/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include "fs/fs_subr.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int zfsfstype; vfsops_t *zfs_vfsops = NULL; static major_t zfs_major; static minor_t zfs_minor; static kmutex_t zfs_dev_mtx; static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); static int zfs_root(vfs_t *vfsp, vnode_t **vpp); static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); static void zfs_freevfs(vfs_t *vfsp); static const fs_operation_def_t zfs_vfsops_template[] = { VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, VFSNAME_ROOT, { .vfs_root = zfs_root }, VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, VFSNAME_SYNC, { .vfs_sync = zfs_sync }, VFSNAME_VGET, { .vfs_vget = zfs_vget }, VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, NULL, NULL }; static const fs_operation_def_t zfs_vfsops_eio_template[] = { VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, NULL, NULL }; /* * We need to keep a count of active fs's. * This is necessary to prevent our module * from being unloaded after a umount -f */ static uint32_t zfs_active_fs_count = 0; static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; /* * MO_DEFAULT is not used since the default value is determined * by the equivalent property. */ static mntopt_t mntopts[] = { { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } }; static mntopts_t zfs_mntopts = { sizeof (mntopts) / sizeof (mntopt_t), mntopts }; /*ARGSUSED*/ int zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) { /* * Data integrity is job one. We don't want a compromised kernel * writing to the storage pool, so we never sync during panic. */ if (panicstr) return (0); /* * SYNC_ATTR is used by fsflush() to force old filesystems like UFS * to sync metadata, which they would otherwise cache indefinitely. * Semantically, the only requirement is that the sync be initiated. * The DMU syncs out txgs frequently, so there's nothing to do. */ if (flag & SYNC_ATTR) return (0); if (vfsp != NULL) { /* * Sync a specific filesystem. */ zfsvfs_t *zfsvfs = vfsp->vfs_data; ZFS_ENTER(zfsvfs); if (zfsvfs->z_log != NULL) zil_commit(zfsvfs->z_log, UINT64_MAX, 0); else txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); ZFS_EXIT(zfsvfs); } else { /* * Sync all ZFS filesystems. This is what happens when you * run sync(1M). Unlike other filesystems, ZFS honors the * request by waiting for all pools to commit all dirty data. */ spa_sync_allpools(); } return (0); } static int zfs_create_unique_device(dev_t *dev) { major_t new_major; do { ASSERT3U(zfs_minor, <=, MAXMIN32); minor_t start = zfs_minor; do { mutex_enter(&zfs_dev_mtx); if (zfs_minor >= MAXMIN32) { /* * If we're still using the real major * keep out of /dev/zfs and /dev/zvol minor * number space. If we're using a getudev()'ed * major number, we can use all of its minors. */ if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) zfs_minor = ZFS_MIN_MINOR; else zfs_minor = 0; } else { zfs_minor++; } *dev = makedevice(zfs_major, zfs_minor); mutex_exit(&zfs_dev_mtx); } while (vfs_devismounted(*dev) && zfs_minor != start); if (zfs_minor == start) { /* * We are using all ~262,000 minor numbers for the * current major number. Create a new major number. */ if ((new_major = getudev()) == (major_t)-1) { cmn_err(CE_WARN, "zfs_mount: Can't get unique major " "device number."); return (-1); } mutex_enter(&zfs_dev_mtx); zfs_major = new_major; zfs_minor = 0; mutex_exit(&zfs_dev_mtx); } else { break; } /* CONSTANTCONDITION */ } while (1); return (0); } static void atime_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == TRUE) { zfsvfs->z_atime = TRUE; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); } else { zfsvfs->z_atime = FALSE; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); } } static void xattr_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == TRUE) { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); } else { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); } } static void blksz_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval < SPA_MINBLOCKSIZE || newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) newval = SPA_MAXBLOCKSIZE; zfsvfs->z_max_blksz = newval; zfsvfs->z_vfs->vfs_bsize = newval; } static void readonly_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval) { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); } else { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); } } static void devices_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); } } static void setuid_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); } } static