching for duplicates below. * Otherwise, we might find an IRE on some other interface * that's not marked hidden. */ if (ire->ire_testhidden) match_flags |= MATCH_IRE_TESTHIDDEN; /* * Atomically check for duplicate and insert in the table. */ for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { if (IRE_IS_CONDEMNED(ire1)) continue; /* * Here we need an exact match on zoneid, i.e., * ire_match_args doesn't fit. */ if (ire1->ire_zoneid != ire->ire_zoneid) continue; if (ire1->ire_type != ire->ire_type) continue; /* * Note: We do not allow multiple routes that differ only * in the gateway security attributes; such routes are * considered duplicates. * To change that we explicitly have to treat them as * different here. */ if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, ire->ire_gateway_addr, ire->ire_type, ire->ire_ill, ire->ire_zoneid, NULL, match_flags)) { /* * Return the old ire after doing a REFHOLD. * As most of the callers continue to use the IRE * after adding, we return a held ire. This will * avoid a lookup in the caller again. If the callers * don't want to use it, they need to do a REFRELE. */ atomic_add_32(&ire1->ire_identical_ref, 1); DTRACE_PROBE2(ire__add__exist, ire_t *, ire1, ire_t *, ire); ire_refhold(ire1); ire_atomic_end(irb_ptr, ire); ire_delete(ire); irb_refrele(irb_ptr); return (ire1); } } /* * Normally we do head insertion since most things do not care about * the order of the IREs in the bucket. Note that ip_cgtp_bcast_add * assumes we at least do head insertion so that its IRE_BROADCAST * arrive ahead of existing IRE_HOST for the same address. * However, due to shared-IP zones (and restrict_interzone_loopback) * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same * address. For that reason we do tail insertion for IRE_IF_CLONE. * Due to the IRE_BROADCAST on cgtp0, which must be last in the bucket, * we do tail insertion of IRE_BROADCASTs that do not have RTF_MULTIRT * set. */ irep = (ire_t **)irb_ptr; if ((ire->ire_type & IRE_IF_CLONE) || ((ire->ire_type & IRE_BROADCAST) && !(ire->ire_flags & RTF_MULTIRT))) { while ((ire1 = *irep) != NULL) irep = &ire1->ire_next; } /* Insert at *irep */ ire1 = *irep; if (ire1 != NULL) ire1->ire_ptpn = &ire->ire_next; ire->ire_next = ire1; /* Link the new one in. */ ire->ire_ptpn = irep; /* * ire_walk routines de-reference ire_next without holding * a lock. Before we point to the new ire, we want to make * sure the store that sets the ire_next of the new ire * reaches global visibility, so that ire_walk routines * don't see a truncated list of ires i.e if the ire_next * of the new ire gets set after we do "*irep = ire" due * to re-ordering, the ire_walk thread will see a NULL * once it accesses the ire_next of the new ire. * membar_producer() makes sure that the following store * happens *after* all of the above stores. */ membar_producer(); *irep = ire; ire->ire_bucket = irb_ptr; /* * We return a bumped up IRE above. Keep it symmetrical * so that the callers will always have to release. This * helps the callers of this function because they continue * to use the IRE after adding and hence they don't have to * lookup again after we return the IRE. * * NOTE : We don't have to use atomics as this is appearing * in the list for the first time and no one else can bump * up the reference count on this yet. */ ire_refhold_locked(ire); BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); irb_ptr->irb_ire_cnt++; if (irb_ptr->irb_marks & IRB_MARK_DYNAMIC) irb_ptr->irb_nire++; if (ire->ire_ill != NULL) { ire->ire_ill->ill_ire_cnt++; ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */ } ire_atomic_end(irb_ptr, ire); /* Make any caching of the IREs be notified or updated */ ire_flush_cache_v4(ire, IRE_FLUSH_ADD); if (ire->ire_ill != NULL) ASSERT(!MUTEX_HELD(&ire->ire_ill->ill_lock)); irb_refrele(irb_ptr); return (ire); } /* * irb_refrele is the only caller of the function. ire_unlink calls to * do the final cleanup for this ire. */ void ire_cleanup(ire_t *ire) { ire_t *ire_next; ip_stack_t *ipst = ire->ire_ipst; ASSERT(ire != NULL); while (ire != NULL) { ire_next = ire->ire_next; if (ire->ire_ipversion == IPV4_VERSION) { ire_delete_v4(ire); BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); } else { ASSERT(ire->ire_ipversion == IPV6_VERSION); ire_delete_v6(ire); BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); } /* * Now it's really out of the list. Before doing the * REFRELE, set ire_next to NULL as ire_inactive asserts * so. */ ire->ire_next = NULL; ire_refrele_notr(ire); ire = ire_next; } } /* * irb_refrele is the only caller of the function. It calls to unlink * all the CONDEMNED ires from this bucket. */ ire_t * ire_unlink(irb_t *irb) { ire_t *ire; ire_t *ire1; ire_t **ptpn; ire_t *ire_list = NULL; ASSERT(RW_WRITE_HELD(&irb->irb_lock)); ASSERT(((irb->irb_marks & IRB_MARK_DYNAMIC) && irb->irb_refcnt == 1) || (irb->irb_refcnt == 0)); ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); ASSERT(irb->irb_ire != NULL); for (ire = irb->irb_ire; ire != NULL; ire = ire1) { ire1 = ire->ire_next; if (IRE_IS_CONDEMNED(ire)) { ptpn = ire->ire_ptpn; ire1 = ire->ire_next; if (ire1) ire1->ire_ptpn = ptpn; *ptpn = ire1; ire->ire_ptpn = NULL; ire->ire_next = NULL; /* * We need to call ire_delete_v4 or ire_delete_v6 to * clean up dependents and the redirects pointing at * the default gateway. We need to drop the lock * as ire_flush_cache/ire_delete_host_redircts require * so. But we can't drop the lock, as ire_unlink needs * to atomically remove the ires from the list. * So, create a temporary list of CONDEMNED ires * for doing ire_delete_v4/ire_delete_v6 operations * later on. */ ire->ire_next = ire_list; ire_list = ire; } } irb->irb_marks &= ~IRB_MARK_CONDEMNED; return (ire_list); } /* * Clean up the radix node for this ire. Must be called by irb_refrele * when there are no ire's left in the bucket. Returns TRUE if the bucket * is deleted and freed. */ boolean_t irb_inactive(irb_t *irb) { struct rt_entry *rt; struct radix_node *rn; ip_stack_t *ipst = irb->irb_ipst; ASSERT(irb->irb_ipst != NULL); rt = IRB2RT(irb); rn = (struct radix_node *)rt; /* first remove it from the radix tree. */ RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); rw_enter(&irb->irb_lock, RW_WRITER); if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, ipst->ips_ip_ftable); DTRACE_PROBE1(irb__free, rt_t *, rt); ASSERT((void *)rn == (void *)rt); Free(rt, rt_entry_cache); /* irb_lock is freed */ RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); return (B_TRUE); } rw_exit(&irb->irb_lock); RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); return (B_FALSE); } /* * Delete the specified IRE. * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was * not incremented i.e., that the insertion in the bucket and the increment * of that counter is done atomically. */ void ire_delete(ire_t *ire) { ire_t *ire1; ire_t **ptpn; irb_t *irb; ip_stack_t *ipst = ire->ire_ipst; if ((irb = ire->ire_bucket) == NULL) { /* * It was never inserted in the list. Should call REFRELE * to free this IRE. */ ire_make_condemned(ire); ire_refrele_notr(ire); return; } /* * Move the use counts from an IRE_IF_CLONE to its parent * IRE_INTERFACE. * We need to do this before acquiring irb_lock. */ if (ire->ire_type & IRE_IF_CLONE) { ire_t *parent; rw_enter(&ipst->ips_ire_dep_lock, RW_READER); if ((parent = ire->ire_dep_parent) != NULL) { parent->ire_ob_pkt_count += ire->ire_ob_pkt_count; parent->ire_ib_pkt_count += ire->ire_ib_pkt_count; ire->ire_ob_pkt_count = 0; ire->ire_ib_pkt_count = 0; } rw_exit(&ipst->ips_ire_dep_lock); } rw_enter(&irb->irb_lock, RW_WRITER); if (ire->ire_ptpn == NULL) { /* * Some other thread has removed us from the list. * It should have done the REFRELE for us. */ rw_exit(&irb->irb_lock); return; } if (!IRE_IS_CONDEMNED(ire)) { /* Is this an IRE