/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #endif const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { { byteswap_uint8_array, TRUE, "unallocated" }, { zap_byteswap, TRUE, "object directory" }, { byteswap_uint64_array, TRUE, "object array" }, { byteswap_uint8_array, TRUE, "packed nvlist" }, { byteswap_uint64_array, TRUE, "packed nvlist size" }, { byteswap_uint64_array, TRUE, "bplist" }, { byteswap_uint64_array, TRUE, "bplist header" }, { byteswap_uint64_array, TRUE, "SPA space map header" }, { byteswap_uint64_array, TRUE, "SPA space map" }, { byteswap_uint64_array, TRUE, "ZIL intent log" }, { dnode_buf_byteswap, TRUE, "DMU dnode" }, { dmu_objset_byteswap, TRUE, "DMU objset" }, { byteswap_uint64_array, TRUE, "DSL directory" }, { zap_byteswap, TRUE, "DSL directory child map"}, { zap_byteswap, TRUE, "DSL dataset snap map" }, { zap_byteswap, TRUE, "DSL props" }, { byteswap_uint64_array, TRUE, "DSL dataset" }, { zfs_znode_byteswap, TRUE, "ZFS znode" }, { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, { byteswap_uint8_array, FALSE, "ZFS plain file" }, { zap_byteswap, TRUE, "ZFS directory" }, { zap_byteswap, TRUE, "ZFS master node" }, { zap_byteswap, TRUE, "ZFS delete queue" }, { byteswap_uint8_array, FALSE, "zvol object" }, { zap_byteswap, TRUE, "zvol prop" }, { byteswap_uint8_array, FALSE, "other uint8[]" }, { byteswap_uint64_array, FALSE, "other uint64[]" }, { zap_byteswap, TRUE, "other ZAP" }, { zap_byteswap, TRUE, "persistent error log" }, { byteswap_uint8_array, TRUE, "SPA history" }, { byteswap_uint64_array, TRUE, "SPA history offsets" }, { zap_byteswap, TRUE, "Pool properties" }, { zap_byteswap, TRUE, "DSL permissions" }, { zfs_acl_byteswap, TRUE, "ZFS ACL" }, { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, { byteswap_uint8_array, TRUE, "FUID table" }, { byteswap_uint64_array, TRUE, "FUID table size" }, { zap_byteswap, TRUE, "DSL dataset next clones"}, { zap_byteswap, TRUE, "scrub work queue" }, { zap_byteswap, TRUE, "ZFS user/group used" }, { zap_byteswap, TRUE, "ZFS user/group quota" }, { zap_byteswap, TRUE, "snapshot refcount tags"}, { zap_byteswap, TRUE, "DDT ZAP algorithm" }, { zap_byteswap, TRUE, "DDT statistics" }, { byteswap_uint8_array, TRUE, "System attributes" }, { zap_byteswap, TRUE, "SA master node" }, { zap_byteswap, TRUE, "SA attr registration" }, { zap_byteswap, TRUE, "SA attr layouts" }, }; int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, void *tag, dmu_buf_t **dbp) { dnode_t *dn; uint64_t blkid; dmu_buf_impl_t *db; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); blkid = dbuf_whichblock(dn, offset); rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, blkid, tag); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) { err = EIO; } else { err = dbuf_read(db, NULL, DB_RF_CANFAIL); if (err) { dbuf_rele(db, tag); db = NULL; } } dnode_rele(dn, FTAG); *dbp = &db->db; return (err); } int dmu_bonus_max(void) { return (DN_MAX_BONUSLEN); } int dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx) { dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; if (dn->dn_bonus != (dmu_buf_impl_t *)db) return (EINVAL); if (newsize < 0 || newsize > db->db_size) return (EINVAL); dnode_setbonuslen(dn, newsize, tx); return (0); } int dmu_set_bonustype(dmu_buf_t *db, dmu_object_type_t type, dmu_tx_t *tx) { dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; if (type > DMU_OT_NUMTYPES) return (EINVAL); if (dn->dn_bonus != (dmu_buf_impl_t *)db) return (EINVAL); dnode_setbonus_type(dn, type, tx); return (0); } int dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) { dnode_t *dn; int error; error = dnode_hold(os, object, FTAG, &dn); dbuf_rm_spill(dn, tx); dnode_rele(dn, FTAG); return (error); } /* * returns ENOENT, EIO, or 0. */ int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) { dnode_t *dn; dmu_buf_impl_t *db; int error; error = dnode_hold(os, object, FTAG, &dn); if (error) return (error); rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_bonus == NULL) { rw_exit(&dn->dn_struct_rwlock); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); if (dn->dn_bonus == NULL) dbuf_create_bonus(dn); } db = dn->dn_bonus; rw_exit(&dn->dn_struct_rwlock); /* as long as the bonus buf is held, the dnode will be held */ if (refcount_add(&db->db_holds, tag) == 1) VERIFY(dnode_add_ref(dn, db)); dnode_rele(dn, FTAG); VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED)); *dbp = &db->db; return (0); } /* * returns ENOENT, EIO, or 0. * * This interface will allocate a blank spill