void exec_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); } } /* * The nbmand mount option can be changed at mount time. * We can't allow it to be toggled on live file systems or incorrect * behavior may be seen from cifs clients * * This property isn't registered via dsl_prop_register(), but this callback * will be called when a file system is first mounted */ static void nbmand_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); } else { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); } } static void snapdir_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_show_ctldir = newval; } static void vscan_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_vscan = newval; } static void acl_mode_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_mode = newval; } static void acl_inherit_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_inherit = newval; } static int zfs_register_callbacks(vfs_t *vfsp) { struct dsl_dataset *ds = NULL; objset_t *os = NULL; zfsvfs_t *zfsvfs = NULL; uint64_t nbmand; int readonly, do_readonly = B_FALSE; int setuid, do_setuid = B_FALSE; int exec, do_exec = B_FALSE; int devices, do_devices = B_FALSE; int xattr, do_xattr = B_FALSE; int atime, do_atime = B_FALSE; int error = 0; ASSERT(vfsp); zfsvfs = vfsp->vfs_data; ASSERT(zfsvfs); os = zfsvfs->z_os; /* * The act of registering our callbacks will destroy any mount * options we may have. In order to enable temporary overrides * of mount options, we stash away the current values and * restore them after we register the callbacks. */ if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { readonly = B_TRUE; do_readonly = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { readonly = B_FALSE; do_readonly = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { devices = B_FALSE; setuid = B_FALSE; do_devices = B_TRUE; do_setuid = B_TRUE; } else { if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { devices = B_FALSE; do_devices = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { devices = B_TRUE; do_devices = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { setuid = B_FALSE; do_setuid = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { setuid = B_TRUE; do_setuid = B_TRUE; } } if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { exec = B_FALSE; do_exec = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { exec = B_TRUE; do_exec = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { xattr = B_FALSE; do_xattr = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { xattr = B_TRUE; do_xattr = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { atime = B_FALSE; do_atime = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { atime = B_TRUE; do_atime = B_TRUE; } /* * nbmand is a special property. It can only be changed at * mount time. * * This is weird, but it is documented to only be changeable * at mount time. */ if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { nbmand = B_FALSE; } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { nbmand = B_TRUE; } else { char osname[MAXNAMELEN]; dmu_objset_name(os, osname); if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, NULL)) return (error); } /* * Register property callbacks. * * It would probably be fine to just check for i/o error from * the first prop_register(), but I guess I like to go * overboard... */ ds = dmu_objset_ds(os); error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "xattr", xattr_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "recordsize", blksz_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "readonly", readonly_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "devices", devices_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "setuid", setuid_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "exec", exec_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "snapdir", snapdir_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "aclmode", acl_mode_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "aclinherit", acl_inherit_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, "vscan", vscan_changed_cb, zfsvfs); if (error) goto unregister; /* * Invoke our callbacks to restore temporary mount options. */ if (do_readonly) readonly_changed_cb(zfsvfs, readonly); if (do_setuid) setuid_changed_cb(zfsvfs, setuid); if (do_exec) exec_changed_cb(zfsvfs, exec); if (do_devices) devices_changed_cb(zfsvfs, devices); if (do_xattr) xattr_changed_cb(zfsvfs, xattr); if (do_atime) atime_changed_cb(zfsvfs, atime); nbmand_changed_cb(zfsvfs, nbmand); return (0); unregister: /* * We may attempt to unregister some callbacks that