/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include static int free_range_compar(const void *node1, const void *node2); static kmem_cache_t *dnode_cache; static dnode_phys_t dnode_phys_zero; int zfs_default_bs = SPA_MINBLOCKSHIFT; int zfs_default_ibs = DN_MAX_INDBLKSHIFT; /* ARGSUSED */ static int dnode_cons(void *arg, void *unused, int kmflag) { int i; dnode_t *dn = arg; bzero(dn, sizeof (dnode_t)); rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); refcount_create(&dn->dn_holds); refcount_create(&dn->dn_tx_holds); for (i = 0; i < TXG_SIZE; i++) { avl_create(&dn->dn_ranges[i], free_range_compar, sizeof (free_range_t), offsetof(struct free_range, fr_node)); list_create(&dn->dn_dirty_dbufs[i], sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_dirty_node[i])); } list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_link)); return (0); } /* ARGSUSED */ static void dnode_dest(void *arg, void *unused) { int i; dnode_t *dn = arg; rw_destroy(&dn->dn_struct_rwlock); mutex_destroy(&dn->dn_mtx); mutex_destroy(&dn->dn_dbufs_mtx); refcount_destroy(&dn->dn_holds); refcount_destroy(&dn->dn_tx_holds); for (i = 0; i < TXG_SIZE; i++) { avl_destroy(&dn->dn_ranges[i]); list_destroy(&dn->dn_dirty_dbufs[i]); } list_destroy(&dn->dn_dbufs); } void dnode_init(void) { dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); } void dnode_fini(void) { kmem_cache_destroy(dnode_cache); } #ifdef ZFS_DEBUG void dnode_verify(dnode_t *dn) { int drop_struct_lock = FALSE; ASSERT(dn->dn_phys); ASSERT(dn->dn_objset); ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES); if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) return; if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { rw_enter(&dn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { int i; ASSERT3U(dn->dn_indblkshift, >=, 0); ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); if (dn->dn_datablkshift) { ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); ASSERT3U(1<dn_datablkshift, ==, dn->dn_datablksz); } ASSERT3U(dn->dn_nlevels, <=, 30); ASSERT3U(dn->dn_type, <=, DMU_OT_NUMTYPES); ASSERT3U(dn->dn_nblkptr, >=, 1); ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); ASSERT3U(dn->dn_datablksz, ==, dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); for (i = 0; i < TXG_SIZE; i++) { ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); } } if (dn->dn_phys->dn_type != DMU_OT_NONE) ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); ASSERT(IS_DNODE_DNODE(dn->dn_object) || dn->dn_dbuf); if (dn->dn_dbuf != NULL) { ASSERT3P(dn->dn_phys, ==, (dnode_phys_t *)dn->dn_dbuf->db.db_data + (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); } if (drop_struct_lock) rw_exit(&dn->dn_struct_rwlock); } #endif void dnode_byteswap(dnode_phys_t *dnp) { uint64_t *buf64 = (void*)&dnp->dn_blkptr; int i; if (dnp->dn_type == DMU_OT_NONE) { bzero(dnp, sizeof (dnode_phys_t)); return; } dnp->dn_type = BSWAP_8(dnp->dn_type); dnp->dn_indblkshift = BSWAP_8(dnp->dn_indblkshift); dnp->dn_nlevels = BSWAP_8(dnp->dn_nlevels); dnp->dn_nblkptr = BSWAP_8(dnp->dn_nblkptr); dnp->dn_bonustype = BSWAP_8(dnp->dn_bonustype); dnp->dn_checksum = BSWAP_8(dnp->dn_checksum); dnp->dn_compress = BSWAP_8(dnp->dn_compress); dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); dnp->dn_secphys = BSWAP_64(dnp->dn_secphys); /* * dn_nblkptr is only one byte, so it's OK to read it in either * byte order. We can't read dn_bouslen. */ ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) buf64[i] = BSWAP_64(buf64[i]); /* * OK to check dn_bonuslen for zero, because it won't matter if * we have the wrong byte order. This is necessary because the * dnode dnode is smaller than a regular dnode. */ if (dnp->dn_bonuslen != 0) { /* * Note that