dbuf when a spill blk * doesn't already exist on the dnode. * * if you only want to find an already existing spill db, then * dmu_spill_hold_existing() should be used. */ int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) { dmu_buf_impl_t *db = NULL; int err; if ((flags & DB_RF_HAVESTRUCT) == 0) rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); ASSERT(db != NULL); err = dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | flags); *dbp = &db->db; return (err); } int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) { dnode_t *dn = ((dmu_buf_impl_t *)bonus)->db_dnode; int err; if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) return (EINVAL); rw_enter(&dn->dn_struct_rwlock, RW_READER); if (!dn->dn_have_spill) { rw_exit(&dn->dn_struct_rwlock); return (ENOENT); } err = dmu_spill_hold_by_dnode(dn, DB_RF_HAVESTRUCT, tag, dbp); rw_exit(&dn->dn_struct_rwlock); return (err); } int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) { return (dmu_spill_hold_by_dnode(((dmu_buf_impl_t *)bonus)->db_dnode, 0, tag, dbp)); } /* * Note: longer-term, we should modify all of the dmu_buf_*() interfaces * to take a held dnode rather than -- the lookup is wasteful, * and can induce severe lock contention when writing to several files * whose dnodes are in the same block. */ static int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) { dsl_pool_t *dp = NULL; dmu_buf_t **dbp; uint64_t blkid, nblks, i; uint32_t dbuf_flags; int err; zio_t *zio; hrtime_t start; ASSERT(length <= DMU_MAX_ACCESS); dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) dbuf_flags |= DB_RF_NOPREFETCH; rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_datablkshift) { int blkshift = dn->dn_datablkshift; nblks = (P2ROUNDUP(offset+length, 1ULL<> blkshift; } else { if (offset + length > dn->dn_datablksz) { zfs_panic_recover("zfs: accessing past end of object " "%llx/%llx (size=%u access=%llu+%llu)", (longlong_t)dn->dn_objset-> os_dsl_dataset->ds_object, (longlong_t)dn->dn_object, dn->dn_datablksz, (longlong_t)offset, (longlong_t)length); rw_exit(&dn->dn_struct_rwlock); return (EIO); } nblks = 1; } dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); if (dn->dn_objset->os_dsl_dataset) dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; if (dp && dsl_pool_sync_context(dp)) start = gethrtime(); zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); blkid = dbuf_whichblock(dn, offset); for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); if (db == NULL) { rw_exit(&dn->dn_struct_rwlock); dmu_buf_rele_array(dbp, nblks, tag); zio_nowait(zio); return (EIO); } /* initiate async i/o */ if (read) { (void) dbuf_read(db, zio, dbuf_flags); } dbp[i] = &db->db; } rw_exit(&dn->dn_struct_rwlock); /* wait for async i/o */ err = zio_wait(zio); /* track read overhead when we are in sync context */ if (dp && dsl_pool_sync_context(dp)) dp->dp_read_overhead += gethrtime() - start; if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } /* wait for other io to complete */ if (read) { for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); if (db->db_state == DB_UNCACHED) err = EIO; mutex_exit(&db->db_mtx); if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } } } *numbufsp = nblks; *dbpp = dbp; return (0); } static int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp, DMU_READ_PREFETCH); dnode_rele(dn, FTAG); return (err); } int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; int err; err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp, DMU_READ_PREFETCH); return (err); } void dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) { int i; dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; if (numbufs == 0) return; for (i = 0; i < numbufs; i++) { if (dbp[i]) dbuf_rele(dbp[i], tag); } kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); } void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) { dnode_t *dn; uint64_t blkid; int nblks, i, err; if (zfs_prefetch_disable) return; if (len == 0) { /* they're interested in the bonus buffer */ dn = os->os_meta_dnode; if (object == 0 || object >= DN_MAX_OBJECT) return; rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); dbuf_prefetch(dn, blkid); rw_exit(&dn->dn_struct_rwlock); return; } /* * XXX - Note, if the dnode for the requested object is not * already cached, we will do a *synchronous* read in the * dnode_hold() call. The same is true for any indirects. */ err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return; rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_datablkshift) { int