are not * registered, but this is OK; it will simply return ENOMSG, * which we will ignore. */ (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); return (error); } static int zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) { uint_t readonly; int error; error = zfs_register_callbacks(zfsvfs->z_vfs); if (error) return (error); /* * Set the objset user_ptr to track its zfsvfs. */ mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); /* * If we are not mounting (ie: online recv), then we don't * have to worry about replaying the log as we blocked all * operations out since we closed the ZIL. */ if (mounting) { /* * During replay we remove the read only flag to * allow replays to succeed. */ readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; if (readonly != 0) zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; else zfs_unlinked_drain(zfsvfs); /* * Parse and replay the intent log. * * Because of ziltest, this must be done after * zfs_unlinked_drain(). (Further note: ziltest doesn't * use readonly mounts, where zfs_unlinked_drain() isn't * called.) This is because ziltest causes spa_sync() * to think it's committed, but actually it is not, so * the intent log contains many txg's worth of changes. * * In particular, if object N is in the unlinked set in * the last txg to actually sync, then it could be * actually freed in a later txg and then reallocated in * a yet later txg. This would write a "create object * N" record to the intent log. Normally, this would be * fine because the spa_sync() would have written out * the fact that object N is free, before we could write * the "create object N" intent log record. * * But when we are in ziltest mode, we advance the "open * txg" without actually spa_sync()-ing the changes to * disk. So we would see that object N is still * allocated and in the unlinked set, and there is an * intent log record saying to allocate it. */ zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, zfs_replay_vector); zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ } if (!zil_disable) zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); return (0); } static void zfs_freezfsvfs(zfsvfs_t *zfsvfs) { mutex_destroy(&zfsvfs->z_znodes_lock); mutex_destroy(&zfsvfs->z_online_recv_lock); list_destroy(&zfsvfs->z_all_znodes); rrw_destroy(&zfsvfs->z_teardown_lock); rw_destroy(&zfsvfs->z_teardown_inactive_lock); rw_destroy(&zfsvfs->z_fuid_lock); kmem_free(zfsvfs, sizeof (zfsvfs_t)); } static int zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) { dev_t mount_dev; uint64_t recordsize, readonly; int error = 0; int mode; zfsvfs_t *zfsvfs; znode_t *zp = NULL; ASSERT(vfsp); ASSERT(osname); /* * Initialize the zfs-specific filesystem structure. * Should probably make this a kmem cache, shuffle fields, * and just bzero up to z_hold_mtx[]. */ zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); zfsvfs->z_vfs = vfsp; zfsvfs->z_parent = zfsvfs; zfsvfs->z_assign = TXG_NOWAIT; zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); rrw_init(&zfsvfs->z_teardown_lock); rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); /* Initialize the generic filesystem structure. */ vfsp->vfs_bcount = 0; vfsp->vfs_data = NULL; if (zfs_create_unique_device(&mount_dev) == -1) { error = ENODEV; goto out; } ASSERT(vfs_devismounted(mount_dev) == 0); if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, NULL)) goto out; vfsp->vfs_dev = mount_dev; vfsp->vfs_fstype = zfsfstype; vfsp->vfs_bsize = recordsize; vfsp->vfs_flag |= VFS_NOTRUNC; vfsp->vfs_data = zfsvfs; if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) goto out; if (readonly) mode = DS_MODE_PRIMARY | DS_MODE_READONLY; else mode = DS_MODE_PRIMARY; error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); if (error == EROFS) { mode = DS_MODE_PRIMARY | DS_MODE_READONLY; error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); } if (error) goto out; if (error = zfs_init_fs(zfsvfs, &zp, cr)) goto out; /* The call to zfs_init_fs leaves the vnode held, release it here. */ VN_RELE(ZTOV(zp)); /* * Set features for file system. */ zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); if (zfsvfs->z_use_fuids) { vfs_set_feature(vfsp, VFSFT_XVATTR); vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); vfs_set_feature(vfsp, VFSFT_ACLONCREATE); } if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); } if (dmu_objset_is_snapshot(zfsvfs->z_os)) { uint64_t pval; ASSERT(mode & DS_MODE_READONLY); atime_changed_cb(zfsvfs, B_FALSE); readonly_changed_cb(zfsvfs, B_TRUE); if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) goto