/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * This file contains consumer routines of the IPv4 forwarding engine */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IS_DEFAULT_ROUTE(ire) \ (((ire)->ire_type & IRE_DEFAULT) || \ (((ire)->ire_type & IRE_INTERFACE) && ((ire)->ire_addr == 0))) /* * structure for passing args between ire_ftable_lookup and ire_find_best_route */ typedef struct ire_ftable_args_s { ipaddr_t ift_addr; ipaddr_t ift_mask; ipaddr_t ift_gateway; int ift_type; const ipif_t *ift_ipif; zoneid_t ift_zoneid; uint32_t ift_ihandle; const ts_label_t *ift_tsl; int ift_flags; ire_t *ift_best_ire; } ire_ftable_args_t; static ire_t *route_to_dst(const struct sockaddr *, zoneid_t, ip_stack_t *); static ire_t *ire_round_robin(irb_t *, zoneid_t, ire_ftable_args_t *, ip_stack_t *); static void ire_del_host_redir(ire_t *, char *); static boolean_t ire_find_best_route(struct radix_node *, void *); static int ip_send_align_hcksum_flags(mblk_t *, ill_t *); /* * Lookup a route in forwarding table. A specific lookup is indicated by * passing the required parameters and indicating the match required in the * flag field. * * Looking for default route can be done in three ways * 1) pass mask as 0 and set MATCH_IRE_MASK in flags field * along with other matches. * 2) pass type as IRE_DEFAULT and set MATCH_IRE_TYPE in flags * field along with other matches. * 3) if the destination and mask are passed as zeros. * * A request to return a default route if no route * is found, can be specified by setting MATCH_IRE_DEFAULT * in flags. * * It does not support recursion more than one level. It * will do recursive lookup only when the lookup maps to * a prefix or default route and MATCH_IRE_RECURSIVE flag is passed. * * If the routing table is setup to allow more than one level * of recursion, the cleaning up cache table will not work resulting * in invalid routing. * * Supports IP_BOUND_IF by following the ipif/ill when recursing. * * NOTE : When this function returns NULL, pire has already been released. * pire is valid only when this function successfully returns an * ire. */ ire_t * ire_ftable_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, uint32_t ihandle, const ts_label_t *tsl, int flags, ip_stack_t *ipst) { ire_t *ire = NULL; ipaddr_t gw_addr; struct rt_sockaddr rdst, rmask; struct rt_entry *rt; ire_ftable_args_t margs; boolean_t found_incomplete = B_FALSE; ASSERT(ipif == NULL || !ipif->ipif_isv6); ASSERT(!(flags & MATCH_IRE_WQ)); /* * When we return NULL from this function, we should make * sure that *pire is NULL so that the callers will not * wrongly REFRELE the pire. */ if (pire != NULL) *pire = NULL; /* * ire_match_args() will dereference ipif MATCH_IRE_SRC or * MATCH_IRE_ILL is set. */ if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && (ipif == NULL)) return (NULL); (void) memset(&rdst, 0, sizeof (rdst)); rdst.rt_sin_len = sizeof (rdst); rdst.rt_sin_family = AF_INET; rdst.rt_sin_addr.s_addr = addr; (void) memset(&rmask, 0, sizeof (rmask)); rmask.rt_sin_len = sizeof (rmask); rmask.rt_sin_family = AF_INET; rmask.rt_sin_addr.s_addr = mask; (void) memset(&margs, 0, sizeof (margs)); margs.ift_addr = addr; margs.ift_mask = mask; margs.ift_gateway = gateway; margs.ift_type = type; margs.ift_ipif = ipif; margs.ift_zoneid = zoneid; margs.ift_ihandle = ihandle; margs.ift_tsl = tsl; margs.ift_flags = flags; /* * The flags argument passed to ire_ftable_lookup may cause the * search to return, not the longest matching prefix, but the * "best matching prefix", i.e., the longest prefix that also * satisfies constraints imposed via the permutation of flags * passed in. To achieve this, we invoke ire_match_args() on * each matching leaf in the radix tree. ire_match_args is * invoked by the callback function ire_find_best_route() * We hold the global tree lock in read mode when calling * rn_match_args.Before dropping the global tree lock, ensure * that the radix node can't be deleted by incrementing ire_refcnt. */ RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst, ipst->ips_ip_ftable, ire_find_best_route, &margs); ire = margs.ift_best_ire; RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); if (rt == NULL) { return (NULL); } else { ASSERT(ire != NULL); } DTRACE_PROBE2(ire__found, ire_ftable_args_t *, &margs, ire_t *, ire); if (!IS_DEFAULT_ROUTE(ire)) goto found_ire_held; /* * If default route is found, see if default matching criteria * are satisfied. */ if (flags & MATCH_IRE_MASK) { /* * we were asked to match a 0 mask, and came back with * a default route. Ok to return it. */ goto found_default_ire; } if ((flags & MATCH_IRE_TYPE) && (type & (IRE_DEFAULT | IRE_INTERFACE))) { /* * we were asked to match a default ire type. Ok to return it. */ goto found_default_ire; } if (flags & MATCH_IRE_DEFAULT) { goto found_default_ire; } /* * we found a default route, but default matching criteria * are not specified and we are not explicitly looking for * default. */ IRE_REFRELE(ire); return (NULL); found_default_ire: /* * round-robin only if we have more than one route in the bucket. */ if ((ire->ire_bucket->irb_ire_cnt > 1) && IS_DEFAULT_ROUTE(ire) && ((flags & (MATCH_IRE_DEFAULT | MATCH_IRE_MASK)) == MATCH_IRE_DEFAULT)) { ire_t *next_ire; next_ire = ire_round_robin(ire->ire_bucket, zoneid, &margs, ipst); IRE_REFRELE(ire); if (next_ire != NULL) { ire = next_ire; } else { /* no route */ return (NULL); } } found_ire_held: ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); if ((flags & MATCH_IRE_RJ_BHOLE) && (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) { return (ire); } /* * At this point, IRE that was found must be an IRE_FORWARDTABLE * type. If this is a recursive lookup and an IRE_INTERFACE type was * found, return that. If it was some other IRE_FORWARDTABLE type of * IRE (one of the prefix types), then it is necessary to fill in the * parent IRE pointed to by pire, and then lookup the gateway address of * the parent. For backwards compatiblity, if this lookup returns an * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level * of lookup is done. */ if (flags & MATCH_IRE_RECURSIVE) { ipif_t *gw_ipif; int match_flags = MATCH_IRE_DSTONLY; ire_t *save_ire; if (ire->ire_type & IRE_INTERFACE) return (ire); if (pire != NULL) *pire = ire; /* * If we can't find an IRE_INTERFACE or the caller has not * asked for pire, we need to REFRELE the save_ire. */ save_ire = ire; /* * Currently