the bonus length calculated here may be * longer than the actual bonus buffer. This is because * we always put the bonus buffer after the last block * pointer (instead of packing it against the end of the * dnode buffer). */ int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); size_t len = DN_MAX_BONUSLEN - off; dmu_ot[dnp->dn_bonustype].ot_byteswap(dnp->dn_bonus + off, len); } } void dnode_buf_byteswap(void *vbuf, size_t size) { dnode_phys_t *buf = vbuf; int i; ASSERT3U(sizeof (dnode_phys_t), ==, (1<>= DNODE_SHIFT; for (i = 0; i < size; i++) { dnode_byteswap(buf); buf++; } } static int free_range_compar(const void *node1, const void *node2) { const free_range_t *rp1 = node1; const free_range_t *rp2 = node2; if (rp1->fr_blkid < rp2->fr_blkid) return (-1); else if (rp1->fr_blkid > rp2->fr_blkid) return (1); else return (0); } static void dnode_setdblksz(dnode_t *dn, int size) { ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0); ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(size, >=, SPA_MINBLOCKSIZE); ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); dn->dn_datablksz = size; dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0; } static dnode_t * dnode_create(objset_impl_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, uint64_t object) { dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); (void) dnode_cons(dn, NULL, 0); /* XXX */ dn->dn_objset = os; dn->dn_object = object; dn->dn_dbuf = db; dn->dn_phys = dnp; if (dnp->dn_datablkszsec) dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); dn->dn_indblkshift = dnp->dn_indblkshift; dn->dn_nlevels = dnp->dn_nlevels; dn->dn_type = dnp->dn_type; dn->dn_nblkptr = dnp->dn_nblkptr; dn->dn_checksum = dnp->dn_checksum; dn->dn_compress = dnp->dn_compress; dn->dn_bonustype = dnp->dn_bonustype; dn->dn_bonuslen = dnp->dn_bonuslen; dn->dn_maxblkid = dnp->dn_maxblkid; dmu_zfetch_init(&dn->dn_zfetch, dn); ASSERT(dn->dn_phys->dn_type < DMU_OT_NUMTYPES); mutex_enter(&os->os_lock); list_insert_head(&os->os_dnodes, dn); mutex_exit(&os->os_lock); return (dn); } static void dnode_destroy(dnode_t *dn) { objset_impl_t *os = dn->dn_objset; mutex_enter(&os->os_lock); list_remove(&os->os_dnodes, dn); mutex_exit(&os->os_lock); if (dn->dn_dirtyctx_firstset) { kmem_free(dn->dn_dirtyctx_firstset, 1); dn->dn_dirtyctx_firstset = NULL; } dmu_zfetch_rele(&dn->dn_zfetch); kmem_cache_free(dnode_cache, dn); } void dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { int i; if (blocksize == 0) blocksize = 1 << zfs_default_bs; else if (blocksize > SPA_MAXBLOCKSIZE) blocksize = SPA_MAXBLOCKSIZE; else blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); if (ibs == 0) ibs = zfs_default_ibs; ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs); ASSERT(dn->dn_type == DMU_OT_NONE); ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); ASSERT(ot != DMU_OT_NONE); ASSERT3U(ot, <, DMU_OT_NUMTYPES); ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || (bonustype != DMU_OT_NONE && bonuslen != 0)); ASSERT3U(bonustype, <, DMU_OT_NUMTYPES); ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); ASSERT(dn->dn_type == DMU_OT_NONE); ASSERT3U(dn->dn_maxblkid, ==, 0); ASSERT3U(dn->dn_allocated_txg, ==, 0); ASSERT3U(dn->dn_assigned_txg, ==, 0); ASSERT(refcount_is_zero(&dn->dn_tx_holds)); ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL); for (i = 0; i < TXG_SIZE; i++) { ASSERT3U(dn->dn_next_nlevels[i], ==, 0); ASSERT3U(dn->dn_next_indblkshift[i], ==, 0); ASSERT3U(dn->dn_dirtyblksz[i], ==, 0); ASSERT3P(list_head(&dn->dn_dirty_dbufs[i]), ==, NULL); ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0); } dn->dn_type = ot; dnode_setdblksz(dn, blocksize); dn->dn_indblkshift = ibs; dn->dn_nlevels = 