out; xattr_changed_cb(zfsvfs, pval); zfsvfs->z_issnap = B_TRUE; } else { error = zfsvfs_setup(zfsvfs, B_TRUE); } if (!zfsvfs->z_issnap) zfsctl_create(zfsvfs); out: if (error) { if (zfsvfs->z_os) dmu_objset_close(zfsvfs->z_os); zfs_freezfsvfs(zfsvfs); } else { atomic_add_32(&zfs_active_fs_count, 1); } return (error); } void zfs_unregister_callbacks(zfsvfs_t *zfsvfs) { objset_t *os = zfsvfs->z_os; struct dsl_dataset *ds; /* * Unregister properties. */ if (!dmu_objset_is_snapshot(os)) { ds = dmu_objset_ds(os); VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs) == 0); } } /* * Convert a decimal digit string to a uint64_t integer. */ static int str_to_uint64(char *str, uint64_t *objnum) { uint64_t num = 0; while (*str) { if (*str < '0' || *str > '9') return (EINVAL); num = num*10 + *str++ - '0'; } *objnum = num; return (0); } /* * The boot path passed from the boot loader is in the form of * "rootpool-name/root-filesystem-object-number'. Convert this * string to a dataset name: "rootpool-name/root-filesystem-name". */ static int zfs_parse_bootfs(char *bpath, char *outpath) { char *slashp; uint64_t objnum; int error; if (*bpath == 0 || *bpath == '/') return (EINVAL); slashp = strchr(bpath, '/'); /* if no '/', just return the pool name */ if (slashp == NULL) { (void) strcpy(outpath, bpath); return (0); } if (error = str_to_uint64(slashp+1, &objnum)) return (error); *slashp = '\0'; error = dsl_dsobj_to_dsname(bpath, objnum, outpath); *slashp = '/'; return (error); } static int zfs_mountroot(vfs_t *vfsp, enum whymountroot why) { int error = 0; static int zfsrootdone = 0; zfsvfs_t *zfsvfs = NULL; znode_t *zp = NULL; vnode_t *vp = NULL; char *zfs_bootfs; ASSERT(vfsp); /* * The filesystem that we mount as root is defined in the * boot property "zfs-bootfs" with a format of * "poolname/root-dataset-objnum". */ if (why == ROOT_INIT) { if (zfsrootdone++) return (EBUSY); /* * the process of doing a spa_load will require the * clock to be set before we could (for example) do * something better by looking at the timestamp on * an uberblock, so just set it to -1. */ clkset(-1); if ((zfs_bootfs = spa_get_bootfs()) == NULL) { cmn_err(CE_NOTE, "\nspa_get_bootfs: can not get " "bootfs name \n"); return (EINVAL); } if (error = spa_import_rootpool(rootfs.bo_name)) { spa_free_bootfs(zfs_bootfs); cmn_err(CE_NOTE, "\nspa_import_rootpool: error %d\n", error); return (error); } if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { spa_free_bootfs(zfs_bootfs); cmn_err(CE_NOTE, "\nzfs_parse_bootfs: error %d\n", error); return (error); } spa_free_bootfs(zfs_bootfs); if (error = vfs_lock(vfsp)) return (error); if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) { cmn_err(CE_NOTE, "\nzfs_domount: error %d\n", error); goto out; } zfsvfs = (zfsvfs_t *)vfsp->vfs_data; ASSERT(zfsvfs); if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { cmn_err(CE_NOTE, "\nzfs_zget: error %d\n", error); goto out; } vp = ZTOV(zp); mutex_enter(&vp->v_lock); vp->v_flag |= VROOT; mutex_exit(&vp->v_lock); rootvp = vp; /* * Leave rootvp held. The root file system is never unmounted. */ vfs_add((struct vnode *)0, vfsp, (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); out: vfs_unlock(vfsp); return (error); } else if (why == ROOT_REMOUNT) { readonly_changed_cb(vfsp->vfs_data, B_FALSE); vfsp->vfs_flag |= VFS_REMOUNT; /* refresh mount options */ zfs_unregister_callbacks(vfsp->vfs_data); return (zfs_register_callbacks(vfsp)); } else if (why == ROOT_UNMOUNT) { zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); (void) zfs_sync(vfsp, 0, 0); return (0); } /* * if "why" is equal to anything else other than ROOT_INIT, * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. */ return (ENOTSUP); } /*ARGSUSED*/ static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) { char *osname; pathname_t spn; int error = 0; uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE; int canwrite; if (mvp->v_type != VDIR) return (ENOTDIR); mutex_enter(&mvp->v_lock); if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 && (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { mutex_exit(&mvp->v_lock); return (EBUSY); } mutex_exit(&mvp->v_lock); /* * ZFS does not support passing unparsed data in via MS_DATA. * Users should use the MS_OPTIONSTR interface; this means * that all option parsing is already done and the options struct * can be interrogated. */ if ((uap->flags & MS_DATA) && uap->datalen > 0) return (EINVAL); /* * Get the objset name (the "special" mount argument). */ if (error = pn_get(uap->spec, fromspace, &spn)) return (error); osname = spn.pn_path; /* * Check for mount privilege? * * If