/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. * All Rights Reserved */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef struct { nfs4_ga_res_t *di_garp; cred_t *di_cred; hrtime_t di_time_call; } dirattr_info_t; typedef enum nfs4_acl_op { NFS4_ACL_GET, NFS4_ACL_SET } nfs4_acl_op_t; static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, char *, dirattr_info_t *); static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, nfs4_error_t *, int *); static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *); static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, stable_how4 *); static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *, bool_t, struct uio *); static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, vsecattr_t *); static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, int, vnode_t **, cred_t *); static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, cred_t *, int, int, enum createmode4, int); static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *); static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, vnode_t *, char *, cred_t *, nfsstat4 *); static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, vnode_t *, char *, cred_t *, nfsstat4 *); static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, page_t *[], size_t, struct seg *, caddr_t, enum seg_rw, cred_t *); static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, cred_t *); static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *); static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *); static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); static void nfs4_set_mod(vnode_t *); static void nfs4_get_commit(vnode_t *); static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, cred_t *); static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, cred_t *); static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, hrtime_t, vnode_t *, cred_t *); static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, u_offset_t); static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); static int nfs4_block_and_wait(clock_t *, rnode4_t *); static cred_t *state_to_cred(nfs4_open_stream_t *); static int vtoname(vnode_t *, char *, ssize_t); static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); static pid_t lo_to_pid(lock_owner4 *); static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, cred_t *, nfs4_lock_owner_t *); static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, nfs4_lock_owner_t *); static nfs4_open_stream_t *open_and_get_osp(vnode_t *, cred_t *, mntinfo4_t *); static void nfs4_delmap_callback(struct as *, void *, uint_t); static void nfs4_free_delmapcall(nfs4_delmapcall_t *); static nfs4_delmapcall_t *nfs4_init_delmapcall(); static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, uid_t, gid_t, int); /* * Routines that implement the setting of v4 args for the misc. ops */ static void nfs4args_lock_free(nfs_argop4 *); static void nfs4args_lockt_free(nfs_argop4 *); static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, int, rnode4_t *, cred_t *, bitmap4, int *, nfs4_stateid_types_t *); static void nfs4args_setattr_free(nfs_argop4 *); static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, bitmap4); static void nfs4args_verify_free(nfs_argop4 *); static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, WRITE4args **, nfs4_stateid_types_t *); /* * These are the vnode ops functions that implement the vnode interface to * the networked file system. See more comments below at nfs4_vnodeops. */ static int nfs4_open(vnode_t **, int, cred_t *); static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *); static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, caller_context_t *); static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, caller_context_t *); static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); static int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *); static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, caller_context_t *); static int nfs4_access(vnode_t *, int, int, cred_t *); static int nfs4_readlink(vnode_t *, struct uio *, cred_t *); static int nfs4_fsync(vnode_t *, int, cred_t *); static void nfs4_inactive(vnode_t *, cred_t *); static int nfs4_lookup(vnode_t *, char *, vnode_t **, struct pathname *, int, vnode_t *, cred_t *); static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, int, vnode_t **, cred_t *, int); static int nfs4_remove(vnode_t *, char *, cred_t *); static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *); static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, cred_t *); static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *); static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, cred_t *); static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *); static int nfs4_fid(vnode_t *, fid_t *); static int nfs4_rwlock(vnode_t *, int, caller_context_t *); static void nfs4_rwunlock(vnode_t *, int, caller_context_t *); static int nfs4_seek(vnode_t *, offset_t, offset_t *); static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, page_t *[], size_t, struct seg *, caddr_t, enum seg_rw, cred_t *); static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *); static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, uchar_t, uchar_t, uint_t, cred_t *); static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, uchar_t, uchar_t, uint_t, cred_t *); static int nfs4_cmp(vnode_t *, vnode_t *); static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, struct flk_callback *, cred_t *); static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, cred_t *, caller_context_t *); static int nfs4_realvp(vnode_t *, vnode_t **); static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, uint_t, uint_t, uint_t, cred_t *); static int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *); static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *); static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *); static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); static int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); static int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); /* * Used for nfs4_commit_vp() to indicate if we should * wait on pending writes. */ #define NFS4_WRITE_NOWAIT 0 #define NFS4_WRITE_WAIT 1 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ /* * Error flags used to pass information about certain special errors * which need to be handled specially. */ #define NFS_EOF -98 #define NFS_VERF_MISMATCH -97 /* * Flags used to differentiate between which operation drove the * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) */ #define NFS4_CLOSE_OP 0x1 #define NFS4_DELMAP_OP 0x2 #define NFS4_INACTIVE_OP 0x3 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ #define ALIGN64(x, ptr, sz) \ x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ if (x) { \ x = sizeof (uint64_t) - (x); \ sz -= (x); \ ptr += (x); \ } #ifdef DEBUG int nfs4_client_attr_debug = 0; int nfs4_client_state_debug = 0; int nfs4_client_shadow_debug = 0; int nfs4_client_lock_debug = 0; int nfs4_seqid_sync = 0; int nfs4_client_map_debug = 0; static int nfs4_pageio_debug = 0; int nfs4_client_inactive_debug = 0; int nfs4_client_recov_debug = 0; int nfs4_client_recov_stub_debug = 0; int nfs4_client_failover_debug = 0; int nfs4_client_call_debug = 0; int nfs4_client_lookup_debug = 0; int nfs4_client_zone_debug = 0; int nfs4_lost_rqst_debug = 0; int nfs4_rdattrerr_debug = 0; int nfs4_open_stream_debug = 0; int nfs4read_error_inject; static int nfs4_create_misses = 0; static int nfs4_readdir_cache_shorts = 0; static int nfs4_readdir_readahead = 0; static int nfs4_bio_do_stop = 0; static int nfs4_lostpage = 0; /* number of times we lost original page */ int nfs4_mmap_debug = 0; static int nfs4_pathconf_cache_hits = 0; static int nfs4_pathconf_cache_misses = 0; int nfs4close_all_cnt; int nfs4close_one_debug = 0; int nfs4close_notw_debug = 0; int denied_to_flk_debug = 0; void *lockt_denied_debug; #endif /* * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT * or NFS4ERR_RESOURCE. */ static int confirm_retry_sec = 30; static int nfs4_lookup_neg_cache = 1; /* * number of pages to read ahead * optimized for 100 base-T. */ static int nfs4_nra = 4; static int nfs4_do_symlink_cache = 1; static int nfs4_pathconf_disable_cache = 0; /* * These are the vnode ops routines which implement the vnode interface to * the networked file system. These routines just take their parameters, * make them look networkish by putting the right info into interface structs, * and then calling the appropriate remote routine(s) to do the work. * * Note on directory name lookup cacheing: If we detect a stale fhandle, * we purge the directory cache relative to that vnode. This way, the * user won't get burned by the cache repeatedly. See for * more details on rnode locking. */ struct vnodeops *nfs4_vnodeops; const fs_operation_def_t nfs4_vnodeops_template[] = { VOPNAME_OPEN, nfs4_open, VOPNAME_CLOSE, nfs4_close, VOPNAME_READ, nfs4_read, VOPNAME_WRITE, nfs4_write, VOPNAME_IOCTL, nfs4_ioctl, VOPNAME_GETATTR, nfs4_getattr, VOPNAME_SETATTR, nfs4_setattr, VOPNAME_ACCESS, nfs4_access, VOPNAME_LOOKUP, nfs4_lookup, VOPNAME_CREATE, nfs4_create, VOPNAME_REMOVE, nfs4_remove, VOPNAME_LINK, nfs4_link, VOPNAME_RENAME, nfs4_rename, VOPNAME_MKDIR, nfs4_mkdir, VOPNAME_RMDIR, nfs4_rmdir, VOPNAME_READDIR, nfs4_readdir, VOPNAME_SYMLINK, nfs4_symlink, VOPNAME_READLINK, nfs4_readlink, VOPNAME_FSYNC, nfs4_fsync, VOPNAME_INACTIVE, (fs_generic_func_p) nfs4_inactive, VOPNAME_FID, nfs4_fid, VOPNAME_RWLOCK, nfs4_rwlock, VOPNAME_RWUNLOCK, (fs_generic_func_p) nfs4_rwunlock, VOPNAME_SEEK, nfs4_seek, VOPNAME_FRLOCK, nfs4_frlock, VOPNAME_SPACE, nfs4_space, VOPNAME_REALVP, nfs4_realvp, VOPNAME_GETPAGE, nfs4_getpage, VOPNAME_PUTPAGE, nfs4_putpage, VOPNAME_MAP, (fs_generic_func_p) nfs4_map, VOPNAME_ADDMAP, (fs_generic_func_p) nfs4_addmap, VOPNAME_DELMAP, nfs4_delmap, VOPNAME_DUMP, nfs_dump, /* there is no separate nfs4_dump */ VOPNAME_PATHCONF, nfs4_pathconf, VOPNAME_PAGEIO, nfs4_pageio, VOPNAME_DISPOSE, (fs_generic_func_p) nfs4_dispose, VOPNAME_SETSECATTR, nfs4_setsecattr, VOPNAME_GETSECATTR, nfs4_getsecattr, VOPNAME_SHRLOCK, nfs4_shrlock, NULL, NULL }; /* * The following are subroutines and definitions to set args or get res * for the different nfsv4 ops */ void nfs4args_lookup_free(nfs_argop4 *argop, int arglen) { int i; for (i = 0; i < arglen; i++) { if (argop[i].argop == OP_LOOKUP) kmem_free( argop[i].nfs_argop4_u.oplookup.objname.utf8string_val, argop[i].nfs_argop4_u.oplookup.objname.utf8string_len); } } static void nfs4args_lock_free(nfs_argop4 *argop) { locker4 *locker = &argop->nfs_argop4_u.oplock.locker; if (locker->new_lock_owner == TRUE) { open_to_lock_owner4 *open_owner; open_owner = &locker->locker4_u.open_owner; if (open_owner->lock_owner.owner_val != NULL) { kmem_free(open_owner->lock_owner.owner_val, open_owner->lock_owner.owner_len); } } } static void nfs4args_lockt_free(nfs_argop4 *argop) { lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; if (lowner->owner_val != NULL) { kmem_free(lowner->owner_val, lowner->owner_len); } } static void nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, nfs4_stateid_types_t *sid_types) { fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; mntinfo4_t *mi; argop->argop = OP_SETATTR; /* * The stateid is set to 0 if client is not modifying the size * and otherwise to whatever nfs4_get_stateid() returns. * * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no * state struct could be found for the process/file pair. We may * want to change this in the future (by OPENing the file). See * bug # 4474852. */ if (vap->va_mask & AT_SIZE) { ASSERT(rp != NULL); mi = VTOMI4(RTOV4(rp)); argop->nfs_argop4_u.opsetattr.stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, OP_SETATTR, sid_types, FALSE); } else { bzero(&argop->nfs_argop4_u.opsetattr.stateid, sizeof (stateid4)); } *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); if (*error) bzero(attr, sizeof (*attr)); } static void nfs4args_setattr_free(nfs_argop4 *argop) { nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); } static int nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, bitmap4 supp) { fattr4 *attr; int error = 0; argop->argop = op; switch (op) { case OP_VERIFY: attr = &argop->nfs_argop4_u.opverify.obj_attributes; break; case OP_NVERIFY: attr = &argop->nfs_argop4_u.opnverify.obj_attributes; break; default: return (EINVAL); /*NOTREACHED*/ break; } if (!error) error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); if (error) bzero(attr, sizeof (*attr)); return (error); } static void nfs4args_verify_free(nfs_argop4 *argop) { switch (argop->argop) { case OP_VERIFY: nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); break; case OP_NVERIFY: nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); break; default: break; } } static void nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) { WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; mntinfo4_t *mi = VTOMI4(RTOV4(rp)); argop->argop = OP_WRITE; wargs->stable = stable; wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, mi, OP_WRITE, sid_tp); wargs->mblk = NULL; *wargs_pp = wargs; } void nfs4args_copen_free(OPEN4cargs *open_args) { if (open_args->owner.owner_val) { kmem_free(open_args->owner.owner_val, open_args->owner.owner_len); } if ((open_args->opentype == OPEN4_CREATE) && (open_args->mode != EXCLUSIVE4)) { nfs4_fattr4_free(&open_args->createhow4_u.createattrs); } } /* * XXX: This is referenced in modstubs.s */ struct vnodeops * nfs4_getvnodeops(void) { return (nfs4_vnodeops); } /* * The OPEN operation opens a regular file. * * ARGSUSED */ static int nfs4_open(vnode_t **vpp, int flag, cred_t *cr) { vnode_t *dvp = NULL; rnode4_t *rp; int error; int just_been_created; char fn[MAXNAMELEN]; NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); if (curproc->p_zone != VTOMI4(*vpp)->mi_zone) return (EIO); rp = VTOR4(*vpp); /* * Check to see if opening something besides a regular file; * if so skip the OTW call */ if ((*vpp)->v_type != VREG) { error = nfs4_open_non_reg_file(vpp, flag, cr); return (error); } /* * XXX - would like a check right here to know if the file is * executable or not, so as to skip OTW */ if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) return (error); if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) return (error); /* * See if this file has just been CREATEd. * If so, clear the flag and update the dnlc, which was previously * skipped in nfs4_create. * XXX need better serilization on this. * XXX move this into the nf4open_otw call, after we have * XXX acquired the open owner seqid sync. */ mutex_enter(&rp->r_statev4_lock); if (rp->created_v4) { rp->created_v4 = 0; mutex_exit(&rp->r_statev4_lock); dnlc_update(dvp, fn, *vpp); /* This is needed so we don't bump the open ref count */ just_been_created = 1; } else { mutex_exit(&rp->r_statev4_lock); just_been_created = 0; } /* * If caller specified O_TRUNC/FTRUNC, then be sure to set * FWRITE (to drive successful setattr(size=0) after open) */ if (flag & FTRUNC) flag |= FWRITE; error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, just_been_created); if (!error && !((*vpp)->v_flag & VROOT)) dnlc_update(dvp, fn, *vpp); /* release the hold from vtodv */ VN_RELE(dvp); /* exchange the shadow for the master vnode, if needed */ if (error == 0 && IS_SHADOW(*vpp, rp)) sv_exchange(vpp); return (error); } /* * See if there's a "lost open" request to be saved and recovered. */ static void nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, vnode_t *dvp, OPEN4cargs *open_args) { vfs_t *vfsp; char *srccfp; vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); if (error != ETIMEDOUT && error != EINTR && !NFS4_FRC_UNMT_ERR(error, vfsp)) { lost_rqstp->lr_op = 0; return; } NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4open_save_lost_rqst: error %d", error)); lost_rqstp->lr_op = OP_OPEN; /* * The vp (if it is not NULL) and dvp are held and rele'd via * the recovery code. See nfs4_save_lost_rqst. */ lost_rqstp->lr_vp = vp; lost_rqstp->lr_dvp = dvp; lost_rqstp->lr_oop = oop; lost_rqstp->lr_osp = NULL; lost_rqstp->lr_lop = NULL; lost_rqstp->lr_cr = cr; lost_rqstp->lr_flk = NULL; lost_rqstp->lr_oacc = open_args->share_access; lost_rqstp->lr_odeny = open_args->share_deny; lost_rqstp->lr_oclaim = open_args->claim; if (open_args->claim == CLAIM_DELEGATE_CUR) { lost_rqstp->lr_ostateid = open_args->open_claim4_u.delegate_cur_info.delegate_stateid; srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; } else { srccfp = open_args->open_claim4_u.cfile; } lost_rqstp->lr_ofile.utf8string_len = 0; lost_rqstp->lr_ofile.utf8string_val = NULL; (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); lost_rqstp->lr_putfirst = FALSE; } struct nfs4_excl_time { uint32 seconds; uint32 nseconds; }; /* * The OPEN operation creates and/or opens a regular file * * ARGSUSED */ static int nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, enum createmode4 createmode, int file_just_been_created) { rnode4_t *rp; rnode4_t *drp = VTOR4(dvp); vnode_t *vp = NULL; vnode_t *vpi = *vpp; bool_t needrecov = FALSE; int doqueue = 1; COMPOUND4args_clnt args; COMPOUND4res_clnt res; nfs_argop4 *argop; nfs_resop4 *resop; int argoplist_size; int idx_open, idx_fattr; GETFH4res *gf_res = NULL; OPEN4res *op_res = NULL; nfs4_ga_res_t *garp; fattr4 *attr = NULL; struct nfs4_excl_time verf; bool_t did_excl_setup = FALSE; int created_osp; OPEN4cargs *open_args; nfs4_open_owner_t *oop = NULL; nfs4_open_stream_t *osp = NULL; seqid4 seqid = 0; bool_t retry_open = FALSE; nfs4_recov_state_t recov_state; nfs4_lost_rqst_t lost_rqst; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; hrtime_t t; int acc = 0; cred_t *cred_otw = NULL; /* cred used to do the RPC call */ cred_t *ncr = NULL; nfs4_sharedfh_t *otw_sfh; nfs4_sharedfh_t *orig_sfh; int fh_differs = 0; int numops, setgid_flag; int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; /* * Make sure we properly deal with setting the right gid on * a newly created file to reflect the parent's setgid bit */ setgid_flag = 0; if (create_flag && in_va) { /* * If the parent's directory has the setgid bit set * _and_ the client was able to get a valid mapping * for the parent dir's owner_group, we want to * append NVERIFY(owner_group == dva.va_gid) and * SETATTR to the CREATE compound. */ mutex_enter(&drp->r_statelock); if (drp->r_attr.va_mode & VSGID && drp->r_attr.va_gid != GID_NOBODY) { in_va->va_gid = drp->r_attr.va_gid; setgid_flag = 1; } mutex_exit(&drp->r_statelock); } /* * Normal/non-create compound: * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) * * Open(create) compound no setgid: * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + * RESTOREFH + GETATTR * * Open(create) setgid: * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + * NVERIFY(grp) + SETATTR */ if (setgid_flag) { numops = 10; idx_open = 1; idx_fattr = 3; } else if (create_flag) { numops = 7; idx_open = 2; idx_fattr = 4; } else { numops = 4; idx_open = 1; idx_fattr = 3; } args.array_len = numops; argoplist_size = numops * sizeof (nfs_argop4); argop = kmem_alloc(argoplist_size, KM_SLEEP); NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " "open %s open flag 0x%x cred %p", file_name, open_flag, (void *)cr)); ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); if (create_flag) { /* * We are to create a file. Initialize the passed in vnode * pointer. */ vpi = NULL; } else { /* * Check to see if the client owns a read delegation and is * trying to open for write. If so, then return the delegation * to avoid the server doing a cb_recall and returning DELAY. * NB - we don't use the statev4_lock here because we'd have * to drop the lock anyway and the result would be stale. */ if ((open_flag & FWRITE) && VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); /* * If the file has a delegation, then do an access check up * front. This avoids having to an access check later after * we've already done start_op, which could deadlock. */ if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { if (open_flag & FREAD && nfs4_access(vpi, VREAD, 0, cr) == 0) acc |= VREAD; if (open_flag & FWRITE && nfs4_access(vpi, VWRITE, 0, cr) == 0) acc |= VWRITE; } } drp = VTOR4(dvp); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; cred_otw = cr; recov_retry: fh_differs = 0; nfs4_error_zinit(&e); /* argop is empty here */ if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { if (ncr != NULL) crfree(ncr); kmem_free(argop, argoplist_size); return (EINTR); } e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); if (e.error) { nfs_rw_exit(&drp->r_rwlock); if (ncr != NULL) crfree(ncr); kmem_free(argop, argoplist_size); return (e.error); } args.ctag = TAG_OPEN; args.array_len = numops; args.array = argop; /* putfh directory fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ argop[idx_open].argop = OP_COPEN; open_args = &argop[idx_open].nfs_argop4_u.opcopen; open_args->claim = CLAIM_NULL; /* name of file */ open_args->open_claim4_u.cfile = file_name; open_args->owner.owner_len = 0; open_args->owner.owner_val = NULL; if (create_flag) { /* CREATE a file */ open_args->opentype = OPEN4_CREATE; open_args->mode = createmode; if (createmode == EXCLUSIVE4) { if (did_excl_setup == FALSE) { verf.seconds = nfs_atoi(hw_serial); if (verf.seconds != 0) verf.nseconds = newnum(); else { timestruc_t now; gethrestime(&now); verf.seconds = now.tv_sec; verf.nseconds = now.tv_nsec; } /* * Since the server will use this value for the * mtime, make sure that it can't overflow. Zero * out the MSB. The actual value does not matter * here, only its uniqeness. */ verf.seconds &= INT32_MAX; did_excl_setup = TRUE; } /* Now copy over verifier to OPEN4args. */ open_args->createhow4_u.createverf = *(uint64_t *)&verf; } else { int v_error; bitmap4 supp_attrs; servinfo4_t *svp; attr = &open_args->createhow4_u.createattrs; svp = drp->r_server; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); supp_attrs = svp->sv_supp_attrs; nfs_rw_exit(&svp->sv_lock); /* GUARDED4 or UNCHECKED4 */ v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, supp_attrs); if (v_error) { bzero(attr, sizeof (*attr)); nfs4args_copen_free(open_args); nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); if (ncr != NULL) crfree(ncr); kmem_free(argop, argoplist_size); return (v_error); } } } else { /* NO CREATE */ open_args->opentype = OPEN4_NOCREATE; } if (recov_state.rs_sp != NULL) { mutex_enter(&recov_state.rs_sp->s_lock); open_args->owner.clientid = recov_state.rs_sp->clientid; mutex_exit(&recov_state.rs_sp->s_lock); } else { /* XXX should we just fail here? */ open_args->owner.clientid = 0; } /* * This increments oop's ref count or creates a temporary 'just_created' * open owner that will become valid when this OPEN/OPEN_CONFIRM call * completes. */ mutex_enter(&VTOMI4(dvp)->mi_lock); /* See if a permanent or just created open owner exists */ oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); if (!oop) { /* * This open owner does not exist so create a temporary * just created one. */ oop = create_open_owner(cr, VTOMI4(dvp)); ASSERT(oop != NULL); } mutex_exit(&VTOMI4(dvp)->mi_lock); /* this length never changes, do alloc before seqid sync */ open_args->owner.owner_len = sizeof (oop->oo_name); open_args->owner.owner_val = kmem_alloc(open_args->owner.owner_len, KM_SLEEP); e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); if (e.error == EAGAIN) { open_owner_rele(oop); nfs4args_copen_free(open_args); nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); if (ncr != NULL) { crfree(ncr); ncr = NULL; } goto recov_retry; } /* Check to see if we need to do the OTW call */ if (!create_flag) { if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, file_just_been_created, &e.error, acc, &recov_state)) { /* * The OTW open is not necessary. Either * the open can succeed without it (eg. * delegation, error == 0) or the open * must fail due to an access failure * (error != 0). In either case, tidy * up and return. */ nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); nfs4args_copen_free(open_args); nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); if (ncr != NULL) crfree(ncr); kmem_free(argop, argoplist_size); return (e.error); } } bcopy(&oop->oo_name, open_args->owner.owner_val, open_args->owner.owner_len); seqid = nfs4_get_open_seqid(oop) + 1; open_args->seqid = seqid; open_args->share_access = 0; if (open_flag & FREAD) open_args->share_access |= OPEN4_SHARE_ACCESS_READ; if (open_flag & FWRITE) open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; open_args->share_deny = OPEN4_SHARE_DENY_NONE; /* * getfh w/sanity check for idx_open/idx_fattr */ ASSERT((idx_open + 1) == (idx_fattr - 1)); argop[idx_open + 1].argop = OP_GETFH; /* getattr */ argop[idx_fattr].argop = OP_GETATTR; argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); if (setgid_flag) { vattr_t _v; servinfo4_t *svp; bitmap4 supp_attrs; svp = drp->r_server; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); supp_attrs = svp->sv_supp_attrs; nfs_rw_exit(&svp->sv_lock); /* * For setgid case, we need to: * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) */ argop[4].argop = OP_SAVEFH; argop[5].argop = OP_CPUTFH; argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; argop[6].argop = OP_GETATTR; argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); argop[7].argop = OP_RESTOREFH; /* * nverify */ _v.va_mask = AT_GID; _v.va_gid = in_va->va_gid; if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, supp_attrs))) { /* * setattr * * We _know_ we're not messing with AT_SIZE or * AT_XTIME, so no need for stateid or flags. * Also we specify NULL rp since we're only * interested in setting owner_group attributes. */ nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, &e.error, 0); if (e.error) nfs4args_verify_free(&argop[8]); } if (e.error) { /* * XXX - Revisit the last argument to nfs4_end_op() * once 5020486 is fixed. */ nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); nfs4args_copen_free(open_args); nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); if (ncr != NULL) crfree(ncr); kmem_free(argop, argoplist_size); return (e.error); } } else if (create_flag) { /* * For setgid case, we need to: * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) */ argop[1].argop = OP_SAVEFH; argop[5].argop = OP_RESTOREFH; argop[6].argop = OP_GETATTR; argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); } NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, "nfs4open_otw: %s call, nm %s, rp %s", needrecov ? "recov" : "first", file_name, rnode4info(VTOR4(dvp)))); t = gethrtime(); rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); if (!e.error && nfs4_need_to_bump_seqid(&res)) nfs4_set_open_seqid(seqid, oop, args.ctag); needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); if (e.error || needrecov) { bool_t abort = FALSE; if (needrecov) { nfs4_bseqid_entry_t *bsep = NULL; nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, cred_otw, vpi, dvp, open_args); if (!e.error && res.status == NFS4ERR_BAD_SEQID) { bsep = nfs4_create_bseqid_entry(oop, NULL, vpi, 0, args.ctag, open_args->seqid); num_bseqid_retry--; } abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : NULL, OP_OPEN, bsep); if (bsep) kmem_free(bsep, sizeof (*bsep)); /* give up if we keep getting BAD_SEQID */ if (num_bseqid_retry == 0) abort = TRUE; if (abort == TRUE && e.error == 0) e.error = geterrno4(res.status); } nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); nfs4args_copen_free(open_args); if (setgid_flag) { nfs4args_verify_free(&argop[8]); nfs4args_setattr_free(&argop[9]); } if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); if (ncr != NULL) { crfree(ncr); ncr = NULL; } if (!needrecov || abort == TRUE || e.error == EINTR || NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { kmem_free(argop, argoplist_size); return (e.error); } goto recov_retry; } /* * Will check and update lease after checking the rflag for * OPEN_CONFIRM in the successful OPEN call. */ if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { /* * XXX what if we're crossing mount points from server1:/drp * to server2:/drp/rp. */ /* Signal our end of use of the open seqid */ nfs4_end_open_seqid_sync(oop); /* * This will destroy the open owner if it was just created, * and no one else has put a reference on it. */ open_owner_rele(oop); if (create_flag && (createmode != EXCLUSIVE4) && res.status == NFS4ERR_BADOWNER) nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); e.error = geterrno4(res.status); nfs4args_copen_free(open_args); if (setgid_flag) { nfs4args_verify_free(&argop[8]); nfs4args_setattr_free(&argop[9]); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); /* * If the reply is NFS4ERR_ACCESS, it may be because * we are root (no root net access). If the real uid * is not root, then retry with the real uid instead. */ if (ncr != NULL) { crfree(ncr); ncr = NULL; } if (res.status == NFS4ERR_ACCESS && (ncr = crnetadjust(cred_otw)) != NULL) { cred_otw = ncr; goto recov_retry; } kmem_free(argop, argoplist_size); return (e.error); } resop = &res.array[idx_open]; /* open res */ op_res = &resop->nfs_resop4_u.opopen; #ifdef DEBUG /* * verify attrset bitmap */ if (create_flag && (createmode == UNCHECKED4 || createmode == GUARDED4)) { /* make sure attrset returned is what we asked for */ /* XXX Ignore this 'error' for now */ if (attr->attrmask != op_res->attrset) /* EMPTY */; } #endif if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { mutex_enter(&VTOMI4(dvp)->mi_lock); VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; mutex_exit(&VTOMI4(dvp)->mi_lock); } resop = &res.array[idx_open + 1]; /* getfh res */ gf_res = &resop->nfs_resop4_u.opgetfh; otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); /* * The open stateid has been updated on the server but not * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW * WRITE call. That, however, will use the old stateid, so go ahead * and upate the open stateid now, before any call to makenfs4node. */ if (vpi) { nfs4_open_stream_t *tmp_osp; rnode4_t *tmp_rp = VTOR4(vpi); tmp_osp = find_open_stream(oop, tmp_rp); if (tmp_osp) { tmp_osp->open_stateid = op_res->stateid; mutex_exit(&tmp_osp->os_sync_lock); open_stream_rele(tmp_osp, tmp_rp); } /* * We must determine if the file handle given by the otw open * is the same as the file handle which was passed in with * *vpp. This case can be reached if the file we are trying * to open has been removed and another file has been created * having the same file name. The passed in vnode is released * later. */ orig_sfh = VTOR4(vpi)->r_fh; fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); } garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; if (create_flag || fh_differs) { int rnode_err = 0; vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); if (e.error) PURGE_ATTRCACHE4(vp); /* * For the newly created vp case, make sure the rnode * isn't bad before using it. */ mutex_enter(&(VTOR4(vp))->r_statelock); if (VTOR4(vp)->r_flags & R4RECOVERR) rnode_err = EIO; mutex_exit(&(VTOR4(vp))->r_statelock); if (rnode_err) { nfs4_end_open_seqid_sync(oop); nfs4args_copen_free(open_args); if (setgid_flag) { nfs4args_verify_free(&argop[8]); nfs4args_setattr_free(&argop[9]); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); open_owner_rele(oop); VN_RELE(vp); if (ncr != NULL) crfree(ncr); sfh4_rele(&otw_sfh); kmem_free(argop, argoplist_size); return (EIO); } } else { vp = vpi; } sfh4_rele(&otw_sfh); /* * It seems odd to get a full set of attrs and then not update * the object's attrcache in the non-create case. Create case uses * the attrs since makenfs4node checks to see if the attrs need to * be updated (and then updates them). The non-create case should * update attrs also. */ if (! create_flag && ! fh_differs && !e.error) { nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); } nfs4_error_zinit(&e); if (op_res->rflags & OPEN4_RESULT_CONFIRM) { /* This does not do recovery for vp explicitly. */ nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, &retry_open, oop, FALSE, &e, &num_bseqid_retry); if (e.error || e.stat) { nfs4_end_open_seqid_sync(oop); nfs4args_copen_free(open_args); if (setgid_flag) { nfs4args_verify_free(&argop[8]); nfs4args_setattr_free(&argop[9]); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); open_owner_rele(oop); if (create_flag || fh_differs) { /* rele the makenfs4node */ VN_RELE(vp); } if (ncr != NULL) { crfree(ncr); ncr = NULL; } if (retry_open == TRUE) { NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4open_otw: retry the open since OPEN " "CONFIRM failed with error %d stat %d", e.error, e.stat)); if (create_flag && createmode == GUARDED4) { NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4open_otw: switch " "createmode from GUARDED4 to " "UNCHECKED4")); createmode = UNCHECKED4; } goto recov_retry; } if (!e.error) { if (create_flag && (createmode != EXCLUSIVE4) && e.stat == NFS4ERR_BADOWNER) nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); e.error = geterrno4(e.stat); } kmem_free(argop, argoplist_size); return (e.error); } } rp = VTOR4(vp); mutex_enter(&rp->r_statev4_lock); if (create_flag) rp->created_v4 = 1; mutex_exit(&rp->r_statev4_lock); mutex_enter(&oop->oo_lock); /* Doesn't matter if 'oo_just_created' already was set as this */ oop->oo_just_created = NFS4_PERM_CREATED; if (oop->oo_cred_otw) crfree(oop->oo_cred_otw); oop->oo_cred_otw = cred_otw; crhold(oop->oo_cred_otw); mutex_exit(&oop->oo_lock); /* returns with 'os_sync_lock' held */ osp = find_or_create_open_stream(oop, rp, &created_osp); if (!osp) { NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: failed to create an open stream")); NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " "signal our end of use of the open seqid")); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); nfs4args_copen_free(open_args); if (setgid_flag) { nfs4args_verify_free(&argop[8]); nfs4args_setattr_free(&argop[9]); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); if (create_flag || fh_differs) VN_RELE(vp); if (ncr != NULL) crfree(ncr); kmem_free(argop, argoplist_size); return (EINVAL); } osp->open_stateid = op_res->stateid; if (open_flag & FREAD) osp->os_share_acc_read++; if (open_flag & FWRITE) osp->os_share_acc_write++; osp->os_share_deny_none++; /* * Need to reset this bitfield for the possible case where we were * going to OTW CLOSE the file, got a non-recoverable error, and before * we could retry the CLOSE, OPENed the file again. */ ASSERT(osp->os_open_owner->oo_seqid_inuse); osp->os_final_close = 0; osp->os_force_close = 0; #ifdef DEBUG if (osp->os_failed_reopen) NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" " clearing os_failed_reopen for osp %p, cr %p, rp %s", (void *)osp, (void *)cr, rnode4info(rp))); #endif osp->os_failed_reopen = 0; mutex_exit(&osp->os_sync_lock); nfs4_end_open_seqid_sync(oop); if (created_osp && recov_state.rs_sp != NULL) { mutex_enter(&recov_state.rs_sp->s_lock); nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); mutex_exit(&recov_state.rs_sp->s_lock); } /* get rid of our reference to find oop */ open_owner_rele(oop); open_stream_rele(osp, rp); /* accept delegation, if any */ nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); if (createmode == EXCLUSIVE4 && (in_va->va_mask & ~(AT_GID | AT_SIZE))) { NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" " EXCLUSIVE4: sending a SETATTR")); /* * If doing an exclusive create, then generate * a SETATTR to set the initial attributes. * Try to set the mtime and the atime to the * server's current time. It is somewhat * expected that these fields will be used to * store the exclusive create cookie. If not, * server implementors will need to know that * a SETATTR will follow an exclusive create * and the cookie should be destroyed if * appropriate. * * The AT_GID and AT_SIZE bits are turned off * so that the SETATTR request will not attempt * to process these. The gid will be set * separately if appropriate. The size is turned * off because it is assumed that a new file will * be created empty and if the file wasn't empty, * then the exclusive create will have failed * because the file must have existed already. * Therefore, no truncate operation is needed. */ in_va->va_mask &= ~(AT_GID | AT_SIZE); in_va->va_mask |= (AT_MTIME | AT_ATIME); e.error = nfs4setattr(vp, in_va, 0, cr, NULL); if (e.error) { /* * Couldn't correct the attributes of * the newly created file and the * attributes are wrong. Remove the * file and return an error to the * application. */ /* XXX will this take care of client state ? */ NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" " remove file", e.error)); VN_RELE(vp); (void) nfs4_remove(dvp, file_name, cr); nfs_rw_exit(&drp->r_rwlock); goto skip_rwlock_exit; } } /* * If we created or found the correct vnode, due to create_flag or * fh_differs being set, then update directory cache attribute, readdir * and dnlc caches. */ if (create_flag || fh_differs) { dirattr_info_t dinfo, *dinfop; /* * Make sure getattr succeeded before using results. * note: op 7 is getattr(dir) for both flavors of * open(create). */ if (create_flag && res.status == NFS4_OK) { dinfo.di_time_call = t; dinfo.di_cred = cr; dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; dinfop = &dinfo; } else { dinfop = NULL; } nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, dinfop); } nfs_rw_exit(&drp->r_rwlock); skip_rwlock_exit: /* * If the page cache for this file was flushed from actions * above, it was done asynchronously and if that is true, * there is a need to wait here for it to complete. This must * be done outside of start_fop/end_fop. */ (void) nfs4_waitfor_purge_complete(vp); /* * It is implicit that we are in the open case (create_flag == 0) since * fh_differs can only be set to a non-zero value in the open case. */ if (fh_differs != 0 && vpi != NULL) VN_RELE(vpi); /* * Be sure to set *vpp to the correct value before returning. */ *vpp = vp; nfs4args_copen_free(open_args); if (setgid_flag) { nfs4args_verify_free(&argop[8]); nfs4args_setattr_free(&argop[9]); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); if (ncr) crfree(ncr); kmem_free(argop, argoplist_size); return (e.error); } /* * Reopen an open instance. cf. nfs4open_otw(). * * Errors are returned by the nfs4_error_t parameter. * - ep->error contains an errno value or zero. * - if it is zero, ep->stat is set to an NFS status code, if any. * If the file could not be reopened, but the caller should continue, the * file is marked dead and no error values are returned. If the caller * should stop recovering open files and start over, either the ep->error * value or ep->stat will indicate an error (either something that requires * recovery or EAGAIN). Note that some recovery (e.g., expired volatile * filehandles) may be handled silently by this routine. * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state * will be started, so the caller should not do it. * * Gotos: * - kill_file : reopen failed in such a fashion to constitute marking the * file dead and setting the open stream's 'os_failed_reopen' as 1. This * is for cases where recovery is not possible. * - failed_reopen : same as above, except that the file has already been * marked dead, so no need to do it again. * - bailout : reopen failed but we are able to recover and retry the reopen - * either within this function immediatley or via the calling function. */ void nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, open_claim_type4 claim, bool_t frc_use_claim_previous, bool_t is_recov) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; nfs_argop4 argop[4]; nfs_resop4 *resop; OPEN4res *op_res = NULL; OPEN4cargs *open_args; GETFH4res *gf_res; rnode4_t *rp = VTOR4(vp); int doqueue = 1; cred_t *cr = NULL, *cred_otw = NULL; nfs4_open_owner_t *oop = NULL; seqid4 seqid; nfs4_ga_res_t *garp; char fn[MAXNAMELEN]; nfs4_recov_state_t recov = {NULL, 0}; nfs4_lost_rqst_t lost_rqst; mntinfo4_t *mi = VTOMI4(vp); bool_t abort; char *failed_msg = ""; int fh_different; hrtime_t t; nfs4_bseqid_entry_t *bsep = NULL; ASSERT(nfs4_consistent_type(vp)); ASSERT(curproc->p_zone == mi->mi_zone); nfs4_error_zinit(ep); /* this is the cred used to find the open owner */ cr = state_to_cred(osp); if (cr == NULL) { failed_msg = "Couldn't reopen: no cred"; goto kill_file; } /* use this cred for OTW operations */ cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); top: nfs4_error_zinit(ep); if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { /* File system has been unmounted, quit */ ep->error = EIO; failed_msg = "Couldn't reopen: file system has been unmounted"; goto kill_file; } oop = osp->os_open_owner; ASSERT(oop != NULL); if (oop == NULL) { /* be defensive in non-DEBUG */ failed_msg = "can't reopen: no open owner"; goto kill_file; } open_owner_hold(oop); ep->error = nfs4_start_open_seqid_sync(oop, mi); if (ep->error) { open_owner_rele(oop); oop = NULL; goto bailout; } /* * If the rnode has a delegation and the delegation has been * recovered and the server didn't request a recall and the caller * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during * recovery) and the rnode hasn't been marked dead, then install * the delegation stateid in the open stream. Otherwise, proceed * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. */ mutex_enter(&rp->r_statev4_lock); if (rp->r_deleg_type != OPEN_DELEGATE_NONE && !rp->r_deleg_return_pending && (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && !rp->r_deleg_needs_recall && claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && !(rp->r_flags & R4RECOVERR)) { mutex_enter(&osp->os_sync_lock); osp->os_delegation = 1; osp->open_stateid = rp->r_deleg_stateid; mutex_exit(&osp->os_sync_lock); mutex_exit(&rp->r_statev4_lock); goto bailout; } mutex_exit(&rp->r_statev4_lock); /* * If the file failed recovery, just quit. This failure need not * affect other reopens, so don't return an error. */ mutex_enter(&rp->r_statelock); if (rp->r_flags & R4RECOVERR) { mutex_exit(&rp->r_statelock); ep->error = 0; goto failed_reopen; } mutex_exit(&rp->r_statelock); /* * argop is empty here * * PUTFH, OPEN, GETATTR */ args.ctag = TAG_REOPEN; args.array_len = 4; args.array = argop; NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, "nfs4_reopen: file is type %d, id %s", vp->v_type, rnode4info(VTOR4(vp)))); argop[0].argop = OP_CPUTFH; if (claim != CLAIM_PREVIOUS) { /* * if this is a file mount then * use the mntinfo parentfh */ argop[0].nfs_argop4_u.opcputfh.sfh = (vp->v_flag & VROOT) ? mi->mi_srvparentfh : VTOSV(vp)->sv_dfh; } else { /* putfh fh to reopen */ argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; } argop[1].argop = OP_COPEN; open_args = &argop[1].nfs_argop4_u.opcopen; open_args->claim = claim; if (claim == CLAIM_NULL) { if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " "failed for vp 0x%p for CLAIM_NULL with %m", (void *)vp); failed_msg = "Couldn't reopen: vtoname failed for " "CLAIM_NULL"; /* nothing allocated yet */ goto kill_file; } open_args->open_claim4_u.cfile = fn; } else if (claim == CLAIM_PREVIOUS) { /* * We have two cases to deal with here: * 1) We're being called to reopen files in order to satisfy * a lock operation request which requires us to explicitly * reopen files which were opened under a delegation. If * we're in recovery, we *must* use CLAIM_PREVIOUS. In * that case, frc_use_claim_previous is TRUE and we must * use the rnode's current delegation type (r_deleg_type). * 2) We're reopening files during some form of recovery. * In this case, frc_use_claim_previous is FALSE and we * use the delegation type appropriate for recovery * (r_deleg_needs_recovery). */ mutex_enter(&rp->r_statev4_lock); open_args->open_claim4_u.delegate_type = frc_use_claim_previous ? rp->r_deleg_type : rp->r_deleg_needs_recovery; mutex_exit(&rp->r_statev4_lock); } else if (claim == CLAIM_DELEGATE_CUR) { if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " "failed for vp 0x%p for CLAIM_DELEGATE_CUR " "with %m", (void *)vp); failed_msg = "Couldn't reopen: vtoname failed for " "CLAIM_DELEGATE_CUR"; /* nothing allocated yet */ goto kill_file; } mutex_enter(&rp->r_statev4_lock); open_args->open_claim4_u.delegate_cur_info.delegate_stateid = rp->r_deleg_stateid; mutex_exit(&rp->r_statev4_lock); open_args->open_claim4_u.delegate_cur_info.cfile = fn; } open_args->opentype = OPEN4_NOCREATE; open_args->owner.clientid = mi2clientid(mi); open_args->owner.owner_len = sizeof (oop->oo_name); open_args->owner.owner_val = kmem_alloc(open_args->owner.owner_len, KM_SLEEP); bcopy(&oop->oo_name, open_args->owner.owner_val, open_args->owner.owner_len); open_args->share_access = 0; open_args->share_deny = 0; mutex_enter(&osp->os_sync_lock); NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", (void *)osp, (void *)rp, osp->os_share_acc_read, osp->os_share_acc_write, osp->os_open_ref_count, osp->os_mmap_read, osp->os_mmap_write, claim)); if (osp->os_share_acc_read || osp->os_mmap_read) open_args->share_access |= OPEN4_SHARE_ACCESS_READ; if (osp->os_share_acc_write || osp->os_mmap_write) open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; if (osp->os_share_deny_read) open_args->share_deny |= OPEN4_SHARE_DENY_READ; if (osp->os_share_deny_write) open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; mutex_exit(&osp->os_sync_lock); seqid = nfs4_get_open_seqid(oop) + 1; open_args->seqid = seqid; /* Construct the getfh part of the compound */ argop[2].argop = OP_GETFH; /* Construct the getattr part of the compound */ argop[3].argop = OP_GETATTR; argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[3].nfs_argop4_u.opgetattr.mi = mi; t = gethrtime(); rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); if (ep->error) { if (!is_recov && !frc_use_claim_previous && (ep->error == EINTR || ep->error == ETIMEDOUT || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, cred_otw, vp, NULL, open_args); abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : NULL, OP_OPEN, NULL); nfs4args_copen_free(open_args); goto bailout; } nfs4args_copen_free(open_args); if (ep->error == EACCES && cred_otw != cr) { crfree(cred_otw); cred_otw = cr; crhold(cred_otw); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); oop = NULL; goto top; } if (ep->error == ETIMEDOUT) goto bailout; failed_msg = "Couldn't reopen: rpc error"; goto kill_file; } if (nfs4_need_to_bump_seqid(&res)) nfs4_set_open_seqid(seqid, oop, args.ctag); switch (res.status) { case NFS4_OK: if (recov.rs_flags & NFS4_RS_DELAY_MSG) { mutex_enter(&rp->r_statelock); rp->r_delay_interval = 0; mutex_exit(&rp->r_statelock); } break; case NFS4ERR_BAD_SEQID: bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, args.ctag, open_args->seqid); abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : NULL, OP_OPEN, bsep); nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); oop = NULL; kmem_free(bsep, sizeof (*bsep)); goto kill_file; case NFS4ERR_NO_GRACE: nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); oop = NULL; if (claim == CLAIM_PREVIOUS) { /* * Retry as a plain open. We don't need to worry about * checking the changeinfo: it is acceptable for a * client to re-open a file and continue processing * (in the absence of locks). */ NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " "will retry as CLAIM_NULL")); claim = CLAIM_NULL; nfs4_mi_kstat_inc_no_grace(mi); goto top; } failed_msg = "Couldn't reopen: tried reclaim outside grace period. "; goto kill_file; case NFS4ERR_GRACE: nfs4_set_grace_wait(mi); nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); oop = NULL; ep->error = nfs4_wait_for_grace(mi, &recov); if (ep->error != 0) goto bailout; goto top; case NFS4ERR_DELAY: nfs4_set_delay_wait(vp); nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); oop = NULL; ep->error = nfs4_wait_for_delay(vp, &recov); nfs4_mi_kstat_inc_delay(mi); if (ep->error != 0) goto bailout; goto top; case NFS4ERR_FHEXPIRED: /* recover filehandle and retry */ abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); oop = NULL; if (abort == FALSE) goto top; failed_msg = "Couldn't reopen: recovery aborted"; goto kill_file; case NFS4ERR_RESOURCE: case NFS4ERR_STALE_CLIENTID: case NFS4ERR_WRONGSEC: case NFS4ERR_EXPIRED: /* * Do not mark the file dead and let the calling * function initiate recovery. */ nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); oop = NULL; goto bailout; case NFS4ERR_ACCESS: if (cred_otw != cr) { crfree(cred_otw); cred_otw = cr; crhold(cred_otw); nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); oop = NULL; goto top; } /* fall through */ default: NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, rnode4info(VTOR4(vp)))); failed_msg = "Couldn't reopen: NFSv4 error"; nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto kill_file; } resop = &res.array[1]; /* open res */ op_res = &resop->nfs_resop4_u.opopen; garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; /* * Check if the path we reopened really is the same * file. We could end up in a situation where the file * was removed and a new file created with the same name. */ resop = &res.array[2]; gf_res = &resop->nfs_resop4_u.opgetfh; (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); if (fh_different) { if (mi->mi_fh_expire_type == FH4_PERSISTENT || mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { /* Oops, we don't have the same file */ if (mi->mi_fh_expire_type == FH4_PERSISTENT) failed_msg = "Couldn't reopen: Persistent " "file handle changed"; else failed_msg = "Couldn't reopen: Volatile " "(no expire on open) file handle changed"; nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs_rw_exit(&mi->mi_fh_lock); goto kill_file; } else { /* * We have volatile file handles that don't compare. * If the fids are the same then we assume that the * file handle expired but the rnode still refers to * the same file object. * * First check that we have fids or not. * If we don't we have a dumb server so we will * just assume every thing is ok for now. */ if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && rp->r_attr.va_mask & AT_NODEID && rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { /* * We have fids, but they don't * compare. So kill the file. */ failed_msg = "Couldn't reopen: file handle changed" " due to mismatched fids"; nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs_rw_exit(&mi->mi_fh_lock); goto kill_file; } else { /* * We have volatile file handles that refers * to the same file (at least they have the * same fid) or we don't have fids so we * can't tell. :(. We'll be a kind and accepting * client so we'll update the rnode's file * handle with the otw handle. * * We need to drop mi->mi_fh_lock since * sh4_update acquires it. Since there is * only one recovery thread there is no * race. */ nfs_rw_exit(&mi->mi_fh_lock); sfh4_update(rp->r_fh, &gf_res->object); } } } else { nfs_rw_exit(&mi->mi_fh_lock); } ASSERT(nfs4_consistent_type(vp)); /* * If the server wanted an OPEN_CONFIRM but that fails, just start * over. Presumably if there is a persistent error it will show up * when we resend the OPEN. */ if (op_res->rflags & OPEN4_RESULT_CONFIRM) { bool_t retry_open = FALSE; nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, is_recov, &retry_open, oop, FALSE, ep, NULL); if (ep->error || ep->stat) { nfs4args_copen_free(open_args); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); oop = NULL; goto top; } } mutex_enter(&osp->os_sync_lock); osp->open_stateid = op_res->stateid; osp->os_delegation = 0; /* * Need to reset this bitfield for the possible case where we were * going to OTW CLOSE the file, got a non-recoverable error, and before * we could retry the CLOSE, OPENed the file again. */ ASSERT(osp->os_open_owner->oo_seqid_inuse); osp->os_final_close = 0; osp->os_force_close = 0; if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) osp->os_dc_openacc = open_args->share_access; mutex_exit(&osp->os_sync_lock); nfs4_end_open_seqid_sync(oop); /* accept delegation, if any */ nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); nfs4args_copen_free(open_args); nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); ASSERT(nfs4_consistent_type(vp)); open_owner_rele(oop); crfree(cr); crfree(cred_otw); return; kill_file: nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); failed_reopen: NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", (void *)osp, (void *)cr, rnode4info(rp))); mutex_enter(&osp->os_sync_lock); osp->os_failed_reopen = 1; mutex_exit(&osp->os_sync_lock); bailout: if (oop != NULL) { nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); } if (cr != NULL) crfree(cr); if (cred_otw != NULL) crfree(cred_otw); } /* for . and .. OPENs */ /* ARGSUSED */ static int nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) { rnode4_t *rp; nfs4_ga_res_t gar; ASSERT(curproc->p_zone == VTOMI4(*vpp)->mi_zone); /* * If close-to-open consistency checking is turned off or * if there is no cached data, we can avoid * the over the wire getattr. Otherwise, force a * call to the server to get fresh attributes and to * check caches. This is required for close-to-open * consistency. */ rp = VTOR4(*vpp); if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) return (0); gar.n4g_va.va_mask = AT_ALL; return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); } /* * CLOSE a file */ static int nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) { rnode4_t *rp; int pc_err = 0; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; /* * Remove client state for this (lockowner, file) pair. * Issue otw v4 call to have the server do the same. */ rp = VTOR4(vp); /* * zone_enter(2) prevents processes from changing zones with NFS files * open; if we happen to get here from the wrong zone we can't do * anything over the wire. */ if (VTOMI4(vp)->mi_zone != curproc->p_zone) { /* * We could attempt to clean up locks, except we're sure * that the current process didn't acquire any locks on * the file: any attempt to lock a file belong to another zone * will fail, and one can't lock an NFS file and then change * zones, as that fails too. * * Returning an error here is the sane thing to do. A * subsequent call to VN_RELE() which translates to a * nfs4_inactive() will clean up state: if the zone of the * vnode's origin is still alive and kicking, the inactive * thread will handle the request (from the correct zone), and * everything (minus the OTW close call) should be OK. If the * zone is going away nfs4_async_inactive() will throw away * delegations, open streams and cached pages inline. */ return (EIO); } /* * If we are using local locking for this filesystem, then * release all of the SYSV style record locks. Otherwise, * we are doing network locking and we need to release all * of the network locks. All of the locks held by this * process on this file are released no matter what the * incoming reference count is. */ if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { cleanlocks(vp, ttoproc(curthread)->p_pid, 0); cleanshares(vp, ttoproc(curthread)->p_pid); } else e.error = nfs4_lockrelease(vp, flag, offset, cr); if (e.error) return (e.error); if (count > 1) return (0); /* * If the file has been `unlinked', then purge the * DNLC so that this vnode will get reycled quicker * and the .nfs* file on the server will get removed. */ if (rp->r_unldvp != NULL) dnlc_purge_vp(vp); /* * If the file was open for write and there are pages, * do a synchronous flush and commit of all of the * dirty and uncommitted pages. */ ASSERT(!e.error); if ((flag & FWRITE) && nfs4_has_pages(vp)) { pc_err = nfs4_putpage_commit(vp, 0, 0, cr); } mutex_enter(&rp->r_statelock); e.error = rp->r_error; rp->r_error = 0; mutex_exit(&rp->r_statelock); /* Check to see if we need to close the file */ if (vp->v_type != VREG) return (pc_err ? pc_err : e.error); /* Let nfs4close_one figure out if an OTW close is needed. */ nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); if (pc_err) return (pc_err); return (e.error ? e.error : geterrno4(e.stat)); } /* * Initialize *lost_rqstp. */ static void nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, vnode_t *vp) { if (error != ETIMEDOUT && error != EINTR && !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { lost_rqstp->lr_op = 0; return; } NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4close_save_lost_rqst: error %d", error)); lost_rqstp->lr_op = OP_CLOSE; /* * The vp is held and rele'd via the recovery code. * See nfs4_save_lost_rqst. */ lost_rqstp->lr_vp = vp; lost_rqstp->lr_dvp = NULL; lost_rqstp->lr_oop = oop; lost_rqstp->lr_osp = osp; ASSERT(osp != NULL); ASSERT(mutex_owned(&osp->os_sync_lock)); osp->os_pending_close = 1; lost_rqstp->lr_lop = NULL; lost_rqstp->lr_cr = cr; lost_rqstp->lr_flk = NULL; lost_rqstp->lr_putfirst = FALSE; } /* * Assumes you already have the open seqid sync grabbed as well as the * 'os_sync_lock'. Note: this will release the open seqid sync and * 'os_sync_lock' if client recovery starts. Calling functions have to * be prepared to handle this. * * 'recov' is returned as 1 if the CLOSE operation detected client recovery * was needed and was started, and that the calling function should retry * this function; otherwise it is returned as 0. * * Errors are returned via the nfs4_error_t parameter. */ static void nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; CLOSE4args *close_args; nfs_resop4 *resop; nfs_argop4 argop[3]; int doqueue = 1; mntinfo4_t *mi; seqid4 seqid; vnode_t *vp; bool_t needrecov = FALSE; nfs4_lost_rqst_t lost_rqst; hrtime_t t; ASSERT(curproc->p_zone == VTOMI4(RTOV4(rp))->mi_zone); ASSERT(MUTEX_HELD(&osp->os_sync_lock)); NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); /* Only set this to 1 if recovery is started */ *recov = 0; /* do the OTW call to close the file */ if (close_type == CLOSE_RESEND) args.ctag = TAG_CLOSE_LOST; else if (close_type == CLOSE_AFTER_RESEND) args.ctag = TAG_CLOSE_UNDO; else args.ctag = TAG_CLOSE; args.array_len = 3; args.array = argop; vp = RTOV4(rp); mi = VTOMI4(vp); /* putfh target fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; argop[1].argop = OP_GETATTR; argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[1].nfs_argop4_u.opgetattr.mi = mi; argop[2].argop = OP_CLOSE; close_args = &argop[2].nfs_argop4_u.opclose; seqid = nfs4_get_open_seqid(oop) + 1; close_args->seqid = seqid; close_args->open_stateid = osp->open_stateid; NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", rnode4info(rp))); t = gethrtime(); rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); if (!ep->error && nfs4_need_to_bump_seqid(&res)) { nfs4_set_open_seqid(seqid, oop, args.ctag); } needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); if (ep->error && !needrecov) { /* * if there was an error and no recovery is to be done * then then set up the file to flush its cache if * needed for the next caller. */ mutex_enter(&rp->r_statelock); PURGE_ATTRCACHE4_LOCKED(rp); rp->r_flags &= ~R4WRITEMODIFIED; mutex_exit(&rp->r_statelock); return; } if (needrecov) { bool_t abort; nfs4_bseqid_entry_t *bsep = NULL; if (close_type != CLOSE_RESEND) nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, osp, cred_otw, vp); if (!ep->error && res.status == NFS4ERR_BAD_SEQID) bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, args.ctag, close_args->seqid); NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4close_otw: initiating recovery. error %d " "res.status %d", ep->error, res.status)); /* * Drop the 'os_sync_lock' here so we don't hit * a potential recursive mutex_enter via an * 'open_stream_hold()'. */ mutex_exit(&osp->os_sync_lock); *have_sync_lockp = 0; abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, (close_type != CLOSE_RESEND && lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, OP_CLOSE, bsep); /* drop open seq sync, and let the calling function regrab it */ nfs4_end_open_seqid_sync(oop); *did_start_seqid_syncp = 0; if (bsep) kmem_free(bsep, sizeof (*bsep)); /* * For signals, the caller wants to quit, so don't say to * retry. For forced unmount, if it's a user thread, it * wants to quit. If it's a recovery thread, the retry * will happen higher-up on the call stack. Either way, * don't say to retry. */ if (abort == FALSE && ep->error != EINTR && !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && close_type != CLOSE_RESEND && close_type != CLOSE_AFTER_RESEND) *recov = 1; else *recov = 0; if (!ep->error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } if (res.status) { (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } mutex_enter(&rp->r_statev4_lock); rp->created_v4 = 0; mutex_exit(&rp->r_statev4_lock); resop = &res.array[2]; osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; osp->os_valid = 0; /* * This removes the reference obtained at OPEN; ie, when the * open stream structure was created. * * We don't have to worry about calling 'open_stream_rele' * since we our currently holding a reference to the open * stream which means the count cannot go to 0 with this * decrement. */ ASSERT(osp->os_ref_count >= 2); osp->os_ref_count--; if (!ep->error) nfs4_attr_cache(vp, &res.array[1].nfs_resop4_u.opgetattr.ga_res, t, cred_otw, TRUE, NULL); NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" " returning %d", ep->error)); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } /* ARGSUSED */ static int nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, caller_context_t *ct) { rnode4_t *rp; u_offset_t off; offset_t diff; uint_t on; uint_t n; caddr_t base; uint_t flags; int error; mntinfo4_t *mi; rp = VTOR4(vp); ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); if (IS_SHADOW(vp, rp)) vp = RTOV4(rp); if (vp->v_type != VREG) return (EISDIR); mi = VTOMI4(vp); if (curproc->p_zone != mi->mi_zone) return (EIO); if (uiop->uio_resid == 0) return (0); if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) return (EINVAL); mutex_enter(&rp->r_statelock); if (rp->r_flags & R4RECOVERRP) error = (rp->r_error ? rp->r_error : EIO); else error = 0; mutex_exit(&rp->r_statelock); if (error) return (error); /* * Bypass VM if caching has been disabled (e.g., locking) or if * using client-side direct I/O and the file is not mmap'd and * there are no cached pages. */ if ((vp->v_flag & VNOCACHE) || (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { size_t resid = 0; return (nfs4read(vp, NULL, uiop->uio_loffset, uiop->uio_resid, &resid, cr, FALSE, uiop)); } error = 0; do { off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ n = MIN(MAXBSIZE - on, uiop->uio_resid); if (error = nfs4_validate_caches(vp, cr)) break; mutex_enter(&rp->r_statelock); diff = rp->r_size - uiop->uio_loffset; mutex_exit(&rp->r_statelock); if (diff <= 0) break; if (diff < n) n = (uint_t)diff; base = segmap_getmapflt(segkmap, vp, off + on, n, 1, S_READ); error = uiomove(base + on, n, UIO_READ, uiop); if (!error) { /* * If read a whole block or read to eof, * won't need this buffer again soon. */ mutex_enter(&rp->r_statelock); if (n + on == MAXBSIZE || uiop->uio_loffset == rp->r_size) flags = SM_DONTNEED; else flags = 0; mutex_exit(&rp->r_statelock); error = segmap_release(segkmap, base, flags); } else (void) segmap_release(segkmap, base, 0); } while (!error && uiop->uio_resid > 0); return (error); } /* ARGSUSED */ static int nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, caller_context_t *ct) { rlim64_t limit = uiop->uio_llimit; rnode4_t *rp; u_offset_t off; caddr_t base; uint_t flags; int remainder; size_t n; int on; int error; int resid; u_offset_t offset; mntinfo4_t *mi; uint_t bsize; rp = VTOR4(vp); if (IS_SHADOW(vp, rp)) vp = RTOV4(rp); if (vp->v_type != VREG) return (EISDIR); mi = VTOMI4(vp); if (curproc->p_zone != mi->mi_zone) return (EIO); if (uiop->uio_resid == 0) return (0); mutex_enter(&rp->r_statelock); if (rp->r_flags & R4RECOVERRP) error = (rp->r_error ? rp->r_error : EIO); else error = 0; mutex_exit(&rp->r_statelock); if (error) return (error); if (ioflag & FAPPEND) { struct vattr va; /* * Must serialize if appending. */ if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { nfs_rw_exit(&rp->r_rwlock); if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) return (EINTR); } va.va_mask = AT_SIZE; error = nfs4getattr(vp, &va, cr); if (error) return (error); uiop->uio_loffset = va.va_size; } offset = uiop->uio_loffset + uiop->uio_resid; if (uiop->uio_loffset < (offset_t)0 || offset < 0) return (EINVAL); if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) limit = MAXOFFSET_T; /* * Check to make sure that the process will not exceed * its limit on file size. It is okay to write up to * the limit, but not beyond. Thus, the write which * reaches the limit will be short and the next write * will return an error. */ remainder = 0; if (offset > uiop->uio_llimit) { remainder = offset - uiop->uio_llimit; uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; if (uiop->uio_resid <= 0) { proc_t *p = ttoproc(curthread); uiop->uio_resid += remainder; mutex_enter(&p->p_lock); (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, p, RCA_UNSAFE_SIGINFO); mutex_exit(&p->p_lock); return (EFBIG); } } /* update the change attribute, if we have a write delegation */ mutex_enter(&rp->r_statev4_lock); if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) rp->r_deleg_change++; mutex_exit(&rp->r_statev4_lock); if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) return (EINTR); /* * Bypass VM if caching has been disabled (e.g., locking) or if * using client-side direct I/O and the file is not mmap'd and * there are no cached pages. */ if ((vp->v_flag & VNOCACHE) || (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { size_t bufsize; int count; u_offset_t org_offset; stable_how4 stab_comm; nfs4_fwrite: if (rp->r_flags & R4STALE) { resid = uiop->uio_resid; offset = uiop->uio_loffset; error = rp->r_error; goto bottom; } bufsize = MIN(uiop->uio_resid, mi->mi_stsize); base = kmem_alloc(bufsize, KM_SLEEP); do { if (ioflag & FDSYNC) stab_comm = DATA_SYNC4; else stab_comm = FILE_SYNC4; resid = uiop->uio_resid; offset = uiop->uio_loffset; count = MIN(uiop->uio_resid, bufsize); org_offset = uiop->uio_loffset; error = uiomove(base, count, UIO_WRITE, uiop); if (!error) { error = nfs4write(vp, base, org_offset, count, cr, &stab_comm); if (!error) { mutex_enter(&rp->r_statelock); if (rp->r_size < uiop->uio_loffset) rp->r_size = uiop->uio_loffset; mutex_exit(&rp->r_statelock); } } } while (!error && uiop->uio_resid > 0); kmem_free(base, bufsize); goto bottom; } bsize = vp->v_vfsp->vfs_bsize; do { off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ n = MIN(MAXBSIZE - on, uiop->uio_resid); resid = uiop->uio_resid; offset = uiop->uio_loffset; if (rp->r_flags & R4STALE) { error = rp->r_error; break; } /* * Don't create dirty pages faster than they * can be cleaned so that the system doesn't * get imbalanced. If the async queue is * maxed out, then wait for it to drain before * creating more dirty pages. Also, wait for * any threads doing pagewalks in the vop_getattr * entry points so that they don't block for * long periods. */ mutex_enter(&rp->r_statelock); while ((mi->mi_max_threads != 0 && rp->r_awcount > 2 * mi->mi_max_threads) || rp->r_gcount > 0) cv_wait(&rp->r_cv, &rp->r_statelock); mutex_exit(&rp->r_statelock); if (segmap_kpm) { int pon = uiop->uio_loffset & PAGEOFFSET; size_t pn = MIN(PAGESIZE - pon, uiop->uio_resid); int pagecreate; mutex_enter(&rp->r_statelock); pagecreate = (pon == 0) && (pn == PAGESIZE || uiop->uio_loffset + pn >= rp->r_size); mutex_exit(&rp->r_statelock); base = segmap_getmapflt(segkmap, vp, off + on, pn, !pagecreate, S_WRITE); error = writerp4(rp, base + pon, n, uiop, pagecreate); } else { base = segmap_getmapflt(segkmap, vp, off + on, n, 0, S_READ); error = writerp4(rp, base + on, n, uiop, 0); } if (!error) { if (mi->mi_flags & MI4_NOAC) flags = SM_WRITE; else if ((uiop->uio_loffset % bsize) == 0 || IS_SWAPVP(vp)) { /* * Have written a whole block. * Start an asynchronous write * and mark the buffer to * indicate that it won't be * needed again soon. */ flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; } else flags = 0; if ((ioflag & (FSYNC|FDSYNC)) || (rp->r_flags & R4OUTOFSPACE)) { flags &= ~SM_ASYNC; flags |= SM_WRITE; } error = segmap_release(segkmap, base, flags); } else { (void) segmap_release(segkmap, base, 0); /* * In the event that we got an access error while * faulting in a page for a write-only file just * force a write. */ if (error == EACCES) goto nfs4_fwrite; } } while (!error && uiop->uio_resid > 0); bottom: if (error) { uiop->uio_resid = resid + remainder; uiop->uio_loffset = offset; } else { uiop->uio_resid += remainder; mutex_enter(&rp->r_statev4_lock); if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { gethrestime(&rp->r_attr.va_mtime); rp->r_attr.va_ctime = rp->r_attr.va_mtime; } mutex_exit(&rp->r_statev4_lock); } nfs_rw_exit(&rp->r_lkserlock); return (error); } /* * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} */ static int nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, int flags, cred_t *cr) { struct buf *bp; int error; page_t *savepp; uchar_t fsdata; stable_how4 stab_comm; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); bp = pageio_setup(pp, len, vp, flags); ASSERT(bp != NULL); /* * pageio_setup should have set b_addr to 0. This * is correct since we want to do I/O on a page * boundary. bp_mapin will use this addr to calculate * an offset, and then set b_addr to the kernel virtual * address it allocated for us. */ ASSERT(bp->b_un.b_addr == 0); bp->b_edev = 0; bp->b_dev = 0; bp->b_lblkno = lbtodb(off); bp->b_file = vp; bp->b_offset = (offset_t)off; bp_mapin(bp); if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && freemem > desfree) stab_comm = UNSTABLE4; else stab_comm = FILE_SYNC4; error = nfs4_bio(bp, &stab_comm, cr, FALSE); bp_mapout(bp); pageio_done(bp); if (stab_comm == UNSTABLE4) fsdata = C_DELAYCOMMIT; else fsdata = C_NOCOMMIT; savepp = pp; do { pp->p_fsdata = fsdata; } while ((pp = pp->p_next) != savepp); return (error); } /* */ static int nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) { nfs4_open_owner_t *oop; nfs4_open_stream_t *osp; rnode4_t *rp = VTOR4(vp); mntinfo4_t *mi = VTOMI4(vp); int reopen_needed; ASSERT(curproc->p_zone == mi->mi_zone); oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); if (!oop) return (EIO); /* returns with 'os_sync_lock' held */ osp = find_open_stream(oop, rp); if (!osp) { open_owner_rele(oop); return (EIO); } if (osp->os_failed_reopen) { mutex_exit(&osp->os_sync_lock); open_stream_rele(osp, rp); open_owner_rele(oop); return (EIO); } /* * Determine whether a reopen is needed. If this * is a delegation open stream, then the os_delegation bit * should be set. */ reopen_needed = osp->os_delegation; mutex_exit(&osp->os_sync_lock); open_owner_rele(oop); if (reopen_needed) { nfs4_error_zinit(ep); nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); mutex_enter(&osp->os_sync_lock); if (ep->error || ep->stat || osp->os_failed_reopen) { mutex_exit(&osp->os_sync_lock); open_stream_rele(osp, rp); return (EIO); } mutex_exit(&osp->os_sync_lock); } open_stream_rele(osp, rp); return (0); } /* * Write to file. Writes to remote server in largest size * chunks that the server can handle. Write is synchronous. */ static int nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, stable_how4 *stab_comm) { mntinfo4_t *mi; COMPOUND4args_clnt args; COMPOUND4res_clnt res; WRITE4args *wargs; WRITE4res *wres; nfs_argop4 argop[2]; nfs_resop4 *resop; int tsize; stable_how4 stable; rnode4_t *rp; int doqueue = 1; bool_t needrecov; nfs4_recov_state_t recov_state; nfs4_stateid_types_t sid_types; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; rp = VTOR4(vp); mi = VTOMI4(vp); ASSERT(curproc->p_zone == mi->mi_zone); stable = *stab_comm; *stab_comm = FILE_SYNC4; needrecov = FALSE; recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; nfs4_init_stateid_types(&sid_types); recov_retry: args.ctag = TAG_WRITE; args.array_len = 2; args.array = argop; e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, NULL); if (e.error) return (e.error); /* 0. putfh target fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; /* 1. write */ nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); do { wargs->offset = (offset4)offset; wargs->data_val = base; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } if ((vp->v_flag & VNOCACHE) || (rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) tsize = MIN(mi->mi_stsize, count); else tsize = MIN(mi->mi_curwrite, count); wargs->data_len = (uint_t)tsize; rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); if (e.error && !needrecov) { nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); return (e.error); } /* * Do handling of OLD_STATEID outside * of the normal recovery framework. * * If write receives a BAD stateid error while using a * delegation stateid, retry using the open stateid (if it * exists). If it doesn't have an open stateid, reopen the * file first, then retry. */ if (!e.error && res.status == NFS4ERR_OLD_STATEID && sid_types.cur_sid_type != SPEC_SID) { nfs4_save_stateid(&wargs->stateid, &sid_types); nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && sid_types.cur_sid_type == DEL_SID) { nfs4_save_stateid(&wargs->stateid, &sid_types); mutex_enter(&rp->r_statev4_lock); rp->r_deleg_return_pending = TRUE; mutex_exit(&rp->r_statev4_lock); if (nfs4rdwr_check_osid(vp, &e, cr)) { nfs4_end_fop(mi, vp, NULL, OH_WRITE, &recov_state, needrecov); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return (EIO); } nfs4_end_fop(mi, vp, NULL, OH_WRITE, &recov_state, needrecov); /* hold needed for nfs4delegreturn_thread */ VN_HOLD(vp); nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| NFS4_DR_DISCARD), FALSE); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } if (needrecov) { bool_t abort; NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4write: client got error %d, res.status %d" ", so start recovery", e.error, res.status)); abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, &wargs->stateid, NULL, OP_WRITE, NULL); if (!e.error) { e.error = geterrno4(res.status); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); if (abort == FALSE) goto recov_retry; return (e.error); } if (res.status) { e.error = geterrno4(res.status); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); return (e.error); } resop = &res.array[1]; /* write res */ wres = &resop->nfs_resop4_u.opwrite; if ((int)wres->count > tsize) { (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); zcmn_err(getzoneid(), CE_WARN, "nfs4write: server wrote %u, requested was %u", (int)wres->count, tsize); nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); return (EIO); } if (wres->committed == UNSTABLE4) { *stab_comm = UNSTABLE4; if (wargs->stable == DATA_SYNC4 || wargs->stable == FILE_SYNC4) { (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); zcmn_err(getzoneid(), CE_WARN, "nfs4write: server %s did not commit " "to stable storage", rp->r_server->sv_hostname); nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); return (EIO); } } tsize = (int)wres->count; count -= tsize; base += tsize; offset += tsize; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += tsize; mutex_exit(&mi->mi_lock); } lwp_stat_update(LWP_STAT_OUBLK, 1); mutex_enter(&rp->r_statelock); if (rp->r_flags & R4HAVEVERF) { if (rp->r_writeverf != wres->writeverf) { nfs4_set_mod(vp); rp->r_writeverf = wres->writeverf; } } else { rp->r_writeverf = wres->writeverf; rp->r_flags |= R4HAVEVERF; } PURGE_ATTRCACHE4_LOCKED(rp); rp->r_flags |= R4WRITEMODIFIED; gethrestime(&rp->r_attr.va_mtime); rp->r_attr.va_ctime = rp->r_attr.va_mtime; mutex_exit(&rp->r_statelock); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } while (count); nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); return (e.error); } /* * Read from a file. Reads data in largest chunks our interface can handle. */ static int nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) { mntinfo4_t *mi; COMPOUND4args_clnt args; COMPOUND4res_clnt res; READ4args *rargs; nfs_argop4 argop[2]; int tsize; int doqueue; rnode4_t *rp; int data_len; bool_t is_eof; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; nfs4_stateid_types_t sid_types; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; rp = VTOR4(vp); mi = VTOMI4(vp); doqueue = 1; ASSERT(curproc->p_zone == mi->mi_zone); args.ctag = async ? TAG_READAHEAD : TAG_READ; args.array_len = 2; args.array = argop; nfs4_init_stateid_types(&sid_types); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; recov_retry: e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, &recov_state, NULL); if (e.error) return (e.error); /* putfh target fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; /* read */ argop[1].argop = OP_READ; rargs = &argop[1].nfs_argop4_u.opread; rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, OP_READ, &sid_types, async); do { if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, "nfs4read: %s call, rp %s", needrecov ? "recov" : "first", rnode4info(rp))); if ((vp->v_flag & VNOCACHE) || (rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) tsize = MIN(mi->mi_tsize, count); else tsize = MIN(mi->mi_curread, count); rargs->offset = (offset4)offset; rargs->count = (count4)tsize; rargs->res_data_val_alt = NULL; rargs->res_mblk = NULL; rargs->res_uiop = NULL; rargs->res_maxsize = 0; if (uiop) rargs->res_uiop = uiop; else rargs->res_data_val_alt = base; rargs->res_maxsize = tsize; rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); #ifdef DEBUG if (nfs4read_error_inject) { res.status = nfs4read_error_inject; nfs4read_error_inject = 0; } #endif if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); if (e.error != 0 && !needrecov) { nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); return (e.error); } /* * Do proper retry for OLD and BAD stateid errors outside * of the normal recovery framework. There are two differences * between async and sync reads. The first is that we allow * retry on BAD_STATEID for async reads, but not sync reads. * The second is that we mark the file dead for a failed * attempt with a special stateid for sync reads, but just * return EIO for async reads. * * If a sync read receives a BAD stateid error while using a * delegation stateid, retry using the open stateid (if it * exists). If it doesn't have an open stateid, reopen the * file first, then retry. */ if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || res.status == NFS4ERR_BAD_STATEID) && async) { nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); if (sid_types.cur_sid_type == SPEC_SID) { (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return (EIO); } nfs4_save_stateid(&rargs->stateid, &sid_types); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && !async && sid_types.cur_sid_type != SPEC_SID) { nfs4_save_stateid(&rargs->stateid, &sid_types); nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && sid_types.cur_sid_type == DEL_SID) { nfs4_save_stateid(&rargs->stateid, &sid_types); mutex_enter(&rp->r_statev4_lock); rp->r_deleg_return_pending = TRUE; mutex_exit(&rp->r_statev4_lock); if (nfs4rdwr_check_osid(vp, &e, cr)) { nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return (EIO); } nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); /* hold needed for nfs4delegreturn_thread */ VN_HOLD(vp); nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| NFS4_DR_DISCARD), FALSE); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } if (needrecov) { bool_t abort; NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4read: initiating recovery\n")); abort = nfs4_start_recovery(&e, mi, vp, NULL, &rargs->stateid, NULL, OP_READ, NULL); nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); /* * Do not retry if we got OLD_STATEID using a special * stateid. This avoids looping with a broken server. */ if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && sid_types.cur_sid_type == SPEC_SID) abort = TRUE; if (abort == FALSE) { /* * Need to retry all possible stateids in * case the recovery error wasn't stateid * related or the stateids have become * stale (server reboot). */ nfs4_init_stateid_types(&sid_types); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } if (!e.error) { e.error = geterrno4(res.status); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } return (e.error); } if (res.status) { e.error = geterrno4(res.status); nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return (e.error); } data_len = res.array[1].nfs_resop4_u.opread.data_len; count -= data_len; if (base) base += data_len; offset += data_len; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; mutex_exit(&mi->mi_lock); } lwp_stat_update(LWP_STAT_INBLK, 1); is_eof = res.array[1].nfs_resop4_u.opread.eof; (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } while (count && !is_eof); *residp = count; nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); return (e.error); } /* ARGSUSED */ static int nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); switch (cmd) { case _FIODIRECTIO: return (nfs4_directio(vp, (int)arg, cr)); default: return (ENOTTY); } } static int nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) { int error; rnode4_t *rp = VTOR4(vp); if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); /* * If it has been specified that the return value will * just be used as a hint, and we are only being asked * for size, fsid or rdevid, then return the client's * notion of these values without checking to make sure * that the attribute cache is up to date. * The whole point is to avoid an over the wire GETATTR * call. */ if (flags & ATTR_HINT) { if (vap->va_mask == (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { mutex_enter(&rp->r_statelock); if (vap->va_mask | AT_SIZE) vap->va_size = rp->r_size; if (vap->va_mask | AT_FSID) vap->va_fsid = rp->r_attr.va_fsid; if (vap->va_mask | AT_RDEV) vap->va_rdev = rp->r_attr.va_rdev; mutex_exit(&rp->r_statelock); return (0); } } /* * Only need to flush pages if asking for the mtime * and if there any dirty pages or any outstanding * asynchronous (write) requests for this file. */ if (vap->va_mask & AT_MTIME) { rp = VTOR4(vp); if (nfs4_has_pages(vp)) { mutex_enter(&rp->r_statev4_lock); if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { mutex_exit(&rp->r_statev4_lock); if (rp->r_flags & R4DIRTY || rp->r_awcount > 0) { mutex_enter(&rp->r_statelock); rp->r_gcount++; mutex_exit(&rp->r_statelock); error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); mutex_enter(&rp->r_statelock); if (error && (error == ENOSPC || error == EDQUOT)) { if (!rp->r_error) rp->r_error = error; } if (--rp->r_gcount == 0) cv_broadcast(&rp->r_cv); mutex_exit(&rp->r_statelock); } } else { mutex_exit(&rp->r_statev4_lock); } } } return (nfs4getattr(vp, vap, cr)); } int nfs4_compare_modes(mode_t from_server, mode_t on_client) { /* * If these are the only two bits cleared * on the server then return 0 (OK) else * return 1 (BAD). */ on_client &= ~(S_ISUID|S_ISGID); if (on_client == from_server) return (0); else return (1); } /*ARGSUSED4*/ static int nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, caller_context_t *ct) { if (vap->va_mask & AT_NOSET) return (EINVAL); if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); /* * Don't call secpolicy_vnode_setattr, the client cannot * use its cached attributes to make security decisions * as the server may be faking mode bits or mapping uid/gid. * Always just let the server to the checking. * If we provide the ability to remove basic priviledges * to setattr (e.g. basic without chmod) then we will * need to add a check here before calling the server. */ return (nfs4setattr(vp, vap, flags, cr, NULL)); } /* * To replace the "guarded" version 3 setattr, we use two types of compound * setattr requests: * 1. The "normal" setattr, used when the size of the file isn't being * changed - { Putfh ; Setattr; Getattr }/ * 2. If the size is changed, precede Setattr with: Getattr; Verify * with only ctime as the argument. If the server ctime differs from * what is cached on the client, the verify will fail, but we would * already have the ctime from the preceding getattr, so just set it * and retry. Thus the compound here is - { Putfh ; Getattr; Verify; * Setattr; Getattr }. * * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in * this setattr and NULL if they are not. */ static int nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, vsecattr_t *vsap) { COMPOUND4args_clnt args; COMPOUND4res_clnt res, *resp = NULL; nfs4_ga_res_t *garp = NULL; int numops = 3; /* { Putfh; Setattr; Getattr } */ nfs_argop4 argop[5]; int verify_argop = -1; int setattr_argop = 1; nfs_resop4 *resop; vattr_t va; rnode4_t *rp; int doqueue = 1; uint_t mask = vap->va_mask; mode_t omode; vsecattr_t *vsp; timestruc_t ctime; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; nfs4_stateid_types_t sid_types; stateid4 stateid; hrtime_t t; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; servinfo4_t *svp; bitmap4 supp_attrs; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); rp = VTOR4(vp); nfs4_init_stateid_types(&sid_types); /* * Only need to flush pages if there are any pages and * if the file is marked as dirty in some fashion. The * file must be flushed so that we can accurately * determine the size of the file and the cached data * after the SETATTR returns. A file is considered to * be dirty if it is either marked with R4DIRTY, has * outstanding i/o's active, or is mmap'd. In this * last case, we can't tell whether there are dirty * pages, so we flush just to be sure. */ if (nfs4_has_pages(vp) && ((rp->r_flags & R4DIRTY) || rp->r_count > 0 || rp->r_mapcnt > 0)) { ASSERT(vp->v_type != VCHR); e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr); if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = e.error; mutex_exit(&rp->r_statelock); } } if (mask & AT_SIZE) { /* * Verification setattr compound for non-deleg AT_SIZE: * { Putfh; Getattr; Verify; Setattr; Getattr } * Set ctime local here (outside the do_again label) * so that subsequent retries (after failed VERIFY) * will use ctime from GETATTR results (from failed * verify compound) as VERIFY arg. * If file has delegation, then VERIFY(time_metadata) * is of little added value, so don't bother. */ mutex_enter(&rp->r_statev4_lock); if (rp->r_deleg_type == OPEN_DELEGATE_NONE || rp->r_deleg_return_pending) { numops = 5; ctime = rp->r_attr.va_ctime; } mutex_exit(&rp->r_statev4_lock); } recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; args.ctag = TAG_SETATTR; do_again: recov_retry: setattr_argop = numops - 2; args.array = argop; args.array_len = numops; e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); if (e.error) return (e.error); /* putfh target fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; if (numops == 5) { /* * We only care about the ctime, but need to get mtime * and size for proper cache update. */ /* getattr */ argop[1].argop = OP_GETATTR; argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); /* verify - set later in loop */ verify_argop = 2; } /* setattr */ svp = rp->r_server; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); supp_attrs = svp->sv_supp_attrs; nfs_rw_exit(&svp->sv_lock); nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, supp_attrs, &e.error, &sid_types); stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; if (e.error) { /* req time field(s) overflow - return immediately */ nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. opsetattr.obj_attributes); return (e.error); } omode = rp->r_attr.va_mode; /* getattr */ argop[numops-1].argop = OP_GETATTR; argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; /* * If we are setting the ACL (indicated only by vsap != NULL), request * the ACL in this getattr. The ACL returned from this getattr will be * used in updating the ACL cache. */ if (vsap != NULL) argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK; argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); /* * setattr iterates if the object size is set and the cached ctime * does not match the file ctime. In that case, verify the ctime first. */ do { if (verify_argop != -1) { /* * Verify that the ctime match before doing setattr. */ va.va_mask = AT_CTIME; va.va_ctime = ctime; svp = rp->r_server; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); supp_attrs = svp->sv_supp_attrs; nfs_rw_exit(&svp->sv_lock); e.error = nfs4args_verify(&argop[verify_argop], &va, OP_VERIFY, supp_attrs); if (e.error) { /* req time field(s) overflow - return */ nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); break; } } doqueue = 1; t = gethrtime(); rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); /* * Purge the access cache and ACL cache if changing either the * owner of the file, the group owner, or the mode. These may * change the access permissions of the file, so purge old * information and start over again. */ if (mask & (AT_UID | AT_GID | AT_MODE)) { (void) nfs4_access_purge_rp(rp); if (rp->r_secattr != NULL) { mutex_enter(&rp->r_statelock); vsp = rp->r_secattr; rp->r_secattr = NULL; mutex_exit(&rp->r_statelock); if (vsp != NULL) nfs4_acl_free_cache(vsp); } } /* * If res.array_len == numops, then everything succeeded, * except for possibly the final getattr. If only the * last getattr failed, give up, and don't try recovery. */ if (res.array_len == numops) { nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); if (! e.error) resp = &res; break; } /* * if either rpc call failed or completely succeeded - done */ needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); if (e.error) { PURGE_ATTRCACHE4(vp); if (!needrecov) { nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); break; } } /* * Do proper retry for OLD_STATEID outside of the normal * recovery framework. */ if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && sid_types.cur_sid_type != SPEC_SID && sid_types.cur_sid_type != NO_SID) { nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); nfs4_save_stateid(&stateid, &sid_types); nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. opsetattr.obj_attributes); if (verify_argop != -1) { nfs4args_verify_free(&argop[verify_argop]); verify_argop = -1; } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } if (needrecov) { bool_t abort; abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, NULL, OP_SETATTR, NULL); nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); /* * Do not retry if we failed with OLD_STATEID using * a special stateid. This is done to avoid looping * with a broken server. */ if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && (sid_types.cur_sid_type == SPEC_SID || sid_types.cur_sid_type == NO_SID)) abort = TRUE; if (!e.error) { if (res.status == NFS4ERR_BADOWNER) nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); e.error = geterrno4(res.status); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. opsetattr.obj_attributes); if (verify_argop != -1) { nfs4args_verify_free(&argop[verify_argop]); verify_argop = -1; } if (abort == FALSE) { /* * Need to retry all possible stateids in * case the recovery error wasn't stateid * related or the stateids have become * stale (server reboot). */ nfs4_init_stateid_types(&sid_types); goto recov_retry; } return (e.error); } /* * Need to call nfs4_end_op before nfs4getattr to * avoid potential nfs4_start_op deadlock. See RFE * 4777612. Calls to nfs4_invalidate_pages() and * nfs4_purge_stale_fh() might also generate over the * wire calls which my cause nfs4_start_op() deadlock. */ nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); /* * Check to update lease. */ resp = &res; if (res.status == NFS4_OK) { break; } /* * Check if verify failed to see if try again */ if ((verify_argop == -1) || (res.array_len != 3)) { /* * can't continue... */ if (res.status == NFS4ERR_BADOWNER) nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); e.error = geterrno4(res.status); } else { /* * When the verify request fails, the client ctime is * not in sync with the server. This is the same as * the version 3 "not synchronized" error, and we * handle it in a similar manner (XXX do we need to???). * Use the ctime returned in the first getattr for * the input to the next verify. * If we couldn't get the attributes, then we give up * because we can't complete the operation as required. */ garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; } if (e.error) { PURGE_ATTRCACHE4(vp); nfs4_purge_stale_fh(e.error, vp, cr); } else { /* * retry with a new verify value */ ctime = garp->n4g_va.va_ctime; (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); resp = NULL; } if (!e.error) { nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. opsetattr.obj_attributes); if (verify_argop != -1) { nfs4args_verify_free(&argop[verify_argop]); verify_argop = -1; } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto do_again; } } while (!e.error); if (e.error) { /* * If we are here, rfs4call has an irrecoverable error - return */ nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. opsetattr.obj_attributes); if (verify_argop != -1) { nfs4args_verify_free(&argop[verify_argop]); verify_argop = -1; } if (resp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); return (e.error); } /* * If changing the size of the file, invalidate * any local cached data which is no longer part * of the file. We also possibly invalidate the * last page in the file. We could use * pvn_vpzero(), but this would mark the page as * modified and require it to be written back to * the server for no particularly good reason. * This way, if we access it, then we bring it * back in. A read should be cheaper than a * write. */ if (mask & AT_SIZE) { nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); } /* either no error or one of the postop getattr failed */ /* * XXX Perform a simplified version of wcc checking. Instead of * have another getattr to get pre-op, just purge cache if * any of the ops prior to and including the getattr failed. * If the getattr succeeded then update the attrcache accordingly. */ garp = NULL; if (res.status == NFS4_OK) { /* * Last getattr */ resop = &res.array[numops - 1]; garp = &resop->nfs_resop4_u.opgetattr.ga_res; } /* * In certain cases, nfs4_update_attrcache() will purge the attrcache, * rather than filling it. See the function itself for details. */ e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); if (garp != NULL) { if (garp->n4g_resbmap & FATTR4_ACL_MASK) { nfs4_acl_fill_cache(rp, &garp->n4g_vsa); vs_ace4_destroy(&garp->n4g_vsa); } else { if (vsap != NULL) { /* * The ACL was supposed to be set and to be * returned in the last getattr of this * compound, but for some reason the getattr * result doesn't contain the ACL. In this * case, purge the ACL cache. */ if (rp->r_secattr != NULL) { mutex_enter(&rp->r_statelock); vsp = rp->r_secattr; rp->r_secattr = NULL; mutex_exit(&rp->r_statelock); if (vsp != NULL) nfs4_acl_free_cache(vsp); } } } } if (res.status == NFS4_OK && (mask & AT_SIZE)) { /* * Set the size, rather than relying on getting it updated * via a GETATTR. With delegations the client tries to * suppress GETATTR calls. */ mutex_enter(&rp->r_statelock); rp->r_size = vap->va_size; mutex_exit(&rp->r_statelock); } /* * Can free up request args and res */ nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. opsetattr.obj_attributes); if (verify_argop != -1) { nfs4args_verify_free(&argop[verify_argop]); verify_argop = -1; } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); /* * Some servers will change the mode to clear the setuid * and setgid bits when changing the uid or gid. The * client needs to compensate appropriately. */ if (mask & (AT_UID | AT_GID)) { int terror, do_setattr; do_setattr = 0; va.va_mask = AT_MODE; terror = nfs4getattr(vp, &va, cr); if (!terror && (((mask & AT_MODE) && va.va_mode != vap->va_mode) || (!(mask & AT_MODE) && va.va_mode != omode))) { va.va_mask = AT_MODE; if (mask & AT_MODE) { /* * We asked the mode to be changed and what * we just got from the server in getattr is * not what we wanted it to be, so set it now. */ va.va_mode = vap->va_mode; do_setattr = 1; } else { /* * We did not ask the mode to be changed, * Check to see that the server just cleared * I_SUID and I_GUID from it. If not then * set mode to omode with UID/GID cleared. */ if (nfs4_compare_modes(va.va_mode, omode)) { omode &= ~(S_ISUID|S_ISGID); va.va_mode = omode; do_setattr = 1; } } if (do_setattr) (void) nfs4setattr(vp, &va, 0, cr, NULL); } } return (e.error); } /* ARGSUSED */ static int nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; int doqueue; uint32_t acc, resacc, argacc; rnode4_t *rp; cred_t *cred, *ncr, *ncrfree = NULL; nfs4_access_type_t cacc; int num_ops; nfs_argop4 argop[3]; nfs_resop4 *resop; bool_t needrecov = FALSE, do_getattr; nfs4_recov_state_t recov_state; int rpc_error; hrtime_t t; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; mntinfo4_t *mi = VTOMI4(vp); if (curproc->p_zone != mi->mi_zone) return (EIO); acc = 0; if (mode & VREAD) acc |= ACCESS4_READ; if (mode & VWRITE) { if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) return (EROFS); if (vp->v_type == VDIR) acc |= ACCESS4_DELETE; acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; } if (mode & VEXEC) { if (vp->v_type == VDIR) acc |= ACCESS4_LOOKUP; else acc |= ACCESS4_EXECUTE; } if (VTOR4(vp)->r_acache != NULL) { e.error = nfs4_validate_caches(vp, cr); if (e.error) return (e.error); } rp = VTOR4(vp); if (vp->v_type == VDIR) { argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; } else { argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_EXECUTE; } recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; cred = cr; /* * ncr and ncrfree both initially * point to the memory area returned * by crnetadjust(); * ncrfree not NULL when exiting means * that we need to release it */ ncr = crnetadjust(cred); ncrfree = ncr; tryagain: cacc = nfs4_access_check(rp, acc, cred); if (cacc == NFS4_ACCESS_ALLOWED) { if (ncrfree != NULL) crfree(ncrfree); return (0); } if (cacc == NFS4_ACCESS_DENIED) { /* * If the cred can be adjusted, try again * with the new cred. */ if (ncr != NULL) { cred = ncr; ncr = NULL; goto tryagain; } if (ncrfree != NULL) crfree(ncrfree); return (EACCES); } recov_retry: /* * Don't take with r_statev4_lock here. r_deleg_type could * change as soon as lock is released. Since it is an int, * there is no atomicity issue. */ do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); num_ops = do_getattr ? 