representing multiple duplicate entries? */ ASSERT(ire->ire_identical_ref >= 1); if (atomic_add_32_nv(&ire->ire_identical_ref, -1) != 0) { /* Removed one of the identical parties */ rw_exit(&irb->irb_lock); return; } irb->irb_ire_cnt--; ire_make_condemned(ire); } if (irb->irb_refcnt != 0) { /* * The last thread to leave this bucket will * delete this ire. */ irb->irb_marks |= IRB_MARK_CONDEMNED; rw_exit(&irb->irb_lock); return; } /* * Normally to delete an ire, we walk the bucket. While we * walk the bucket, we normally bump up irb_refcnt and hence * we return from above where we mark CONDEMNED and the ire * gets deleted from ire_unlink. This case is where somebody * knows the ire e.g by doing a lookup, and wants to delete the * IRE. irb_refcnt would be 0 in this case if nobody is walking * the bucket. */ ptpn = ire->ire_ptpn; ire1 = ire->ire_next; if (ire1 != NULL) ire1->ire_ptpn = ptpn; ASSERT(ptpn != NULL); *ptpn = ire1; ire->ire_ptpn = NULL; ire->ire_next = NULL; if (ire->ire_ipversion == IPV6_VERSION) { BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted); } else { BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted); } rw_exit(&irb->irb_lock); /* Cleanup dependents and related stuff */ if (ire->ire_ipversion == IPV6_VERSION) { ire_delete_v6(ire); } else { ire_delete_v4(ire); } /* * We removed it from the list. Decrement the * reference count. */ ire_refrele_notr(ire); } /* * Delete the specified IRE. * All calls should use ire_delete(). * Sometimes called as writer though not required by this function. * * NOTE : This function is called only if the ire was added * in the list. */ static void ire_delete_v4(ire_t *ire) { ip_stack_t *ipst = ire->ire_ipst; ASSERT(ire->ire_refcnt >= 1); ASSERT(ire->ire_ipversion == IPV4_VERSION); ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); if (ire->ire_type == IRE_DEFAULT) { /* * when a default gateway is going away * delete all the host redirects pointing at that * gateway. */ ire_delete_host_redirects(ire->ire_gateway_addr, ipst); } /* * If we are deleting an IRE_INTERFACE then we make sure we also * delete any IRE_IF_CLONE that has been created from it. * Those are always in ire_dep_children. */ if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != NULL) ire_dep_delete_if_clone(ire); /* Remove from parent dependencies and child */ rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); if (ire->ire_dep_parent != NULL) ire_dep_remove(ire); while (ire->ire_dep_children != NULL) ire_dep_remove(ire->ire_dep_children); rw_exit(&ipst->ips_ire_dep_lock); } /* * ire_refrele is the only caller of the function. It calls * to free the ire when the reference count goes to zero. */ void ire_inactive(ire_t *ire) { ill_t *ill; irb_t *irb; ip_stack_t *ipst = ire->ire_ipst; ASSERT(ire->ire_refcnt == 0); ASSERT(ire->ire_ptpn == NULL); ASSERT(ire->ire_next == NULL); /* Count how many condemned ires for kmem_cache callback */ ASSERT(IRE_IS_CONDEMNED(ire)); atomic_add_32(&ipst->ips_num_ire_condemned, -1); if (ire->ire_gw_secattr != NULL) { ire_gw_secattr_free(ire->ire_gw_secattr); ire->ire_gw_secattr = NULL; } /* * ire_nce_cache is cleared in ire_delete, and we make sure we don't * set it once the ire is marked condemned. */ ASSERT(ire->ire_nce_cache == NULL); /* * Since any parent would have a refhold on us they would already * have been removed. */ ASSERT(ire->ire_dep_parent == NULL); ASSERT(ire->ire_dep_sib_next == NULL); ASSERT(ire->ire_dep_sib_ptpn == NULL); /* * Since any children would have a refhold on us they should have * already been removed. */ ASSERT(ire->ire_dep_children == NULL); /* * ill_ire_ref is increased when the IRE is inserted in the * bucket - not when the IRE is created. */ irb = ire->ire_bucket; ill = ire->ire_ill; if (irb != NULL && ill != NULL) { mutex_enter(&ill->ill_lock); ASSERT(ill->ill_ire_cnt != 0); DTRACE_PROBE3(ill__decr__cnt, (ill_t *), ill, (char *), "ire", (void *), ire); ill->ill_ire_cnt--; if (ILL_DOWN_OK(ill)) { /* Drops the ill lock */ ipif_ill_refrele_tail(ill); } else { mutex_exit(&ill->ill_lock); } } ire->ire_ill = NULL; /* This should be true for both V4 and V6 */ if (irb != NULL && (irb->irb_marks & IRB_MARK_DYNAMIC)) { rw_enter(&irb->irb_lock, RW_WRITER); irb->irb_nire--; /* * Instead of examining the conditions for freeing * the radix node here, we do it by calling * irb_refrele which is a single point in the code * that embeds that logic. Bump up the refcnt to * be able to call irb_refrele */ irb_refhold_locked(irb); rw_exit(&irb->irb_lock); irb_refrele(irb); } #ifdef DEBUG ire_trace_cleanup(ire); #endif mutex_destroy(&ire->ire_lock); if (ire->ire_ipversion == IPV6_VERSION) { BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed); } else { BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed); } kmem_cache_free(ire_cache, ire); } /* * ire_update_generation is the callback function provided by * ire_get_bucket() to update the generation number of any * matching shorter route when a new route is added. * * This fucntion always returns a failure return (B_FALSE) * to force the caller (rn_matchaddr_args) * to back-track up the tree looking for shorter matches. */ /* ARGSUSED */ static boolean_t ire_update_generation(struct radix_node *rn, void *arg) { struct rt_entry *rt = (struct rt_entry *)rn; /* We need to handle all in the same bucket */ irb_increment_generation(&rt->rt_irb); return (B_FALSE); } /* * Take care of all the generation numbers in the bucket. */ void irb_increment_generation(irb_t *irb) { ire_t *ire; ip_stack_t *ipst; if (irb == NULL || irb->irb_ire_cnt == 0) return; ipst = irb->irb_ipst; /* * we cannot do an irb_refhold/irb_refrele here as the caller * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele * may result in an attempt to free the irb_t, which also needs * the RADIX_NODE_HEAD lock. However, since we want to traverse the * irb_ire list without fear of having a condemned ire removed from * the list, we acquire the irb_lock as WRITER. Moreover, since * the ire_generation increments are done under the ire_dep_lock, * acquire the locks in the prescribed lock order first. */ rw_enter(&ipst->ips_ire_dep_lock, RW_READER); rw_enter(&irb->irb_lock, RW_WRITER); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (!IRE_IS_CONDEMNED(ire)) ire_increment_generation(ire); /* Ourselves */ ire_dep_incr_generation_locked(ire); /* Dependants */ } rw_exit(&irb->irb_lock); rw_exit(&ipst->ips_ire_dep_lock); } /* * When an IRE is added or deleted this routine is called to make sure * any caching of IRE information is notified or updated. * * The flag argument indicates if the flush request is due to addition * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE), * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE). */ void ire_flush_cache_v4(ire_t *ire, int flag) { irb_t *irb = ire->ire_bucket; struct rt_entry *rt = IRB2RT(irb); ip_stack_t *ipst = ire->ire_ipst; /* * IRE_IF_CLONE ire's don't provide any new information * than the parent from which they are cloned, so don't * perturb the generation numbers. */ if (ire->ire_type & IRE_IF_CLONE) return; /* * Ensure that an ire_add during a lookup serializes the updates of the * generation numbers under the radix head lock so that the lookup gets * either the old ire and old generation number, or a new ire and new * generation number. */ RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); /* * If a route was just added, we need to notify everybody that * has cached an IRE_NOROUTE since there might now be a better * route for them. */ if (flag == IRE_FLUSH_ADD) { ire_increment_generation(ipst->ips_ire_reject_v4); ire_increment_generation(ipst->ips_ire_blackhole_v4); } /* Adding a default can't otherwise provide a better route */ if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) { RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); return; } switch (flag) { case IRE_FLUSH_DELETE: case IRE_FLUSH_GWCHANGE: /* * Update ire_generation for all ire_dep_children chains * starting with this IRE */ ire_dep_incr_generation(ire); break; case IRE_FLUSH_ADD: /* * Update the generation numbers of all shorter matching routes. * ire_update_generation takes care of the dependants by * using ire_dep_incr_generation. */ (void) ipst->ips_ip_ftable->rnh_matchaddr_args(&rt->rt_dst, ipst->ips_ip_ftable, ire_update_generation, NULL); break; } RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); } /* * Matches the arguments passed with the values in the ire. * * Note: for match types that match using "ill" passed in, ill * must be checked for non-NULL before calling this routine. */ boolean_t ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, int type, const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, int match_flags) { ill_t *ire_ill = NULL, *dst_ill; ip_stack_t *ipst = ire->ire_ipst; ASSERT(ire->ire_ipversion == IPV4_VERSION); ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) || (ill != NULL && !ill->ill_isv6)); /* * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is * in fact hidden, to ensure the caller gets the right one. */ if (ire->ire_testhidden) { if (!(match_flags & MATCH_IRE_TESTHIDDEN)) return (B_FALSE); } if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { /* * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid * does not match that of ire_zoneid, a failure to * match is reported at this point. Otherwise, since some IREs * that are available in the global zone can be used in local * zones, additional checks need to be performed: * * IRE_LOOPBACK * entries should never be matched in this situation. * Each zone has its own IRE_LOOPBACK. * * IRE_LOCAL * We allow them for any zoneid. ire_route_recursive * does additional checks when * ip_restrict_interzone_loopback is set. * * If ill_usesrc_ifindex is set * Then we check if the zone has a valid source address * on the usesrc ill. * * If ire_ill is set, then check that the zone has an ipif * on that ill. * * Outside of this function (in ire_round_robin) we check * that any IRE_OFFLINK has a gateway that reachable from the * zone when we have multiple choices (ECMP). */ if (match_flags & MATCH_IRE_ZONEONLY) return (B_FALSE); if (ire->ire_type & IRE_LOOPBACK) return (B_FALSE); if (ire->ire_type & IRE_LOCAL) goto matchit; /* * The normal case of IRE_ONLINK has a matching zoneid. * Here we handle the case when shared-IP zones have been * configured with IP addresses on vniN. In that case it * is ok for traffic from a zone to use IRE_ONLINK routes * if the ill has a usesrc pointing at vniN */ dst_ill = ire->ire_ill; if (ire->ire_type & IRE_ONLINK) { uint_t ifindex; /* * Note there is no IRE_INTERFACE on vniN thus * can't do an IRE lookup for a matching route. */ ifindex = dst_ill->ill_usesrc_ifindex; if (ifindex == 0) return (B_FALSE); /* * If there is a usable source address in the * zone, then it's ok to return this IRE_INTERFACE */ if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6, zoneid, ipst)) { ip3dbg(("ire_match_args: no usrsrc for zone" " dst_ill %p\n", (void *)dst_ill)); return (B_FALSE); } } /* * For example, with * route add 11.0.0.0 gw1 -ifp bge0 * route add 11.0.0.0 gw2 -ifp bge1 * this code would differentiate based on * where the sending zone has addresses. * Only if the zone has an address on bge0 can it use the first * route. It isn't clear if this behavior is documented * anywhere. */ if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) { ipif_t *tipif; mutex_enter(&dst_ill->ill_lock); for (tipif = dst_ill->ill_ipif; tipif != NULL; tipif = tipif->ipif_next) { if (!IPIF_IS_CONDEMNED(tipif) && (tipif->ipif_flags & IPIF_UP) && (tipif->ipif_zoneid == zoneid || tipif->ipif_zoneid == ALL_ZONES)) break; } mutex_exit(&dst_ill->ill_lock); if (tipif == NULL) { return (B_FALSE); } } } matchit: ire_ill = ire->ire_ill; if (match_flags & MATCH_IRE_ILL) { /* * If asked to match an ill, we *must* match * on the ire_ill for ipmp test addresses, or * any of the ill in the group for data addresses. * If we don't, we may as well fail. * However, we need an exception for IRE_LOCALs to ensure * we loopback packets even sent to test addresses on different * interfaces in the group. */ if ((match_flags & MATCH_IRE_TESTHIDDEN) && !(ire->ire_type & IRE_LOCAL)) { if (ire->ire_ill != ill) return (B_FALSE); } else { match_flags &= ~MATCH_IRE_TESTHIDDEN; /* * We know that ill is not NULL, but ire_ill could be * NULL */ if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill)) return (B_FALSE); } } if (match_flags & MATCH_IRE_SRC_ILL) { if (ire_ill == NULL) return (B_FALSE); if (!IS_ON_SAME_LAN(ill, ire_ill)) { if (ire_ill->ill_usesrc_ifindex == 0 || (ire_ill->ill_usesrc_ifindex != ill->ill_phyint->phyint_ifindex)) return (B_FALSE); } } if ((ire->ire_addr == (addr & mask)) && ((!(match_flags & MATCH_IRE_GW)) || (ire->ire_gateway_addr == gateway)) && ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) && ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) && ((!(match_flags & MATCH_IRE_MASK)) || (ire->ire_mask == mask)) && ((!(match_flags & MATCH_IRE_SECATTR)) || (!is_system_labeled()) || (tsol_ire_match_gwattr(ire, tsl) == 0))) { /* We found the matched IRE */ return (B_TRUE); } return (B_FALSE); } /* * Check if the IRE_LOCAL uses the same ill as another route would use. * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE, * then we don't allow this IRE_LOCAL to be used. * We always return an IRE; will be RTF_REJECT if no route available. */ ire_t * ire_alt_local(ire_t *ire, zoneid_t zoneid, const ts_label_t *tsl, const ill_t *ill, uint_t *generationp) { ip_stack_t *ipst = ire->ire_ipst; ire_t *alt_ire; uint_t ire_type; uint_t generation; uint_t match_flags; ASSERT(ire->ire_type & IRE_LOCAL); ASSERT(ire->ire_ill != NULL); /* * Need to match on everything but local. * This might result in the creation of a IRE_IF_CLONE for the * same address as the IRE_LOCAL when restrict_interzone_loopback is * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted * to make sure the IRE_LOCAL is always found first. */ ire_type = (IRE_ONLINK | IRE_OFFLINK) & ~(IRE_LOCAL|IRE_LOOPBACK); match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; if (ill != NULL) match_flags |= MATCH_IRE_ILL; if (ire->ire_ipversion == IPV4_VERSION) { alt_ire = ire_route_recursive_v4(ire->ire_addr, ire_type, ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, NULL, &generation); } else { alt_ire = ire_route_recursive_v6(&ire->ire_addr_v6, ire_type, ill, zoneid, tsl, match_flags, IRR_ALLOCATE, 0, ipst, NULL, NULL, &generation); } ASSERT(alt_ire != NULL); if (alt_ire->ire_ill == ire->ire_ill) { /* Going out the same ILL - ok to send to IRE_LOCAL */ ire_refrele(alt_ire); } else { /* Different ill - ignore IRE_LOCAL */ ire_refrele(ire); ire = alt_ire; if (generationp != NULL) *generationp = generation; } return (ire); } boolean_t ire_find_zoneid(struct radix_node *rn, void *arg) { struct rt_entry *rt = (struct rt_entry *)rn; irb_t *irb; ire_t *ire; ire_ftable_args_t *margs = arg; ASSERT(rt != NULL); irb = &rt->rt_irb; if (irb->irb_ire_cnt == 0) return (B_FALSE); rw_enter(&irb->irb_lock, RW_READER); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (IRE_IS_CONDEMNED(ire)) continue; if (!