MATCH_IRE_ILL is never used with * (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT) while * sending out packets as MATCH_IRE_ILL is used only * for communicating with on-link hosts. We can't assert * that here as RTM_GET calls this function with * MATCH_IRE_ILL | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE. * We have already used the MATCH_IRE_ILL in determining * the right prefix route at this point. To match the * behavior of how we locate routes while sending out * packets, we don't want to use MATCH_IRE_ILL below * while locating the interface route. * * ire_ftable_lookup may end up with an incomplete IRE_CACHE * entry for the gateway (i.e., one for which the * ire_nce->nce_state is not yet ND_REACHABLE). If the caller * has specified MATCH_IRE_COMPLETE, such entries will not * be returned; instead, we return the IF_RESOLVER ire. */ if (ire->ire_ipif != NULL) match_flags |= MATCH_IRE_ILL_GROUP; ire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, 0, ire->ire_ipif, NULL, zoneid, tsl, match_flags, ipst); DTRACE_PROBE2(ftable__route__lookup1, (ire_t *), ire, (ire_t *), save_ire); if (ire == NULL || ((ire->ire_type & IRE_CACHE) && ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE && (flags & MATCH_IRE_COMPLETE))) { /* * Do not release the parent ire if MATCH_IRE_PARENT * is set. Also return it via ire. */ if (ire != NULL) { ire_refrele(ire); ire = NULL; found_incomplete = B_TRUE; } if (flags & MATCH_IRE_PARENT) { if (pire != NULL) { /* * Need an extra REFHOLD, if the parent * ire is returned via both ire and * pire. */ IRE_REFHOLD(save_ire); } ire = save_ire; } else { ire_refrele(save_ire); if (pire != NULL) *pire = NULL; } if (!found_incomplete) return (ire); } if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) { /* * If the caller did not ask for pire, release * it now. */ if (pire == NULL) { ire_refrele(save_ire); } return (ire); } match_flags |= MATCH_IRE_TYPE; gw_addr = ire->ire_gateway_addr; gw_ipif = ire->ire_ipif; ire_refrele(ire); ire = ire_route_lookup(gw_addr, 0, 0, (found_incomplete? IRE_INTERFACE : (IRE_CACHETABLE | IRE_INTERFACE)), gw_ipif, NULL, zoneid, tsl, match_flags, ipst); DTRACE_PROBE2(ftable__route__lookup2, (ire_t *), ire, (ire_t *), save_ire); if (ire == NULL || ((ire->ire_type & IRE_CACHE) && ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE && (flags & MATCH_IRE_COMPLETE))) { /* * Do not release the parent ire if MATCH_IRE_PARENT * is set. Also return it via ire. */ if (ire != NULL) { ire_refrele(ire); ire = NULL; } if (flags & MATCH_IRE_PARENT) { if (pire != NULL) { /* * Need an extra REFHOLD, if the * parent ire is returned via both * ire and pire. */ IRE_REFHOLD(save_ire); } ire = save_ire; } else { ire_refrele(save_ire); if (pire != NULL) *pire = NULL; } return (ire); } else if (pire == NULL) { /* * If the caller did not ask for pire, release * it now. */ ire_refrele(save_ire); } return (ire); } ASSERT(pire == NULL || *pire == NULL); return (ire); } /* * Find an IRE_OFFSUBNET IRE entry for the multicast address 'group' * that goes through 'ipif'. As a fallback, a route that goes through * ipif->ipif_ill can be returned. */ ire_t * ipif_lookup_multi_ire(ipif_t *ipif, ipaddr_t group) { ire_t *ire; ire_t *save_ire = NULL; ire_t *gw_ire; irb_t *irb; ipaddr_t gw_addr; int match_flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ASSERT(CLASSD(group)); ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, ALL_ZONES, 0, NULL, MATCH_IRE_DEFAULT, ipst); if (ire == NULL) return (NULL); irb = ire->ire_bucket; ASSERT(irb); IRB_REFHOLD(irb); ire_refrele(ire); for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_addr != group || ipif->ipif_zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { continue; } switch (ire->ire_type) { case IRE_DEFAULT: case IRE_PREFIX: case IRE_HOST: gw_addr = ire->ire_gateway_addr; gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst); if (gw_ire != NULL) { if (save_ire != NULL) { ire_refrele(save_ire); } IRE_REFHOLD(ire); if (gw_ire->ire_ipif == ipif) { ire_refrele(gw_ire); IRB_REFRELE(irb); return (ire); } ire_refrele(gw_ire); save_ire = ire; } break; case IRE_IF_NORESOLVER: case IRE_IF_RESOLVER: if (ire->ire_ipif == ipif) { if (save_ire != NULL) { ire_refrele(save_ire); } IRE_REFHOLD(ire); IRB_REFRELE(irb); return (ire); } break; } } IRB_REFRELE(irb); return (save_ire); } /* * Find an IRE_INTERFACE for the multicast group. * Allows different routes for multicast addresses * in the unicast routing table (akin to 224.0.0.0 but could be more specific) * which point at different interfaces. This is used when IP_MULTICAST_IF * isn't specified (when sending) and when IP_ADD_MEMBERSHIP doesn't * specify the interface to join on. * * Supports IP_BOUND_IF by following the ipif/ill when recursing. */ ire_t * ire_lookup_multi(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) { ire_t *ire; ipif_t *ipif = NULL; int match_flags = MATCH_IRE_TYPE; ipaddr_t gw_addr; ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, zoneid, 0, NULL, MATCH_IRE_DEFAULT, ipst); /* We search a resolvable ire in case of multirouting. */ if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) { ire_t *cire = NULL; /* * If the route is not resolvable, the looked up ire * may be changed here. In that case, ire_multirt_lookup() * IRE_REFRELE the original ire and change it. */ (void) ire_multirt_lookup(&cire, &ire, MULTIRT_CACHEGW, NULL, ipst); if (cire != NULL) ire_refrele(cire); } if (ire == NULL) return (NULL); /* * Make sure we follow ire_ipif. * * We need to determine the interface route through * which the gateway will be reached. We don't really * care which interface is picked if the interface is * part of a group. */ if (ire->ire_ipif != NULL) { ipif = ire->ire_ipif; match_flags |= MATCH_IRE_ILL_GROUP; } switch (ire->ire_type) { case IRE_DEFAULT: case IRE_PREFIX: case IRE_HOST: gw_addr = ire->ire_gateway_addr; ire_refrele(ire); ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif, NULL, zoneid, 0, NULL, match_flags, ipst); return (ire); case IRE_IF_NORESOLVER: case IRE_IF_RESOLVER: return (ire); default: ire_refrele(ire); return (NULL); } } /* * Delete the passed in ire if the gateway addr matches */ void ire_del_host_redir(ire_t *ire, char *gateway) { if ((ire->ire_flags & RTF_DYNAMIC) && (ire->ire_gateway_addr == *(ipaddr_t *)gateway)) ire_delete(ire); } /* * Search for all HOST REDIRECT routes that are * pointing