1; dn->dn_nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); dn->dn_bonustype = bonustype; dn->dn_bonuslen = bonuslen; dn->dn_checksum = ZIO_CHECKSUM_INHERIT; dn->dn_compress = ZIO_COMPRESS_INHERIT; dn->dn_dirtyctx = 0; dn->dn_free_txg = 0; if (dn->dn_dirtyctx_firstset) { kmem_free(dn->dn_dirtyctx_firstset, 1); dn->dn_dirtyctx_firstset = NULL; } dn->dn_allocated_txg = tx->tx_txg; dnode_setdirty(dn, tx); } void dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { dmu_buf_impl_t *db = NULL; ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE); ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0); ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL); ASSERT(!(dn->dn_object & DMU_PRIVATE_OBJECT) || dmu_tx_private_ok(tx)); ASSERT(tx->tx_txg != 0); ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || (bonustype != DMU_OT_NONE && bonuslen != 0)); ASSERT3U(bonustype, <, DMU_OT_NUMTYPES); ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); ASSERT(dn->dn_dirtyblksz[0] == 0); ASSERT(dn->dn_dirtyblksz[1] == 0); ASSERT(dn->dn_dirtyblksz[2] == 0); ASSERT(dn->dn_dirtyblksz[3] == 0); /* * XXX I should really have a generation number to tell if we * need to do this... */ if (blocksize != dn->dn_datablksz || dn->dn_bonustype != bonustype || dn->dn_bonuslen != bonuslen) { /* free all old data */ dnode_free_range(dn, 0, -1ULL, tx); } /* change blocksize */ rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dnode_setdblksz(dn, blocksize); dnode_setdirty(dn, tx); /* don't need dd_dirty_mtx, dnode is already dirty */ ASSERT(dn->dn_dirtyblksz[tx->tx_txg&TXG_MASK] != 0); dn->dn_dirtyblksz[tx->tx_txg&TXG_MASK] = blocksize; rw_exit(&dn->dn_struct_rwlock); /* change type */ dn->dn_type = ot; if (dn->dn_bonuslen != bonuslen) { /* change bonus size */ if (bonuslen == 0) bonuslen = 1; /* XXX */ db = dbuf_hold_bonus(dn, FTAG); dbuf_read(db); mutex_enter(&db->db_mtx); ASSERT3U(db->db.db_size, ==, dn->dn_bonuslen); ASSERT(db->db.db_data != NULL); db->db.db_size = bonuslen; mutex_exit(&db->db_mtx); dbuf_dirty(db, tx); } /* change bonus size and type */ mutex_enter(&dn->dn_mtx); dn->dn_bonustype = bonustype; dn->dn_bonuslen = bonuslen; dn->dn_nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); dn->dn_checksum = ZIO_CHECKSUM_INHERIT; dn->dn_compress = ZIO_COMPRESS_INHERIT; ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); dn->dn_allocated_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); if (db) dbuf_remove_ref(db, FTAG); } void dnode_special_close(dnode_t *dn) { dnode_destroy(dn); } dnode_t * dnode_special_open(objset_impl_t *os, dnode_phys_t *dnp, uint64_t object) { dnode_t *dn = dnode_create(os, dnp, NULL, object); DNODE_VERIFY(dn); return (dn); } static void dnode_buf_pageout(dmu_buf_t *db, void *arg) { dnode_t **children_dnodes = arg; int i; int epb = db->db_size >> DNODE_SHIFT; for (i = 0; i < epb; i++) { dnode_t *dn = children_dnodes[i]; int n; if (dn == NULL) continue; #ifdef ZFS_DEBUG /* * If there are holds on this dnode, then there should * be holds on the dnode's containing dbuf as well; thus * it wouldn't be eligable for eviction and this function * would not have been called. */ ASSERT(refcount_is_zero(&dn->dn_holds)); ASSERT(list_head(&dn->dn_dbufs) == NULL); ASSERT(refcount_is_zero(&dn->dn_tx_holds)); for (n = 0; n < TXG_SIZE; n++) ASSERT(dn->dn_dirtyblksz[n] == 0); #endif children_dnodes[i] = NULL; dnode_destroy(dn); } kmem_free(children_dnodes, epb * sizeof (dnode_t *)); } /* * Returns held dnode if the object number is valid, NULL if not. * Note that this will succeed even for free dnodes. */ dnode_t * dnode_hold_impl(objset_impl_t *os, uint64_t object, int flag, void *ref) { int epb, idx; int drop_struct_lock = FALSE; uint64_t blk; dnode_t *mdn, *dn; dmu_buf_impl_t *db; dnode_t **children_dnodes; if (object == 0 || object >= DN_MAX_OBJECT) return (NULL); mdn = os->os_meta_dnode; DNODE_VERIFY(mdn); if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { rw_enter(&mdn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t)); db = dbuf_hold(mdn, blk); if (drop_struct_lock) rw_exit(&mdn->dn_struct_rwlock); dbuf_read(db); ASSERT3U(db->db.db_size, >=, 1<db.db_size >> DNODE_SHIFT; idx = object & (epb-1); children_dnodes = dmu_buf_get_user(&db->db); if (children_dnodes == NULL) { dnode_t **winner; children_dnodes = kmem_zalloc(epb * sizeof (dnode_t *), KM_SLEEP); if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL, dnode_buf_pageout)) { kmem_free(children_dnodes, epb * sizeof (dnode_t *)); children_dnodes = winner; } } if ((dn = children_dnodes[idx]) == NULL) { dnode_t *winner; dn = dnode_create(os, (dnode_phys_t *)db->db.db_data+idx, db, object); winner = atomic_cas_ptr(&children_dnodes[idx], NULL, dn); if (winner != NULL) { dnode_destroy(dn); dn = winner; } } mutex_enter(&dn->dn_mtx); if (dn->dn_free_txg || ((flag & DNODE_MUST_BE_ALLOCATED) && dn->dn_type == DMU_OT_NONE) || ((flag & DNODE_MUST_BE_FREE) && dn->dn_type != DMU_OT_NONE)) { mutex_exit(&dn->dn_mtx); dbuf_rele(db); return (NULL); } mutex_exit(&dn->dn_mtx); if (refcount_add(&dn->dn_holds, ref) == 1) dbuf_add_ref(db, dn); DNODE_VERIFY(dn); ASSERT3P(dn->dn_dbuf, ==, db); ASSERT3U(dn->dn_object, ==, object); dbuf_rele(db); return (dn); } /* * Return held dnode if the object is allocated, NULL if not. */ dnode_t * dnode_hold(objset_impl_t *os, uint64_t object, void *ref) { return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, ref)); } void dnode_add_ref(dnode_t *dn, void *ref) { ASSERT(refcount_count(&dn->dn_holds) > 0); (void) refcount_add(&dn->dn_holds, ref); } void dnode_rele(dnode_t *dn, void *ref) { uint64_t refs; refs = refcount_remove(&dn->dn_holds, ref); /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ if (refs == 0 && dn->dn_dbuf) dbuf_remove_ref(dn->dn_dbuf, dn); } void dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) { objset_impl_t *os = dn->dn_objset; uint64_t txg = tx->tx_txg; if (IS_DNODE_DNODE(dn->dn_object)) return; DNODE_VERIFY(dn); #ifdef ZFS_DEBUG mutex_enter(&dn->dn_mtx); ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); /* ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); */ mutex_exit(&dn->dn_mtx); #endif mutex_enter(&os->os_lock); /* * If we are already marked dirty, we're done. */ if (dn->dn_dirtyblksz[txg&TXG_MASK] > 0) { mutex_exit(&os->os_lock); return; } ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs)); ASSERT(dn->dn_datablksz != 0); dn->dn_dirtyblksz[txg&TXG_MASK] = dn->dn_datablksz; dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", dn->dn_object, txg); if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) { list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn); } else { list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn); } mutex_exit(&os->os_lock); /* * The dnode maintains a hold on its containing dbuf as * long as there are holds on it. Each instantiated child * dbuf maintaines a hold on the dnode. When the last child * drops its hold, the dnode will drop its hold on the * containing dbuf. We add a "dirty hold" here so that the * dnode will hang around after we finish processing its * children. */ (void) refcount_add(&dn->dn_holds, (void *)(uintptr_t)tx->tx_txg); dbuf_dirty(dn->dn_dbuf, tx); dsl_dataset_dirty(os->os_dsl_dataset, tx); } void dnode_free(dnode_t *dn, dmu_tx_t *tx) { dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg); /* we should be the only holder... hopefully */ /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */ mutex_enter(&dn->dn_mtx); if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { mutex_exit(&dn->dn_mtx); return; } dn->dn_free_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); /* * If the dnode is already dirty, it needs to be moved from * the dirty list to the free list. */ mutex_enter(&dn->dn_objset->os_lock); if (dn->dn_dirtyblksz[tx->tx_txg&TXG_MASK] > 0) { list_remove( &dn->dn_objset->os_dirty_dnodes[tx->tx_txg&TXG_MASK], dn); list_insert_tail( &dn->dn_objset->os_free_dnodes[tx->tx_txg&TXG_MASK], dn); mutex_exit(&dn->dn_objset->os_lock); } else { mutex_exit(&dn->dn_objset->os_lock); dnode_setdirty(dn, tx); } } /* * Try to change the block size for the indicated dnode. This can only * succeed if there are no blocks allocated or dirty beyond first block */ int dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) { dmu_buf_impl_t *db, *db_next; int have_db0 = FALSE; int err = ENOTSUP; if (size == 0) size = SPA_MINBLOCKSIZE; if (size > SPA_MAXBLOCKSIZE) size = SPA_MAXBLOCKSIZE; else size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); if (ibs == 0) ibs = dn->dn_indblkshift; if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == dn->dn_indblkshift) return (0); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); /* Check for any allocated blocks beyond the first */ if (dn->dn_phys->dn_maxblkid != 0) goto end; /* * Any buffers allocated for blocks beyond the first * must be evictable/evicted, because they're the wrong size. */ mutex_enter(&dn->dn_dbufs_mtx); /* * Since we have the dn_dbufs_mtx, nothing can be * removed from dn_dbufs. Since we have dn_struct_rwlock/w, * nothing can be added to dn_dbufs. */ for (db = list_head(&dn->dn_dbufs); db; db = db_next) { db_next = list_next(&dn->dn_dbufs, db); if (db->db_blkid == 0) { have_db0 = TRUE; } else if (db->db_blkid != DB_BONUS_BLKID) { mutex_exit(&dn->dn_dbufs_mtx); goto end; } } mutex_exit(&dn->dn_dbufs_mtx); /* Fast-track if there is no data in the file */ if (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) && !have_db0) { dnode_setdblksz(dn, size); dn->dn_indblkshift = ibs; dnode_setdirty(dn, tx); /* don't need dd_dirty_mtx, dnode is already dirty */ dn->dn_dirtyblksz[tx->tx_txg&TXG_MASK] = size; dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; rw_exit(&dn->dn_struct_rwlock); return (0); } /* obtain the old block */ db = dbuf_hold(dn, 0); dbuf_new_size(db, size, tx); dnode_setdblksz(dn, size); dn->dn_indblkshift = ibs; /* don't need dd_dirty_mtx, dnode is already dirty */ dn->dn_dirtyblksz[tx->tx_txg&TXG_MASK] = size; dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; dbuf_rele(db); err = 0; end: rw_exit(&dn->dn_struct_rwlock); return (err); } uint64_t dnode_max_nonzero_offset(dnode_t *dn) { if (dn->dn_phys->dn_maxblkid == 0 && BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0])) return (0); else return ((dn->dn_phys->dn_maxblkid+1) * dn->dn_datablksz); } void dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) { uint64_t txgoff = tx->tx_txg & TXG_MASK; int drop_struct_lock = FALSE; int epbs, old_nlevels, new_nlevels; uint64_t sz; if (blkid == DB_BONUS_BLKID) return; if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { rw_enter(&dn->dn_struct_rwlock, RW_WRITER); drop_struct_lock = TRUE; } if (blkid > dn->dn_maxblkid) dn->dn_maxblkid = blkid; /* * Compute the number of levels necessary to support the * new blkid. */ new_nlevels = 1; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (sz = dn->dn_nblkptr; sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) new_nlevels++; old_nlevels = dn->dn_nlevels; if (new_nlevels > dn->dn_next_nlevels[txgoff]) dn->dn_next_nlevels[txgoff] = new_nlevels; if (new_nlevels > old_nlevels) { dprintf("dn %p increasing nlevels from %u to %u\n", dn, dn->dn_nlevels, new_nlevels); dn->dn_nlevels = new_nlevels; } /* * Dirty the left indirects. * Note: the caller should have just dnode_use_space()'d one * data block's worth, so we could subtract that out of * dn_inflight_data to determine if there is any dirty data * besides this block. * We don't strictly need to dirty them unless there's * *something* in the object (eg. on disk or dirty)... */ if (new_nlevels > old_nlevels) { dmu_buf_impl_t *db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); dprintf("dn %p dirtying left indirects\n", dn); dbuf_dirty(db, tx); dbuf_remove_ref(db, FTAG); } #ifdef ZFS_DEBUG else if (old_nlevels > 1 && new_nlevels > old_nlevels) { dmu_buf_impl_t *db; int i; for (i = 0; i < dn->dn_nblkptr; i++) { db = dbuf_hold_level(dn, old_nlevels-1, i, FTAG); ASSERT(! list_link_active(&db->db_dirty_node[txgoff])); dbuf_remove_ref(db, FTAG); } } #endif dprintf("dn %p done\n", dn); out: if (drop_struct_lock) rw_exit(&dn->dn_struct_rwlock); } void dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) { avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; avl_index_t where; free_range_t *rp; free_range_t rp_tofind; uint64_t endblk = blkid + nblks; ASSERT(MUTEX_HELD(&dn->dn_mtx)); ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */ dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", blkid, nblks, tx->tx_txg); rp_tofind.fr_blkid = blkid; rp = avl_find(tree, &rp_tofind, &where); if (rp == NULL) rp = avl_nearest(tree, where, AVL_BEFORE); if (rp == NULL) rp = avl_nearest(tree, where, AVL_AFTER); while (rp && (rp->fr_blkid <= blkid + nblks)) { uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks; free_range_t *nrp = AVL_NEXT(tree, rp); if (blkid <= rp->fr_blkid && endblk >= fr_endblk) { /* clear this entire range */ avl_remove(tree, rp); kmem_free(rp, sizeof (free_range_t)); } else if (blkid <= rp->fr_blkid && endblk > rp->fr_blkid && endblk < fr_endblk) { /* clear the beginning of this range */ rp->fr_blkid = endblk; rp->fr_nblks = fr_endblk - endblk; } else if (blkid > rp->fr_blkid && blkid < fr_endblk && endblk >= fr_endblk) { /* clear the end of this range */ rp->fr_nblks = blkid - rp->fr_blkid; } else if (blkid > rp->fr_blkid && endblk < fr_endblk) { /* clear a chunk out of this range */ free_range_t *new_rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP); new_rp->fr_blkid = endblk; new_rp->fr_nblks = fr_endblk - endblk; avl_insert_here(tree, new_rp, rp, AVL_AFTER); rp->fr_nblks = blkid - rp->fr_blkid; } /* there may be no overlap */ rp = nrp; } } void dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) { dmu_buf_impl_t *db; uint64_t start, objsize, blkid, nblks; int blkshift, blksz, tail, head, epbs; int trunc = FALSE; rw_enter(&dn->dn_struct_rwlock, RW_WRITER); blksz = dn->dn_datablksz; blkshift = dn->dn_datablkshift; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; /* If the range is past the end of the file, this is a no-op */ objsize = blksz * (dn->dn_maxblkid+1); if (off >= objsize) goto out; if (len == -1ULL) { len = UINT64_MAX - off; trunc = TRUE; } /* * First, block align the region to free: */ if (dn->dn_maxblkid == 0) { if (off == 0) { head = 0; } else { head = blksz - off; ASSERT3U(head, >, 0); } start = off; } else { ASSERT(ISP2(blksz)); head = P2NPHASE(off, blksz); start = P2PHASE(off, blksz); } /* zero out any partial block data at the start of the range */ if (head) { ASSERT3U(start + head, ==, blksz); if (len < head) head = len; if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE, FTAG, &db) == 0) { caddr_t data; /* don't dirty if it isn't on disk and isn't dirty */ if (db->db_dirtied || (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { rw_exit(&dn->dn_struct_rwlock); dbuf_will_dirty(db, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); data = db->db.db_data; bzero(data + start, head); } dbuf_remove_ref(db, FTAG); } off += head; len -= head; } /* If the range was less than one block, we are done */ if (len == 0) goto out; /* If the remaining range is past the end of the file, we are done */ if (off > dn->dn_maxblkid << blkshift) goto out; if (off + len == UINT64_MAX) tail = 0; else tail = P2PHASE(len, blksz); ASSERT3U(P2PHASE(off, blksz), ==, 0); /* zero out any partial block data at the end of the range */ if (tail) { if (len < tail) tail = len; if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len), TRUE, FTAG, &db) == 0) { /* don't dirty if it isn't on disk and isn't dirty */ if (db->db_dirtied || (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { rw_exit(&dn->dn_struct_rwlock); dbuf_will_dirty(db, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); bzero(db->db.db_data, tail); } dbuf_remove_ref(db, FTAG); } len -= tail; } /* If the range did not include a full block, we are done */ if (len == 0) goto out; /* dirty the left indirects */ if (dn->dn_nlevels > 1 && off != 0) { db = dbuf_hold_level(dn, 1, (off - head) >> (blkshift + epbs), FTAG); dbuf_will_dirty(db, tx); dbuf_remove_ref(db, FTAG); } /* dirty the right indirects */ if (dn->dn_nlevels > 1 && !trunc) { db = dbuf_hold_level(dn, 1, (off + len + tail - 1) >> (blkshift + epbs), FTAG); dbuf_will_dirty(db, tx); dbuf_remove_ref(db, FTAG); } /* * Finally, add this range to the dnode range list, we * will finish up this free operation in the syncing phase. */ ASSERT(IS_P2ALIGNED(off, 1<> blkshift; nblks = len >> blkshift; if (trunc) dn->dn_maxblkid = (blkid ? blkid - 1 : 0); mutex_enter(&dn->dn_mtx); dnode_clear_range(dn, blkid, nblks, tx); { free_range_t *rp, *found; avl_index_t where; avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; /* Add new range to dn_ranges */ rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP); rp->fr_blkid = blkid; rp->fr_nblks = nblks; found = avl_find(tree, rp, &where); ASSERT(found == NULL); avl_insert(tree, rp, where); dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", blkid, nblks, tx->tx_txg); } mutex_exit(&dn->dn_mtx); dbuf_free_range(dn, blkid, nblks, tx); dnode_setdirty(dn, tx); out: rw_exit(&dn->dn_struct_rwlock); } /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ uint64_t dnode_block_freed(dnode_t *dn, uint64_t blkid) { free_range_t range_tofind; void *dp = spa_get_dsl(dn->dn_objset->os_spa); int i; if (blkid == DB_BONUS_BLKID) return (FALSE); /* * If we're in the process of opening the pool, dp will not be * set yet, but there shouldn't be anything dirty. */ if (dp == NULL) return (FALSE); if (dn->dn_free_txg) return (TRUE); /* * If dn_datablkshift is not set, then there's only a single * block, in which case there will never be a free range so it * won't matter. */ range_tofind.fr_blkid = blkid; mutex_enter(&dn->dn_mtx); for (i = 0; i < TXG_SIZE; i++) { free_range_t *range_found; avl_index_t idx; range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx); if (range_found) { ASSERT(range_found->fr_nblks > 0); break; } range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE); if (range_found && range_found->fr_blkid + range_found->fr_nblks > blkid) break; } mutex_exit(&dn->dn_mtx); return (i < TXG_SIZE); } /* call from syncing context when we actually write/free space for this dnode */ void dnode_diduse_space(dnode_t *dn, int64_t space) { uint64_t sectors; dprintf_dnode(dn, "dn=%p dnp=%p secphys=%llu space=%lld\n", dn, dn->dn_phys, (u_longlong_t)dn->dn_phys->dn_secphys, (longlong_t)space); ASSERT(P2PHASE(space, 1<dn_mtx); if (space > 0) { sectors = space >> DEV_BSHIFT; ASSERT3U(dn->dn_phys->dn_secphys + sectors, >=, dn->dn_phys->dn_secphys); dn->dn_phys->dn_secphys += sectors; } else { sectors = -space >> DEV_BSHIFT; ASSERT3U(dn->dn_phys->dn_secphys, >=, sectors); dn->dn_phys->dn_secphys -= sectors; } mutex_exit(&dn->dn_mtx); } /* * Call when we think we're going to write/free space in open context. * Be conservative (ie. OK to write less than this or free more than * this, but don't write more or free less). */ void dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx) { objset_impl_t *os = dn->dn_objset; dsl_dataset_t *ds = os->os_dsl_dataset; if (space > 0) space = spa_get_asize(os->os_spa, space); if (ds) dsl_dir_willuse_space(ds->ds_dir, space, tx); dmu_tx_willuse_space(tx, space); } static int dnode_next_offset_level(dnode_t *dn, boolean_t hole, uint64_t *offset, int lvl, uint64_t blkfill) { dmu_buf_impl_t *db = NULL; void *data = NULL; uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; uint64_t epb = 1ULL << epbs; uint64_t minfill, maxfill; int i, error, span; dprintf("probing object %llu offset %llx level %d of %u\n", dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); if (lvl == dn->dn_phys->dn_nlevels) { error = 0; epb = dn->dn_phys->dn_nblkptr; data = dn->dn_phys->dn_blkptr; } else { uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl); error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db); if (error) { if (error == ENOENT) return (hole ? 0 : ESRCH); return (error); } dbuf_read_havestruct(db); data = db->db.db_data; } if (lvl == 0) { dnode_phys_t *dnp = data; span = DNODE_SHIFT; ASSERT(dn->dn_type == DMU_OT_DNODE); for (i = (*offset >> span) & (blkfill - 1); i < blkfill; i++) { if (!dnp[i].dn_type == hole) break; *offset += 1ULL << span; } if (i == blkfill) error = ESRCH; } else { blkptr_t *bp = data; span = (lvl - 1) * epbs + dn->dn_datablkshift; minfill = 0; maxfill = blkfill << ((lvl - 1) * epbs); if (hole) maxfill--; else minfill++; for (i = (*offset >> span) & ((1ULL << epbs) - 1); i < epb; i++) { if (bp[i].blk_fill >= minfill && bp[i].blk_fill <= maxfill) break; *offset += 1ULL << span; } if (i >= epb) error = ESRCH; } if (db) dbuf_remove_ref(db, FTAG); return (error); } /* * Find the next hole, data, or sparse region at or after *offset. * The value 'blkfill' tells us how many items we expect to find * in an L0 data block; this value is 1 for normal objects, * DNODES_PER_BLOCK for the meta dnode, and some fraction of * DNODES_PER_BLOCK when searching for sparse regions thereof. * Examples: * * dnode_next_offset(dn, hole, offset, 1, 1); * Finds the next hole/data in a file. * Used in dmu_offset_next(). * * dnode_next_offset(mdn, hole, offset, 0, DNODES_PER_BLOCK); * Finds the next free/allocated dnode an objset's meta-dnode. * Used in dmu_object_next(). * * dnode_next_offset(mdn, TRUE, offset, 2, DNODES_PER_BLOCK >> 2); * Finds the next L2 meta-dnode bp that's at most 1/4 full. * Used in dmu_object_alloc(). */ int dnode_next_offset(dnode_t *dn, boolean_t hole, uint64_t *offset, int minlvl, uint64_t blkfill) { int lvl, maxlvl; int error = 0; uint64_t initial_offset = *offset; rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_phys->dn_nlevels == 0) { rw_exit(&dn->dn_struct_rwlock); return (ESRCH); } if (dn->dn_datablkshift == 0) { if (*offset < dn->dn_datablksz) { if (hole) *offset = dn->dn_datablksz; } else { error = ESRCH; } rw_exit(&dn->dn_struct_rwlock); return (error); } maxlvl = dn->dn_phys->dn_nlevels; for (lvl = minlvl; lvl <= maxlvl; lvl++) { error = dnode_next_offset_level(dn, hole, offset, lvl, blkfill); if (error == 0) break; } while (--lvl >= minlvl && error == 0) error = dnode_next_offset_level(dn, hole, offset, lvl, blkfill); rw_exit(&dn->dn_struct_rwlock); if (initial_offset > *offset) return (ESRCH); return (error); }