(ire->ire_type & IRE_INTERFACE)) continue; if (ire->ire_zoneid != ALL_ZONES && ire->ire_zoneid != margs->ift_zoneid) continue; if (margs->ift_ill != NULL && margs->ift_ill != ire->ire_ill) continue; if (is_system_labeled() && tsol_ire_match_gwattr(ire, margs->ift_tsl) != 0) continue; rw_exit(&irb->irb_lock); return (B_TRUE); } rw_exit(&irb->irb_lock); return (B_FALSE); } /* * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified * gateway address. If ill is non-NULL we also match on it. * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set. */ boolean_t ire_gateway_ok_zone_v4(ipaddr_t gateway, zoneid_t zoneid, ill_t *ill, const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held) { struct rt_sockaddr rdst; struct rt_entry *rt; ire_ftable_args_t margs; ASSERT(ill == NULL || !ill->ill_isv6); if (lock_held) ASSERT(RW_READ_HELD(&ipst->ips_ip_ftable->rnh_lock)); else RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); bzero(&rdst, sizeof (rdst)); rdst.rt_sin_len = sizeof (rdst); rdst.rt_sin_family = AF_INET; rdst.rt_sin_addr.s_addr = gateway; /* * We only use margs for ill, zoneid, and tsl matching in * ire_find_zoneid */ bzero(&margs, sizeof (margs)); margs.ift_ill = ill; margs.ift_zoneid = zoneid; margs.ift_tsl = tsl; rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, ipst->ips_ip_ftable, ire_find_zoneid, (void *)&margs); if (!lock_held) RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); return (rt != NULL); } /* * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs. * The fraction argument tells us what fraction of the IREs to delete. * Common for IPv4 and IPv6. * Used when memory backpressure. */ static void ire_delete_reclaim(ire_t *ire, char *arg) { ip_stack_t *ipst = ire->ire_ipst; uint_t fraction = *(uint_t *)arg; uint_t rand; if ((ire->ire_flags & RTF_DYNAMIC) || (ire->ire_type & IRE_IF_CLONE)) { /* Pick a random number */ rand = (uint_t)ddi_get_lbolt() + IRE_ADDR_HASH_V6(ire->ire_addr_v6, 256); /* Use truncation */ if ((rand/fraction)*fraction == rand) { IP_STAT(ipst, ip_ire_reclaim_deleted); ire_delete(ire); } } } /* * kmem_cache callback to free up memory. * * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically * (RTF_DYNAMIC and IRE_IF_CLONE). */ static void ip_ire_reclaim_stack(ip_stack_t *ipst) { uint_t fraction = ipst->ips_ip_ire_reclaim_fraction; IP_STAT(ipst, ip_ire_reclaim_calls); ire_walk(ire_delete_reclaim, &fraction, ipst); /* * Walk all CONNs that can have a reference on an ire, nce or dce. * Get them to update any stale references to drop any refholds they * have. */ ipcl_walk(conn_ixa_cleanup, (void *)B_FALSE, ipst); } /* * Called by the memory allocator subsystem directly, when the system * is running low on memory. */ /* ARGSUSED */ void ip_ire_reclaim(void *args) { netstack_handle_t nh; netstack_t *ns; ip_stack_t *ipst; netstack_next_init(&nh); while ((ns = netstack_next(&nh)) != NULL) { /* * netstack_next() can return a netstack_t with a NULL * netstack_ip at boot time. */ if ((ipst = ns->netstack_ip) == NULL) { netstack_rele(ns); continue; } ip_ire_reclaim_stack(ipst); netstack_rele(ns); } netstack_next_fini(&nh); } static void power2_roundup(uint32_t *value) { int i; for (i = 1; i < 31; i++) { if (*value <= (1 << i)) break; } *value = (1 << i); } /* Global init for all zones */ void ip_ire_g_init() { /* * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim() * will give disposable IREs back to system when needed. * This needs to be done here before anything else, since * ire_add() expects the cache to be created. */ ire_cache = kmem_cache_create("ire_cache", sizeof (ire_t), 0, NULL, NULL, ip_ire_reclaim, NULL, NULL, 0); ncec_cache = kmem_cache_create("ncec_cache", sizeof (ncec_t), 0, NULL, NULL, ip_nce_reclaim, NULL, NULL, 0); nce_cache = kmem_cache_create("nce_cache", sizeof (nce_t), 0, NULL, NULL, NULL, NULL, NULL, 0); rt_entry_cache = kmem_cache_create("rt_entry", sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); /* * Have radix code setup kmem caches etc. */ rn_init(); } void ip_ire_init(ip_stack_t *ipst) { ire_t *ire; int error; mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); (void) rn_inithead((void **)&ipst->ips_ip_ftable, 32); /* * Make sure that the forwarding table size is a power of 2. * The IRE*_ADDR_HASH() macroes depend on that. */ ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size; power2_roundup(&ipst->ips_ip6_ftable_hash_size); /* * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6. * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has * RTF_BLACKHOLE set. We use the latter for transient errors such * as memory allocation failures and tripping on IRE_IS_CONDEMNED * entries. */ ire = kmem_cache_alloc(ire_cache, KM_SLEEP); *ire = ire_null; error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, RTF_REJECT|RTF_UP, NULL, ipst); ASSERT(error == 0); ipst->ips_ire_reject_v4 = ire; ire = kmem_cache_alloc(ire_cache, KM_SLEEP); *ire = ire_null; error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, RTF_REJECT|RTF_UP, NULL, ipst); ASSERT(error == 0); ipst->ips_ire_reject_v6 = ire; ire = kmem_cache_alloc(ire_cache, KM_SLEEP); *ire = ire_null; error = ire_init_v4(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, RTF_BLACKHOLE|RTF_UP, NULL, ipst); ASSERT(error == 0); ipst->ips_ire_blackhole_v4 = ire; ire = kmem_cache_alloc(ire_cache, KM_SLEEP); *ire = ire_null; error = ire_init_v6(ire, 0, 0, 0, IRE_NOROUTE, NULL, ALL_ZONES, RTF_BLACKHOLE|RTF_UP, NULL, ipst); ASSERT(error == 0); ipst->ips_ire_blackhole_v6 = ire; rw_init(&ipst->ips_ip6_ire_head_lock, NULL, RW_DEFAULT, NULL); rw_init(&ipst->ips_ire_dep_lock, NULL, RW_DEFAULT, NULL); } void ip_ire_g_fini(void) { kmem_cache_destroy(ire_cache); kmem_cache_destroy(ncec_cache); kmem_cache_destroy(nce_cache); kmem_cache_destroy(rt_entry_cache); rn_fini(); } void ip_ire_fini(ip_stack_t *ipst) { int i; rw_destroy(&ipst->ips_ire_dep_lock); rw_destroy(&ipst->ips_ip6_ire_head_lock); ire_make_condemned(ipst->ips_ire_reject_v6); ire_refrele_notr(ipst->ips_ire_reject_v6); ipst->ips_ire_reject_v6 = NULL; ire_make_condemned(ipst->ips_ire_reject_v4); ire_refrele_notr(ipst->ips_ire_reject_v4); ipst->ips_ire_reject_v4 = NULL; ire_make_condemned(ipst->ips_ire_blackhole_v6); ire_refrele_notr(ipst->ips_ire_blackhole_v6); ipst->ips_ire_blackhole_v6 = NULL; ire_make_condemned(ipst->ips_ire_blackhole_v4); ire_refrele_notr(ipst->ips_ire_blackhole_v4); ipst->ips_ire_blackhole_v4 = NULL; /* * Delete all IREs - assumes that the ill/ipifs have * been removed so what remains are just the ftable to handle. */ ire_walk(ire_delete, NULL, ipst); rn_freehead(ipst->ips_ip_ftable); ipst->ips_ip_ftable = NULL; mutex_destroy(&ipst->ips_ire_ft_init_lock); for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) { irb_t *ptr; int j; if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL) continue; for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) { ASSERT(ptr[j].irb_ire == NULL); rw_destroy(&ptr[j].irb_lock); } mi_free(ptr); ipst->ips_ip_forwarding_table_v6[i] = NULL; } } #ifdef DEBUG void ire_trace_ref(ire_t *ire) { mutex_enter(&ire->ire_lock); if (ire->ire_trace_disable) { mutex_exit(&ire->ire_lock); return; } if (th_trace_ref(ire, ire->ire_ipst)) { mutex_exit(&ire->ire_lock); } else { ire->ire_trace_disable = B_TRUE; mutex_exit(&ire->ire_lock); ire_trace_cleanup(ire); } } void ire_untrace_ref(ire_t *ire) { mutex_enter(&ire->ire_lock); if (!ire->ire_trace_disable) th_trace_unref(ire); mutex_exit(&ire->ire_lock); } static void ire_trace_cleanup(const ire_t *ire) { th_trace_cleanup(ire, ire->ire_trace_disable); } #endif /* DEBUG */ /* * Find, or create if needed, the nce_t pointer to the neighbor cache * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or * on the next available under-ill (selected by the IPMP rotor) in the * unicast IPMP case. * * If a neighbor-cache entry has to be created (i.e., one does not already * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache * entry are initialized in nce_add_v4(). The broadcast, multicast, and * link-layer type determine the contents of {ncec_state, ncec_lladdr} of * the ncec_t created. The ncec_lladdr is non-null for all link types with * non-zero ill_phys_addr_length, though the contents may be zero in cases * where the link-layer type is not known at the time of creation * (e.g., IRE_IFRESOLVER links) * * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr * has the physical broadcast address of the outgoing interface. * For unicast ire entries, * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state. * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link * layer resolution is necessary, so that the ncec_t will be in the * ND_REACHABLE state * * The link layer information needed for broadcast addresses, and for * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that * never needs re-verification for the lifetime of the ncec_t. These are * therefore marked NCE_F_NONUD. * * The nce returned will be created such that the nce_ill == ill that * is passed in. Note that the nce itself may not have ncec_ill == ill * where IPMP links are involved. */ static nce_t * ire_nce_init(ill_t *ill, const void *addr, int ire_type) { int err; nce_t *nce = NULL; uint16_t ncec_flags; uchar_t *hwaddr; boolean_t need_refrele = B_FALSE; ill_t *in_ill = ill; boolean_t is_unicast; uint_t hwaddr_len; is_unicast = ((ire_type & (IRE_MULTICAST|IRE_BROADCAST)) == 0); if (IS_IPMP(ill) || ((ire_type & IRE_BROADCAST) && IS_UNDER_IPMP(ill))) { if ((ill = ipmp_ill_get_xmit_ill(ill, is_unicast)) == NULL) return (NULL); need_refrele = B_TRUE; } ncec_flags = (ill->ill_flags & ILLF_NONUD) ? NCE_F_NONUD : 0; switch (ire_type) { case IRE_BROADCAST: ASSERT(!ill->ill_isv6); ncec_flags |= (NCE_F_BCAST|NCE_F_NONUD); break; case IRE_MULTICAST: ncec_flags |= (NCE_F_MCAST|NCE_F_NONUD); break; } if (ill->ill_net_type == IRE_IF_NORESOLVER && is_unicast) { hwaddr = ill->ill_dest_addr; } else { hwaddr = NULL; } hwaddr_len = ill->ill_phys_addr_length; retry: /* nce_state will be computed by nce_add_common() */ if (!ill->ill_isv6) { err = nce_lookup_then_add_v4(ill, hwaddr, hwaddr_len, addr, ncec_flags, ND_UNCHANGED, &nce); } else { err = nce_lookup_then_add_v6(ill, hwaddr, hwaddr_len, addr, ncec_flags, ND_UNCHANGED, &nce); } switch (err) { case 0: break; case EEXIST: /* * When subnets change or partially overlap what was once * a broadcast address could now be a unicast, or vice versa. */ if (((ncec_flags ^ nce->nce_common->ncec_flags) & NCE_F_BCAST) != 0) { ASSERT(!ill->ill_isv6); ncec_delete(nce->nce_common); nce_refrele(nce); goto retry; } break; default: DTRACE_PROBE2(nce__init__fail, ill_t *, ill, int, err); if (need_refrele) ill_refrele(ill); return (NULL); } /* * If the ill was an under-ill of an IPMP group, we need to verify * that it is still active so that we select an active interface in * the group. However, since ipmp_ill_is_active ASSERTs for * IS_UNDER_IPMP(), we first need to verify that the ill is an * under-ill, and since this is being done in the data path, the * only way to ascertain this is by holding the ill_g_lock. */ rw_enter(&ill->ill_ipst->ips_ill_g_lock, RW_READER); mutex_enter(&ill->ill_lock); mutex_enter(&ill->ill_phyint->phyint_lock); if (need_refrele && IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { /* * need_refrele implies that the under ill was selected by * ipmp_ill_get_xmit_ill() because either the in_ill was an * ipmp_ill, or we are sending a non-unicast packet on * an under_ill. However, when we get here, the ill selected by * ipmp_ill_get_xmit_ill was pulled out of the active set * (for unicast) or cast_ill nomination (for * !unicast) after it was picked as the outgoing ill. * We have to pick an active interface and/or cast_ill in the * group. */ mutex_exit(&ill->ill_phyint->phyint_lock); nce_delete(nce); mutex_exit(&ill->ill_lock); rw_exit(&ill->ill_ipst->ips_ill_g_lock); nce_refrele(nce); ill_refrele(ill); if ((ill = ipmp_ill_get_xmit_ill(in_ill, is_unicast)) == NULL) return (NULL); goto retry; } else { mutex_exit(&ill->ill_phyint->phyint_lock); mutex_exit(&ill->ill_lock); rw_exit(&ill->ill_ipst->ips_ill_g_lock); } done: ASSERT(nce->nce_ill == ill); if (need_refrele) ill_refrele(ill); return (nce); } nce_t * arp_nce_init(ill_t *ill, in_addr_t addr4, int ire_type) { return (ire_nce_init(ill, &addr4, ire_type)); } nce_t * ndp_nce_init(ill_t *ill, const in6_addr_t *addr6, int ire_type) { ASSERT((ire_type & IRE_BROADCAST) == 0); return (ire_nce_init(ill, addr6, ire_type)); } /* * The caller should hold irb_lock as a writer if the ire is in a bucket. * This routine will clear ire_nce_cache, and we make sure that we can never * set ire_nce_cache after the ire is marked condemned. */ void ire_make_condemned(ire_t *ire) { ip_stack_t *ipst = ire->ire_ipst; nce_t *nce; mutex_enter(&ire->ire_lock); ASSERT(ire->ire_bucket == NULL || RW_WRITE_HELD(&ire->ire_bucket->irb_lock)); ASSERT(!IRE_IS_CONDEMNED(ire)); ire->ire_generation = IRE_GENERATION_CONDEMNED; /* Count how many condemned ires for kmem_cache callback */ atomic_add_32(&ipst->ips_num_ire_condemned, 1); nce = ire->ire_nce_cache; ire->ire_nce_cache = NULL; mutex_exit(&ire->ire_lock); if (nce != NULL) nce_refrele(nce); } /* * Increment the generation avoiding the special condemned value */ void ire_increment_generation(ire_t *ire) { uint_t generation; mutex_enter(&ire->ire_lock); /* * Even though the caller has a hold it can't prevent a concurrent * ire_delete marking the IRE condemned */ if (!IRE_IS_CONDEMNED(ire)) { generation = ire->ire_generation + 1; if (generation == IRE_GENERATION_CONDEMNED) generation = IRE_GENERATION_INITIAL; ASSERT(generation != IRE_GENERATION_VERIFY); ire->ire_generation = generation; } mutex_exit(&ire->ire_lock); } /* * Increment ire_generation on all the IRE_MULTICASTs * Used when the default multicast interface (as determined by * ill_lookup_multicast) might have changed. * * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and * ill unplumb. */ void ire_increment_multicast_generation(ip_stack_t *ipst, boolean_t isv6) { ill_t *ill; ill_walk_context_t ctx; rw_enter(&ipst->ips_ill_g_lock, RW_READER); if (isv6) ill = ILL_START_WALK_V6(&ctx, ipst); else ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (ILL_IS_CONDEMNED(ill)) continue; if (ill->ill_ire_multicast != NULL) ire_increment_generation(ill->ill_ire_multicast); } rw_exit(&ipst->ips_ill_g_lock); } /* * Return a held IRE_NOROUTE with RTF_REJECT set */ ire_t * ire_reject(ip_stack_t *ipst, boolean_t isv6) { ire_t *ire; if (isv6) ire = ipst->ips_ire_reject_v6; else ire = ipst->ips_ire_reject_v4; ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); ire_refhold(ire); return (ire); } /* * Return a held IRE_NOROUTE with RTF_BLACKHOLE set */ ire_t * ire_blackhole(ip_stack_t *ipst, boolean_t isv6) { ire_t *ire; if (isv6) ire = ipst->ips_ire_blackhole_v6; else ire = ipst->ips_ire_blackhole_v4; ASSERT(ire->ire_generation != IRE_GENERATION_CONDEMNED); ire_refhold(ire); return (ire); } /* * Return a held IRE_MULTICAST. */ ire_t * ire_multicast(ill_t *ill) { ire_t *ire = ill->ill_ire_multicast; ASSERT(ire == NULL || ire->ire_generation != IRE_GENERATION_CONDEMNED); if (ire == NULL) ire = ire_blackhole(ill->ill_ipst, ill->ill_isv6); else ire_refhold(ire); return (ire); } /* * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6). * This can return an RTF_REJECT|RTF_BLACKHOLE. * The returned IRE is held. * The assumption is that ip_select_route() has been called and returned the * IRE (thus ip_select_route would have set up the ire_dep* information.) * If some IRE is deleteted then ire_dep_remove() will have been called and * we might not find a nexthop IRE, in which case we return NULL. */ ire_t * ire_nexthop(ire_t *ire) { ip_stack_t *ipst = ire->ire_ipst; /* Acquire lock to walk ire_dep_parent */ rw_enter(&ipst->ips_ire_dep_lock, RW_READER); while (ire != NULL) { if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { goto done; } /* * If we find an IRE_ONLINK we are done. This includes * the case of IRE_MULTICAST. * Note that in order to send packets we need a host-specific * IRE_IF_ALL first in the ire_dep_parent chain. Normally this * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE * was not host specific. * However, ip_rts_request doesn't want to send packets * hence doesn't want to allocate an IRE_IF_CLONE. Yet * it needs an IRE_IF_ALL to get to the ill. Thus * we return IRE_IF_ALL that are not host specific here. */ if (ire->ire_type & IRE_ONLINK) goto done; ire = ire->ire_dep_parent; } rw_exit(&ipst->ips_ire_dep_lock); return (NULL); done: ire_refhold(ire); rw_exit(&ipst->ips_ire_dep_lock); return (ire); } /* * Find the ill used to send packets. This will be NULL in case * of a reject or blackhole. * The returned ill is held; caller needs to do ill_refrele when done. */ ill_t * ire_nexthop_ill(ire_t *ire) { ill_t *ill; ire = ire_nexthop(ire); if (ire == NULL) return (NULL); /* ire_ill can not change for an existing ire */ ill = ire->ire_ill; if (ill != NULL) ill_refhold(ill); ire_refrele(ire); return (ill); } #ifdef DEBUG static boolean_t parent_has_child(ire_t *parent, ire_t *child) { ire_t *ire; ire_t *prev; ire = parent->ire_dep_children; prev = NULL; while (ire != NULL) { if (prev == NULL) { ASSERT(ire->ire_dep_sib_ptpn == &(parent->ire_dep_children)); } else { ASSERT(ire->ire_dep_sib_ptpn == &(prev->ire_dep_sib_next)); } if (ire == child) return (B_TRUE); prev = ire; ire = ire->ire_dep_sib_next; } return (B_FALSE); } static void ire_dep_verify(ire_t *ire) { ire_t *parent = ire->ire_dep_parent; ire_t *child = ire->ire_dep_children; ASSERT(ire->ire_ipversion == IPV4_VERSION || ire->ire_ipversion == IPV6_VERSION); if (parent != NULL) { ASSERT(parent->ire_ipversion == IPV4_VERSION || parent->ire_ipversion == IPV6_VERSION); ASSERT(parent->ire_refcnt >= 1); ASSERT(parent_has_child(parent, ire)); } if (child != NULL) { ASSERT(child->ire_ipversion == IPV4_VERSION || child->ire_ipversion == IPV6_VERSION); ASSERT(child->ire_dep_parent == ire); ASSERT(child->ire_dep_sib_ptpn != NULL); ASSERT(parent_has_child(ire, child)); } } #endif /* DEBUG */ /* * Assumes ire_dep_parent is set. Remove this child from its parent's linkage. */ void ire_dep_remove(ire_t *ire) { ip_stack_t *ipst = ire->ire_ipst; ire_t *parent = ire->ire_dep_parent; ire_t *next; nce_t *nce; ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); ASSERT(ire->ire_dep_parent != NULL); ASSERT(ire->ire_dep_sib_ptpn != NULL); #ifdef DEBUG ire_dep_verify(ire); ire_dep_verify(parent); #endif next = ire->ire_dep_sib_next; if (next != NULL) next->ire_dep_sib_ptpn = ire->ire_dep_sib_ptpn; ASSERT(*(ire->ire_dep_sib_ptpn) == ire); *(ire->ire_dep_sib_ptpn) = ire->ire_dep_sib_next; ire->ire_dep_sib_ptpn = NULL; ire->ire_dep_sib_next = NULL; mutex_enter(&ire->ire_lock); parent = ire->ire_dep_parent; ire->ire_dep_parent = NULL; mutex_exit(&ire->ire_lock); /* * Make sure all our children, grandchildren, etc set * ire_dep_parent_generation to IRE_GENERATION_VERIFY since * we can no longer guarantee than the children have a current * ire_nce_cache and ire_nexthop_ill(). */ if (ire->ire_dep_children != NULL) ire_dep_invalidate_children(ire->ire_dep_children); /* * Since the parent is gone we make sure we clear ire_nce_cache. * We can clear it under ire_lock even if the IRE is used */ mutex_enter(&ire->ire_lock); nce = ire->ire_nce_cache; ire->ire_nce_cache = NULL; mutex_exit(&ire->ire_lock); if (nce != NULL) nce_refrele(nce); #ifdef DEBUG ire_dep_verify(ire); ire_dep_verify(parent); #endif ire_refrele_notr(parent); ire_refrele_notr(ire); } /* * Insert the child in the linkage of the parent */ static void ire_dep_parent_insert(ire_t *child, ire_t *parent) { ip_stack_t *ipst = child->ire_ipst; ire_t *next; ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); ASSERT(child->ire_dep_parent == NULL); #ifdef DEBUG ire_dep_verify(child); ire_dep_verify(parent); #endif /* No parents => no siblings */ ASSERT(child->ire_dep_sib_ptpn == NULL); ASSERT(child->ire_dep_sib_next == NULL); ire_refhold_notr(parent); ire_refhold_notr(child); /* Head insertion */ next = parent->ire_dep_children; if (next != NULL) { ASSERT(next->ire_dep_sib_ptpn == &(parent->ire_dep_children)); child->ire_dep_sib_next = next; next->ire_dep_sib_ptpn = &(child->ire_dep_sib_next); } parent->ire_dep_children = child; child->ire_dep_sib_ptpn = &(parent->ire_dep_children); mutex_enter(&child->ire_lock); child->ire_dep_parent = parent; mutex_exit(&child->ire_lock); #ifdef DEBUG ire_dep_verify(child); ire_dep_verify(parent); #endif } /* * Given count worth of ires and generations, build ire_dep_* relationships * from ires[0] to ires[count-1]. Record generations[i+1] in * ire_dep_parent_generation for ires[i]. * We graft onto an existing parent chain by making sure that we don't * touch ire_dep_parent for ires[count-1]. * * We check for any condemned ire_generation count and return B_FALSE in * that case so that the caller can tear it apart. * * Note that generations[0] is not used. Caller handles that. */ boolean_t ire_dep_build(ire_t *ires[], uint_t generations[], uint_t count) { ire_t *ire = ires[0]; ip_stack_t *ipst; uint_t i; ASSERT(count > 0); if (count == 1) { /* No work to do */ return (B_TRUE); } ipst = ire->ire_ipst; rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); /* * Do not remove the linkage for any existing parent chain i.e., * ires[count-1] is left alone. */ for (i = 0; i < count-1; i++) { /* Remove existing parent if we need to change it */ if (ires[i]->ire_dep_parent != NULL && ires[i]->ire_dep_parent != ires[i+1]) ire_dep_remove(ires[i]); } for (i = 0; i < count - 1; i++) { ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || ires[i]->ire_ipversion == IPV6_VERSION); /* Does it need to change? */ if (ires[i]->ire_dep_parent != ires[i+1]) ire_dep_parent_insert(ires[i], ires[i+1]); mutex_enter(&ires[i+1]->ire_lock); if (IRE_IS_CONDEMNED(ires[i+1])) { mutex_exit(&ires[i+1]->ire_lock); rw_exit(&ipst->ips_ire_dep_lock); return (B_FALSE); } mutex_exit(&ires[i+1]->ire_lock); mutex_enter(&ires[i]->ire_lock); ires[i]->ire_dep_parent_generation = generations[i+1]; mutex_exit(&ires[i]->ire_lock); } rw_exit(&ipst->ips_ire_dep_lock); return (B_TRUE); } /* * Given count worth of ires, unbuild ire_dep_* relationships * from ires[0] to ires[count-1]. */ void ire_dep_unbuild(ire_t *ires[], uint_t count) { ip_stack_t *ipst; uint_t i; if (count == 0) { /* No work to do */ return; } ipst = ires[0]->ire_ipst; rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER); for (i = 0; i < count; i++) { ASSERT(ires[i]->ire_ipversion == IPV4_VERSION || ires[i]->ire_ipversion == IPV6_VERSION); if (ires[i]->ire_dep_parent != NULL) ire_dep_remove(ires[i]); mutex_enter(&ires[i]->ire_lock); ires[i]->ire_dep_parent_generation = IRE_GENERATION_VERIFY; mutex_exit(&ires[i]->ire_lock); } rw_exit(&ipst->ips_ire_dep_lock); } /* * Both the forwarding and the outbound code paths can trip on * a condemned NCE, in which case we call this function. * We have two different behaviors: if the NCE was UNREACHABLE * it is an indication that something failed. In that case * we see if we should look for a different IRE (for example, * delete any matching redirect IRE, or try a different * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully * different IRE will be picked next time we send/forward. * * If we are called by the output path then fail_if_better is set * and we return NULL if there could be a better IRE. This is because the * output path retries the IRE lookup. (The input/forward path can not retry.) * * If the NCE was not unreachable then we pick/allocate a * new (most likely ND_INITIAL) NCE and proceed with it. * * ipha/ip6h are needed for multicast packets; ipha needs to be * set for IPv4 and ip6h needs to be set for IPv6 packets. */ nce_t * ire_handle_condemned_nce(nce_t *nce, ire_t *ire, ipha_t *ipha, ip6_t *ip6h, boolean_t fail_if_better) { if (nce->nce_common->ncec_state == ND_UNREACHABLE) { if (ire_no_good(ire) && fail_if_better) { /* * Did some changes, or