at the specified gateway and * delete them. This routine is called only * when a default gateway is going away. */ void ire_delete_host_redirects(ipaddr_t gateway, ip_stack_t *ipst) { struct rtfuncarg rtfarg; (void) memset(&rtfarg, 0, sizeof (rtfarg)); rtfarg.rt_func = ire_del_host_redir; rtfarg.rt_arg = (void *)&gateway; (void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable, rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn); } struct ihandle_arg { uint32_t ihandle; ire_t *ire; }; static int ire_ihandle_onlink_match(struct radix_node *rn, void *arg) { struct rt_entry *rt; irb_t *irb; ire_t *ire; struct ihandle_arg *ih = arg; rt = (struct rt_entry *)rn; ASSERT(rt != NULL); irb = &rt->rt_irb; for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { if ((ire->ire_type & IRE_INTERFACE) && (ire->ire_ihandle == ih->ihandle)) { ih->ire = ire; IRE_REFHOLD(ire); return (1); } } return (0); } /* * Locate the interface ire that is tied to the cache ire 'cire' via * cire->ire_ihandle. * * We are trying to create the cache ire for an onlink destn. or * gateway in 'cire'. We are called from ire_add_v4() in the IRE_IF_RESOLVER * case, after the ire has come back from ARP. */ ire_t * ire_ihandle_lookup_onlink(ire_t *cire) { ire_t *ire; int match_flags; struct ihandle_arg ih; ip_stack_t *ipst; ASSERT(cire != NULL); ipst = cire->ire_ipst; /* * We don't need to specify the zoneid to ire_ftable_lookup() below * because the ihandle refers to an ipif which can be in only one zone. */ match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; /* * We know that the mask of the interface ire equals cire->ire_cmask. * (When ip_newroute() created 'cire' for an on-link destn. it set its * cmask from the interface ire's mask) */ ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, IRE_INTERFACE, NULL, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags, ipst); if (ire != NULL) return (ire); /* * If we didn't find an interface ire above, we can't declare failure. * For backwards compatibility, we need to support prefix routes * pointing to next hop gateways that are not on-link. * * In the resolver/noresolver case, ip_newroute() thinks it is creating * the cache ire for an onlink destination in 'cire'. But 'cire' is * not actually onlink, because ire_ftable_lookup() cheated it, by * doing ire_route_lookup() twice and returning an interface ire. * * Eg. default - gw1 (line 1) * gw1 - gw2 (line 2) * gw2 - hme0 (line 3) * * In the above example, ip_newroute() tried to create the cache ire * 'cire' for gw1, based on the interface route in line 3. The * ire_ftable_lookup() above fails, because there is no interface route * to reach gw1. (it is gw2). We fall thru below. * * Do a brute force search based on the ihandle in a subset of the * forwarding tables, corresponding to cire->ire_cmask. Otherwise * things become very complex, since we don't have 'pire' in this * case. (Also note that this method is not possible in the offlink * case because we don't know the mask) */ (void) memset(&ih, 0, sizeof (ih)); ih.ihandle = cire->ire_ihandle; (void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable, ire_ihandle_onlink_match, &ih, irb_refhold_rn, irb_refrele_rn); return (ih.ire); } /* * IRE iterator used by ire_ftable_lookup[_v6]() to process multiple default * routes. Given a starting point in the hash list (ire_origin), walk the IREs * in the bucket skipping default interface routes and deleted entries. * Returns the next IRE (unheld), or NULL when we're back to the starting point. * Assumes that the caller holds a reference on the IRE bucket. */ ire_t * ire_get_next_default_ire(ire_t *ire, ire_t *ire_origin) { ASSERT(ire_origin->ire_bucket != NULL); ASSERT(ire != NULL); do { ire = ire->ire_next; if (ire == NULL) ire = ire_origin->ire_bucket->irb_ire; if (ire == ire_origin) return (NULL); } while ((ire->ire_type & IRE_INTERFACE) || (ire->ire_marks & IRE_MARK_CONDEMNED)); ASSERT(ire != NULL); return (ire); } static ipif_t * ire_forward_src_ipif(ipaddr_t dst, ire_t *sire, ire_t *ire, ill_t *dst_ill, int zoneid, ushort_t *marks) { ipif_t *src_ipif; ip_stack_t *ipst = dst_ill->ill_ipst; /* * Pick the best source address from dst_ill. * * 1) If it is part of a multipathing group, we would * like to spread the inbound packets across different * interfaces. ipif_select_source picks a random source * across the different ills in the group. * * 2) If it is not part of a multipathing group, we try * to pick the source address from the destination * route. Clustering assumes that when we have multiple * prefixes hosted on an interface, the prefix of the * source address matches the prefix of the destination * route. We do this only if the address is not * DEPRECATED. * * 3) If the conn is in a different zone than the ire, we * need to pick a source address from the right zone. * * NOTE : If we hit case (1) above, the prefix of the source * address picked may not match the prefix of the * destination routes prefix as ipif_select_source * does not look at "dst" while picking a source * address. * If we want the same behavior as (2), we will need * to change the behavior of ipif_select_source. */ if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { /* * The RTF_SETSRC flag is set in the parent ire (sire). * Check that the ipif matching the requested source * address still exists. */ src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, zoneid, NULL, NULL, NULL, NULL, ipst); return (src_ipif); } *marks |= IRE_MARK_USESRC_CHECK; if ((dst_ill->ill_group != NULL) || (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || (dst_ill->ill_usesrc_ifindex != 0)) { src_ipif = ipif_select_source(dst_ill, dst, zoneid); if (src_ipif == NULL) return (NULL); } else { src_ipif = ire->ire_ipif; ASSERT(src_ipif != NULL); /* hold src_ipif for uniformity */ ipif_refhold(src_ipif); } return (src_ipif); } /* * This function is called by ip_rput_noire() and ip_fast_forward() * to resolve the route of incoming packet that needs to be forwarded. * If the ire of the nexthop is not already in the cachetable, this * routine will insert it to the table, but won't trigger ARP resolution yet. * Thus unlike ip_newroute, this function adds incomplete ires to * the cachetable. ARP resolution for these ires are delayed until * after all of the packet processing is completed and its ready to * be sent out on the wire, Eventually, the packet transmit