3 : 2; args.ctag = TAG_ACCESS; args.array_len = num_ops; args.array = argop; if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, &recov_state, NULL)) { if (ncrfree != NULL) crfree(ncrfree); return (e.error); } /* putfh target fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; /* access */ argop[1].argop = OP_ACCESS; argop[1].nfs_argop4_u.opaccess.access = argacc; /* getattr */ if (do_getattr) { argop[2].argop = OP_GETATTR; argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[2].nfs_argop4_u.opgetattr.mi = mi; } NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", rnode4info(VTOR4(vp)))); doqueue = 1; t = gethrtime(); rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); rpc_error = e.error; needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); if (needrecov) { NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_access: initiating recovery\n")); if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, NULL, OP_ACCESS, NULL) == FALSE) { nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, &recov_state, needrecov); if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } } nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); if (e.error) goto out; if (res.status) { e.error = geterrno4(res.status); /* * This might generate over the wire calls throught * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() * here to avoid a deadlock. */ nfs4_purge_stale_fh(e.error, vp, cr); goto out; } resop = &res.array[1]; /* access res */ resacc = resop->nfs_resop4_u.opaccess.access; if (do_getattr) { resop++; /* getattr res */ nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, t, cr, FALSE, NULL); } if (!e.error) { nfs4_access_cache(rp, argacc, resacc, cred); /* * we just cached results with cred; if cred is the * adjusted credentials from crnetadjust, we do not want * to release them before exiting: hence setting ncrfree * to NULL */ if (cred != cr) ncrfree = NULL; /* XXX check the supported bits too? */ if ((acc & resacc) != acc) { /* * The following code implements the semantic * that a setuid root program has *at least* the * permissions of the user that is running the * program. See rfs3call() for more portions * of the implementation of this functionality. */ /* XXX-LP */ if (ncr != NULL) { (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); cred = ncr; ncr = NULL; goto tryagain; } e.error = EACCES; } } out: if (!rpc_error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); if (ncrfree != NULL) crfree(ncrfree); return (e.error); } static int nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; int doqueue; rnode4_t *rp; nfs_argop4 argop[3]; nfs_resop4 *resop; READLINK4res *lr_res; nfs4_ga_res_t *garp; uint_t len; char *linkdata; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; hrtime_t t; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); /* * Can't readlink anything other than a symbolic link. */ if (vp->v_type != VLNK) return (EINVAL); rp = VTOR4(vp); if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { e.error = nfs4_validate_caches(vp, cr); if (e.error) return (e.error); mutex_enter(&rp->r_statelock); if (rp->r_symlink.contents != NULL) { e.error = uiomove(rp->r_symlink.contents, rp->r_symlink.len, UIO_READ, uiop); mutex_exit(&rp->r_statelock); return (e.error); } mutex_exit(&rp->r_statelock); } recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; recov_retry: args.array_len = 3; args.array = argop; args.ctag = TAG_READLINK; e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); if (e.error) { return (e.error); } /* 0. putfh symlink fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; /* 1. readlink */ argop[1].argop = OP_READLINK; /* 2. getattr */ argop[2].argop = OP_GETATTR; argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); doqueue = 1; NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", rnode4info(VTOR4(vp)))); t = gethrtime(); rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); if (needrecov) { NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_readlink: initiating recovery\n")); if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, NULL, OP_READLINK, NULL) == FALSE) { if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); goto recov_retry; } } nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); if (e.error) return (e.error); /* * There is an path in the code below which calls * nfs4_purge_stale_fh(), which may generate otw calls through * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() * here to avoid nfs4_start_op() deadlock. */ if (res.status && (res.array_len < args.array_len)) { /* * either Putfh or Link failed */ e.error = geterrno4(res.status); nfs4_purge_stale_fh(e.error, vp, cr); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return (e.error); } resop = &res.array[1]; /* readlink res */ lr_res = &resop->nfs_resop4_u.opreadlink; /* * treat symlink names as data */ linkdata = utf8_to_str(&lr_res->link, &len, NULL); if (linkdata != NULL) { int uio_len = len - 1; /* len includes null byte, which we won't uiomove */ e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { mutex_enter(&rp->r_statelock); if (rp->r_symlink.contents == NULL) { rp->r_symlink.contents = linkdata; rp->r_symlink.len = uio_len; rp->r_symlink.size = len; mutex_exit(&rp->r_statelock); } else { mutex_exit(&rp->r_statelock); kmem_free(linkdata, len); } } else { kmem_free(linkdata, len); } } if (res.status == NFS4_OK) { resop++; /* getattr res */ garp = &resop->nfs_resop4_u.opgetattr.ga_res; } e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); /* * The over the wire error for attempting to readlink something * other than a symbolic link is ENXIO. However, we need to * return EINVAL instead of ENXIO, so we map it here. */ return (e.error == ENXIO ? EINVAL : e.error); } /* * Flush local dirty pages to stable storage on the server. * * If FNODSYNC is specified, then there is nothing to do because * metadata changes are not cached on the client before being * sent to the server. */ static int nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr) { int error; if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) return (0); if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); if (!error) error = VTOR4(vp)->r_error; return (error); } /* * Weirdness: if the file was removed or the target of a rename * operation while it was open, it got renamed instead. Here we * remove the renamed file. */ static void nfs4_inactive(vnode_t *vp, cred_t *cr) { rnode4_t *rp; ASSERT(vp != DNLC_NO_VNODE); rp = VTOR4(vp); if (IS_SHADOW(vp, rp)) { sv_inactive(vp); return; } /* * If this is coming from the wrong zone, we let someone in the right * zone take care of it asynchronously. We can get here due to * VN_RELE() being called from pageout() or fsflush(). This call may * potentially turn into an expensive no-op if, for instance, v_count * gets incremented in the meantime, but it's still correct. */ if (curproc->p_zone != VTOMI4(vp)->mi_zone) { nfs4_async_inactive(vp, cr); return; } /* * Some of the cleanup steps might require over-the-wire * operations. Since VOP_INACTIVE can get called as a result of * other over-the-wire operations (e.g., an attribute cache update * can lead to a DNLC purge), doing those steps now would lead to a * nested call to the recovery framework, which can deadlock. So * do any over-the-wire cleanups asynchronously, in a separate * thread. */ mutex_enter(&rp->r_os_lock); mutex_enter(&rp->r_statelock); mutex_enter(&rp->r_statev4_lock); if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { mutex_exit(&rp->r_statev4_lock); mutex_exit(&rp->r_statelock); mutex_exit(&rp->r_os_lock); nfs4_async_inactive(vp, cr); return; } if (rp->r_deleg_type == OPEN_DELEGATE_READ || rp->r_deleg_type == OPEN_DELEGATE_WRITE) { mutex_exit(&rp->r_statev4_lock); mutex_exit(&rp->r_statelock); mutex_exit(&rp->r_os_lock); nfs4_async_inactive(vp, cr); return; } if (rp->r_unldvp != NULL) { mutex_exit(&rp->r_statev4_lock); mutex_exit(&rp->r_statelock); mutex_exit(&rp->r_os_lock); nfs4_async_inactive(vp, cr); return; } mutex_exit(&rp->r_statev4_lock); mutex_exit(&rp->r_statelock); mutex_exit(&rp->r_os_lock); rp4_addfree(rp, cr); } /* * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up * various bits of state. The caller must not refer to vp after this call. */ void nfs4_inactive_otw(vnode_t *vp, cred_t *cr) { rnode4_t *rp = VTOR4(vp); nfs4_recov_state_t recov_state; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; vnode_t *unldvp; char *unlname; cred_t *unlcred; COMPOUND4args_clnt args; COMPOUND4res_clnt res, *resp; nfs_argop4 argop[2]; int doqueue; #ifdef DEBUG char *name; #endif ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); ASSERT(!IS_SHADOW(vp, rp)); #ifdef DEBUG name = fn_name(VTOSV(vp)->sv_name); NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " "release vnode %s", name)); kmem_free(name, MAXNAMELEN); #endif if (vp->v_type == VREG) { bool_t recov_failed = FALSE; e.error = nfs4close_all(vp, cr); if (e.error) { /* Check to see if recovery failed */ mutex_enter(&(VTOMI4(vp)->mi_lock)); if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) recov_failed = TRUE; mutex_exit(&(VTOMI4(vp)->mi_lock)); if (!recov_failed) { mutex_enter(&rp->r_statelock); if (rp->r_flags & R4RECOVERR) recov_failed = TRUE; mutex_exit(&rp->r_statelock); } if (recov_failed) { NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_inactive_otw: " "close failed (recovery failure)")); } } } redo: if (rp->r_unldvp == NULL) { rp4_addfree(rp, cr); return; } /* * Save the vnode pointer for the directory where the * unlinked-open file got renamed, then set it to NULL * to prevent another thread from getting here before * we're done with the remove. While we have the * statelock, make local copies of the pertinent rnode * fields. If we weren't to do this in an atomic way, the * the unl* fields could become inconsistent with respect * to each other due to a race condition between this * code and nfs_remove(). See bug report 1034328. */ mutex_enter(&rp->r_statelock); if (rp->r_unldvp == NULL) { mutex_exit(&rp->r_statelock); rp4_addfree(rp, cr); return; } unldvp = rp->r_unldvp; rp->r_unldvp = NULL; unlname = rp->r_unlname; rp->r_unlname = NULL; unlcred = rp->r_unlcred; rp->r_unlcred = NULL; mutex_exit(&rp->r_statelock); /* * If there are any dirty pages left, then flush * them. This is unfortunate because they just * may get thrown away during the remove operation, * but we have to do this for correctness. */ if (nfs4_has_pages(vp) && ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { ASSERT(vp->v_type != VCHR); e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); if (e.error) { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = e.error; mutex_exit(&rp->r_statelock); } } recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; recov_retry_remove: /* * Do the remove operation on the renamed file */ args.ctag = TAG_INACTIVE; /* * Remove ops: putfh dir; remove */ args.array_len = 2; args.array = argop; e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); if (e.error) { kmem_free(unlname, MAXNAMELEN); crfree(unlcred); VN_RELE(unldvp); /* * Try again; this time around r_unldvp will be NULL, so we'll * just call rp4_addfree() and return. */ goto redo; } /* putfh directory */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; /* remove */ argop[1].argop = OP_CREMOVE; argop[1].nfs_argop4_u.opcremove.ctarget = unlname; doqueue = 1; resp = &res; #if 0 /* notyet */ /* * Can't do this yet. We may be being called from * dnlc_purge_XXX while that routine is holding a * mutex lock to the nc_rele list. The calls to * nfs3_cache_wcc_data may result in calls to * dnlc_purge_XXX. This will result in a deadlock. */ rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); if (e.error) { PURGE_ATTRCACHE4(unldvp); resp = NULL; } else if (res.status) { e.error = geterrno4(res.status); PURGE_ATTRCACHE4(unldvp); /* * This code is inactive right now * but if made active there should * be a nfs4_end_op() call before * nfs4_purge_stale_fh to avoid start_op() * deadlock. See BugId: 4948726 */ nfs4_purge_stale_fh(error, unldvp, cr); } else { nfs_resop4 *resop; REMOVE4res *rm_res; resop = &res.array[1]; rm_res = &resop->nfs_resop4_u.opremove; /* * Update directory cache attribute, * readdir and dnlc caches. */ nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); } #else rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); PURGE_ATTRCACHE4(unldvp); #endif if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, TRUE); goto recov_retry_remove; } } nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); /* * Release stuff held for the remove */ VN_RELE(unldvp); if (!e.error && resp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); kmem_free(unlname, MAXNAMELEN); crfree(unlcred); goto redo; } /* * Remote file system operations having to do with directory manipulation. */ /* ARGSUSED3 */ static int nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, int flags, vnode_t *rdir, cred_t *cr) { int error; vnode_t *vp, *avp = NULL; rnode4_t *drp; *vpp = NULL; if (curproc->p_zone != VTOMI4(dvp)->mi_zone) return (EPERM); /* * if LOOKUP_XATTR, must replace dvp (object) with * object's attrdir before continuing with lookup */ if (flags & LOOKUP_XATTR) { error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); if (error) return (error); dvp = avp; /* * If lookup is for "", just return dvp now. The attrdir * has already been activated (from nfs4lookup_xattr), and * the caller will RELE the original dvp -- not * the attrdir. So, set vpp and return. * Currently, when the LOOKUP_XATTR flag is * passed to VOP_LOOKUP, the name is always empty, and * shortcircuiting here avoids 3 unneeded lock/unlock * pairs. * * If a non-empty name was provided, then it is the * attribute name, and it will be looked up below. */ if (*nm == '\0') { *vpp = dvp; return (0); } /* * The vfs layer never sends a name when asking for the * attrdir, so we should never get here (unless of course * name is passed at some time in future -- at which time * we'll blow up here). */ ASSERT(0); } drp = VTOR4(dvp); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) return (EINTR); error = nfs4lookup(dvp, nm, vpp, cr, 0); nfs_rw_exit(&drp->r_rwlock); /* * If vnode is a device, create special vnode. */ if (!error && ISVDEV((*vpp)->v_type)) { vp = *vpp; *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); VN_RELE(vp); } return (error); } /* ARGSUSED */ static int nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) { int error; rnode4_t *drp; int cflag = ((flags & CREATE_XATTR_DIR) != 0); mntinfo4_t *mi; mi = VTOMI4(dvp); if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR)) return (EINVAL); drp = VTOR4(dvp); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) return (EINTR); mutex_enter(&drp->r_statelock); /* * If the server doesn't support xattrs just return EINVAL */ if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { mutex_exit(&drp->r_statelock); nfs_rw_exit(&drp->r_rwlock); return (EINVAL); } /* * If there is a cached xattr directory entry, * use it as long as the attributes are valid. If the * attributes are not valid, take the simple approach and * free the cached value and re-fetch a new value. * * We don't negative entry cache for now, if we did we * would need to check if the file has changed on every * lookup. But xattrs don't exist very often and failing * an openattr is not much more expensive than and NVERIFY or GETATTR * so do an openattr over the wire for now. */ if (drp->r_xattr_dir != NULL) { if (ATTRCACHE4_VALID(dvp)) { VN_HOLD(drp->r_xattr_dir); *vpp = drp->r_xattr_dir; mutex_exit(&drp->r_statelock); nfs_rw_exit(&drp->r_rwlock); return (0); } VN_RELE(drp->r_xattr_dir); drp->r_xattr_dir = NULL; } mutex_exit(&drp->r_statelock); error = nfs4openattr(dvp, vpp, cflag, cr); nfs_rw_exit(&drp->r_rwlock); return (error); } static int nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) { int error; rnode4_t *drp; ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); /* * If lookup is for "", just return dvp. Don't need * to send it over the wire, look it up in the dnlc, * or perform any access checks. */ if (*nm == '\0') { VN_HOLD(dvp); *vpp = dvp; return (0); } /* * Can't do lookups in non-directories. */ if (dvp->v_type != VDIR) return (ENOTDIR); /* * If lookup is for ".", just return dvp. Don't need * to send it over the wire or look it up in the dnlc, * just need to check access. */ if (nm[0] == '.' && nm[1] == '\0') { error = nfs4_access(dvp, VEXEC, 0, cr); if (error) return (error); VN_HOLD(dvp); *vpp = dvp; return (0); } drp = VTOR4(dvp); if (!(drp->r_flags & R4LOOKUP)) { mutex_enter(&drp->r_statelock); drp->r_flags |= R4LOOKUP; mutex_exit(&drp->r_statelock); } *vpp = NULL; /* * Lookup this name in the DNLC. If there is no entry * lookup over the wire. */ if (!skipdnlc) *vpp = dnlc_lookup(dvp, nm); if (*vpp == NULL) { /* * We need to go over the wire to lookup the name. */ return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); } /* * We hit on the dnlc */ if (*vpp != DNLC_NO_VNODE || (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { /* * But our attrs may not be valid. */ if (ATTRCACHE4_VALID(dvp)) { error = nfs4_waitfor_purge_complete(dvp); if (error) { VN_RELE(*vpp); *vpp = NULL; return (error); } /* * If after the purge completes, check to make sure * our attrs are still valid. */ if (ATTRCACHE4_VALID(dvp)) { /* * If we waited for a purge we may have * lost our vnode so look it up again. */ VN_RELE(*vpp); *vpp = dnlc_lookup(dvp, nm); if (*vpp == NULL) return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); /* * The access cache should almost always hit */ error = nfs4_access(dvp, VEXEC, 0, cr); if (error) { VN_RELE(*vpp); *vpp = NULL; return (error); } if (*vpp == DNLC_NO_VNODE) { VN_RELE(*vpp); *vpp = NULL; return (ENOENT); } return (0); } } } ASSERT(*vpp != NULL); /* * We may have gotten here we have one of the following cases: * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we * need to validate them. * 2) vpp == DNLC_NO_VNODE, a negative entry that we always * must validate. * * Go to the server and check if the directory has changed, if * it hasn't we are done and can use the dnlc entry. */ return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); } /* * Go to the server and check if the directory has changed, if * it hasn't we are done and can use the dnlc entry. If it * has changed we get a new copy of its attributes and check * the access for VEXEC, then relookup the filename and * get its filehandle and attributes. * * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR * if the NVERIFY failed we must * purge the caches * cache new attributes (will set r_time_attr_inval) * cache new access * recheck VEXEC access * add name to dnlc, possibly negative * if LOOKUP succeeded * cache new attributes * else * set a new r_time_attr_inval for dvp * check to make sure we have access * * The vpp returned is the vnode passed in if the directory is valid, * a new vnode if successful lookup, or NULL on error. */ static int nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; fattr4 *ver_fattr; fattr4_change dchange; int32_t *ptr; int argoplist_size = 7 * sizeof (nfs_argop4); nfs_argop4 *argop; int doqueue; mntinfo4_t *mi; nfs4_recov_state_t recov_state; hrtime_t t; int isdotdot; vnode_t *nvp; nfs_fh4 *fhp; nfs4_sharedfh_t *sfhp; nfs4_access_type_t cacc; rnode4_t *nrp; rnode4_t *drp = VTOR4(dvp); nfs4_ga_res_t *garp = NULL; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); ASSERT(nm != NULL); ASSERT(nm[0] != '\0'); ASSERT(dvp->v_type == VDIR); ASSERT(nm[0] != '.' || nm[1] != '\0'); ASSERT(*vpp != NULL); if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { isdotdot = 1; args.ctag = TAG_LOOKUP_VPARENT; } else { /* * Do not allow crossing of server mount points. The * only visible entries in a SRVSTUB dir are . and .. * This code handles the non-.. case. We can't even get * this far if looking up ".". */ if (VTOR4(dvp)->r_flags & R4SRVSTUB) { VN_RELE(*vpp); *vpp = NULL; return (ENOENT); } isdotdot = 0; args.ctag = TAG_LOOKUP_VALID; } mi = VTOMI4(dvp); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; nvp = NULL; /* Save the original mount point security information */ (void) save_mnt_secinfo(mi->mi_curr_serv); recov_retry: e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, NULL); if (e.error) { (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); VN_RELE(*vpp); *vpp = NULL; return (e.error); } argop = kmem_alloc(argoplist_size, KM_SLEEP); /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ args.array_len = 7; args.array = argop; /* 0. putfh file */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; /* 1. nverify the change info */ argop[1].argop = OP_NVERIFY; ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; ver_fattr->attrmask = FATTR4_CHANGE_MASK; ver_fattr->attrlist4 = (char *)&dchange; ptr = (int32_t *)&dchange; IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); ver_fattr->attrlist4_len = sizeof (fattr4_change); /* 2. getattr directory */ argop[2].argop = OP_GETATTR; argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); /* 3. access directory */ argop[3].argop = OP_ACCESS; argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; /* 4. lookup name */ if (isdotdot) { argop[4].argop = OP_LOOKUPP; } else { argop[4].argop = OP_CLOOKUP; argop[4].nfs_argop4_u.opclookup.cname = nm; } /* 5. resulting file handle */ argop[5].argop = OP_GETFH; /* 6. resulting file attributes */ argop[6].argop = OP_GETATTR; argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); doqueue = 1; t = gethrtime(); rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { /* * For WRONGSEC of a non-dotdot case, send secinfo directly * from this thread, do not go thru the recovery thread since * we need the nm information. * * Not doing dotdot case because there is no specification * for (PUTFH, SECINFO "..") yet. */ if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); } else { nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, TRUE); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); kmem_free(argop, argoplist_size); if (!e.error) goto recov_retry; (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); VN_RELE(*vpp); *vpp = NULL; return (e.error); } if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, OP_LOOKUP, NULL) == FALSE) { nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, TRUE); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); kmem_free(argop, argoplist_size); goto recov_retry; } } nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); if (e.error || res.array_len == 0) { /* * If e.error isn't set, then reply has no ops (or we couldn't * be here). The only legal way to reply without an op array * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should * be in the reply for all other status values. * * For valid replies without an ops array, return ENOTSUP * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, * return EIO -- don't trust status. */ if (e.error == 0) e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? ENOTSUP : EIO; VN_RELE(*vpp); *vpp = NULL; kmem_free(argop, argoplist_size); (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); return (e.error); } if (res.status != NFS4ERR_SAME) { e.error = geterrno4(res.status); /* * The NVERIFY "failed" so the directory has changed * First make sure PUTFH succeeded and NVERIFY "failed" * cleanly. */ if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { nfs4_purge_stale_fh(e.error, dvp, cr); VN_RELE(*vpp); *vpp = NULL; goto exit; } /* * We know the NVERIFY "failed" so we must: * purge the caches (access and indirectly dnlc if needed) */ nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { nfs4_purge_stale_fh(e.error, dvp, cr); VN_RELE(*vpp); *vpp = NULL; goto exit; } /* * Install new cached attributes for the directory */ nfs4_attr_cache(dvp, &res.array[2].nfs_resop4_u.opgetattr.ga_res, t, cr, FALSE, NULL); if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { nfs4_purge_stale_fh(e.error, dvp, cr); VN_RELE(*vpp); *vpp = NULL; e.error = geterrno4(res.status); goto exit; } /* * Now we know the directory is valid, * cache new directory access */ nfs4_access_cache(drp, args.array[3].nfs_argop4_u.opaccess.access, res.array[3].nfs_resop4_u.opaccess.access, cr); /* * recheck VEXEC access */ cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); if (cacc != NFS4_ACCESS_ALLOWED) { /* * Directory permissions might have been revoked */ if (cacc == NFS4_ACCESS_DENIED) { e.error = EACCES; VN_RELE(*vpp); *vpp = NULL; goto exit; } /* * Somehow we must not have asked for enough * so try a singleton ACCESS, should never happen. */ e.error = nfs4_access(dvp, VEXEC, 0, cr); if (e.error) { VN_RELE(*vpp); *vpp = NULL; goto exit; } } e.error = geterrno4(res.status); if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { /* * The lookup failed, probably no entry */ if (e.error == ENOENT && nfs4_lookup_neg_cache) { dnlc_update(dvp, nm, DNLC_NO_VNODE); } else { /* * Might be some other error, so remove * the dnlc entry to make sure we start all * over again, next time. */ dnlc_remove(dvp, nm); } VN_RELE(*vpp); *vpp = NULL; goto exit; } if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { /* * The file exists but we can't get its fh for * some unknown reason. Remove it from the dnlc * and error out to be safe. */ dnlc_remove(dvp, nm); VN_RELE(*vpp); *vpp = NULL; goto exit; } fhp = &res.array[5].nfs_resop4_u.opgetfh.object; if (fhp->nfs_fh4_len == 0) { /* * The file exists but a bogus fh * some unknown reason. Remove it from the dnlc * and error out to be safe. */ e.error = ENOENT; dnlc_remove(dvp, nm); VN_RELE(*vpp); *vpp = NULL; goto exit; } sfhp = sfh4_get(fhp, mi); if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; /* * Make the new rnode */ if (isdotdot) { e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); if (e.error) { sfh4_rele(&sfhp); VN_RELE(*vpp); *vpp = NULL; goto exit; } /* * XXX if nfs4_make_dotdot uses an existing rnode * XXX it doesn't update the attributes. * XXX for now just save them again to save an OTW */ nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); } else { nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, dvp, fn_get(VTOSV(dvp)->sv_name, nm)); /* * If v_type == VNON, then garp was NULL because * the last op in the compound failed and makenfs4node * could not find the vnode for sfhp. It created * a new vnode, so we have nothing to purge here. */ if (nvp->v_type == VNON) { vattr_t vattr; vattr.va_mask = AT_TYPE; /* * N.B. We've already called nfs4_end_fop above. */ e.error = nfs4getattr(nvp, &vattr, cr); if (e.error) { sfh4_rele(&sfhp); VN_RELE(*vpp); *vpp = NULL; VN_RELE(nvp); goto exit; } nvp->v_type = vattr.va_type; } } sfh4_rele(&sfhp); nrp = VTOR4(nvp); mutex_enter(&nrp->r_statev4_lock); if (!nrp->created_v4) { mutex_exit(&nrp->r_statev4_lock); dnlc_update(dvp, nm, nvp); } else mutex_exit(&nrp->r_statev4_lock); VN_RELE(*vpp); *vpp = nvp; } else { hrtime_t now; hrtime_t delta = 0; e.error = 0; /* * Because the NVERIFY "succeeded" we know that the * directory attributes are still valid * so update r_time_attr_inval */ now = gethrtime(); mutex_enter(&drp->r_statelock); if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { delta = now - drp->r_time_attr_saved; if (delta < mi->mi_acdirmin) delta = mi->mi_acdirmin; else if (delta > mi->mi_acdirmax) delta = mi->mi_acdirmax; } drp->r_time_attr_inval = now + delta; mutex_exit(&drp->r_statelock); dnlc_update(dvp, nm, *vpp); /* * Even though we have a valid directory attr cache * and dnlc entry, we may not have access. * This should almost always hit the cache. */ e.error = nfs4_access(dvp, VEXEC, 0, cr); if (e.error) { VN_RELE(*vpp); *vpp = NULL; } if (*vpp == DNLC_NO_VNODE) { VN_RELE(*vpp); *vpp = NULL; e.error = ENOENT; } } exit: (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); kmem_free(argop, argoplist_size); (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); return (e.error); } /* * We need to go over the wire to lookup the name, but * while we are there verify the directory has not * changed but if it has, get new attributes and check access * * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH * NVERIFY GETATTR ACCESS * * With the results: * if the NVERIFY failed we must purge the caches, add new attributes, * and cache new access. * set a new r_time_attr_inval * add name to dnlc, possibly negative * if LOOKUP succeeded * cache new attributes */ static int nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; fattr4 *ver_fattr; fattr4_change dchange; int32_t *ptr; nfs4_ga_res_t *garp = NULL; int argoplist_size = 9 * sizeof (nfs_argop4); nfs_argop4 *argop; int doqueue; mntinfo4_t *mi; nfs4_recov_state_t recov_state; hrtime_t t; int isdotdot; vnode_t *nvp; nfs_fh4 *fhp; nfs4_sharedfh_t *sfhp; nfs4_access_type_t cacc; rnode4_t *nrp; rnode4_t *drp = VTOR4(dvp); nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); ASSERT(nm != NULL); ASSERT(nm[0] != '\0'); ASSERT(dvp->v_type == VDIR); ASSERT(nm[0] != '.' || nm[1] != '\0'); ASSERT(*vpp == NULL); if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { isdotdot = 1; args.ctag = TAG_LOOKUP_PARENT; } else { /* * Do not allow crossing of server mount points. The * only visible entries in a SRVSTUB dir are . and .. * This code handles the non-.. case. We can't even get * this far if looking up ".". */ if (VTOR4(dvp)->r_flags & R4SRVSTUB) return (ENOENT); isdotdot = 0; args.ctag = TAG_LOOKUP; } mi = VTOMI4(dvp); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; nvp = NULL; /* Save the original mount point security information */ (void) save_mnt_secinfo(mi->mi_curr_serv); recov_retry: e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, NULL); if (e.error) { (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); return (e.error); } argop = kmem_alloc(argoplist_size, KM_SLEEP); /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ args.array_len = 9; args.array = argop; /* 0. putfh file */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; /* 1. savefh for the nverify */ argop[1].argop = OP_SAVEFH; /* 2. lookup name */ if (isdotdot) { argop[2].argop = OP_LOOKUPP; } else { argop[2].argop = OP_CLOOKUP; argop[2].nfs_argop4_u.opclookup.cname = nm; } /* 3. resulting file handle */ argop[3].argop = OP_GETFH; /* 4. resulting file attributes */ argop[4].argop = OP_GETATTR; argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); /* 5. restorefh back the directory for the nverify */ argop[5].argop = OP_RESTOREFH; /* 6. nverify the change info */ argop[6].argop = OP_NVERIFY; ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; ver_fattr->attrmask = FATTR4_CHANGE_MASK; ver_fattr->attrlist4 = (char *)&dchange; ptr = (int32_t *)&dchange; IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); ver_fattr->attrlist4_len = sizeof (fattr4_change); /* 7. getattr directory */ argop[7].argop = OP_GETATTR; argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); /* 8. access directory */ argop[8].argop = OP_ACCESS; argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; doqueue = 1; t = gethrtime(); rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { /* * For WRONGSEC of a non-dotdot case, send secinfo directly * from this thread, do not go thru the recovery thread since * we need the nm information. * * Not doing dotdot case because there is no specification * for (PUTFH, SECINFO "..") yet. */ if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); } else { nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, TRUE); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); kmem_free(argop, argoplist_size); if (!e.error) goto recov_retry; (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); return (e.error); } if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, OP_LOOKUP, NULL) == FALSE) { nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, TRUE); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); kmem_free(argop, argoplist_size); goto recov_retry; } } nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); if (e.error || res.array_len == 0) { /* * If e.error isn't set, then reply has no ops (or we couldn't * be here). The only legal way to reply without an op array * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should * be in the reply for all other status values. * * For valid replies without an ops array, return ENOTSUP * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, * return EIO -- don't trust status. */ if (e.error == 0) e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? ENOTSUP : EIO; kmem_free(argop, argoplist_size); (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); return (e.error); } e.error = geterrno4(res.status); /* * The PUTFH and SAVEFH may have failed. */ if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { nfs4_purge_stale_fh(e.error, dvp, cr); goto exit; } /* * Check if the file exists, if it does delay entering * into the dnlc until after we update the directory * attributes so we don't cause it to get purged immediately. */ if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { /* * The lookup failed, probably no entry */ if (e.error == ENOENT && nfs4_lookup_neg_cache) { dnlc_update(dvp, nm, DNLC_NO_VNODE); } goto exit; } if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { /* * The file exists but we can't get its fh for * some unknown reason. Error out to be safe. */ goto exit; } fhp = &res.array[3].nfs_resop4_u.opgetfh.object; if (fhp->nfs_fh4_len == 0) { /* * The file exists but a bogus fh * some unknown reason. Error out to be safe. */ e.error = EIO; goto exit; } sfhp = sfh4_get(fhp, mi); if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { sfh4_rele(&sfhp); e.error = EIO; goto exit; } garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; /* * The RESTOREFH may have failed */ if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { sfh4_rele(&sfhp); e.error = EIO; goto exit; } if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { /* * First make sure the NVERIFY failed as we expected, * if it didn't then be conservative and error out * as we can't trust the directory. */ if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { sfh4_rele(&sfhp); e.error = EIO; goto exit; } /* * We know the NVERIFY "failed" so the directory has changed, * so we must: * purge the caches (access and indirectly dnlc if needed) */ nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { sfh4_rele(&sfhp); goto exit; } nfs4_attr_cache(dvp, &res.array[7].nfs_resop4_u.opgetattr.ga_res, t, cr, FALSE, NULL); if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { nfs4_purge_stale_fh(e.error, dvp, cr); sfh4_rele(&sfhp); e.error = geterrno4(res.status); goto exit; } /* * Now we know the directory is valid, * cache new directory access */ nfs4_access_cache(drp, args.array[8].nfs_argop4_u.opaccess.access, res.array[8].nfs_resop4_u.opaccess.access, cr); /* * recheck VEXEC access */ cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); if (cacc != NFS4_ACCESS_ALLOWED) { /* * Directory permissions might have been revoked */ if (cacc == NFS4_ACCESS_DENIED) { sfh4_rele(&sfhp); e.error = EACCES; goto exit; } /* * Somehow we must not have asked for enough * so try a singleton ACCESS should never happen */ e.error = nfs4_access(dvp, VEXEC, 0, cr); if (e.error) { sfh4_rele(&sfhp); goto exit; } } e.error = geterrno4(res.status); } else { hrtime_t now; hrtime_t delta = 0; e.error = 0; /* * Because the NVERIFY "succeeded" we know that the * directory attributes are still valid * so update r_time_attr_inval */ now = gethrtime(); mutex_enter(&drp->r_statelock); if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { delta = now - drp->r_time_attr_saved; if (delta < mi->mi_acdirmin) delta = mi->mi_acdirmin; else if (delta > mi->mi_acdirmax) delta = mi->mi_acdirmax; } drp->r_time_attr_inval = now + delta; mutex_exit(&drp->r_statelock); /* * Even though we have a valid directory attr cache, * we may not have access. * This should almost always hit the cache. */ e.error = nfs4_access(dvp, VEXEC, 0, cr); if (e.error) { sfh4_rele(&sfhp); goto exit; } } /* * Now we have successfully completed the lookup, if the * directory has changed we now have the valid attributes. * We also know we have directory access. * Create the new rnode and insert it in the dnlc. */ if (isdotdot) { e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); if (e.error) { sfh4_rele(&sfhp); goto exit; } /* * XXX if nfs4_make_dotdot uses an existing rnode * XXX it doesn't update the attributes. * XXX for now just save them again to save an OTW */ nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); } else { nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, dvp, fn_get(VTOSV(dvp)->sv_name, nm)); } sfh4_rele(&sfhp); nrp = VTOR4(nvp); mutex_enter(&nrp->r_statev4_lock); if (!nrp->created_v4) { mutex_exit(&nrp->r_statev4_lock); dnlc_update(dvp, nm, nvp); } else mutex_exit(&nrp->r_statev4_lock); *vpp = nvp; exit: (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); kmem_free(argop, argoplist_size); (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); return (e.error); } #ifdef DEBUG void nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) { uint_t i, len; zoneid_t zoneid = getzoneid(); char *s; zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); for (i = 0; i < argcnt; i++) { nfs_argop4 *op = &argbase[i]; switch (op->argop) { case OP_CPUTFH: case OP_PUTFH: zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); break; case OP_PUTROOTFH: zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); break; case OP_CLOOKUP: s = op->nfs_argop4_u.opclookup.cname; zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); break; case OP_LOOKUP: s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, &len, NULL); zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); kmem_free(s, len); break; case OP_LOOKUPP: zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); break; case OP_GETFH: zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); break; case OP_GETATTR: zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); break; case OP_OPENATTR: zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); break; default: zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, op->argop); break; } } } #endif /* * nfs4lookup_setup - constructs a multi-lookup compound request. * * Given the path "nm1/nm2/.../nmn", the following compound requests * may be created: * * Note: Getfh is not be needed because filehandle attr is mandatory, but it * is faster, for now. * * l4_getattrs indicates the type of compound requested. * * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): * * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } * * total number of ops is n + 1. * * LKP4_LAST_NAMED_ATTR - multi-component path for a named * attribute: create lookups plus one OPENATTR/GETFH/GETATTR * before the last component, and only get attributes * for the last component. Note that the second-to-last * pathname component is XATTR_RPATH, which does NOT go * over-the-wire as a lookup. * * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } * * and total number of ops is n + 5. * * LKP4_LAST_ATTRDIR - multi-component path for the hidden named * attribute directory: create lookups plus an OPENATTR * replacing the last lookup. Note that the last pathname * component is XATTR_RPATH, which does NOT go over-the-wire * as a lookup. * * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; * Openattr; Getfh; Getattr } * * and total number of ops is n + 5. * * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate * nodes too. * * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } * * and total number of ops is 3*n + 1. * * All cases: returns the index in the arg array of the final LOOKUP op, or * -1 if no LOOKUPs were used. */ int nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) { enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; nfs_argop4 *argbase, *argop; int arglen, argcnt; int n = 1; /* number of components */ int nga = 1; /* number of Getattr's in request */ char c = '\0', *s, *p; int lookup_idx = -1; int argoplist_size; /* set lookuparg response result to 0 */ lookupargp->resp->status = NFS4_OK; /* skip leading "/" or "." e.g. ".//./" if there is */ for (; ; nm++) { if (*nm != '/' && *nm != '.') break; /* ".." is counted as 1 component */ if (*nm == '.' && *(nm + 1) == '.') break; } /* * Find n = number of components - nm must be null terminated * Skip "." components. */ if (*nm != '\0') { for (n = 1, s = nm; *s != '\0'; s++) { if ((*s == '/') && (*(s + 1) != '/') && (*(s + 1) != '\0') && !(*(s + 1) == '.' && (*(s + 2) == '/' || *(s + 2) == '\0'))) n++; } } else n = 0; /* * nga is number of components that need Getfh+Getattr */ switch (l4_getattrs) { case LKP4_NO_ATTRIBUTES: nga = 0; break; case LKP4_ALL_ATTRIBUTES: nga = n; /* * Always have at least 1 getfh, getattr pair */ if (nga == 0) nga++; break; case LKP4_LAST_ATTRDIR: case LKP4_LAST_NAMED_ATTR: nga = n+1; break; } /* * If change to use the filehandle attr instead of getfh * the following line can be deleted. */ nga *= 2; /* * calculate number of ops in request as * header + trailer + lookups + getattrs */ arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; argoplist_size = arglen * sizeof (nfs_argop4); argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); lookupargp->argsp->array = argop; argcnt = lookupargp->header_len; argop += argcnt; /* * loop and create a lookup op and possibly getattr/getfh for * each component. Skip "." components. */ for (s = nm; *s != '\0'; s = p) { /* * Set up a pathname struct for each component if needed */ while (*s == '/') s++; if (*s == '\0') break; for (p = s; (*p != '/') && (*p != '\0'); p++); c = *p; *p = '\0'; if (s[0] == '.' && s[1] == '\0') { *p = c; continue; } if (l4_getattrs == LKP4_LAST_ATTRDIR && strcmp(s, XATTR_RPATH) == 0) { /* getfh XXX may not be needed in future */ argop->argop = OP_GETFH; argop++; argcnt++; /* getattr */ argop->argop = OP_GETATTR; argop->nfs_argop4_u.opgetattr.attr_request = lookupargp->ga_bits; argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; argop++; argcnt++; /* openattr */ argop->argop = OP_OPENATTR; } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && strcmp(s, XATTR_RPATH) == 0) { /* openattr */ argop->argop = OP_OPENATTR; argop++; argcnt++; /* getfh XXX may not be needed in future */ argop->argop = OP_GETFH; argop++; argcnt++; /* getattr */ argop->argop = OP_GETATTR; argop->nfs_argop4_u.opgetattr.attr_request = lookupargp->ga_bits; argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; argop++; argcnt++; *p = c; continue; } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { /* lookupp */ argop->argop = OP_LOOKUPP; } else { /* lookup */ argop->argop = OP_LOOKUP; (void) str_to_utf8(s, &argop->nfs_argop4_u.oplookup.objname); } lookup_idx = argcnt; argop++; argcnt++; *p = c; if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { /* getfh XXX may not be needed in future */ argop->argop = OP_GETFH; argop++; argcnt++; /* getattr */ argop->argop = OP_GETATTR; argop->nfs_argop4_u.opgetattr.attr_request = lookupargp->ga_bits; argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; argop++; argcnt++; } } if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { if (needgetfh) { /* stick in a post-lookup getfh */ argop->argop = OP_GETFH; argcnt++; argop++; } /* post-lookup getattr */ argop->argop = OP_GETATTR; argop->nfs_argop4_u.opgetattr.attr_request = lookupargp->ga_bits; argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; argcnt++; } argcnt += lookupargp->trailer_len; /* actual op count */ lookupargp->argsp->array_len = argcnt; lookupargp->arglen = arglen; #ifdef DEBUG if (nfs4_client_lookup_debug) nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); #endif return (lookup_idx); } static int nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; GETFH4res *gf_res = NULL; nfs_argop4 argop[4]; nfs_resop4 *resop = NULL; nfs4_sharedfh_t *sfhp; hrtime_t t; nfs4_error_t e; rnode4_t *drp; int doqueue = 1; vnode_t *vp; int needrecov = 0; nfs4_recov_state_t recov_state; ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); *avp = NULL; recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; recov_retry: /* COMPOUND: putfh, openattr, getfh, getattr */ args.array_len = 4; args.array = argop; args.ctag = TAG_OPENATTR; e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); if (e.error) return (e.error); drp = VTOR4(dvp); /* putfh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; /* openattr */ argop[1].argop = OP_OPENATTR; argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); /* getfh */ argop[2].argop = OP_GETFH; /* getattr */ argop[3].argop = OP_GETATTR; argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", rnode4info(drp))); t = gethrtime(); rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); if (needrecov) { bool_t abort; NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4openattr: initiating recovery\n")); abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, NULL, OP_OPENATTR, NULL); nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); if (!e.error) { e.error = geterrno4(res.status); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } if (abort == FALSE) goto recov_retry; return (e.error); } if (e.error) { nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); return (e.error); } if (res.status) { /* * If OTW errro is NOTSUPP, then it should be * translated to EINVAL. All Solaris file system * implementations return EINVAL to the syscall layer * when the attrdir cannot be created due to an * implementation restriction or noxattr mount option. */ if (res.status == NFS4ERR_NOTSUPP) { mutex_enter(&drp->r_statelock); if (drp->r_xattr_dir) VN_RELE(drp->r_xattr_dir); VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; mutex_exit(&drp->r_statelock); e.error = EINVAL; } else { e.error = geterrno4(res.status); } if (e.error) { (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); return (e.error); } } resop = &res.array[0]; /* putfh res */ ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); resop = &res.array[1]; /* openattr res */ ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); resop = &res.array[2]; /* getfh res */ gf_res = &resop->nfs_resop4_u.opgetfh; if (gf_res->object.nfs_fh4_len == 0) { *avp = NULL; (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); return (ENOENT); } sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, dvp->v_vfsp, t, cr, dvp, fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); sfh4_rele(&sfhp); if (e.error) PURGE_ATTRCACHE4(vp); mutex_enter(&vp->v_lock); vp->v_flag |= V_XATTRDIR; mutex_exit(&vp->v_lock); *avp = vp; mutex_enter(&drp->r_statelock); if (drp->r_xattr_dir) VN_RELE(drp->r_xattr_dir); VN_HOLD(vp); drp->r_xattr_dir = vp; /* * Invalidate pathconf4 cache because r_xattr_dir is no longer * NULL. xattrs could be created at any time, and we have no * way to update pc4_xattr_exists in the base object if/when * it happens. */ drp->r_pathconf.pc4_xattr_valid = 0; mutex_exit(&drp->r_statelock); nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return (0); } /* ARGSUSED */ static int nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, int mode, vnode_t **vpp, cred_t *cr, int flags) { int error; vnode_t *vp = NULL; rnode4_t *rp; struct vattr vattr; rnode4_t *drp; vnode_t *tempvp; enum createmode4 createmode; bool_t must_trunc = FALSE; if (curproc->p_zone != VTOMI4(dvp)->mi_zone) return (EPERM); if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { return (EINVAL); } /* . and .. have special meaning in the protocol, reject them. */ if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) return (EISDIR); drp = VTOR4(dvp); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) return (EINTR); top: /* * We make a copy of the attributes because the caller does not * expect us to change what va points to. */ vattr = *va; /* * If the pathname is "", then dvp is the root vnode of * a remote file mounted over a local directory. * All that needs to be done is access * checking and truncation. Note that we avoid doing * open w/ create because the parent directory might * be in pseudo-fs and the open would fail. */ if (*nm == '\0') { error = 0; VN_HOLD(dvp); vp = dvp; must_trunc = TRUE; } else { /* * We need to go over the wire, just to be sure whether the * file exists or not. Using the DNLC can be dangerous in * this case when making a decision regarding existence. */ error = nfs4lookup(dvp, nm, &vp, cr, 1); } if (exclusive) createmode = EXCLUSIVE4; else createmode = GUARDED4; /* * error would be set if the file does not exist on the * server, so lets go create it. */ if (error) { goto create_otw; } /* * File does exist on the server */ if (exclusive == EXCL) error = EEXIST; else if (vp->v_type == VDIR && (mode & VWRITE)) error = EISDIR; else { /* * If vnode is a device, create special vnode. */ if (ISVDEV(vp->v_type)) { tempvp = vp; vp = specvp(vp, vp->v_rdev, vp->v_type, cr); VN_RELE(tempvp); } if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { if ((vattr.va_mask & AT_SIZE) && vp->v_type == VREG) { rp = VTOR4(vp); /* * Check here for large file handled * by LF-unaware process (as * ufs_create() does) */ if (!