ECMP likely to exist. * Make ip_output look for a different IRE */ return (NULL); } } if (ire_revalidate_nce(ire) == ENETUNREACH) { /* The ire_dep_parent chain went bad, or no memory? */ (void) ire_no_good(ire); return (NULL); } if (ire->ire_ipversion == IPV4_VERSION) { ASSERT(ipha != NULL); nce = ire_to_nce(ire, ipha->ipha_dst, NULL); } else { ASSERT(ip6h != NULL); nce = ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst); } if (nce == NULL) return (NULL); if (nce->nce_is_condemned) { nce_refrele(nce); return (NULL); } return (nce); } /* * The caller has found that the ire is bad, either due to a reference to an NCE * in ND_UNREACHABLE state, or a MULTIRT route whose gateway can't be resolved. * We update things so a subsequent attempt to send to the destination * is likely to find different IRE, or that a new NCE would be created. * * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would * find a different route (either due to having deleted a redirect, or there * being ECMP routes.) * * If we have a redirect (RTF_DYNAMIC) we delete it. * Otherwise we increment ire_badcnt and increment the generation number so * that a cached ixa_ire will redo the route selection. ire_badcnt is taken * into account in the route selection when we have multiple choices (multiple * default routes or ECMP in general). * Any time ip_select_route find an ire with a condemned ire_nce_cache * (e.g., if no equal cost route to the bad one) ip_select_route will make * sure the NCE is revalidated to avoid getting stuck on a * NCE_F_CONDMNED ncec that caused ire_no_good to be called. */ boolean_t ire_no_good(ire_t *ire) { ip_stack_t *ipst = ire->ire_ipst; ire_t *ire2; nce_t *nce; if (ire->ire_flags & RTF_DYNAMIC) { ire_delete(ire); return (B_TRUE); } if (ire->ire_flags & RTF_INDIRECT) { /* Check if next IRE is a redirect */ rw_enter(&ipst->ips_ire_dep_lock, RW_READER); if (ire->ire_dep_parent != NULL && (ire->ire_dep_parent->ire_flags & RTF_DYNAMIC)) { ire2 = ire->ire_dep_parent; ire_refhold(ire2); } else { ire2 = NULL; } rw_exit(&ipst->ips_ire_dep_lock); if (ire2 != NULL) { ire_delete(ire2); ire_refrele(ire2); return (B_TRUE); } } /* * No redirect involved. Increment badcnt so that if we have ECMP * routes we are likely to pick a different one for the next packet. * * If the NCE is unreachable and condemned we should drop the reference * to it so that a new NCE can be created. * * Finally we increment the generation number so that any ixa_ire * cache will be revalidated. */ mutex_enter(&ire->ire_lock); ire->ire_badcnt++; ire->ire_last_badcnt = TICK_TO_SEC(ddi_get_lbolt64()); nce = ire->ire_nce_cache; if (nce != NULL && nce->nce_is_condemned && nce->nce_common->ncec_state == ND_UNREACHABLE) ire->ire_nce_cache = NULL; else nce = NULL; mutex_exit(&ire->ire_lock); if (nce != NULL) nce_refrele(nce); ire_increment_generation(ire); ire_dep_incr_generation(ire); return (ire->ire_bucket->irb_ire_cnt > 1); } /* * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation == * ire_dep_parent_generation. * If they all match we just return ire_generation from the topmost IRE. * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation * above the mismatch to IRE_GENERATION_VERIFY and also returning * IRE_GENERATION_VERIFY. */ uint_t ire_dep_validate_generations(ire_t *ire) { ip_stack_t *ipst = ire->ire_ipst; uint_t generation; ire_t *ire1; rw_enter(&ipst->ips_ire_dep_lock, RW_READER); generation = ire->ire_generation; /* Assuming things match */ for (ire1 = ire; ire1 != NULL; ire1 = ire1->ire_dep_parent) { ASSERT(ire1->ire_ipversion == IPV4_VERSION || ire1->ire_ipversion == IPV6_VERSION); if (ire1->ire_dep_parent == NULL) break; if (ire1->ire_dep_parent_generation != ire1->ire_dep_parent->ire_generation) goto mismatch; } rw_exit(&ipst->ips_ire_dep_lock); return (generation); mismatch: generation = IRE_GENERATION_VERIFY; /* Fill from top down to the mismatch with _VERIFY */ while (ire != ire1) { ASSERT(ire->ire_ipversion == IPV4_VERSION || ire->ire_ipversion == IPV6_VERSION); mutex_enter(&ire->ire_lock); ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; mutex_exit(&ire->ire_lock); ire = ire->ire_dep_parent; } rw_exit(&ipst->ips_ire_dep_lock); return (generation); } /* * Used when we need to return an ire with ire_dep_parent, but we * know the chain is invalid for instance we didn't create an IRE_IF_CLONE * Using IRE_GENERATION_VERIFY means that next time we'll redo the * recursive lookup. */ void ire_dep_invalidate_generations(ire_t *ire) { ip_stack_t *ipst = ire->ire_ipst; rw_enter(&ipst->ips_ire_dep_lock, RW_READER); while (ire != NULL) { ASSERT(ire->ire_ipversion == IPV4_VERSION || ire->ire_ipversion == IPV6_VERSION); mutex_enter(&ire->ire_lock); ire->ire_dep_parent_generation = IRE_GENERATION_VERIFY; mutex_exit(&ire->ire_lock); ire = ire->ire_dep_parent; } rw_exit(&ipst->ips_ire_dep_lock); } /* Set _VERIFY ire_dep_parent_generation for all children recursively */ static void ire_dep_invalidate_children(ire_t *child) { ip_stack_t *ipst = child->ire_ipst; ASSERT(RW_WRITE_HELD(&ipst->ips_ire_dep_lock)); /* Depth first */ if (child->ire_dep_children != NULL) ire_dep_invalidate_children(child->ire_dep_children); while (child != NULL) { mutex_enter(&child->ire_lock); child->ire_dep_parent_generation = IRE_GENERATION_VERIFY; mutex_exit(&child->ire_lock); child = child->ire_dep_sib_next; } } static void ire_dep_increment_children(ire_t *child) { ip_stack_t *ipst = child->ire_ipst; ASSERT(RW_READ_HELD(&ipst->ips_ire_dep_lock)); /* Depth first */ if (child->ire_dep_children != NULL) ire_dep_increment_children(child->ire_dep_children); while (child != NULL) { if (!IRE_IS_CONDEMNED(child)) ire_increment_generation(child); child = child->ire_dep_sib_next; } } /* * Walk all the children of this ire recursively and increment their * generation number. */ static void ire_dep_incr_generation_locked(ire_t *parent) { ASSERT(RW_READ_HELD(&parent->ire_ipst->ips_ire_dep_lock)); if (parent->ire_dep_children != NULL) ire_dep_increment_children(parent->ire_dep_children); } void ire_dep_incr_generation(ire_t *parent) { ip_stack_t *ipst = parent->ire_ipst; rw_enter(&ipst->ips_ire_dep_lock, RW_READER); ire_dep_incr_generation_locked(parent); rw_exit(&ipst->ips_ire_dep_lock); } /* * Get a new ire_nce_cache for this IRE as well as its nexthop. * Returns zero if it succeeds. Can fail due to lack of memory or when * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those * cases. * * In the in.mpathd case, the ire will have ire_testhidden * set; so we should create the ncec for the underlying ill. * * Note that the error returned by ire_revalidate_nce() is ignored by most * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH * error to mark potentially bad ire's. For all the other callers, an * error return could indicate a transient condition like ENOMEM, or could * be the result of an interface that is going down/unplumbing. In the former * case (transient error), we would leave the old stale ire/ire_nce_cache * in place, and possibly use incorrect link-layer information to send packets * but would eventually recover. In the latter case (ill down/replumb), * ire_revalidate_nce() might return a condemned nce back, but we would then * recover in the packet output path. */ int ire_revalidate_nce(ire_t *ire) { nce_t *nce, *old_nce; ire_t *nexthop; /* * For multicast we conceptually have an NCE but we don't store it * in ire_nce_cache; when ire_to_nce is called we allocate the nce. */ if (ire->ire_type & IRE_MULTICAST) return (0); /* ire_testhidden should only be set on under-interfaces */ ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); nexthop = ire_nexthop(ire); if (nexthop == NULL) { /* The route is potentially bad */ (void) ire_no_good(ire); return (ENETUNREACH); } if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { ASSERT(ire->ire_ill != NULL); if (ire->ire_ipversion == IPV4_VERSION) nce = nce_lookup_v4(ire->ire_ill, &ire->ire_addr); else nce = nce_lookup_v6(ire->ire_ill, &ire->ire_addr_v6); } else { ASSERT(nexthop->ire_type & IRE_ONLINK); if (ire->ire_ipversion == IPV4_VERSION) { nce = arp_nce_init(nexthop->ire_ill, nexthop->ire_addr, nexthop->ire_type); } else { nce = ndp_nce_init(nexthop->ire_ill, &nexthop->ire_addr_v6, nexthop->ire_type); } } if (nce == NULL) { /* * Leave the old stale one in place to avoid a NULL * ire_nce_cache. */ ire_refrele(nexthop); return (ENOMEM); } if (nexthop != ire) { /* Update the nexthop ire */ mutex_enter(&nexthop->ire_lock); old_nce = nexthop->ire_nce_cache; if (!IRE_IS_CONDEMNED(nexthop)) { nce_refhold(nce); nexthop->ire_nce_cache = nce; } else { nexthop->ire_nce_cache = NULL; } mutex_exit(&nexthop->ire_lock); if (old_nce != NULL) nce_refrele(old_nce); } ire_refrele(nexthop); mutex_enter(&ire->ire_lock); old_nce = ire->ire_nce_cache; if (!IRE_IS_CONDEMNED(ire)) { nce_refhold(nce); ire->ire_nce_cache = nce; } else { ire->ire_nce_cache = NULL; } mutex_exit(&ire->ire_lock); if (old_nce != NULL) nce_refrele(old_nce); nce_refrele(nce); return (0); } /* * Get a held nce for a given ire. * In the common case this is just from ire_nce_cache. * For IRE_MULTICAST this needs to do an explicit lookup since we do not * have an IRE_MULTICAST per address. * Note that this explicitly returns CONDEMNED NCEs. The caller needs those * so they can check whether the NCE went unreachable (as opposed to was * condemned for some other reason). */ nce_t * ire_to_nce(ire_t *ire, ipaddr_t v4nexthop, const in6_addr_t *v6nexthop) { nce_t *nce; if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) return (NULL); /* ire_testhidden should only be set on under-interfaces */ ASSERT(!ire->ire_testhidden || !IS_IPMP(ire->ire_ill)); mutex_enter(&ire->ire_lock); nce = ire->ire_nce_cache; if (nce != NULL) { nce_refhold(nce); mutex_exit(&ire->ire_lock); return (nce); } mutex_exit(&ire->ire_lock); if (ire->ire_type & IRE_MULTICAST) { ASSERT(ire->ire_ill != NULL); if (ire->ire_ipversion == IPV4_VERSION) { ASSERT(v6nexthop == NULL); nce = arp_nce_init(ire->ire_ill, v4nexthop, ire->ire_type); } else { ASSERT(v6nexthop != NULL); ASSERT(v4nexthop == 0); nce = ndp_nce_init(ire->ire_ill, v6nexthop, ire->ire_type); } return (nce); } return (NULL); } nce_t * ire_to_nce_pkt(ire_t *ire, mblk_t *mp) { ipha_t *ipha; ip6_t *ip6h; if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { ipha = (ipha_t *)mp->b_rptr; return (ire_to_nce(ire, ipha->ipha_dst, NULL)); } else { ip6h = (ip6_t *)mp->b_rptr; return (ire_to_nce(ire, INADDR_ANY, &ip6h->ip6_dst)); } } /* * Given an IRE_INTERFACE (that matches more than one address) create * and return an IRE_IF_CLONE for the specific address. * Return the generation number. * Returns NULL is no memory for the IRE. * Handles both IPv4 and IPv6. */ ire_t * ire_create_if_clone(ire_t *ire_if, const in6_addr_t *addr, uint_t *generationp) { ire_t *ire; ire_t *nire; if (ire_if->ire_ipversion == IPV4_VERSION) { ipaddr_t v4addr; ipaddr_t mask = IP_HOST_MASK; ASSERT(IN6_IS_ADDR_V4MAPPED(addr)); IN6_V4MAPPED_TO_IPADDR(addr, v4addr); ire = ire_create( (uchar_t *)&v4addr, /* dest address */ (uchar_t *)&mask, /* mask */ (uchar_t *)&ire_if->ire_gateway_addr, IRE_IF_CLONE, /* IRE type */ ire_if->ire_ill, ire_if->ire_zoneid, ire_if->ire_flags | RTF_HOST, NULL, /* No security attr for IRE_IF_ALL */ ire_if->ire_ipst); } else { ASSERT(!IN6_IS_ADDR_V4MAPPED(addr)); ire = ire_create_v6( addr, /* dest address */ &ipv6_all_ones, /* mask */ &ire_if->ire_gateway_addr_v6, /* gateway addr */ IRE_IF_CLONE, /* IRE type */ ire_if->ire_ill, ire_if->ire_zoneid, ire_if->ire_flags | RTF_HOST, NULL, /* No security attr for IRE_IF_ALL */ ire_if->ire_ipst); } if (ire == NULL) return (NULL); /* Take the metrics, in particular the mtu, from the IRE_IF */ ire->ire_metrics = ire_if->ire_metrics; nire = ire_add(ire); if (nire == NULL) /* Some failure */ return (NULL); if (generationp != NULL) *generationp = nire->ire_generation; /* * Make sure races don't add a duplicate by * catching the case when an identical was returned. */ if (nire != ire) { ASSERT(nire->ire_identical_ref > 1); ire_delete(nire); } return (nire); } /* * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the * ire_dep_children (just walk the ire_dep_sib_next since they are all * immediate children.) * Since we hold a lock while we remove them we need to defer the actual * calls to ire_delete() until we have dropped the lock. This makes things * less efficient since we restart at the top after dropping the lock. But * we only run when an IRE_INTERFACE is deleted which is infrquent. * * Note that ire_dep_children can be any mixture of offlink routes and * IRE_IF_CLONE entries. */ void ire_dep_delete_if_clone(ire_t *parent) { ip_stack_t *ipst = parent->ire_ipst; ire_t *child, *next; restart: rw_enter(&ipst->ips_ire_dep_lock, RW_READER); if (parent->ire_dep_children == NULL) { rw_exit(&ipst->ips_ire_dep_lock); return; } child = parent->ire_dep_children; while (child != NULL) { next = child->ire_dep_sib_next; if ((child->ire_type & IRE_IF_CLONE) && !IRE_IS_CONDEMNED(child)) { ire_refhold(child); rw_exit(&ipst->ips_ire_dep_lock); ire_delete(child); ASSERT(IRE_IS_CONDEMNED(child)); ire_refrele(child); goto restart; } child = next; } rw_exit(&ipst->ips_ire_dep_lock); } /* * ire_pref() is used in recursive route-resolution for a destination to * determine the preference of an ire, where "preference" is determined * based on the level of indirection to the destination of the ire. * A higher preference indicates that fewer lookups are needed to complete * recursive route lookup. Thus * ire_pref(RTF_INDIRECT) < ire_pref(IRE_IF_RESOLVER) < ire_pref(IRE_PREF_CLONE) */ int ire_pref(ire_t *ire) { if (ire->ire_flags & RTF_INDIRECT) return (1); if (ire->ire_type & IRE_OFFLINK) return (2); if (ire->ire_type & (IRE_IF_RESOLVER|IRE_IF_NORESOLVER)) return (3); if (ire->ire_type & IRE_IF_CLONE) return (4); if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) return (5); return (-1); /* unknown ire_type */ } /* * In the preferred/strict src multihoming modes, unbound routes (i.e., * ire_t entries with ire_unbound set to B_TRUE) are bound to an interface * by selecting the first available interface that has an interface route for * the ire_gateway. If that interface is subsequently brought down, ill_downi() * will call ire_rebind() so that the unbound route can be bound to some other * matching interface thereby preserving the intended reachability information * from the original unbound route. */ void ire_rebind(ire_t *ire) { ire_t *gw_ire, *new_ire; int match_flags = MATCH_IRE_TYPE; ill_t *gw_ill; boolean_t isv6 = (ire->ire_ipversion == IPV6_VERSION); ip_stack_t *ipst = ire->ire_ipst; ASSERT(ire->ire_unbound); again: if (isv6) { gw_ire = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 0, 0, IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, ipst, NULL); } else { gw_ire = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, IRE_INTERFACE, NULL, ALL_ZONES, NULL, match_flags, 0, ipst, NULL); } if (gw_ire == NULL) { /* see comments in ip_rt_add[_v6]() for IPMP */ if (match_flags & MATCH_IRE_TESTHIDDEN) return; match_flags |= MATCH_IRE_TESTHIDDEN; goto again; } gw_ill = gw_ire->ire_ill; if (isv6) { new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, &ire->ire_gateway_addr_v6, ire->ire_type, gw_ill, ire->ire_zoneid, ire->ire_flags, NULL, ipst); } else { new_ire = ire_create((uchar_t *)&ire->ire_addr, (uchar_t *)&ire->ire_mask, (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, gw_ill, ire->ire_zoneid, ire->ire_flags, NULL, ipst); } ire_refrele(gw_ire); if (new_ire == NULL) return; new_ire->ire_unbound = B_TRUE; new_ire = ire_add(new_ire); if (new_ire != NULL) ire_refrele(new_ire); }