we don't have privilege then see if * we have local permission to allow it */ error = secpolicy_fs_mount(cr, mvp, vfsp); if (error) { error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); if (error == 0) { vattr_t vattr; /* * Make sure user is the owner of the mount point * or has sufficient privileges. */ vattr.va_mask = AT_UID; if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { goto out; } if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { error = EPERM; goto out; } secpolicy_fs_mount_clearopts(cr, vfsp); } else { goto out; } } /* * Refuse to mount a filesystem if we are in a local zone and the * dataset is not visible. */ if (!INGLOBALZONE(curproc) && (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { error = EPERM; goto out; } /* * When doing a remount, we simply refresh our temporary properties * according to those options set in the current VFS options. */ if (uap->flags & MS_REMOUNT) { /* refresh mount options */ zfs_unregister_callbacks(vfsp->vfs_data); error = zfs_register_callbacks(vfsp); goto out; } error = zfs_domount(vfsp, osname, cr); out: pn_free(&spn); return (error); } static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; dev32_t d32; uint64_t refdbytes, availbytes, usedobjs, availobjs; ZFS_ENTER(zfsvfs); dmu_objset_space(zfsvfs->z_os, &refdbytes, &availbytes, &usedobjs, &availobjs); /* * The underlying storage pool actually uses multiple block sizes. * We report the fragsize as the smallest block size we support, * and we report our blocksize as the filesystem's maximum blocksize. */ statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; statp->f_bsize = zfsvfs->z_max_blksz; /* * The following report "total" blocks of various kinds in the * file system, but reported in terms of f_frsize - the * "fragment" size. */ statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; statp->f_bavail = statp->f_bfree; /* no root reservation */ /* * statvfs() should really be called statufs(), because it assumes * static metadata. ZFS doesn't preallocate files, so the best * we can do is report the max that could possibly fit in f_files, * and that minus the number actually used in f_ffree. * For f_ffree, report the smaller of the number of object available * and the number of blocks (each object will take at least a block). */ statp->f_ffree = MIN(availobjs, statp->f_bfree); statp->f_favail = statp->f_ffree; /* no "root reservation" */ statp->f_files = statp->f_ffree + usedobjs; (void) cmpldev(&d32, vfsp->vfs_dev); statp->f_fsid = d32; /* * We're a zfs filesystem. */ (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); statp->f_flag = vf_to_stf(vfsp->vfs_flag); statp->f_namemax = ZFS_MAXNAMELEN; /* * We have all of 32 characters to stuff a string here. * Is there anything useful we could/should provide? */ bzero(statp->f_fstr, sizeof (statp->f_fstr)); ZFS_EXIT(zfsvfs); return (0); } static int zfs_root(vfs_t *vfsp, vnode_t **vpp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *rootzp; int error; ZFS_ENTER(zfsvfs); error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); if (error == 0) *vpp = ZTOV(rootzp); ZFS_EXIT(zfsvfs); return (error); } /* * Teardown the zfsvfs::z_os. * * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' * and 'z_teardown_inactive_lock' held. */ static int zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) { znode_t *zp; rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); if (!unmounting) { /* * We purge the parent filesystem's vfsp as the parent * filesystem and all of its snapshots have their vnode's * v_vfsp set to the parent's filesystem's vfsp. Note, * 'z_parent' is self referential for non-snapshots. */ (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); } /* * Close the zil. NB: Can't close the zil while zfs_inactive * threads are blocked as zil_close can call zfs_inactive. */ if (zfsvfs->z_log) { zil_close(zfsvfs->z_log); zfsvfs->z_log = NULL; } rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); /* * If we are not unmounting (ie: online recv) and someone already * unmounted this file system while we were doing the switcheroo, * or a reopen of z_os failed then just bail out now. */ if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { rw_exit(&zfsvfs->z_teardown_inactive_lock); rrw_exit(&zfsvfs->z_teardown_lock, FTAG); return (EIO); } /* * At this point there are no vops active, and any new vops will * fail with EIO since we have z_teardown_lock for writer (only * relavent for forced unmount). * * Release all holds on dbufs. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; zp = list_next(&zfsvfs->z_all_znodes, zp)) if (zp->z_dbuf) { ASSERT(ZTOV(zp)->v_count > 0); zfs_znode_dmu_fini(zp); } mutex_exit(&zfsvfs->z_znodes_lock); /* * If we are unmounting, set the unmounted flag and let new vops * unblock. zfs_inactive will have the unmounted behavior, and all * other vops will fail with EIO. */ if (unmounting) { zfsvfs->z_unmounted = B_TRUE; rrw_exit(&zfsvfs->z_teardown_lock, FTAG); rw_exit(&zfsvfs->z_teardown_inactive_lock); } /* * z_os will be NULL if there was an error in attempting to reopen * zfsvfs, so just return as the properties had already been * unregistered and cached data had been evicted before. */ if (zfsvfs->z_os == NULL) return (0); /* * Unregister properties. */ zfs_unregister_callbacks(zfsvfs); /* * Evict cached data */ if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); (void) dmu_objset_evict_dbufs(zfsvfs->z_os); } return (0); } /*ARGSUSED*/ static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) { zfsvfs_t *zfsvfs = vfsp->vfs_data; objset_t *os; int ret; ret = secpolicy_fs_unmount(cr, vfsp); if (ret) { ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), ZFS_DELEG_PERM_MOUNT, cr); if (ret) return (ret); } /* * We purge the parent filesystem's vfsp as the parent filesystem * and all of its snapshots have their vnode's v_vfsp set to the * parent's filesystem's vfsp. Note, 'z_parent' is self * referential for non-snapshots. */ (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); /* * Unmount any snapshots mounted under .zfs before unmounting the * dataset itself. */ if (zfsvfs->z_ctldir != NULL && (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { return (ret); } if (!(fflag & MS_FORCE)) { /* * Check the number of active vnodes in the file system. * Our count is maintained in the vfs structure, but the * number is off by 1 to indicate a hold on the vfs * structure itself. * * The '.zfs' directory maintains a reference of its * own, and any active references underneath are * reflected in the vnode count. */ if (zfsvfs->z_ctldir == NULL) { if (vfsp->vfs_count > 1) return (EBUSY); } else { if (vfsp->vfs_count > 2 || zfsvfs->z_ctldir->v_count > 1) return (EBUSY); } } vfsp->vfs_flag |= VFS_UNMOUNTED; VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); os = zfsvfs->z_os; /* * z_os will be NULL if there was an error in * attempting to reopen zfsvfs. */ if (os != NULL) { /* * Unset the objset user_ptr. */ mutex_enter(&os->os->os_user_ptr_lock); dmu_objset_set_user(os, NULL); mutex_exit(&os->os->os_user_ptr_lock); /* * Finally close the objset */ dmu_objset_close(os); } /* * We can now safely destroy the '.zfs' directory node. */ if (zfsvfs->z_ctldir != NULL) zfsctl_destroy(zfsvfs); return (0); } static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *zp; uint64_t object = 0; uint64_t fid_gen = 0; uint64_t gen_mask; uint64_t zp_gen; int i, err; *vpp = NULL; ZFS_ENTER(zfsvfs); if (fidp->fid_len == LONG_FID_LEN) { zfid_long_t *zlfid = (zfid_long_t *)fidp; uint64_t objsetid = 0; uint64_t setgen = 0; for (i = 0; i < sizeof (zlfid->zf_setid); i++) objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); for (i = 0; i < sizeof (zlfid->zf_setgen); i++) setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); ZFS_EXIT(zfsvfs); err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); if (err) return (EINVAL); ZFS_ENTER(zfsvfs); } if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { zfid_short_t *zfid = (zfid_short_t *)fidp; for (i = 0; i < sizeof (zfid->zf_object); i++) object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); for (i = 0; i < sizeof (zfid->zf_gen); i++) fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); } else { ZFS_EXIT(zfsvfs); return (EINVAL); } /* A zero fid_gen means we are in the .zfs control directories */ if (fid_gen == 0 && (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { *vpp = zfsvfs->z_ctldir; ASSERT(*vpp != NULL); if (object == ZFSCTL_INO_SNAPDIR) { VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 0, NULL, NULL, NULL, NULL, NULL) == 0); } else { VN_HOLD(*vpp); } ZFS_EXIT(zfsvfs); return (0); } gen_mask = -1ULL >> (64 - 8 * i); dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); if (err = zfs_zget(zfsvfs, object, &zp)) { ZFS_EXIT(zfsvfs); return (err); } zp_gen = zp->z_phys->zp_gen & gen_mask; if (zp_gen == 0) zp_gen = 1; if (zp->z_unlinked || zp_gen != fid_gen) { dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); VN_RELE(ZTOV(zp)); ZFS_EXIT(zfsvfs); return (EINVAL); } *vpp = ZTOV(zp); ZFS_EXIT(zfsvfs); return (0); } /* * Block out VOPs and close zfsvfs_t::z_os * * Note, if successful, then we return with the 'z_teardown_lock' and * 