blkshift = dn->dn_datablkshift; nblks = (P2ROUNDUP(offset+len, 1<> blkshift; } else { nblks = (offset < dn->dn_datablksz); } if (nblks != 0) { blkid = dbuf_whichblock(dn, offset); for (i = 0; i < nblks; i++) dbuf_prefetch(dn, blkid+i); } rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); } /* * Get the next "chunk" of file data to free. We traverse the file from * the end so that the file gets shorter over time (if we crashes in the * middle, this will leave us in a better state). We find allocated file * data by simply searching the allocated level 1 indirects. */ static int get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) { uint64_t len = *start - limit; uint64_t blkcnt = 0; uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); uint64_t iblkrange = dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); ASSERT(limit <= *start); if (len <= iblkrange * maxblks) { *start = limit; return (0); } ASSERT(ISP2(iblkrange)); while (*start > limit && blkcnt < maxblks) { int err; /* find next allocated L1 indirect */ err = dnode_next_offset(dn, DNODE_FIND_BACKWARDS, start, 2, 1, 0); /* if there are no more, then we are done */ if (err == ESRCH) { *start = limit; return (0); } else if (err) { return (err); } blkcnt += 1; /* reset offset to end of "next" block back */ *start = P2ALIGN(*start, iblkrange); if (*start <= limit) *start = limit; else *start -= 1; } return (0); } static int dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, uint64_t length, boolean_t free_dnode) { dmu_tx_t *tx; uint64_t object_size, start, end, len; boolean_t trunc = (length == DMU_OBJECT_END); int align, err; align = 1 << dn->dn_datablkshift; ASSERT(align > 0); object_size = align == 1 ? dn->dn_datablksz : (dn->dn_maxblkid + 1) << dn->dn_datablkshift; end = offset + length; if (trunc || end > object_size) end = object_size; if (end <= offset) return (0); length = end - offset; while (length) { start = end; /* assert(offset <= start) */ err = get_next_chunk(dn, &start, offset); if (err) return (err); len = trunc ? DMU_OBJECT_END : end - start; tx = dmu_tx_create(os); dmu_tx_hold_free(tx, dn->dn_object, start, len); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } dnode_free_range(dn, start, trunc ? -1 : len, tx); if (start == 0 && free_dnode) { ASSERT(trunc); dnode_free(dn, tx); } length -= end - start; dmu_tx_commit(tx); end = start; } return (0); } int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t length) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err != 0) return (err); err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); dnode_rele(dn, FTAG); return (err); } int dmu_free_object(objset_t *os, uint64_t object) { dnode_t *dn; dmu_tx_t *tx; int err; err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, FTAG, &dn); if (err != 0) return (err); if (dn->dn_nlevels == 1) { tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, object); dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); err = dmu_tx_assign(tx, TXG_WAIT); if (err == 0) { dnode_free_range(dn, 0, DMU_OBJECT_END, tx); dnode_free(dn, tx); dmu_tx_commit(tx); } else { dmu_tx_abort(tx); } } else { err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); } dnode_rele(dn, FTAG); return (err); } int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { dnode_t *dn; int err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); ASSERT(offset < UINT64_MAX); ASSERT(size == -1ULL || size <= UINT64_MAX - offset); dnode_free_range(dn, offset, size, tx); dnode_rele(dn, FTAG); return (0); } int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, void *buf, uint32_t flags) { dnode_t *dn; dmu_buf_t **dbp; int numbufs, err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); /* * Deal with odd block sizes, where there can't be data past the first * block. If we ever do the tail block optimization, we will need to * handle that here as well. */ if (dn->dn_maxblkid == 0) { int newsz = offset > dn->dn_datablksz ? 