(flags & FOFFMAX)) { mutex_enter(&rp->r_statelock); if (rp->r_size > MAXOFF32_T) error = EOVERFLOW; mutex_exit(&rp->r_statelock); } /* if error is set then we need to return */ if (error) { nfs_rw_exit(&drp->r_rwlock); VN_RELE(vp); return (error); } if (must_trunc) { vattr.va_mask = AT_SIZE; error = nfs4setattr(vp, &vattr, 0, cr, NULL); } else { /* * we know we have a regular file that already * exists and we may end up truncating the file * as a result of the open_otw, so flush out * any dirty pages for this file first. */ if (nfs4_has_pages(vp) && ((rp->r_flags & R4DIRTY) || rp->r_count > 0 || rp->r_mapcnt > 0)) { error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr); if (error && (error == ENOSPC || error == EDQUOT)) { mutex_enter( &rp->r_statelock); if (!rp->r_error) rp->r_error = error; mutex_exit( &rp->r_statelock); } } vattr.va_mask = (AT_SIZE | AT_TYPE | AT_MODE); vattr.va_type = VREG; createmode = UNCHECKED4; goto create_otw; } } } } nfs_rw_exit(&drp->r_rwlock); if (error) { VN_RELE(vp); } else { *vpp = vp; } return (error); create_otw: dnlc_remove(dvp, nm); ASSERT(vattr.va_mask & AT_TYPE); /* * If not a regular file let nfs4mknod() handle it. */ if (vattr.va_type != VREG) { error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); nfs_rw_exit(&drp->r_rwlock); return (error); } /* * It _is_ a regular file. */ ASSERT(vattr.va_mask & AT_MODE); if (MANDMODE(vattr.va_mode)) { nfs_rw_exit(&drp->r_rwlock); return (EACCES); } /* * If this happens to be a mknod of a regular file, then flags will * have neither FREAD or FWRITE. However, we must set at least one * for the call to nfs4open_otw. If it's open(O_CREAT) driving * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been * set (based on openmode specified by app). */ if ((flags & (FREAD|FWRITE)) == 0) flags |= (FREAD|FWRITE); error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); if (vp != NULL) { /* if create was successful, throw away the file's pages */ if (!error && (vattr.va_mask & AT_SIZE)) nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), cr); /* release the lookup hold */ VN_RELE(vp); vp = NULL; } /* * validate that we opened a regular file. This handles a misbehaving * server that returns an incorrect FH. */ if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { error = EISDIR; VN_RELE(*vpp); } /* * If this is not an exclusive create, then the CREATE * request will be made with the GUARDED mode set. This * means that the server will return EEXIST if the file * exists. The file could exist because of a retransmitted * request. In this case, we recover by starting over and * checking to see whether the file exists. This second * time through it should and a CREATE request will not be * sent. * * This handles the problem of a dangling CREATE request * which contains attributes which indicate that the file * should be truncated. This retransmitted request could * possibly truncate valid data in the file if not caught * by the duplicate request mechanism on the server or if * not caught by other means. The scenario is: * * Client transmits CREATE request with size = 0 * Client times out, retransmits request. * Response to the first request arrives from the server * and the client proceeds on. * Client writes data to the file. * The server now processes retransmitted CREATE request * and truncates file. * * The use of the GUARDED CREATE request prevents this from * happening because the retransmitted CREATE would fail * with EEXIST and would not truncate the file. */ if (error == EEXIST && exclusive == NONEXCL) { #ifdef DEBUG nfs4_create_misses++; #endif goto top; } nfs_rw_exit(&drp->r_rwlock); return (error); } /* * Create compound (for mkdir, mknod, symlink): * { Putfh ; Create; Getfh; Getattr } * It's okay if setattr failed to set gid - this is not considered * an error, but purge attrs in that case. */ static int call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, vnode_t **vpp, cred_t *cr, nfs_ftype4 type) { int need_end_op = FALSE; COMPOUND4args_clnt args; COMPOUND4res_clnt res, *resp = NULL; nfs_argop4 *argop; nfs_resop4 *resop; int doqueue; mntinfo4_t *mi; rnode4_t *drp = VTOR4(dvp); change_info4 *cinfo; GETFH4res *gf_res; struct vattr vattr; vnode_t *vp; fattr4 *crattr; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; nfs4_sharedfh_t *sfhp = NULL; hrtime_t t; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; dirattr_info_t dinfo, *dinfop; servinfo4_t *svp; bitmap4 supp_attrs; ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || type == NF4CHR || type == NF4SOCK || type == NF4FIFO); mi = VTOMI4(dvp); /* * Make sure we properly deal with setting the right gid * on a new directory to reflect the parent's setgid bit */ setgid_flag = 0; if (type == NF4DIR) { struct vattr dva; va->va_mode &= ~VSGID; dva.va_mask = AT_MODE | AT_GID; if (VOP_GETATTR(dvp, &dva, 0, cr) == 0) { /* * If the parent's directory has the setgid bit set * _and_ the client was able to get a valid mapping * for the parent dir's owner_group, we want to * append NVERIFY(owner_group == dva.va_gid) and * SETTATTR to the CREATE compound. */ if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { setgid_flag = 1; va->va_mode |= VSGID; if (dva.va_gid != GID_NOBODY) { va->va_mask |= AT_GID; va->va_gid = dva.va_gid; } } } } /* * Create ops: * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) * 5:restorefh(dir) 6:getattr(dir) * * if (setgid) * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) * 8:nverify 9:setattr */ if (setgid_flag) { numops = 10; idx_create = 1; idx_fattr = 3; } else { numops = 7; idx_create = 2; idx_fattr = 4; } ASSERT(curproc->p_zone == mi->mi_zone); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { return (EINTR); } recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; argoplist_size = numops * sizeof (nfs_argop4); argop = kmem_alloc(argoplist_size, KM_SLEEP); recov_retry: if (type == NF4LNK) args.ctag = TAG_SYMLINK; else if (type == NF4DIR) args.ctag = TAG_MKDIR; else args.ctag = TAG_MKNOD; args.array_len = numops; args.array = argop; if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { nfs_rw_exit(&drp->r_rwlock); kmem_free(argop, argoplist_size); return (e.error); } need_end_op = TRUE; /* 0: putfh directory */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; /* 1/2: Create object */ argop[idx_create].argop = OP_CCREATE; argop[idx_create].nfs_argop4_u.opccreate.cname = nm; argop[idx_create].nfs_argop4_u.opccreate.type = type; if (type == NF4LNK) { /* * symlink, treat name as data */ ASSERT(data != NULL); argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = (char *)data; } if (type == NF4BLK || type == NF4CHR) { ASSERT(data != NULL); argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = *((specdata4 *)data); } crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; svp = drp->r_server; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); supp_attrs = svp->sv_supp_attrs; nfs_rw_exit(&svp->sv_lock); if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { nfs_rw_exit(&drp->r_rwlock); nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); e.error = EINVAL; kmem_free(argop, argoplist_size); return (e.error); } /* 2/3: getfh fh of created object */ ASSERT(idx_create + 1 == idx_fattr - 1); argop[idx_create + 1].argop = OP_GETFH; /* 3/4: getattr of new object */ argop[idx_fattr].argop = OP_GETATTR; argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; if (setgid_flag) { vattr_t _v; argop[4].argop = OP_SAVEFH; argop[5].argop = OP_CPUTFH; argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; argop[6].argop = OP_GETATTR; argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[6].nfs_argop4_u.opgetattr.mi = mi; argop[7].argop = OP_RESTOREFH; /* * nverify * * XXX - Revisit the last argument to nfs4_end_op() * once 5020486 is fixed. */ _v.va_mask = AT_GID; _v.va_gid = va->va_gid; if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, supp_attrs)) { nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); nfs_rw_exit(&drp->r_rwlock); nfs4_fattr4_free(crattr); kmem_free(argop, argoplist_size); return (e.error); } /* * setattr * * We _know_ we're not messing with AT_SIZE or AT_XTIME, * so no need for stateid or flags. Also we specify NULL * rp since we're only interested in setting owner_group * attributes. */ nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, &e.error, 0); if (e.error) { nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); nfs_rw_exit(&drp->r_rwlock); nfs4_fattr4_free(crattr); nfs4args_verify_free(&argop[8]); kmem_free(argop, argoplist_size); return (e.error); } } else { argop[1].argop = OP_SAVEFH; argop[5].argop = OP_RESTOREFH; argop[6].argop = OP_GETATTR; argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[6].nfs_argop4_u.opgetattr.mi = mi; } dnlc_remove(dvp, nm); doqueue = 1; t = gethrtime(); rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); if (e.error) { PURGE_ATTRCACHE4(dvp); if (!needrecov) goto out; } if (needrecov) { if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, OP_CREATE, NULL) == FALSE) { nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); need_end_op = FALSE; nfs4_fattr4_free(crattr); if (setgid_flag) { nfs4args_verify_free(&argop[8]); nfs4args_setattr_free(&argop[9]); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } } resp = &res; if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { if (res.status == NFS4ERR_BADOWNER) nfs4_log_badowner(mi, OP_CREATE); e.error = geterrno4(res.status); /* * This check is left over from when create was implemented * using a setattr op (instead of createattrs). If the * putfh/create/getfh failed, the error was returned. If * setattr/getattr failed, we keep going. * * It might be better to get rid of the GETFH also, and just * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. * Then if any of the operations failed, we could return the * error now, and remove much of the error code below. */ if (res.array_len <= idx_fattr) { /* * Either Putfh, Create or Getfh failed. */ PURGE_ATTRCACHE4(dvp); /* * nfs4_purge_stale_fh() may generate otw calls through * nfs4_invalidate_pages. Hence the need to call * nfs4_end_op() here to avoid nfs4_start_op() deadlock. */ nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); need_end_op = FALSE; nfs4_purge_stale_fh(e.error, dvp, cr); goto out; } } resop = &res.array[idx_create]; /* create res */ cinfo = &resop->nfs_resop4_u.opcreate.cinfo; resop = &res.array[idx_create + 1]; /* getfh res */ gf_res = &resop->nfs_resop4_u.opgetfh; sfhp = sfh4_get(&gf_res->object, mi); if (e.error) { *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, fn_get(VTOSV(dvp)->sv_name, nm)); if (vp->v_type == VNON) { vattr.va_mask = AT_TYPE; /* * Need to call nfs4_end_op before nfs4getattr to avoid * potential nfs4_start_op deadlock. See RFE 4777612. */ nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); need_end_op = FALSE; e.error = nfs4getattr(vp, &vattr, cr); if (e.error) { VN_RELE(vp); *vpp = NULL; goto out; } vp->v_type = vattr.va_type; } e.error = 0; } else { *vpp = vp = makenfs4node(sfhp, &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, dvp->v_vfsp, t, cr, dvp, fn_get(VTOSV(dvp)->sv_name, nm)); } /* * If compound succeeded, then update dir attrs */ if (res.status == NFS4_OK) { dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; dinfo.di_cred = cr; dinfo.di_time_call = t; dinfop = &dinfo; } else dinfop = NULL; /* Update directory cache attribute, readdir and dnlc caches */ nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); out: if (sfhp != NULL) sfh4_rele(&sfhp); nfs_rw_exit(&drp->r_rwlock); nfs4_fattr4_free(crattr); if (setgid_flag) { nfs4args_verify_free(&argop[8]); nfs4args_setattr_free(&argop[9]); } if (resp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); if (need_end_op) nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); kmem_free(argop, argoplist_size); return (e.error); } /* ARGSUSED */ static int nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, int mode, vnode_t **vpp, cred_t *cr) { int error; vnode_t *vp; nfs_ftype4 type; specdata4 spec, *specp = NULL; ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); switch (va->va_type) { case VCHR: case VBLK: type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; spec.specdata1 = getmajor(va->va_rdev); spec.specdata2 = getminor(va->va_rdev); specp = &spec; break; case VFIFO: type = NF4FIFO; break; case VSOCK: type = NF4SOCK; break; default: return (EINVAL); } error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); if (error) { return (error); } /* * This might not be needed any more; special case to deal * with problematic v2/v3 servers. Since create was unable * to set group correctly, not sure what hope setattr has. */ if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { va->va_mask = AT_GID; (void) nfs4setattr(vp, va, 0, cr, NULL); } /* * If vnode is a device create special vnode */ if (ISVDEV(vp->v_type)) { *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); VN_RELE(vp); } else { *vpp = vp; } return (error); } /* * Remove requires that the current fh be the target directory. * After the operation, the current fh is unchanged. * The compound op structure is: * PUTFH(targetdir), REMOVE * * Weirdness: if the vnode to be removed is open * we rename it instead of removing it and nfs_inactive * will remove the new name. */ static int nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr) { COMPOUND4args_clnt args; COMPOUND4res_clnt res, *resp = NULL; REMOVE4res *rm_res; nfs_argop4 argop[3]; nfs_resop4 *resop; vnode_t *vp; char *tmpname; int doqueue; mntinfo4_t *mi; rnode4_t *rp; rnode4_t *drp; int needrecov = 0; nfs4_recov_state_t recov_state; int isopen; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; dirattr_info_t dinfo; if (curproc->p_zone != VTOMI4(dvp)->mi_zone) return (EPERM); drp = VTOR4(dvp); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) return (EINTR); e.error = nfs4lookup(dvp, nm, &vp, cr, 0); if (e.error) { nfs_rw_exit(&drp->r_rwlock); return (e.error); } if (vp->v_type == VDIR) { VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (EISDIR); } /* * First just remove the entry from the name cache, as it * is most likely the only entry for this vp. */ dnlc_remove(dvp, nm); rp = VTOR4(vp); /* * For regular file types, check to see if the file is open by looking * at the open streams. * For all other types, check the reference count on the vnode. Since * they are not opened OTW they never have an open stream. * * If the file is open, rename it to .nfsXXXX. */ if (vp->v_type != VREG) { /* * If the file has a v_count > 1 then there may be more than one * entry in the name cache due multiple links or an open file, * but we don't have the real reference count so flush all * possible entries. */ if (vp->v_count > 1) dnlc_purge_vp(vp); /* * Now we have the real reference count. */ isopen = vp->v_count > 1; } else { mutex_enter(&rp->r_os_lock); isopen = list_head(&rp->r_open_streams) != NULL; mutex_exit(&rp->r_os_lock); } mutex_enter(&rp->r_statelock); if (isopen && (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { mutex_exit(&rp->r_statelock); tmpname = newname(); e.error = nfs4rename(dvp, nm, dvp, tmpname, cr); if (e.error) kmem_free(tmpname, MAXNAMELEN); else { mutex_enter(&rp->r_statelock); if (rp->r_unldvp == NULL) { VN_HOLD(dvp); rp->r_unldvp = dvp; if (rp->r_unlcred != NULL) crfree(rp->r_unlcred); crhold(cr); rp->r_unlcred = cr; rp->r_unlname = tmpname; } else { kmem_free(rp->r_unlname, MAXNAMELEN); rp->r_unlname = tmpname; } mutex_exit(&rp->r_statelock); } VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (e.error); } /* * Actually remove the file/dir */ mutex_exit(&rp->r_statelock); /* * We need to flush any dirty pages which happen to * be hanging around before removing the file. * This shouldn't happen very often since in NFSv4 * we should be close to open consistent. */ if (nfs4_has_pages(vp) && ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = e.error; mutex_exit(&rp->r_statelock); } } mi = VTOMI4(dvp); (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; recov_retry: /* * Remove ops: putfh dir; remove */ args.ctag = TAG_REMOVE; args.array_len = 3; args.array = argop; e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); if (e.error) { nfs_rw_exit(&drp->r_rwlock); VN_RELE(vp); return (e.error); } /* putfh directory */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; /* remove */ argop[1].argop = OP_CREMOVE; argop[1].nfs_argop4_u.opcremove.ctarget = nm; /* getattr dir */ argop[2].argop = OP_GETATTR; argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[2].nfs_argop4_u.opgetattr.mi = mi; doqueue = 1; dinfo.di_time_call = gethrtime(); rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); PURGE_ATTRCACHE4(vp); needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); if (e.error) PURGE_ATTRCACHE4(dvp); if (needrecov) { if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); goto recov_retry; } } /* * Matching nfs4_end_op() for start_op() above. * There is a path in the code below which calls * nfs4_purge_stale_fh(), which may generate otw calls through * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() * here to avoid nfs4_start_op() deadlock. */ nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); if (!e.error) { resp = &res; if (res.status) { e.error = geterrno4(res.status); PURGE_ATTRCACHE4(dvp); nfs4_purge_stale_fh(e.error, dvp, cr); } else { resop = &res.array[1]; /* remove res */ rm_res = &resop->nfs_resop4_u.opremove; dinfo.di_garp = &res.array[2].nfs_resop4_u.opgetattr.ga_res; dinfo.di_cred = cr; /* Update directory attr, readdir and dnlc caches */ nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, &dinfo); } } nfs_rw_exit(&drp->r_rwlock); if (resp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); VN_RELE(vp); return (e.error); } /* * Link requires that the current fh be the target directory and the * saved fh be the source fh. After the operation, the current fh is unchanged. * Thus the compound op structure is: * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, * GETATTR(file) */ static int nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) { COMPOUND4args_clnt args; COMPOUND4res_clnt res, *resp = NULL; LINK4res *ln_res; int argoplist_size = 7 * sizeof (nfs_argop4); nfs_argop4 *argop; nfs_resop4 *resop; vnode_t *realvp, *nvp; int doqueue; mntinfo4_t *mi; rnode4_t *tdrp; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; hrtime_t t; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; dirattr_info_t dinfo; ASSERT(*tnm != '\0'); ASSERT(tdvp->v_type == VDIR); ASSERT(nfs4_consistent_type(tdvp)); ASSERT(nfs4_consistent_type(svp)); if (curproc->p_zone != VTOMI4(tdvp)->mi_zone) return (EPERM); if (VOP_REALVP(svp, &realvp) == 0) { svp = realvp; ASSERT(nfs4_consistent_type(svp)); } tdrp = VTOR4(tdvp); mi = VTOMI4(svp); if (!(mi->mi_flags & MI4_LINK)) { return (EOPNOTSUPP); } recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) return (EINTR); recov_retry: argop = kmem_alloc(argoplist_size, KM_SLEEP); args.ctag = TAG_LINK; /* * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); * restorefh; getattr(fl) */ args.array_len = 7; args.array = argop; e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); if (e.error) { kmem_free(argop, argoplist_size); nfs_rw_exit(&tdrp->r_rwlock); return (e.error); } /* 0. putfh file */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; /* 1. save current fh to free up the space for the dir */ argop[1].argop = OP_SAVEFH; /* 2. putfh targetdir */ argop[2].argop = OP_CPUTFH; argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; /* 3. link: current_fh is targetdir, saved_fh is source */ argop[3].argop = OP_CLINK; argop[3].nfs_argop4_u.opclink.cnewname = tnm; /* 4. Get attributes of dir */ argop[4].argop = OP_GETATTR; argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[4].nfs_argop4_u.opgetattr.mi = mi; /* 5. If link was successful, restore current vp to file */ argop[5].argop = OP_RESTOREFH; /* 6. Get attributes of linked object */ argop[6].argop = OP_GETATTR; argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[6].nfs_argop4_u.opgetattr.mi = mi; dnlc_remove(tdvp, tnm); doqueue = 1; t = gethrtime(); rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); if (e.error != 0 && !needrecov) { PURGE_ATTRCACHE4(tdvp); PURGE_ATTRCACHE4(svp); nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); goto out; } if (needrecov) { bool_t abort; abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, NULL, NULL, OP_LINK, NULL); if (abort == FALSE) { nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); kmem_free(argop, argoplist_size); if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } else { if (e.error != 0) { PURGE_ATTRCACHE4(tdvp); PURGE_ATTRCACHE4(svp); nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); goto out; } /* fall through for res.status case */ } } nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); resp = &res; if (res.status) { /* If link succeeded, then don't return error */ e.error = geterrno4(res.status); if (res.array_len <= 4) { /* * Either Putfh, Savefh, Putfh dir, or Link failed */ PURGE_ATTRCACHE4(svp); PURGE_ATTRCACHE4(tdvp); if (e.error == EOPNOTSUPP) { mutex_enter(&mi->mi_lock); mi->mi_flags &= ~MI4_LINK; mutex_exit(&mi->mi_lock); } /* Remap EISDIR to EPERM for non-root user for SVVS */ /* XXX-LP */ if (e.error == EISDIR && crgetuid(cr) != 0) e.error = EPERM; goto out; } } /* either no error or one of the postop getattr failed */ /* * XXX - if LINK succeeded, but no attrs were returned for link * file, purge its cache. * * XXX Perform a simplified version of wcc checking. Instead of * have another getattr to get pre-op, just purge cache if * any of the ops prior to and including the getattr failed. * If the getattr succeeded then update the attrcache accordingly. */ /* * update cache with link file postattrs. * Note: at this point resop points to link res. */ resop = &res.array[3]; /* link res */ ln_res = &resop->nfs_resop4_u.oplink; if (res.status == NFS4_OK) { e.error = nfs4_update_attrcache(res.status, &res.array[6].nfs_resop4_u.opgetattr.ga_res, t, svp, cr); } /* * Call makenfs4node to create the new shadow vp for tnm. * We pass NULL attrs because we just cached attrs for * the src object. All we're trying to accomplish is to * to create the new shadow vnode. */ nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); /* Update target cache attribute, readdir and dnlc caches */ dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; dinfo.di_time_call = t; dinfo.di_cred = cr; nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); ASSERT(nfs4_consistent_type(tdvp)); ASSERT(nfs4_consistent_type(svp)); ASSERT(nfs4_consistent_type(nvp)); VN_RELE(nvp); out: kmem_free(argop, argoplist_size); if (resp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); nfs_rw_exit(&tdrp->r_rwlock); return (e.error); } static int nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) { vnode_t *realvp; if (curproc->p_zone != VTOMI4(odvp)->mi_zone) return (EPERM); if (VOP_REALVP(ndvp, &realvp) == 0) ndvp = realvp; return (nfs4rename(odvp, onm, ndvp, nnm, cr)); } /* * nfs4rename does the real work of renaming in NFS Version 4. * * A file handle is considered volatile for renaming purposes if either * of the volatile bits are turned on. However, the compound may differ * based on the likelihood of the filehandle to change during rename. */ static int nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) { int error; mntinfo4_t *mi; vnode_t *nvp; vnode_t *ovp = NULL; char *tmpname = NULL; rnode4_t *rp; rnode4_t *odrp; rnode4_t *ndrp; int did_link = 0; int do_link = 1; nfsstat4 stat = NFS4_OK; ASSERT(curproc->p_zone == VTOMI4(odvp)->mi_zone); ASSERT(nfs4_consistent_type(odvp)); ASSERT(nfs4_consistent_type(ndvp)); if (onm[0] == '.' && (onm[1] == '\0' || (onm[1] == '.' && onm[2] == '\0'))) return (EINVAL); if (nnm[0] == '.' && (nnm[1] == '\0' || (nnm[1] == '.' && nnm[2] == '\0'))) return (EINVAL); odrp = VTOR4(odvp); ndrp = VTOR4(ndvp); if ((intptr_t)odrp < (intptr_t)ndrp) { if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) return (EINTR); if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { nfs_rw_exit(&odrp->r_rwlock); return (EINTR); } } else { if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) return (EINTR); if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { nfs_rw_exit(&ndrp->r_rwlock); return (EINTR); } } /* * Lookup the target file. If it exists, it needs to be * checked to see whether it is a mount point and whether * it is active (open). */ error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); if (!error) { int isactive; ASSERT(nfs4_consistent_type(nvp)); /* * If this file has been mounted on, then just * return busy because renaming to it would remove * the mounted file system from the name space. */ if (vn_ismntpt(nvp)) { VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (EBUSY); } /* * First just remove the entry from the name cache, as it * is most likely the only entry for this vp. */ dnlc_remove(ndvp, nnm); rp = VTOR4(nvp); if (nvp->v_type != VREG) { /* * Purge the name cache of all references to this vnode * so that we can check the reference count to infer * whether it is active or not. */ if (nvp->v_count > 1) dnlc_purge_vp(nvp); isactive = nvp->v_count > 1; } else { mutex_enter(&rp->r_os_lock); isactive = list_head(&rp->r_open_streams) != NULL; mutex_exit(&rp->r_os_lock); } /* * If the vnode is active and is not a directory, * arrange to rename it to a * temporary file so that it will continue to be * accessible. This implements the "unlink-open-file" * semantics for the target of a rename operation. * Before doing this though, make sure that the * source and target files are not already the same. */ if (isactive && nvp->v_type != VDIR) { /* * Lookup the source name. */ error = nfs4lookup(odvp, onm, &ovp, cr, 0); /* * The source name *should* already exist. */ if (error) { VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (error); } ASSERT(nfs4_consistent_type(ovp)); /* * Compare the two vnodes. If they are the same, * just release all held vnodes and return success. */ if (VN_CMP(ovp, nvp)) { VN_RELE(ovp); VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (0); } /* * Can't mix and match directories and non- * directories in rename operations. We already * know that the target is not a directory. If * the source is a directory, return an error. */ if (ovp->v_type == VDIR) { VN_RELE(ovp); VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (ENOTDIR); } link_call: /* * The target file exists, is not the same as * the source file, and is active. We first * try to Link it to a temporary filename to * avoid having the server removing the file * completely (which could cause data loss to * the user's POV in the event the Rename fails * -- see bug 1165874). */ /* * The do_link and did_link booleans are * introduced in the event we get NFS4ERR_FILE_OPEN * returned for the Rename. Some servers can * not Rename over an Open file, so they return * this error. The client needs to Remove the * newly created Link and do two Renames, just * as if the server didn't support LINK. */ tmpname = newname(); error = 0; if (do_link) { error = nfs4_link(ndvp, nvp, tmpname, cr); } if (error == EOPNOTSUPP || !do_link) { error = nfs4_rename(ndvp, nnm, ndvp, tmpname, cr); did_link = 0; } else { did_link = 1; } if (error) { kmem_free(tmpname, MAXNAMELEN); VN_RELE(ovp); VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (error); } mutex_enter(&rp->r_statelock); if (rp->r_unldvp == NULL) { VN_HOLD(ndvp); rp->r_unldvp = ndvp; if (rp->r_unlcred != NULL) crfree(rp->r_unlcred); crhold(cr); rp->r_unlcred = cr; rp->r_unlname = tmpname; } else { if (rp->r_unlname) kmem_free(rp->r_unlname, MAXNAMELEN); rp->r_unlname = tmpname; } mutex_exit(&rp->r_statelock); } (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); ASSERT(nfs4_consistent_type(nvp)); VN_RELE(nvp); } if (ovp == NULL) { /* * When renaming directories to be a subdirectory of a * different parent, the dnlc entry for ".." will no * longer be valid, so it must be removed. * * We do a lookup here to determine whether we are renaming * a directory and we need to check if we are renaming * an unlinked file. This might have already been done * in previous code, so we check ovp == NULL to avoid * doing it twice. */ error = nfs4lookup(odvp, onm, &ovp, cr, 0); /* * The source name *should* already exist. */ if (error) { nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (error); } ASSERT(ovp != NULL); ASSERT(nfs4_consistent_type(ovp)); } /* * Is the object being renamed a dir, and if so, is * it being renamed to a child of itself? The underlying * fs should ultimately return EINVAL for this case; * however, buggy beta non-Solaris NFSv4 servers at * interop testing events have allowed this behavior, * and it caused our client to panic due to a recursive * mutex_enter in