routine * ip_xmit_v4() attempts to send a packet to the driver. If it finds * that there is no link layer information, it will do the arp * resolution and queue the packet in ire->ire_nce->nce_qd_mp and * then send it out once the arp resolution is over * (see ip_xmit_v4()->ire_arpresolve()). This scheme is similar to * the model of BSD/SunOS 4 * * In future, the insertion of incomplete ires in the cachetable should * be implemented in hostpath as well, as doing so will greatly reduce * the existing complexity for code paths that depend on the context of * the sender (such as IPsec). * * Thus this scheme of adding incomplete ires in cachetable in forwarding * path can be used as a template for simplifying the hostpath. */ ire_t * ire_forward(ipaddr_t dst, boolean_t *check_multirt, ire_t *supplied_ire, ire_t *supplied_sire, const struct ts_label_s *tsl, ip_stack_t *ipst) { ipaddr_t gw = 0; ire_t *ire = NULL; ire_t *sire = NULL, *save_ire; ill_t *dst_ill = NULL; int error; zoneid_t zoneid; ipif_t *src_ipif = NULL; mblk_t *res_mp; ushort_t ire_marks = 0; tsol_gcgrp_t *gcgrp = NULL; tsol_gcgrp_addr_t ga; zoneid = GLOBAL_ZONEID; if (supplied_ire != NULL) { /* We have arrived here from ipfil_sendpkt */ ire = supplied_ire; sire = supplied_sire; goto create_irecache; } ire = ire_ftable_lookup(dst, 0, 0, 0, NULL, &sire, zoneid, 0, tsl, MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT|MATCH_IRE_SECATTR, ipst); if (ire == NULL) { ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, RTA_DST, ipst); goto icmp_err_ret; } /* * If we encounter CGTP, we should have the caller use * ip_newroute to resolve multirt instead of this function. * CGTP specs explicitly state that it can't be used with routers. * This essentially prevents insertion of incomplete RTF_MULTIRT * ires in cachetable. */ if (ip_cgtp_filter && ((ire->ire_flags & RTF_MULTIRT) || ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) { ip3dbg(("ire_forward: packet is to be multirouted- " "handing it to ip_newroute\n")); if (sire != NULL) ire_refrele(sire); ire_refrele(ire); /* * Inform caller about encountering of multirt so that * ip_newroute() can be called. */ *check_multirt = B_TRUE; return (NULL); } *check_multirt = B_FALSE; /* * Verify that the returned IRE does not have either * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. */ if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { ip3dbg(("ire 0x%p is not cache/resolver/noresolver\n", (void *)ire)); goto icmp_err_ret; } /* * If we already have a fully resolved IRE CACHE of the * nexthop router, just hand over the cache entry * and we are done. */ if (ire->ire_type & IRE_CACHE) { /* * If we are using this ire cache entry as a * gateway to forward packets, chances are we * will be using it again. So turn off * the temporary flag, thus reducing its * chances of getting deleted frequently. */ if (ire->ire_marks & IRE_MARK_TEMPORARY) { irb_t *irb = ire->ire_bucket; rw_enter(&irb->irb_lock, RW_WRITER); ire->ire_marks &= ~IRE_MARK_TEMPORARY; irb->irb_tmp_ire_cnt--; rw_exit(&irb->irb_lock); } if (sire != NULL) { UPDATE_OB_PKT_COUNT(sire); sire->ire_last_used_time = lbolt; ire_refrele(sire); } return (ire); } create_irecache: /* * Increment the ire_ob_pkt_count field for ire if it is an * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and * increment the same for the parent IRE, sire, if it is some * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST). */ if ((ire->ire_type & IRE_INTERFACE) != 0) { UPDATE_OB_PKT_COUNT(ire); ire->ire_last_used_time = lbolt; } /* * sire must be either IRE_CACHETABLE OR IRE_INTERFACE type */ if (sire != NULL) { gw = sire->ire_gateway_addr; ASSERT((sire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) == 0); UPDATE_OB_PKT_COUNT(sire); sire->ire_last_used_time = lbolt; } /* Obtain dst_ill */ dst_ill = ip_newroute_get_dst_ill(ire->ire_ipif->ipif_ill); if (dst_ill == NULL) { ip2dbg(("ire_forward no dst ill; ire 0x%p\n", (void *)ire)); goto icmp_err_ret; } ASSERT(src_ipif == NULL); /* Now obtain the src_ipif */ src_ipif = ire_forward_src_ipif(dst, sire, ire, dst_ill, zoneid, &ire_marks); if (src_ipif == NULL) goto icmp_err_ret; switch (ire->ire_type) { case IRE_IF_NORESOLVER: /* create ire_cache for ire_addr endpoint */ case IRE_IF_RESOLVER: /* * We have the IRE_IF_RESOLVER of the nexthop gateway * and now need to build a IRE_CACHE for it. * In this case, we have the following : * * 1) src_ipif - used for getting a source address. * * 2) dst_ill - from which we derive ire_stq/ire_rfq. This * means packets using the IRE_CACHE that we will build * here will go out on dst_ill. * * 3) sire may or may not be NULL. But, the IRE_CACHE that is * to be created will only be tied to the IRE_INTERFACE * that was derived from the ire_ihandle field. * * If sire is non-NULL, it means the destination is * off-link and we will first create the IRE_CACHE for the * gateway. */ res_mp = dst_ill->ill_resolver_mp; if (ire->ire_type == IRE_IF_RESOLVER && (!OK_RESOLVER_MP(res_mp))) { ire_refrele(ire); ire = NULL; goto out; } /* * To be at this point in the code with a non-zero gw * means that dst is reachable through a gateway that * we have never resolved. By changing dst to the gw * addr we resolve the gateway first. */ if (gw != INADDR_ANY) { /* * The source ipif that was determined above was * relative to the destination address, not the * gateway's. If src_ipif was not taken out of * the IRE_IF_RESOLVER entry, we'll need to call * ipif_select_source() again. */ if (src_ipif != ire->ire_ipif) { ipif_refrele(src_ipif); src_ipif = ipif_select_source(dst_ill, gw, zoneid); if (src_ipif == NULL) goto icmp_err_ret; } dst = gw; gw = INADDR_ANY; } /* * dst has been set to the address of the nexthop. * * TSol note: get security attributes of the nexthop; * Note that the nexthop may either be a gateway, or the * packet destination itself; Detailed explanation of * issues involved is provided in the IRE_IF_NORESOLVER * logic in ip_newroute(). */ ga.ga_af = AF_INET; IN6_IPADDR_TO_V4MAPPED(dst, &ga.ga_addr); gcgrp = gcgrp_lookup(&ga, B_FALSE); if (ire->ire_type == IRE_IF_NORESOLVER) dst = ire->ire_addr; /* ire_cache for tunnel endpoint */ save_ire = ire; /* * create an incomplete IRE_CACHE. * An areq_mp will be generated in ire_arpresolve() for * RESOLVER interfaces. */ ire = ire_create( (uchar_t *)&dst, /* dest address */ (uchar_t *)&ip_g_all_ones, /* mask */ (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ (uchar_t *)&gw, /* gateway address */ NULL, (save_ire->ire_type == IRE_IF_RESOLVER ? NULL: &save_ire->ire_max_frag), NULL, dst_ill->ill_rq, /* recv-from queue */ dst_ill->ill_wq, /* send-to queue */ IRE_CACHE, /* IRE type */ src_ipif, NULL, ire->ire_mask, /* Parent mask */ 0, ire->ire_ihandle, /* Interface handle */ 0, &(ire->ire_uinfo), NULL, gcgrp, ipst); ip1dbg(("incomplete ire_cache 0x%p\n", (void *)ire)); if (ire != NULL) { gcgrp = NULL; /* reference now held by IRE */ ire->ire_marks |= ire_marks; /* add the incomplete ire: */ error = ire_add(&ire, NULL, NULL, NULL, B_TRUE); if (error == 0 && ire != NULL) { ire->ire_max_frag = save_ire->ire_max_frag; ip1dbg(("setting max_frag to %d in ire 0x%p\n", ire->ire_max_frag, (void *)ire)); } else { ire_refrele(save_ire); goto icmp_err_ret; } } else { if (gcgrp != NULL) { GCGRP_REFRELE(gcgrp); gcgrp = NULL; } } ire_refrele(save_ire); break; default: break; } out: if (sire != NULL) ire_refrele(sire); if (dst_ill != NULL) ill_refrele(dst_ill); if (src_ipif != NULL) ipif_refrele(src_ipif); return (ire); icmp_err_ret: if (src_ipif != NULL) ipif_refrele(src_ipif); if (dst_ill != NULL) ill_refrele(dst_ill); if (sire != NULL) ire_refrele(sire); if (ire != NULL) { ire_refrele(ire); } /* caller needs to send icmp error message */ return (NULL); } /* * Obtain the rt_entry and rt_irb for the route to be added to * the ips_ip_ftable. * First attempt to add a node to the radix tree via rn_addroute. If the * route already exists, return the bucket for the existing route. * * Locking notes: Need to hold the global radix tree lock in write mode to * add a radix node. To prevent the node from being deleted, ire_get_bucket() * returns with a ref'ed irb_t. The ire itself is added in ire_add_v4() * while holding the irb_lock, but not the radix tree lock. */ irb_t * ire_get_bucket(ire_t *ire) { struct radix_node *rn; struct rt_entry *rt; struct rt_sockaddr rmask, rdst; irb_t *irb = NULL; ip_stack_t *ipst = ire->ire_ipst; ASSERT(ipst->ips_ip_ftable != NULL); /* first try to see if route exists (based on rtalloc1) */ (void) memset(&rdst, 0, sizeof (rdst)); rdst.rt_sin_len = sizeof (rdst); rdst.rt_sin_family = AF_INET; rdst.rt_sin_addr.s_addr = ire->ire_addr; (void) memset(&rmask, 0, sizeof (rmask)); rmask.rt_sin_len = sizeof (rmask); rmask.rt_sin_family = AF_INET; rmask.rt_sin_addr.s_addr = ire->ire_mask; /* * add the route. based on BSD's rtrequest1(RTM_ADD) */ R_Malloc(rt, rt_entry_cache, sizeof (*rt)); (void) memset(rt, 0, sizeof (*rt)); rt->rt_nodes->rn_key = (char *)&rt->rt_dst; rt->rt_dst = rdst; irb = &rt->rt_irb; irb->irb_marks |= IRB_MARK_FTABLE; /* dynamically allocated/freed */ irb->irb_ipst = ipst; rw_init(&irb->irb_lock, NULL, RW_DEFAULT, NULL); RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable); rn = ipst->ips_ip_ftable->rnh_addaddr(&rt->rt_dst, &rmask, ipst->ips_ip_ftable, (struct radix_node *)rt); if (rn == NULL) { RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); Free(rt, rt_entry_cache); rt = NULL; irb = NULL; RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable); rn = ipst->ips_ip_ftable->rnh_lookup(&rdst, &rmask, ipst->ips_ip_ftable); if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) { /* found a non-root match */ rt = (struct rt_entry *)rn; } } if (rt != NULL) { irb = &rt->rt_irb; IRB_REFHOLD(irb); } RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable); return (irb); } /* * This function is used when the caller wants to know the outbound * interface for a packet given only the address. * If this is a offlink IP address and there are multiple * routes to this destination, this routine will utilise the * first route it finds to IP address * Return values: * 0 - FAILURE * nonzero - ifindex */ uint_t ifindex_lookup(const struct sockaddr *ipaddr, zoneid_t zoneid) { uint_t ifindex = 0; ire_t *ire; ill_t *ill; netstack_t *ns; ip_stack_t *ipst; if (zoneid == ALL_ZONES) ns = netstack_find_by_zoneid(GLOBAL_ZONEID); else ns = netstack_find_by_zoneid(zoneid); ASSERT(ns != NULL); /* * For exclusive stacks we set the zoneid to zero * since IP uses the global zoneid in the exclusive stacks. */ if (ns->netstack_stackid != GLOBAL_NETSTACKID) zoneid = GLOBAL_ZONEID; ipst = ns->netstack_ip; ASSERT(ipaddr->sa_family == AF_INET || ipaddr->sa_family == AF_INET6); if ((ire = route_to_dst(ipaddr, zoneid, ipst)) != NULL) { ill = ire_to_ill(ire); if (ill != NULL) ifindex = ill->ill_phyint->phyint_ifindex; ire_refrele(ire); } netstack_rele(ns); return (ifindex); } /* * Routine to find the route to a destination. If a ifindex is supplied * it tries to match the the route to the corresponding ipif for the ifindex */ static ire_t * route_to_dst(const struct sockaddr *dst_addr, zoneid_t zoneid, ip_stack_t *ipst) { ire_t *ire = NULL; int match_flags; match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE); /* XXX pass NULL tsl for now */ if (dst_addr->sa_family == AF_INET) { ire = ire_route_lookup( ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr, 0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst); } else { ire = ire_route_lookup_v6( &((struct sockaddr_in6 *)dst_addr)->sin6_addr, 0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst); } return (ire); } /* * This routine is called by IP Filter to send a packet out on the wire * to a specified V4 dst (which may be onlink or offlink). The ifindex may or * may not be 0. A non-null ifindex indicates IP Filter has stipulated * an outgoing interface and requires the nexthop to be on that interface. * IP WILL NOT DO the following to the data packet before sending it out: * a. manipulate ttl * b. ipsec work * c. fragmentation * * If the packet has been prepared for hardware checksum then it will be * passed off to ip_send_align_cksum() to check that the flags set on the * packet are in alignment with the capabilities of the new outgoing NIC. * * Return values: * 0: IP was able to send of the data pkt * ECOMM: Could not send packet * ENONET No route to dst. It is up to the caller * to send icmp unreachable error message, * EINPROGRESS The macaddr of the onlink dst or that * of the offlink dst's nexthop needs to get * resolved before packet can be sent to dst. * Thus transmission is not guaranteed. * */ int ipfil_sendpkt(const struct sockaddr *dst_addr, mblk_t *mp, uint_t ifindex, zoneid_t zoneid) { ire_t *ire = NULL, *sire = NULL; ire_t *ire_cache = NULL; boolean_t check_multirt = B_FALSE; int value; int match_flags; ipaddr_t dst; netstack_t *ns; ip_stack_t *ipst; ASSERT(mp != NULL); if (zoneid == ALL_ZONES) ns = netstack_find_by_zoneid(GLOBAL_ZONEID); else ns = netstack_find_by_zoneid(zoneid); ASSERT(ns != NULL); /* * For exclusive stacks we set the zoneid to zero * since IP uses the global zoneid in the exclusive stacks. */ if (ns->netstack_stackid != GLOBAL_NETSTACKID) zoneid = GLOBAL_ZONEID; ipst = ns->netstack_ip; ASSERT(dst_addr->sa_family == AF_INET || dst_addr->sa_family == AF_INET6); if (dst_addr->sa_family == AF_INET) { dst = ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr; } else { /* * We dont have support for V6 yet. It will be provided * once RFE 6399103 has been delivered. * Until then, for V6 dsts, IP Filter will not call * this function. Instead the netinfo framework provides * its own code path, in ip_inject_impl(), to achieve * what it needs to do, for the time being. */ ip1dbg(("ipfil_sendpkt: no V6 support \n")); value = ECOMM; freemsg(mp); goto discard; } /* * Lets get the ire. We might get the ire cache entry, * or the ire,sire pair needed to create the cache entry. * XXX pass NULL tsl for now. */ if (ifindex == 0) { /* There is no supplied index. So use the FIB info */ match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE); ire = ire_route_lookup(dst, 0, 0, 0, NULL, &sire, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); } else { ipif_t *supplied_ipif; ill_t *ill; match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE| MATCH_IRE_RJ_BHOLE| MATCH_IRE_SECATTR); /* * If supplied ifindex is non-null, the only valid * nexthop is one off of the interface or group corresponding * to the specified ifindex. */ ill = ill_lookup_on_ifindex(ifindex, B_FALSE, NULL, NULL, NULL, NULL, ipst); if (ill != NULL) { match_flags |= MATCH_IRE_ILL; } else { /* Fallback to group names if hook_emulation set */ if (ipst->ips_ipmp_hook_emulation) { ill = ill_group_lookup_on_ifindex(ifindex, B_FALSE, ipst); } if (ill == NULL) { ip1dbg(("ipfil_sendpkt: Could not find" " route to dst\n")); value = ECOMM; freemsg(mp); goto discard; } match_flags |= MATCH_IRE_ILL_GROUP; } supplied_ipif = ipif_get_next_ipif(NULL, ill); ire = ire_route_lookup(dst, 0, 0, 0, supplied_ipif, &sire, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); ipif_refrele(supplied_ipif); ill_refrele(ill); } /* * Verify that the returned IRE is non-null and does * not have either the RTF_REJECT or RTF_BLACKHOLE * flags set and that the IRE is either an IRE_CACHE, * IRE_IF_NORESOLVER or IRE_IF_RESOLVER. */ if (ire == NULL || ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0)) { /* * Either ire could not be found or we got * an invalid one */ ip1dbg(("ipfil_sendpkt: Could not find route to dst\n")); value = ENONET; freemsg(mp); goto discard; } /* IP Filter and CGTP dont mix. So bail out if CGTP is on */ if (ip_cgtp_filter && ((ire->ire_flags & RTF_MULTIRT) || ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) { ip1dbg(("ipfil_sendpkt: IPFilter does not work with CGTP\n")); value = ECOMM; freemsg(mp); goto discard; } ASSERT(ire->ire_type != IRE_CACHE || ire->ire_nce != NULL); /* * If needed, we will create the ire cache entry for the * nexthop, resolve its link-layer address and then send * the packet out without ttl or IPSec processing. */ switch (ire->ire_type) { case IRE_IF_NORESOLVER: case IRE_CACHE: if (sire != NULL) { UPDATE_OB_PKT_COUNT(sire); sire->ire_last_used_time = lbolt; ire_refrele(sire); } ire_cache = ire; break; case IRE_IF_RESOLVER: /* * Call ire_forward(). This function * will, create the ire cache entry of the * the nexthop and adds this incomplete ire * to the ire cache table */ ire_cache = ire_forward(dst, &check_multirt, ire, sire, MBLK_GETLABEL(mp), ipst); if (ire_cache == NULL) { ip1dbg(("ipfil_sendpkt: failed to create the" " ire cache entry \n")); value = ENONET; freemsg(mp); sire = NULL; ire = NULL; goto discard; } break; } if (DB_CKSUMFLAGS(mp)) { if (ip_send_align_hcksum_flags(mp, ire_to_ill(ire_cache))) goto cleanup; } /* * Now that we have the ire cache entry of the nexthop, call * ip_xmit_v4() to trigger mac addr resolution * if necessary and send it once ready. */ value = ip_xmit_v4(mp, ire_cache, NULL, B_FALSE); cleanup: ire_refrele(ire_cache); /* * At this point, the reference for these have already been * released within ire_forward() and/or ip_xmit_v4(). So we set * them to NULL to make sure we dont drop the references * again in case ip_xmit_v4() returns with either SEND_FAILED * or LLHDR_RESLV_FAILED */ sire = NULL; ire = NULL; switch (value) { case SEND_FAILED: ip1dbg(("ipfil_sendpkt: Send failed\n")); value = ECOMM; break; case LLHDR_RESLV_FAILED: ip1dbg(("ipfil_sendpkt: Link-layer resolution" " failed\n")); value = ECOMM; break; case LOOKUP_IN_PROGRESS: netstack_rele(ns); return (EINPROGRESS); case SEND_PASSED: netstack_rele(ns); return (0); } discard: if (dst_addr->sa_family == AF_INET) { BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); } else { BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); } if (ire != NULL) ire_refrele(ire); if (sire != NULL) ire_refrele(sire); netstack_rele(ns); return (value); } /* * We don't check for dohwcksum in here because it should be being used * elsewhere to control what flags are being set on the mblk. That is, * if DB_CKSUMFLAGS() is non-zero then we assume dohwcksum to be true * for this packet. * * This function assumes that it is *only* being called for TCP or UDP * packets and nothing else. */ static int ip_send_align_hcksum_flags(mblk_t *mp, ill_t *ill) { int illhckflags; int mbhckflags; uint16_t *up; uint32_t cksum; ipha_t *ipha; ip6_t *ip6; int proto; int ipversion; int length; int start; ip6_pkt_t ipp; mbhckflags = DB_CKSUMFLAGS(mp); ASSERT(mbhckflags != 0); ASSERT(mp->b_datap->db_type == M_DATA); /* * Since this function only knows how to manage the hardware checksum * issue, reject and packets that have flags set on the aside from * checksum related attributes as we cannot necessarily safely map * that packet onto the new NIC. Packets that can be potentially * dropped here include those marked for LSO. */ if ((mbhckflags & ~(HCK_FULLCKSUM|HCK_PARTIALCKSUM|HCK_IPV4_HDRCKSUM)) != 0) { DTRACE_PROBE2(pbr__incapable, (mblk_t *), mp, (ill_t *), ill); freemsg(mp); return (-1); } ipha = (ipha_t *)mp->b_rptr; /* * Find out what the new NIC is capable of, if anything, and * only allow it to be used with M_DATA mblks being sent out. */ if (ILL_HCKSUM_CAPABLE(ill)) { illhckflags = ill->ill_hcksum_capab->ill_hcksum_txflags; } else { /* * No capabilities, so turn off everything. */ illhckflags = 0; (void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, 0, 0); mp->b_datap->db_struioflag &= ~STRUIO_IP; } DTRACE_PROBE4(pbr__info__a, (mblk_t *), mp, (ill_t *), ill, uint32_t, illhckflags, uint32_t, mbhckflags); /* * This block of code that looks for the position of the TCP/UDP * checksum is early in this function because we need to know * what needs to be blanked out for the hardware checksum case. * * That we're in this function implies that the packet is either * TCP or UDP on Solaris, so checks are made for one protocol and * if that fails, the other is therefore implied. */ ipversion = IPH_HDR_VERSION(ipha); if (ipversion == IPV4_VERSION) { proto = ipha->ipha_protocol; if (proto == IPPROTO_TCP) { up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); } else { up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); } } else { uint8_t lasthdr; /* * Nothing I've seen indicates that IPv6 checksum'ing * precludes the presence of extension headers, so we * can't just look at the next header value in the IPv6 * packet header to see if it is TCP/UDP. */ ip6 = (ip6_t *)ipha; (void) memset(&ipp, 0, sizeof (ipp)); start = ip_find_hdr_v6(mp, ip6, &ipp, &lasthdr); proto = lasthdr; if (proto == IPPROTO_TCP) { up = IPH_TCPH_CHECKSUMP(ipha, start); } else { up = IPH_UDPH_CHECKSUMP(ipha, start); } } /* * The first case here is easiest: * mblk hasn't asked for full checksum, but the card supports it. * * In addition, check for IPv4 header capability. Note that only * the mblk flag is checked and not ipversion. */ if ((((illhckflags & HCKSUM_INET_FULL_V4) && (ipversion == 4)) || (((illhckflags & HCKSUM_INET_FULL_V6) && (ipversion == 6)))) && ((mbhckflags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) != 0)) { int newflags = HCK_FULLCKSUM; if ((mbhckflags & HCK_IPV4_HDRCKSUM) != 0) { if ((illhckflags & HCKSUM_IPHDRCKSUM) != 0) { newflags |= HCK_IPV4_HDRCKSUM; } else { /* * Rather than call a function, just inline * the computation of the basic IPv4 header. */ cksum = (ipha->ipha_dst >> 16) + (ipha->ipha_dst & 0xFFFF) + (ipha->ipha_src >> 16) + (ipha->ipha_src & 0xFFFF); IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], ((uint16_t *)ipha)[4]); } } *up = 0; (void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, newflags, 0); return (0); } DTRACE_PROBE2(pbr__info__b, int, ipversion, int, proto); /* * Start calculating the pseudo checksum over the IP packet header. * Although the final pseudo checksum used by TCP/UDP consists of * more than just the address fields, we can use the result of * adding those together a little bit further down for IPv4. */ if (ipversion == IPV4_VERSION) { cksum = (ipha->ipha_dst >> 16) + (ipha->ipha_dst & 0xFFFF) + (ipha->ipha_src >> 16) + (ipha->ipha_src & 0xFFFF); start = IP_SIMPLE_HDR_LENGTH; length = ntohs(ipha->ipha_length); DTRACE_PROBE3(pbr__info__e, uint32_t, ipha->ipha_src, uint32_t, ipha->ipha_dst, int, cksum); } else { uint16_t *pseudo; pseudo = (uint16_t *)&ip6->ip6_src; /* calculate pseudo-header checksum */ cksum = pseudo[0] + pseudo[1] + pseudo[2] + pseudo[3] + pseudo[4] + pseudo[5] + pseudo[6] + pseudo[7] + pseudo[8] + pseudo[9] + pseudo[10] + pseudo[11] + pseudo[12] + pseudo[13] + pseudo[14] + pseudo[15]; length = ntohs(ip6->ip6_plen) + sizeof (ip6_t); } /* Fold the initial sum */ cksum = (cksum & 0xffff) + (cksum >> 16); /* * If the packet was asking for an IPv4 header checksum to be * calculated but the interface doesn't support that, fill it in * using our pseudo checksum as a starting point. */ if (((mbhckflags & HCK_IPV4_HDRCKSUM) != 0) && ((illhckflags & HCKSUM_IPHDRCKSUM) == 0)) { /* * IP_HDR_CKSUM uses the 2rd arg to the macro in a destructive * way so pass in a copy of the checksum calculated thus far. */ uint32_t ipsum = cksum; DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; IP_HDR_CKSUM(ipha, ipsum, ((uint32_t *)ipha)[0], ((uint16_t *)ipha)[4]); } DTRACE_PROBE3(pbr__info__c, int, start, int, length, int, cksum); if (proto == IPPROTO_TCP) { cksum += IP_TCP_CSUM_COMP; } else { cksum += IP_UDP_CSUM_COMP; } cksum += htons(length - start); cksum = (cksum & 0xffff) + (cksum >> 16); /* * For TCP/UDP, we either want to setup the packet for partial * checksum or we want to do it all ourselves because the NIC * offers no support for either partial or full checksum. */ if ((illhckflags & HCKSUM_INET_PARTIAL) != 0) { /* * The only case we care about here is if the mblk was * previously set for full checksum offload. If it was * marked for partial (and the NIC does partial), then * we have nothing to do. Similarly if the packet was * not set for partial or full, we do nothing as this * is cheaper than more work to set something up. */ if ((mbhckflags & HCK_FULLCKSUM) != 0) { uint32_t offset; if (proto == IPPROTO_TCP) { offset = TCP_CHECKSUM_OFFSET; } else { offset = UDP_CHECKSUM_OFFSET; } *up = cksum; DTRACE_PROBE3(pbr__info__f, int, length - start, int, cksum, int, offset); (void) hcksum_assoc(mp, NULL, NULL, start, start + offset, length, 0, DB_CKSUMFLAGS(mp) | HCK_PARTIALCKSUM, 0); } } else if (mbhckflags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) { DB_CKSUMFLAGS(mp) &= ~(HCK_PARTIALCKSUM|HCK_FULLCKSUM); *up = 0; *up = IP_CSUM(mp, start, cksum); } DTRACE_PROBE4(pbr__info__d, (mblk_t *), mp, (ipha_t *), ipha, (uint16_t *), up, int, cksum); return (0); } /* ire_walk routine invoked for ip_ire_report for each IRE. */ void ire_report_ftable(ire_t *ire, char *m) { char buf1[16]; char buf2[16]; char buf3[16]; char buf4[16]; uint_t fo_pkt_count; uint_t ib_pkt_count; int ref; uint_t print_len, buf_len; mblk_t *mp = (mblk_t *)m; if (ire->ire_type & IRE_CACHETABLE) return; buf_len = mp->b_datap->db_lim - mp->b_wptr; if (buf_len <= 0) return; /* Number of active references of this ire */ ref = ire->ire_refcnt; /* "inbound" to a non local address is a forward */ ib_pkt_count = ire->ire_ib_pkt_count; fo_pkt_count = 0; if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { fo_pkt_count = ib_pkt_count; ib_pkt_count = 0; } print_len = snprintf((char *)mp->b_wptr, buf_len, MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " "%04d %08d %08d %d/%d/%d %s\n", (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, (int)ire->ire_zoneid, ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), ip_dot_addr(ire->ire_src_addr, buf3), ip_dot_addr(ire->ire_gateway_addr, buf4), ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, ire->ire_uinfo.iulp_rtomax, (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), ire->ire_uinfo.iulp_sack, ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); if (print_len < buf_len) { mp->b_wptr += print_len; } else { mp->b_wptr += buf_len; } } /* * callback function provided by ire_ftable_lookup when calling * rn_match_args(). Invoke ire_match_args on each matching leaf node in * the radix tree. */ boolean_t ire_find_best_route(struct radix_node *rn, void *arg) { struct rt_entry *rt = (struct rt_entry *)rn; irb_t *irb_ptr; ire_t *ire; ire_ftable_args_t *margs = arg; ipaddr_t match_mask; ASSERT(rt != NULL); irb_ptr = &rt->rt_irb; if (irb_ptr->irb_ire_cnt == 0) return (B_FALSE); rw_enter(&irb_ptr->irb_lock, RW_READER); for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { if (ire->ire_marks & IRE_MARK_CONDEMNED) continue; if (margs->ift_flags & MATCH_IRE_MASK) match_mask = margs->ift_mask; else match_mask = ire->ire_mask; if (ire_match_args(ire, margs->ift_addr, match_mask, margs->ift_gateway, margs->ift_type, margs->ift_ipif, margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl, margs->ift_flags)) { IRE_REFHOLD(ire); rw_exit(&irb_ptr->irb_lock); margs->ift_best_ire = ire; return (B_TRUE); } } rw_exit(&irb_ptr->irb_lock); return (B_FALSE); } /* * ftable irb_t structures are dynamically allocated, and we need to * check if the irb_t (and associated ftable tree attachment) needs to * be cleaned up when the irb_refcnt goes to 0. The conditions that need * be verified are: * - no other walkers of the irebucket, i.e., quiescent irb_refcnt, * - no other threads holding references to ire's in the bucket, * i.e., irb_nire == 0 * - no active ire's in the bucket, i.e., irb_ire_cnt == 0 * - need to hold the global tree lock and irb_lock in write mode. */ void irb_refrele_ftable(irb_t *irb) { for (;;) { rw_enter(&irb->irb_lock, RW_WRITER); ASSERT(irb->irb_refcnt != 0); if (irb->irb_refcnt != 1) { /* * Someone has a reference to this radix node * or there is some bucket walker. */ irb->irb_refcnt--; rw_exit(&irb->irb_lock); return; } else { /* * There is no other walker, nor is there any * other thread that holds a direct ref to this * radix node. Do the clean up if needed. Call * to ire_unlink will clear the IRB_MARK_CONDEMNED flag */ if (irb->irb_marks & IRB_MARK_CONDEMNED) { ire_t *ire_list; ire_list = ire_unlink(irb); rw_exit(&irb->irb_lock); if (ire_list != NULL) ire_cleanup(ire_list); /* * more CONDEMNED entries could have * been added while we dropped the lock, * so we have to re-check. */ continue; } /* * Now check if there are still any ires * associated with this radix node. */ if (irb->irb_nire != 0) { /* * someone is still holding on * to ires in this bucket */ irb->irb_refcnt--; rw_exit(&irb->irb_lock); return; } else { /* * Everything is clear. Zero walkers, * Zero threads with a ref to this * radix node, Zero ires associated with * this radix node. Due to lock order, * check the above conditions again * after grabbing all locks in the right order */ rw_exit(&irb->irb_lock); if (irb_inactive(irb)) return; /* * irb_inactive could not free the irb. * See if there are any walkers, if not * try to clean up again. */ } } } } /* * IRE iterator used by ire_ftable_lookup() to process multiple default * routes. Given a starting point in the hash list (ire_origin), walk the IREs * in the bucket skipping default interface routes and deleted entries. * Returns the next IRE (unheld), or NULL when we're back to the starting point. * Assumes that the caller holds a reference on the IRE bucket. * * In the absence of good IRE_DEFAULT routes, this function will return * the first IRE_INTERFACE route found (if any). */ ire_t * ire_round_robin(irb_t *irb_ptr, zoneid_t zoneid, ire_ftable_args_t *margs, ip_stack_t *ipst) { ire_t *ire_origin; ire_t *ire, *maybe_ire = NULL; rw_enter(&irb_ptr->irb_lock, RW_WRITER); ire_origin = irb_ptr->irb_rr_origin; if (ire_origin != NULL) { ire_origin = ire_origin->ire_next; IRE_FIND_NEXT_ORIGIN(ire_origin); } if (ire_origin == NULL) { /* * first time through routine, or we dropped off the end * of list. */ ire_origin = irb_ptr->irb_ire; IRE_FIND_NEXT_ORIGIN(ire_origin); } irb_ptr->irb_rr_origin = ire_origin; IRB_REFHOLD_LOCKED(irb_ptr); rw_exit(&irb_ptr->irb_lock); DTRACE_PROBE2(ire__rr__origin, (irb_t *), irb_ptr, (ire_t *), ire_origin); /* * Round-robin the routers list looking for a route that * matches the passed in parameters. * We start with the ire we found above and we walk the hash * list until we're back where we started. It doesn't matter if * routes are added or deleted by other threads - we know this * ire will stay in the list because we hold a reference on the * ire bucket. */ ire = ire_origin; while (ire != NULL) { int match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR; ire_t *rire; if (ire->ire_marks & IRE_MARK_CONDEMNED) goto next_ire; if (!ire_match_args(ire, margs->ift_addr, (ipaddr_t)0, margs->ift_gateway, margs->ift_type, margs->ift_ipif, margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl, margs->ift_flags)) goto next_ire; if (ire->ire_type & IRE_INTERFACE) { /* * keep looking to see if there is a non-interface * default ire, but save this one as a last resort. */ if (maybe_ire == NULL) maybe_ire = ire; goto next_ire; } if (zoneid == ALL_ZONES) { IRE_REFHOLD(ire); IRB_REFRELE(irb_ptr); return (ire); } /* * When we're in a non-global zone, we're only * interested in routers that are * reachable through ipifs within our zone. */ if (ire->ire_ipif != NULL) { match_flags |= MATCH_IRE_ILL_GROUP; } rire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, zoneid, margs->ift_tsl, match_flags, ipst); if (rire != NULL) { ire_refrele(rire); IRE_REFHOLD(ire); IRB_REFRELE(irb_ptr); return (ire); } next_ire: ire = (ire->ire_next ? ire->ire_next : irb_ptr->irb_ire); if (ire == ire_origin) break; } if (maybe_ire != NULL) IRE_REFHOLD(maybe_ire); IRB_REFRELE(irb_ptr); return (maybe_ire); } void irb_refhold_rn(struct radix_node *rn) { if ((rn->rn_flags & RNF_ROOT) == 0) IRB_REFHOLD(&((rt_t *)(rn))->rt_irb); } void irb_refrele_rn(struct radix_node *rn) { if ((rn->rn_flags & RNF_ROOT) == 0) irb_refrele_ftable(&((rt_t *)(rn))->rt_irb); }