0 : MIN(size, dn->dn_datablksz - offset); bzero((char *)buf + newsz, size - newsz); size = newsz; } while (size > 0) { uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); int i; /* * NB: we could do this block-at-a-time, but it's nice * to be reading in parallel. */ err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, TRUE, FTAG, &numbufs, &dbp, flags); if (err) break; for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); bcopy((char *)db->db_data + bufoff, buf, tocpy); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); } dnode_rele(dn, FTAG); return (err); } void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; if (size == 0) return; VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); bcopy(buf, (char *)db->db_data + bufoff, tocpy); if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); } void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; if (size == 0) return; VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); for (i = 0; i < numbufs; i++) { dmu_buf_t *db = dbp[i]; dmu_buf_will_not_fill(db, tx); } dmu_buf_rele_array(dbp, numbufs, FTAG); } /* * DMU support for xuio */ kstat_t *xuio_ksp = NULL; int dmu_xuio_init(xuio_t *xuio, int nblk) { dmu_xuio_t *priv; uio_t *uio = &xuio->xu_uio; uio->uio_iovcnt = nblk; uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); priv->cnt = nblk; priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); priv->iovp = uio->uio_iov; XUIO_XUZC_PRIV(xuio) = priv; if (XUIO_XUZC_RW(xuio) == UIO_READ) XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); else XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); return (0); } void dmu_xuio_fini(xuio_t *xuio) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); int nblk = priv->cnt; kmem_free(priv->iovp, nblk * sizeof (iovec_t)); kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); kmem_free(priv, sizeof (dmu_xuio_t)); if (XUIO_XUZC_RW(xuio) == UIO_READ) XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); else XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); } /* * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } * and increase priv->next by 1. */ int dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) { struct iovec *iov; uio_t *uio = &xuio->xu_uio; dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); int i = priv->next++; ASSERT(i < priv->cnt); ASSERT(off + n <= arc_buf_size(abuf)); iov = uio->uio_iov + i; iov->iov_base = (char *)abuf->b_data + off; iov->iov_len = n; priv->bufs[i] = abuf; return (0); } int dmu_xuio_cnt(xuio_t *xuio) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); return (priv->cnt); } arc_buf_t * dmu_xuio_arcbuf(xuio_t *xuio, int i) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); ASSERT(i < priv->cnt); return (priv->bufs[i]); } void dmu_xuio_clear(xuio_t *xuio, int i) { dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); ASSERT(i < priv->cnt); priv->bufs[i] = NULL; } static void xuio_stat_init(void) { xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (xuio_ksp != NULL) { xuio_ksp->ks_data = &xuio_stats; kstat_install(xuio_ksp); } } static void xuio_stat_fini(void) { if (xuio_ksp != NULL) { kstat_delete(xuio_ksp); xuio_ksp = NULL; } } void xuio_stat_wbuf_copied() { XUIOSTAT_BUMP(xuiostat_wbuf_copied); } void xuio_stat_wbuf_nocopy() { XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); } #ifdef _KERNEL int dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) { dmu_buf_t **dbp; int numbufs, i, err; xuio_t *xuio = NULL; /* * NB: we could do this block-at-a-time, but it's nice * to be reading in parallel. */ err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, &numbufs, &dbp); if (err) return (err); if (uio->uio_extflg == UIO_XUIO) xuio = (xuio_t *)uio; for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = uio->uio_loffset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); if (xuio) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; arc_buf_t *dbuf_abuf = dbi->db_buf; arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); if (!err) { uio->uio_resid -= tocpy; uio->uio_loffset += tocpy; } if (abuf == dbuf_abuf) XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); else XUIOSTAT_BUMP(xuiostat_rbuf_copied); } else { err = uiomove((char *)db->db_data + bufoff, tocpy, UIO_READ, uio); } if (err) break; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } int dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; int err = 0; if (size == 0) return (0); err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, FALSE, FTAG, &numbufs, &dbp); if (err) return (err); for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = uio->uio_loffset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); /* * XXX uiomove could block forever (eg. nfs-backed * pages). There needs to be a uiolockdown() function * to lock the pages in memory, so that uiomove won't * block. */ err = uiomove((char *)db->db_data + bufoff, tocpy, UIO_WRITE, uio); if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); if (err) break; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, page_t *pp, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; int err; if (size == 0) return (0); err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp); if (err) return (err); for (i = 0; i < numbufs; i++) { int tocpy, copied, thiscpy; int bufoff; dmu_buf_t *db = dbp[i]; caddr_t va; ASSERT(size > 0); ASSERT3U(db->db_size, >=, PAGESIZE); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); for (copied = 0; copied < tocpy; copied += PAGESIZE) { ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); thiscpy = MIN(PAGESIZE, tocpy - copied); va = zfs_map_page(pp, S_READ); bcopy(va, (char *)db->db_data + bufoff, thiscpy); zfs_unmap_page(pp, va); pp = pp->p_next; bufoff += PAGESIZE; } if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); offset += tocpy; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } #endif /* * Allocate a loaned anonymous arc buffer. */ arc_buf_t * dmu_request_arcbuf(dmu_buf_t *handle, int size) { dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; return (arc_loan_buf(dn->dn_objset->os_spa, size)); } /* * Free a loaned arc buffer. */ void dmu_return_arcbuf(arc_buf_t *buf) { arc_return_buf(buf, FTAG); VERIFY(arc_buf_remove_ref(buf, FTAG) == 1); } /* * When possible directly assign passed loaned arc buffer to a dbuf. * If this is not possible copy the contents of passed arc buf via * dmu_write(). */ void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, dmu_tx_t *tx) { dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; dmu_buf_impl_t *db; uint32_t blksz = (uint32_t)arc_buf_size(buf); uint64_t blkid; rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, offset); VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); rw_exit(&dn->dn_struct_rwlock); if (offset == db->db.db_offset && blksz == db->db.db_size) { dbuf_assign_arcbuf(db, buf, tx); dbuf_rele(db, FTAG); } else { dbuf_rele(db, FTAG); dmu_write(dn->dn_objset, dn->dn_object, offset, blksz, buf->b_data, tx); dmu_return_arcbuf(buf); XUIOSTAT_BUMP(xuiostat_wbuf_copied); } } typedef struct { dbuf_dirty_record_t *dsa_dr; dmu_sync_cb_t *dsa_done; zgd_t *dsa_zgd; dmu_tx_t *dsa_tx; } dmu_sync_arg_t; /* ARGSUSED */ static void dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) { dmu_sync_arg_t *dsa = varg; dmu_buf_t *db = dsa->dsa_zgd->zgd_db; dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; blkptr_t *bp = zio->io_bp; if (zio->io_error == 0) { if (BP_IS_HOLE(bp)) { /* * A block of zeros may compress to a hole, but the * block size still needs to be known for replay. */ BP_SET_LSIZE(bp, db->db_size); } else { ASSERT(BP_GET_TYPE(bp) == dn->dn_type); ASSERT(BP_GET_LEVEL(bp) == 0); bp->blk_fill = 1; } } } static void dmu_sync_late_arrival_ready(zio_t *zio) { dmu_sync_ready(zio, NULL, zio->io_private); } /* ARGSUSED */ static void dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) { dmu_sync_arg_t *dsa = varg; dbuf_dirty_record_t *dr = dsa->dsa_dr; dmu_buf_impl_t *db = dr->dr_dbuf; mutex_enter(&db->db_mtx); ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); if (zio->io_error == 0) { dr->dt.dl.dr_overridden_by = *zio->io_bp; dr->dt.dl.dr_override_state = DR_OVERRIDDEN; dr->dt.dl.dr_copies = zio->io_prop.zp_copies; if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) BP_ZERO(&dr->dt.dl.dr_overridden_by); } else { dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; } cv_broadcast(&db->db_changed); mutex_exit(&db->db_mtx); dsa->dsa_done(dsa->dsa_zgd, zio->io_error); kmem_free(dsa, sizeof (*dsa)); } static void dmu_sync_late_arrival_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; dmu_sync_arg_t *dsa = zio->io_private; if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { ASSERT(zio->io_bp->blk_birth == zio->io_txg); ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); zio_free(zio->io_spa, zio->io_txg, zio->io_bp); } dmu_tx_commit(dsa->dsa_tx); dsa->dsa_done(dsa->dsa_zgd, zio->io_error); kmem_free(dsa, sizeof (*dsa)); } static int dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, zio_prop_t *zp, zbookmark_t *zb) { dmu_sync_arg_t *dsa; dmu_tx_t *tx; tx = dmu_tx_create(os); dmu_tx_hold_space(tx, zgd->zgd_db->db_size); if (dmu_tx_assign(tx, TXG_WAIT) != 0) { dmu_tx_abort(tx); return (EIO); /* Make zl_get_data do txg_waited_synced() */ } dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); dsa->dsa_dr = NULL; dsa->dsa_done = done; dsa->dsa_zgd = zgd; dsa->dsa_tx = tx; zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); return (0); } /* * Intent log support: sync the block associated with db to disk. * N.B. and XXX: the caller is responsible for making sure that the * data isn't changing while dmu_sync() is writing it. * * Return values: * * EEXIST: this txg has already been synced, so there's nothing to to. * The caller should not log the write. * * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. * The caller should not log the write. * * EALREADY: this block is already in the process of being synced. * The caller should track its progress (somehow). * * EIO: could not do the I/O. * The caller should do a txg_wait_synced(). * * 0: the I/O has been initiated. * The caller should log this blkptr in the done callback. * It is possible that the I/O will fail, in which case * the error will be reported to the done callback and * propagated to pio from zio_done(). */ int dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) { blkptr_t *bp = zgd->zgd_bp; dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; objset_t *os = db->db_objset; dsl_dataset_t *ds = os->os_dsl_dataset; dbuf_dirty_record_t *dr; dmu_sync_arg_t *dsa; zbookmark_t zb; zio_prop_t zp; ASSERT(pio != NULL); ASSERT(BP_IS_HOLE(bp)); ASSERT(txg != 0); SET_BOOKMARK(&zb, ds->ds_object, db->db.db_object, db->db_level, db->db_blkid); dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp); /* * If we're frozen (running ziltest), we always need to generate a bp. */ if (txg > spa_freeze_txg(os->os_spa)) return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); /* * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() * and us. If we determine that this txg is not yet syncing, * but it begins to sync a moment later, that's OK because the * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. */ mutex_enter(&db->db_mtx); if (txg <= spa_last_synced_txg(os->os_spa)) { /* * This txg has already synced. There's nothing to do. */ mutex_exit(&db->db_mtx); return (EEXIST); } if (txg <= spa_syncing_txg(os->os_spa)) { /* * This txg is currently syncing, so we can't mess with * the dirty record anymore; just write a new log block. */ mutex_exit(&db->db_mtx); return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); } dr = db->db_last_dirty; while (dr && dr->dr_txg != txg) dr = dr->dr_next; if (dr == NULL) { /* * There's no dr for this dbuf, so it must have been freed. * There's no need to log writes to freed blocks, so we're done. */ mutex_exit(&db->db_mtx); return (ENOENT); } ASSERT(dr->dr_txg == txg); if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { /* * We have already issued a sync write for this buffer, * or this buffer has already been synced. It could not * have been dirtied since, or we would have cleared the state. */ mutex_exit(&db->db_mtx); return (EALREADY); } ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; mutex_exit(&db->db_mtx); dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); dsa->dsa_dr = dr; dsa->dsa_done = done; dsa->dsa_zgd = zgd; dsa->dsa_tx = NULL; zio_nowait(arc_write(pio, os->os_spa, txg, bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, dmu_sync_ready, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); return (0); } int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, dmu_tx_t *tx) { dnode_t *dn; int err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); err = dnode_set_blksz(dn, size, ibs, tx); dnode_rele(dn, FTAG); return (err); } void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, dmu_tx_t *tx) { dnode_t *dn; /* XXX assumes dnode_hold will not get an i/o error */ (void) dnode_hold(os, object, FTAG, &dn); ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); dn->dn_checksum = checksum; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, dmu_tx_t *tx) { dnode_t *dn; /* XXX assumes dnode_hold will not get an i/o error */ (void) dnode_hold(os, object, FTAG, &dn); ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); dn->dn_compress = compress; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } int zfs_mdcomp_disable = 0; void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) { dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata); enum zio_checksum checksum = os->os_checksum; enum zio_compress compress = os->os_compress; enum zio_checksum dedup_checksum = os->os_dedup_checksum; boolean_t dedup; boolean_t dedup_verify = os->os_dedup_verify; int copies = os->os_copies; /* * Determine checksum setting. */ if (ismd) { /* * Metadata always gets checksummed. If the data * checksum is multi-bit correctable, and it's not a * ZBT-style checksum, then it's suitable for metadata * as