'z_teardown_inactive_lock' write held. */ int zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) { int error; if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) return (error); *mode = zfsvfs->z_os->os_mode; dmu_objset_name(zfsvfs->z_os, name); dmu_objset_close(zfsvfs->z_os); return (0); } /* * Reopen zfsvfs_t::z_os and release VOPs. */ int zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) { int err; ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); if (err) { zfsvfs->z_os = NULL; } else { znode_t *zp; VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); /* * Attempt to re-establish all the active znodes with * their dbufs. If a zfs_rezget() fails, then we'll let * any potential callers discover that via ZFS_ENTER_VERIFY_VP * when they try to use their znode. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = list_next(&zfsvfs->z_all_znodes, zp)) { (void) zfs_rezget(zp); } mutex_exit(&zfsvfs->z_znodes_lock); } /* release the VOPs */ rw_exit(&zfsvfs->z_teardown_inactive_lock); rrw_exit(&zfsvfs->z_teardown_lock, FTAG); if (err) { /* * Since we couldn't reopen zfsvfs::z_os, force * unmount this file system. */ if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); } return (err); } static void zfs_freevfs(vfs_t *vfsp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; int i; for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_destroy(&zfsvfs->z_hold_mtx[i]); zfs_fuid_destroy(zfsvfs); zfs_freezfsvfs(zfsvfs); atomic_add_32(&zfs_active_fs_count, -1); } /* * VFS_INIT() initialization. Note that there is no VFS_FINI(), * so we can't safely do any non-idempotent initialization here. * Leave that to zfs_init() and zfs_fini(), which are called * from the module's _init() and _fini() entry points. */ /*ARGSUSED*/ static int zfs_vfsinit(int fstype, char *name) { int error; zfsfstype = fstype; /* * Setup vfsops and vnodeops tables. */ error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); if (error != 0) { cmn_err(CE_WARN, "zfs: bad vfs ops template"); } error = zfs_create_op_tables(); if (error) { zfs_remove_op_tables(); cmn_err(CE_WARN, "zfs: bad vnode ops template"); (void) vfs_freevfsops_by_type(zfsfstype); return (error); } mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); /* * Unique major number for all zfs mounts. * If we run out of 32-bit minors, we'll getudev() another major. */ zfs_major = ddi_name_to_major(ZFS_DRIVER); zfs_minor = ZFS_MIN_MINOR; return (0); } void zfs_init(void) { /* * Initialize .zfs directory structures */ zfsctl_init(); /* * Initialize znode cache, vnode ops, etc... */ zfs_znode_init(); } void zfs_fini(void) { zfsctl_fini(); zfs_znode_fini(); } int zfs_busy(void) { return (zfs_active_fs_count != 0); } int zfs_set_version(const char *name, uint64_t newvers) { int error; objset_t *os; dmu_tx_t *tx; uint64_t curvers; /* * XXX for now, require that the filesystem be unmounted. Would * be nice to find the zfsvfs_t and just update that if * possible. */ if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) return (EINVAL); error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_PRIMARY, &os); if (error) return (error); error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &curvers); if (error) goto out; if (newvers < curvers) { error = EINVAL; goto out; } tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); goto out; } error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &newvers, tx); spa_history_internal_log(LOG_DS_UPGRADE, dmu_objset_spa(os), tx, CRED(), "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, dmu_objset_id(os)); dmu_tx_commit(tx); out: dmu_objset_close(os); return (error); } /* * Read a property stored within the master node. */ int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) { const char *pname; int error; /* * Look up the file system's value for the property. For the * version property, we look up a slightly different string. */ if (prop == ZFS_PROP_VERSION) pname = ZPL_VERSION_STR; else pname = zfs_prop_to_name(prop); error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); if (error == ENOENT) { /* No value set, use the default value */ switch (prop) { case ZFS_PROP_VERSION: *value = ZPL_VERSION; break; case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: *value = 0; break; case ZFS_PROP_CASE: *value = ZFS_CASE_SENSITIVE; break; default: return (error); } error = 0; } return (error); } static vfsdef_t vfw = { VFSDEF_VERSION, MNTTYPE_ZFS, zfs_vfsinit, VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| VSW_XID, &zfs_mntopts }; struct modlfs zfs_modlfs = { &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw };