/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #endif /* * Pool configuration repository. * * Pool configuration is stored as a packed nvlist on the filesystem. By * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot * (when the ZFS module is loaded). Pools can also have the 'cachefile' * property set that allows them to be stored in an alternate location until * the control of external software. * * For each cache file, we have a single nvlist which holds all the * configuration information. When the module loads, we read this information * from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is * maintained independently in spa.c. Whenever the namespace is modified, or * the configuration of a pool is changed, we call spa_config_sync(), which * walks through all the active pools and writes the configuration to disk. */ static uint64_t spa_config_generation = 1; /* * This can be overridden in userland to preserve an alternate namespace for * userland pools when doing testing. */ const char *spa_config_dir = ZPOOL_CACHE_DIR; /* * Called when the module is first loaded, this routine loads the configuration * file into the SPA namespace. It does not actually open or load the pools; it * only populates the namespace. */ void spa_config_load(void) { void *buf = NULL; nvlist_t *nvlist, *child; nvpair_t *nvpair; spa_t *spa; char pathname[128]; struct _buf *file; uint64_t fsize; /* * Open the configuration file. */ (void) snprintf(pathname, sizeof (pathname), "%s%s/%s", (rootdir != NULL) ? "./" : "", spa_config_dir, ZPOOL_CACHE_FILE); file = kobj_open_file(pathname); if (file == (struct _buf *)-1) return; if (kobj_get_filesize(file, &fsize) != 0) goto out; buf = kmem_alloc(fsize, KM_SLEEP); /* * Read the nvlist from the file. */ if (kobj_read_file(file, buf, fsize, 0) < 0) goto out; /* * Unpack the nvlist. */ if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0) goto out; /* * Iterate over all elements in the nvlist, creating a new spa_t for * each one with the specified configuration. */ mutex_enter(&spa_namespace_lock); nvpair = NULL; while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) { if (nvpair_type(nvpair) != DATA_TYPE_NVLIST) continue; VERIFY(nvpair_value_nvlist(nvpair, &child) == 0); if (spa_lookup(nvpair_name(nvpair)) != NULL) continue; spa = spa_add(nvpair_name(nvpair), NULL); /* * We blindly duplicate the configuration here. If it's * invalid, we will catch it when the pool is first opened. */ VERIFY(nvlist_dup(child, &spa->spa_config, 0) == 0); } mutex_exit(&spa_namespace_lock); nvlist_free(nvlist); out: if (buf != NULL) kmem_free(buf, fsize); kobj_close_file(file); } /* * This function is called when destroying or exporting a pool. It walks the * list of active pools, and searches for any that match the given cache file. * If there is only one cachefile, then the file is removed immediately, * because we won't see the pool when iterating in spa_config_sync(). */ void spa_config_check(const char *dir, const char *file) { size_t count = 0; char pathname[128]; spa_t *spa; if (dir != NULL && strcmp(dir, "none") == 0) return; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa = NULL; while ((spa = spa_next(spa)) != NULL) { if (dir == NULL) { if (spa->spa_config_dir == NULL) count++; } else { if (spa->spa_config_dir && strcmp(spa->spa_config_dir, dir) == 0 && strcmp(spa->spa_config_file, file) == 0) count++; } } if (count == 1) { if (dir == NULL) { dir = spa_config_dir; file = ZPOOL_CACHE_FILE; } (void) snprintf(pathname, sizeof (pathname), "%s/%s", dir, file); (void) vn_remove(pathname, UIO_SYSSPACE, RMFILE); } } typedef struct spa_config_entry { list_t sc_link; const char *sc_dir; const char *sc_file; nvlist_t *sc_nvl; } spa_config_entry_t; static void spa_config_entry_add(list_t *listp, spa_t *spa) { spa_config_entry_t *entry; const char *dir, *file; mutex_enter(&spa->spa_config_cache_lock); if (!spa->spa_config || !spa->spa_name) { mutex_exit(&spa->spa_config_cache_lock); return; } if (spa->spa_config_dir) { dir = spa->spa_config_dir; file = spa->spa_config_file; } else { dir = spa_config_dir; file = ZPOOL_CACHE_FILE; } if (strcmp(dir, "none") == 0) { mutex_exit(&spa->spa_config_cache_lock); return; } for (entry = list_head(listp); entry != NULL; entry = list_next(listp, entry)) { if (strcmp(entry->sc_dir, dir) == 0 && strcmp(entry->sc_file, file) == 0) break; } if (entry == NULL) { entry = kmem_alloc(sizeof (spa_config_entry_t), KM_SLEEP); entry->sc_dir = dir; entry->sc_file = file; VERIFY(nvlist_alloc(&entry->sc_nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); list_insert_tail(listp, entry); } VERIFY(nvlist_add_nvlist(entry->sc_nvl, spa->spa_name, spa->spa_config) == 0); mutex_exit(&spa->spa_config_cache_lock); } static void spa_config_entry_write(spa_config_entry_t *entry) { nvlist_t *config = entry->sc_nvl; size_t buflen; char *buf; vnode_t *vp; int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX; char pathname[128]; char pathname2[128]; /* * Pack the configuration into a buffer. */ VERIFY(nvlist_size(config, &buflen, NV_ENCODE_XDR) == 0); buf = kmem_alloc(buflen, KM_SLEEP); VERIFY(nvlist_pack(config, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0); /* * Write the configuration to disk. We need to do the traditional * 'write to temporary file, sync, move over original' to make sure we * always have a consistent view of the data. */ (void) snprintf(pathname, sizeof (pathname), "%s/.%s", entry->sc_dir, entry->sc_file); if (vn_open(pathname, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) != 0) goto out; if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, NULL) == 0 && VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) { (void) snprintf(pathname2, sizeof (pathname2), "%s/%s", entry->sc_dir, entry->sc_file); (void) vn_rename(pathname, pathname2, UIO_SYSSPACE); } (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL); VN_RELE(vp); out: (void) vn_remove(pathname, UIO_SYSSPACE, RMFILE); kmem_free(buf, buflen); } /* * Synchronize all pools to disk. This must be called with the namespace lock * held. */ void spa_config_sync(void) { spa_t *spa = NULL; list_t files = { 0 }; spa_config_entry_t *entry; ASSERT(MUTEX_HELD(&spa_namespace_lock)); list_create(&files, sizeof (spa_config_entry_t), offsetof(spa_config_entry_t, sc_link)); /* * Add all known pools to the configuration list, ignoring those with * alternate root paths. */ spa = NULL; while ((spa = spa_next(spa)) != NULL) spa_config_entry_add(&files, spa); while ((entry = list_head(&files)) != NULL) { spa_config_entry_write(entry); list_remove(&files, entry); nvlist_free(entry->sc_nvl); kmem_free(entry, sizeof (spa_config_entry_t)); } spa_config_generation++; } /* * Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache, * and we don't want to allow the local zone to see all the pools anyway. * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration * information for all pool visible within the zone. */ nvlist_t * spa_all_configs(uint64_t *generation) { nvlist_t *pools; spa_t *spa; if (*generation == spa_config_generation) return (NULL); VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0); spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (INGLOBALZONE(curproc) || zone_dataset_visible(spa_name(spa), NULL)) { mutex_enter(&spa->spa_config_cache_lock); VERIFY(nvlist_add_nvlist(pools, spa_name(spa), spa->spa_config) == 0); mutex_exit(&spa->spa_config_cache_lock); } } mutex_exit(&spa_namespace_lock); *generation = spa_config_generation; return (pools); } void spa_config_set(spa_t *spa, nvlist_t *config) { mutex_enter(&spa->spa_config_cache_lock); if (spa->spa_config != NULL) nvlist_free(spa->spa_config); spa->spa_config = config; mutex_exit(&spa->spa_config_cache_lock); } /* * Generate the pool's configuration based on the current in-core state. * We infer whether to generate a complete config or just one top-level config * based on whether vd is the root vdev. */ nvlist_t * spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats) { nvlist_t *config, *nvroot; vdev_t *rvd = spa->spa_root_vdev; unsigned long hostid = 0; ASSERT(spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER)); if (vd == NULL) vd = rvd; /* * If txg is -1, report the current value of spa->spa_config_txg. */ if (txg == -1ULL) txg = spa->spa_config_txg; VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)) == 0); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, spa_name(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, spa_state(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, txg) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa)) == 0); (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); if (hostid != 0) { VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid) == 0); } VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, utsname.nodename) == 0); if (vd != rvd) { VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); if (vd->vdev_isspare) VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE, 1ULL) == 0); if (vd->vdev_islog) VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG, 1ULL) == 0); vd = vd->vdev_top; /* label contains top config */ } nvroot = vdev_config_generate(spa, vd, getstats, B_FALSE); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); nvlist_free(nvroot); return (config); } /* * Update all disk labels, generate a fresh config based on the current * in-core state, and sync the global config cache. */ void spa_config_update(spa_t *spa, int what) { vdev_t *rvd = spa->spa_root_vdev; uint64_t txg; int c; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, RW_WRITER, FTAG); txg = spa_last_synced_txg(spa) + 1; if (what == SPA_CONFIG_UPDATE_POOL) { vdev_config_dirty(rvd); } else { /* * If we have top-level vdevs that were added but have * not yet been prepared for allocation, do that now. * (It's safe now because the config cache is up to date, * so it will be able to translate the new DVAs.) * See comments in spa_vdev_add() for full details. */ for (c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_ms_array == 0) { vdev_init(tvd, txg); vdev_config_dirty(tvd); } } } spa_config_exit(spa, FTAG); /* * Wait for the mosconfig to be regenerated and synced. */ txg_wait_synced(spa->spa_dsl_pool, txg); /* * Update the global config cache to reflect the new mosconfig. */ spa_config_sync(); if (what == SPA_CONFIG_UPDATE_POOL) spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS); }