well. Otherwise, the metadata checksum defaults * to fletcher4. */ if (zio_checksum_table[checksum].ci_correctable < 1 || zio_checksum_table[checksum].ci_eck) checksum = ZIO_CHECKSUM_FLETCHER_4; } else { checksum = zio_checksum_select(dn->dn_checksum, checksum); } /* * Determine compression setting. */ if (ismd) { /* * XXX -- we should design a compression algorithm * that specializes in arrays of bps. */ compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : ZIO_COMPRESS_LZJB; } else { compress = zio_compress_select(dn->dn_compress, compress); } /* * Determine dedup setting. If we are in dmu_sync(), we won't * actually dedup now because that's all done in syncing context; * but we do want to use the dedup checkum. If the checksum is not * strong enough to ensure unique signatures, force dedup_verify. */ dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF); if (dedup) { checksum = dedup_checksum; if (!zio_checksum_table[checksum].ci_dedup) dedup_verify = 1; } if (wp & WP_DMU_SYNC) dedup = 0; if (wp & WP_NOFILL) { ASSERT(!ismd && level == 0); checksum = ZIO_CHECKSUM_OFF; compress = ZIO_COMPRESS_OFF; dedup = B_FALSE; } zp->zp_checksum = checksum; zp->zp_compress = compress; zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; zp->zp_level = level; zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); zp->zp_dedup = dedup; zp->zp_dedup_verify = dedup && dedup_verify; } int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) { dnode_t *dn; int i, err; err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); /* * Sync any current changes before * we go trundling through the block pointers. */ for (i = 0; i < TXG_SIZE; i++) { if (list_link_active(&dn->dn_dirty_link[i])) break; } if (i != TXG_SIZE) { dnode_rele(dn, FTAG); txg_wait_synced(dmu_objset_pool(os), 0); err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); } err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); dnode_rele(dn, FTAG); return (err); } void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) { dnode_phys_t *dnp; rw_enter(&dn->dn_struct_rwlock, RW_READER); mutex_enter(&dn->dn_mtx); dnp = dn->dn_phys; doi->doi_data_block_size = dn->dn_datablksz; doi->doi_metadata_block_size = dn->dn_indblkshift ? 1ULL << dn->dn_indblkshift : 0; doi->doi_type = dn->dn_type; doi->doi_bonus_type = dn->dn_bonustype; doi->doi_bonus_size = dn->dn_bonuslen; doi->doi_indirection = dn->dn_nlevels; doi->doi_checksum = dn->dn_checksum; doi->doi_compress = dn->dn_compress; doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; doi->doi_fill_count = 0; for (int i = 0; i < dnp->dn_nblkptr; i++) doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; mutex_exit(&dn->dn_mtx); rw_exit(&dn->dn_struct_rwlock); } /* * Get information on a DMU object. * If doi is NULL, just indicates whether the object exists. */ int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) { dnode_t *dn; int err = dnode_hold(os, object, FTAG, &dn); if (err) return (err); if (doi != NULL) dmu_object_info_from_dnode(dn, doi); dnode_rele(dn, FTAG); return (0); } /* * As above, but faster; can be used when you have a held dbuf in hand. */ void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) { dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); } /* * Faster still when you only care about the size. * This is specifically optimized for zfs_getattr(). */ void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) { dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; *blksize = dn->dn_datablksz; /* add 1 for dnode space */ *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> SPA_MINBLOCKSHIFT) + 1; } void byteswap_uint64_array(void *vbuf, size_t size) { uint64_t *buf = vbuf; size_t count = size >> 3; int i; ASSERT((size & 7) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_64(buf[i]); } void byteswap_uint32_array(void *vbuf, size_t size) { uint32_t *buf = vbuf; size_t count = size >> 2; int i; ASSERT((size & 3) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_32(buf[i]); } void byteswap_uint16_array(void *vbuf, size_t size) { uint16_t *buf = vbuf; size_t count = size >> 1; int i; ASSERT((size & 1) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_16(buf[i]); } /* ARGSUSED */ void byteswap_uint8_array(void *vbuf, size_t size) { } void dmu_init(void) { dbuf_init(); dnode_init(); zfetch_init(); arc_init(); l2arc_init(); xuio_stat_init(); sa_cache_init(); } void dmu_fini(void) { arc_fini(); zfetch_fini(); dnode_fini(); dbuf_fini(); l2arc_fini(); xuio_stat_fini(); sa_cache_fini(); }