fn_move. * * The tedious locking in fn_move could be changed to * deal with this case, and the client could avoid the * panic; however, the client would just confuse itself * later and misbehave. A better way to handle the broken * server is to detect this condition and return EINVAL * without ever sending the the bogus rename to the server. * We know the rename is invalid -- just fail it now. */ if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { VN_RELE(ovp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (EINVAL); } (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); /* * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is * possible for the filehandle to change due to the rename. * If neither of these bits is set, but FH4_VOL_MIGRATION is set, * the fh will not change because of the rename, but we still need * to update its rnode entry with the new name for * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN * has no effect on these for now, but for future improvements, * we might want to use it too to simplify handling of files * that are open with that flag on. (XXX) */ mi = VTOMI4(odvp); if (NFS4_VOLATILE_FH(mi)) { error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, &stat); } else { error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, &stat); } ASSERT(nfs4_consistent_type(odvp)); ASSERT(nfs4_consistent_type(ndvp)); ASSERT(nfs4_consistent_type(ovp)); if (stat == NFS4ERR_FILE_OPEN && did_link) { do_link = 0; /* * Before the 'link_call' code, we did a nfs4_lookup * that puts a VN_HOLD on nvp. After the nfs4_link * call we call VN_RELE to match that hold. We need * to place an additional VN_HOLD here since we will * be hitting that VN_RELE again. */ VN_HOLD(nvp); (void) nfs4_remove(ndvp, tmpname, cr); /* Undo the unlinked file naming stuff we just did */ mutex_enter(&rp->r_statelock); if (rp->r_unldvp) { VN_RELE(ndvp); rp->r_unldvp = NULL; if (rp->r_unlcred != NULL) crfree(rp->r_unlcred); rp->r_unlcred = NULL; /* rp->r_unlanme points to tmpname */ if (rp->r_unlname) kmem_free(rp->r_unlname, MAXNAMELEN); rp->r_unlname = NULL; } mutex_exit(&rp->r_statelock); goto link_call; } if (error) { VN_RELE(ovp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (error); } /* * when renaming directories to be a subdirectory of a * different parent, the dnlc entry for ".." will no * longer be valid, so it must be removed */ rp = VTOR4(ovp); if (ndvp != odvp) { if (ovp->v_type == VDIR) { dnlc_remove(ovp, ".."); if (rp->r_dir != NULL) nfs4_purge_rddir_cache(ovp); } } /* * If we are renaming the unlinked file, update the * r_unldvp and r_unlname as needed. */ mutex_enter(&rp->r_statelock); if (rp->r_unldvp != NULL) { if (strcmp(rp->r_unlname, onm) == 0) { (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); rp->r_unlname[MAXNAMELEN - 1] = '\0'; if (ndvp != rp->r_unldvp) { VN_RELE(rp->r_unldvp); rp->r_unldvp = ndvp; VN_HOLD(ndvp); } } } mutex_exit(&rp->r_statelock); VN_RELE(ovp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (error); } /* * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, * when it is known that the filehandle is persistent through rename. * * Rename requires that the current fh be the target directory and the * saved fh be the source directory. After the operation, the current fh * is unchanged. * The compound op structure for persistent fh rename is: * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME * Rather than bother with the directory postop args, we'll simply * update that a change occured in the cache, so no post-op getattrs. */ static int nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) { COMPOUND4args_clnt args; COMPOUND4res_clnt res, *resp = NULL; nfs_argop4 *argop; nfs_resop4 *resop; int doqueue, argoplist_size; mntinfo4_t *mi; rnode4_t *odrp = VTOR4(odvp); rnode4_t *ndrp = VTOR4(ndvp); RENAME4res *rn_res; bool_t needrecov; nfs4_recov_state_t recov_state; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; dirattr_info_t dinfo, *dinfop; ASSERT(curproc->p_zone == VTOMI4(odvp)->mi_zone); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; /* * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir * * If source/target are different dirs, then append putfh(src); getattr */ args.array_len = (odvp == ndvp) ? 5 : 7; argoplist_size = args.array_len * sizeof (nfs_argop4); args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); recov_retry: *statp = NFS4_OK; /* No need to Lookup the file, persistent fh */ args.ctag = TAG_RENAME; mi = VTOMI4(odvp); e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); if (e.error) { kmem_free(argop, argoplist_size); return (e.error); } /* 0: putfh source directory */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; /* 1: Save source fh to free up current for target */ argop[1].argop = OP_SAVEFH; /* 2: putfh targetdir */ argop[2].argop = OP_CPUTFH; argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; /* 3: current_fh is targetdir, saved_fh is sourcedir */ argop[3].argop = OP_CRENAME; argop[3].nfs_argop4_u.opcrename.coldname = onm; argop[3].nfs_argop4_u.opcrename.cnewname = nnm; /* 4: getattr (targetdir) */ argop[4].argop = OP_GETATTR; argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[4].nfs_argop4_u.opgetattr.mi = mi; if (ndvp != odvp) { /* 5: putfh (sourcedir) */ argop[5].argop = OP_CPUTFH; argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; /* 6: getattr (sourcedir) */ argop[6].argop = OP_GETATTR; argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[6].nfs_argop4_u.opgetattr.mi = mi; } dnlc_remove(odvp, onm); dnlc_remove(ndvp, nnm); doqueue = 1; dinfo.di_time_call = gethrtime(); rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); if (e.error) { PURGE_ATTRCACHE4(odvp); PURGE_ATTRCACHE4(ndvp); } else { *statp = res.status; } if (needrecov) { if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, OP_RENAME, NULL) == FALSE) { nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } } if (!e.error) { resp = &res; /* * as long as OP_RENAME */ if (res.status != NFS4_OK && res.array_len <= 4) { e.error = geterrno4(res.status); PURGE_ATTRCACHE4(odvp); PURGE_ATTRCACHE4(ndvp); /* * System V defines rename to return EEXIST, not * ENOTEMPTY if the target directory is not empty. * Over the wire, the error is NFSERR_ENOTEMPTY * which geterrno4 maps to ENOTEMPTY. */ if (e.error == ENOTEMPTY) e.error = EEXIST; } else { resop = &res.array[3]; /* rename res */ rn_res = &resop->nfs_resop4_u.oprename; if (res.status == NFS4_OK) { /* * Update target attribute, readdir and dnlc * caches. */ dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; dinfo.di_cred = cr; dinfop = &dinfo; } else dinfop = NULL; nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); /* * Update source attribute, readdir and dnlc caches * */ if (ndvp != odvp) { if (dinfop) dinfo.di_garp = &(res.array[6].nfs_resop4_u. opgetattr.ga_res); nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, dinfop); } fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, nnm); } } if (resp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); kmem_free(argop, argoplist_size); return (e.error); } /* * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when * it is possible for the filehandle to change due to the rename. * * The compound req in this case includes a post-rename lookup and getattr * to ensure that we have the correct fh and attributes for the object. * * Rename requires that the current fh be the target directory and the * saved fh be the source directory. After the operation, the current fh * is unchanged. * * We need the new filehandle (hence a LOOKUP and GETFH) so that we can * update the filehandle for the renamed object. We also get the old * filehandle for historical reasons; this should be taken out sometime. * This results in a rather cumbersome compound... * * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR * */ static int nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) { COMPOUND4args_clnt args; COMPOUND4res_clnt res, *resp = NULL; int argoplist_size; nfs_argop4 *argop; nfs_resop4 *resop; int doqueue; mntinfo4_t *mi; rnode4_t *odrp = VTOR4(odvp); /* old directory */ rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ rnode4_t *orp = VTOR4(ovp); /* object being renamed */ RENAME4res *rn_res; GETFH4res *ngf_res; bool_t needrecov; nfs4_recov_state_t recov_state; hrtime_t t; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; dirattr_info_t dinfo, *dinfop = &dinfo; ASSERT(curproc->p_zone == VTOMI4(odvp)->mi_zone); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; recov_retry: *statp = NFS4_OK; /* * There is a window between the RPC and updating the path and * filehandle stored in the rnode. Lock out the FHEXPIRED recovery * code, so that it doesn't try to use the old path during that * window. */ mutex_enter(&orp->r_statelock); while (orp->r_flags & R4RECEXPFH) { klwp_t *lwp = ttolwp(curthread); if (lwp != NULL) lwp->lwp_nostop++; if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { mutex_exit(&orp->r_statelock); if (lwp != NULL) lwp->lwp_nostop--; return (EINTR); } if (lwp != NULL) lwp->lwp_nostop--; } orp->r_flags |= R4RECEXPFH; mutex_exit(&orp->r_statelock); mi = VTOMI4(odvp); args.ctag = TAG_RENAME_VFH; args.array_len = (odvp == ndvp) ? 10 : 12; argoplist_size = args.array_len * sizeof (nfs_argop4); argop = kmem_alloc(argoplist_size, KM_SLEEP); /* * Rename ops: * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), * PUTFH(targetdir), RENAME, GETATTR(targetdir) * LOOKUP(trgt), GETFH(new), GETATTR, * * if (odvp != ndvp) * add putfh(sourcedir), getattr(sourcedir) } */ args.array = argop; e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, NULL); if (e.error) { kmem_free(argop, argoplist_size); mutex_enter(&orp->r_statelock); orp->r_flags &= ~R4RECEXPFH; cv_broadcast(&orp->r_cv); mutex_exit(&orp->r_statelock); return (e.error); } /* 0: putfh source directory */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; /* 1: Save source fh to free up current for target */ argop[1].argop = OP_SAVEFH; /* 2: Lookup pre-rename fh of renamed object */ argop[2].argop = OP_CLOOKUP; argop[2].nfs_argop4_u.opclookup.cname = onm; /* 3: getfh fh of renamed object (before rename) */ argop[3].argop = OP_GETFH; /* 4: putfh targetdir */ argop[4].argop = OP_CPUTFH; argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; /* 5: current_fh is targetdir, saved_fh is sourcedir */ argop[5].argop = OP_CRENAME; argop[5].nfs_argop4_u.opcrename.coldname = onm; argop[5].nfs_argop4_u.opcrename.cnewname = nnm; /* 6: getattr of target dir (post op attrs) */ argop[6].argop = OP_GETATTR; argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[6].nfs_argop4_u.opgetattr.mi = mi; /* 7: Lookup post-rename fh of renamed object */ argop[7].argop = OP_CLOOKUP; argop[7].nfs_argop4_u.opclookup.cname = nnm; /* 8: getfh fh of renamed object (after rename) */ argop[8].argop = OP_GETFH; /* 9: getattr of renamed object */ argop[9].argop = OP_GETATTR; argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[9].nfs_argop4_u.opgetattr.mi = mi; /* * If source/target dirs are different, then get new post-op * attrs for source dir also. */ if (ndvp != odvp) { /* 10: putfh (sourcedir) */ argop[10].argop = OP_CPUTFH; argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; /* 11: getattr (sourcedir) */ argop[11].argop = OP_GETATTR; argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[11].nfs_argop4_u.opgetattr.mi = mi; } dnlc_remove(odvp, onm); dnlc_remove(ndvp, nnm); doqueue = 1; t = gethrtime(); rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); if (e.error) { PURGE_ATTRCACHE4(odvp); PURGE_ATTRCACHE4(ndvp); if (!needrecov) { nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); goto out; } } else { *statp = res.status; } if (needrecov) { bool_t abort; abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, OP_RENAME, NULL); if (abort == FALSE) { nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); kmem_free(argop, argoplist_size); if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); mutex_enter(&orp->r_statelock); orp->r_flags &= ~R4RECEXPFH; cv_broadcast(&orp->r_cv); mutex_exit(&orp->r_statelock); goto recov_retry; } else { if (e.error != 0) { nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); goto out; } /* fall through for res.status case */ } } resp = &res; /* * If OP_RENAME (or any prev op) failed, then return an error. * OP_RENAME is index 5, so if array len <= 6 we return an error. */ if ((res.status != NFS4_OK) && (res.array_len <= 6)) { /* * Error in an op other than last Getattr */ e.error = geterrno4(res.status); PURGE_ATTRCACHE4(odvp); PURGE_ATTRCACHE4(ndvp); /* * System V defines rename to return EEXIST, not * ENOTEMPTY if the target directory is not empty. * Over the wire, the error is NFSERR_ENOTEMPTY * which geterrno4 maps to ENOTEMPTY. */ if (e.error == ENOTEMPTY) e.error = EEXIST; nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); goto out; } /* rename results */ rn_res = &res.array[5].nfs_resop4_u.oprename; if (res.status == NFS4_OK) { /* Update target attribute, readdir and dnlc caches */ dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; dinfo.di_cred = cr; dinfo.di_time_call = t; } else dinfop = NULL; /* Update source cache attribute, readdir and dnlc caches */ nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); /* Update source cache attribute, readdir and dnlc caches */ if (ndvp != odvp) { /* * If dinfop is non-NULL, then compound succeded, so * set di_garp to attrs for source dir. dinfop is only * set to NULL when compound fails. */ if (dinfop) dinfo.di_garp = &res.array[11].nfs_resop4_u.opgetattr.ga_res; nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, dinfop); } /* * Update the rnode with the new component name and args, * and if the file handle changed, also update it with the new fh. * This is only necessary if the target object has an rnode * entry and there is no need to create one for it. */ resop = &res.array[8]; /* getfh new res */ ngf_res = &resop->nfs_resop4_u.opgetfh; /* * Update the path and filehandle for the renamed object. */ nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); if (res.status == NFS4_OK) { resop++; /* getattr res */ e.error = nfs4_update_attrcache(res.status, &resop->nfs_resop4_u.opgetattr.ga_res, t, ovp, cr); } out: kmem_free(argop, argoplist_size); if (resp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); mutex_enter(&orp->r_statelock); orp->r_flags &= ~R4RECEXPFH; cv_broadcast(&orp->r_cv); mutex_exit(&orp->r_statelock); return (e.error); } static int nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) { int error; vnode_t *vp; if (curproc->p_zone != VTOMI4(dvp)->mi_zone) return (EPERM); /* * As ".." has special meaning and rather than send a mkdir * over the wire to just let the server freak out, we just * short circuit it here and return EEXIST */ if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') return (EEXIST); /* * Decision to get the right gid and setgid bit of the * new directory is now made in call_nfs4_create_req. */ va->va_mask |= AT_MODE; error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); if (error) return (error); *vpp = vp; return (0); } /* * rmdir is using the same remove v4 op as does remove. * Remove requires that the current fh be the target directory. * After the operation, the current fh is unchanged. * The compound op structure is: * PUTFH(targetdir), REMOVE */ static int nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) { int need_end_op = FALSE; COMPOUND4args_clnt args; COMPOUND4res_clnt res, *resp = NULL; REMOVE4res *rm_res; nfs_argop4 argop[3]; nfs_resop4 *resop; vnode_t *vp; int doqueue; mntinfo4_t *mi; rnode4_t *drp; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; dirattr_info_t dinfo, *dinfop; if (curproc->p_zone != VTOMI4(dvp)->mi_zone) return (EPERM); /* * As ".." has special meaning and rather than send a rmdir * over the wire to just let the server freak out, we just * short circuit it here and return EEXIST */ if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') return (EEXIST); drp = VTOR4(dvp); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) return (EINTR); /* * Attempt to prevent a rmdir(".") from succeeding. */ e.error = nfs4lookup(dvp, nm, &vp, cr, 0); if (e.error) { nfs_rw_exit(&drp->r_rwlock); return (e.error); } if (vp == cdir) { VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (EINVAL); } /* * Since nfsv4 remove op works on both files and directories, * check that the removed object is indeed a directory. */ if (vp->v_type != VDIR) { VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (ENOTDIR); } /* * First just remove the entry from the name cache, as it * is most likely an entry for this vp. */ dnlc_remove(dvp, nm); /* * If there vnode reference count is greater than one, then * there may be additional references in the DNLC which will * need to be purged. First, trying removing the entry for * the parent directory and see if that removes the additional * reference(s). If that doesn't do it, then use dnlc_purge_vp * to completely remove any references to the directory which * might still exist in the DNLC. */ if (vp->v_count > 1) { dnlc_remove(vp, ".."); if (vp->v_count > 1) dnlc_purge_vp(vp); } mi = VTOMI4(dvp); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; recov_retry: args.ctag = TAG_RMDIR; /* * Rmdir ops: putfh dir; remove */ args.array_len = 3; args.array = argop; e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); if (e.error) { nfs_rw_exit(&drp->r_rwlock); return (e.error); } need_end_op = TRUE; /* putfh directory */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; /* remove */ argop[1].argop = OP_CREMOVE; argop[1].nfs_argop4_u.opcremove.ctarget = nm; /* getattr (postop attrs for dir that contained removed dir) */ argop[2].argop = OP_GETATTR; argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[2].nfs_argop4_u.opgetattr.mi = mi; dinfo.di_time_call = gethrtime(); doqueue = 1; rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); PURGE_ATTRCACHE4(vp); needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); if (e.error) { PURGE_ATTRCACHE4(dvp); } if (needrecov) { if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); need_end_op = FALSE; goto recov_retry; } } if (!e.error) { resp = &res; /* * Only return error if first 2 ops (OP_REMOVE or earlier) * failed. */ if (res.status != NFS4_OK && res.array_len <= 2) { e.error = geterrno4(res.status); PURGE_ATTRCACHE4(dvp); nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); need_end_op = FALSE; nfs4_purge_stale_fh(e.error, dvp, cr); /* * System V defines rmdir to return EEXIST, not * ENOTEMPTY if the directory is not empty. Over * the wire, the error is NFSERR_ENOTEMPTY which * geterrno4 maps to ENOTEMPTY. */ if (e.error == ENOTEMPTY) e.error = EEXIST; } else { resop = &res.array[1]; /* remove res */ rm_res = &resop->nfs_resop4_u.opremove; if (res.status == NFS4_OK) { resop = &res.array[2]; /* dir attrs */ dinfo.di_garp = &resop->nfs_resop4_u.opgetattr.ga_res; dinfo.di_cred = cr; dinfop = &dinfo; } else dinfop = NULL; /* Update dir attribute, readdir and dnlc caches */ nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, dinfop); /* destroy rddir cache for dir that was removed */ if (VTOR4(vp)->r_dir != NULL) nfs4_purge_rddir_cache(vp); } } if (need_end_op) nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); nfs_rw_exit(&drp->r_rwlock); if (resp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); VN_RELE(vp); return (e.error); } static int nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) { int error; vnode_t *vp; rnode4_t *rp; char *contents; mntinfo4_t *mi = VTOMI4(dvp); if (curproc->p_zone != mi->mi_zone) return (EPERM); if (!(mi->mi_flags & MI4_SYMLINK)) return (EOPNOTSUPP); error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); if (error) { return (error); } ASSERT(nfs4_consistent_type(vp)); rp = VTOR4(vp); if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); if (contents != NULL) { mutex_enter(&rp->r_statelock); if (rp->r_symlink.contents == NULL) { rp->r_symlink.len = strlen(tnm); bcopy(tnm, contents, rp->r_symlink.len); rp->r_symlink.contents = contents; rp->r_symlink.size = MAXPATHLEN; mutex_exit(&rp->r_statelock); } else { mutex_exit(&rp->r_statelock); kmem_free((void *)contents, MAXPATHLEN); } } } VN_RELE(vp); return (error); } /* * Read directory entries. * There are some weird things to look out for here. The uio_loffset * field is either 0 or it is the offset returned from a previous * readdir. It is an opaque value used by the server to find the * correct directory block to read. The count field is the number * of blocks to read on the server. This is advisory only, the server * may return only one block's worth of entries. Entries may be compressed * on the server. */ static int nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) { int error; uint_t count; rnode4_t *rp; rddir4_cache *rdc; rddir4_cache *rrdc; if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); rp = VTOR4(vp); ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); /* * Make sure that the directory cache is valid. */ if (rp->r_dir != NULL) { if (nfs_disable_rddir_cache != 0) { /* * Setting nfs_disable_rddir_cache in /etc/system * allows interoperability with servers that do not * properly update the attributes of directories. * Any cached information gets purged before an * access is made to it. */ nfs4_purge_rddir_cache(vp); } error = nfs4_validate_caches(vp, cr); if (error) return (error); } count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); /* * Short circuit last readdir which always returns 0 bytes. * This can be done after the directory has been read through * completely at least once. This will set r_direof which * can be used to find the value of the last cookie. */ mutex_enter(&rp->r_statelock); if (rp->r_direof != NULL && uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { mutex_exit(&rp->r_statelock); #ifdef DEBUG nfs4_readdir_cache_shorts++; #endif if (eofp) *eofp = 1; return (0); } /* * Look for a cache entry. Cache entries are identified * by the NFS cookie value and the byte count requested. */ rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); /* * If rdc is NULL then the lookup resulted in an unrecoverable error. */ if (rdc == NULL) { mutex_exit(&rp->r_statelock); return (EINTR); } /* * Check to see if we need to fill this entry in. */ if (rdc->flags & RDDIRREQ) { rdc->flags &= ~RDDIRREQ; rdc->flags |= RDDIR; mutex_exit(&rp->r_statelock); /* * Do the readdir. */ nfs4readdir(vp, rdc, cr); /* * Reaquire the lock, so that we can continue */ mutex_enter(&rp->r_statelock); /* * The entry is now complete */ rdc->flags &= ~RDDIR; } ASSERT(!(rdc->flags & RDDIR)); /* * If an error occurred while attempting * to fill the cache entry, mark the entry invalid and * just return the error. */ if (rdc->error) { error = rdc->error; rdc->flags |= RDDIRREQ; rddir4_cache_rele(rp, rdc); mutex_exit(&rp->r_statelock); return (error); } /* * The cache entry is complete and good, * copyout the dirent structs to the calling * thread. */ error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); /* * If no error occurred during the copyout, * update the offset in the uio struct to * contain the value of the next NFS 4 cookie * and set the eof value appropriately. */ if (!error) { uiop->uio_loffset = rdc->nfs4_ncookie; if (eofp) *eofp = rdc->eof; } /* * Decide whether to do readahead. Don't if we * have already read to the end of directory. */ if (rdc->eof) { /* * Make the entry the direof only if it is cached */ if (rdc->flags & RDDIRCACHED) rp->r_direof = rdc; rddir4_cache_rele(rp, rdc); mutex_exit(&rp->r_statelock); return (error); } /* Determine if a readdir readahead should be done */ if (!(rp->r_flags & R4LOOKUP)) { rddir4_cache_rele(rp, rdc); mutex_exit(&rp->r_statelock); return (error); } /* * Now look for a readahead entry. * * Check to see whether we found an entry for the readahead. * If so, we don't need to do anything further, so free the new * entry if one was allocated. Otherwise, allocate a new entry, add * it to the cache, and then initiate an asynchronous readdir * operation to fill it. */ rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); /* * A readdir cache entry could not be obtained for the readahead. In * this case we skip the readahead and return. */ if (rrdc == NULL) { rddir4_cache_rele(rp, rdc); mutex_exit(&rp->r_statelock); return (error); } /* * Check to see if we need to fill this entry in. */ if (rrdc->flags & RDDIRREQ) { rrdc->flags &= ~RDDIRREQ; rrdc->flags |= RDDIR; rddir4_cache_rele(rp, rdc); mutex_exit(&rp->r_statelock); #ifdef DEBUG nfs4_readdir_readahead++; #endif /* * Do the readdir. */ nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); return (error); } rddir4_cache_rele(rp, rrdc); rddir4_cache_rele(rp, rdc); mutex_exit(&rp->r_statelock); return (error); } static int do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) { int error; rnode4_t *rp; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); rp = VTOR4(vp); /* * Obtain the readdir results for the caller. */ nfs4readdir(vp, rdc, cr); mutex_enter(&rp->r_statelock); /* * The entry is now complete */ rdc->flags &= ~RDDIR; error = rdc->error; if (error) rdc->flags |= RDDIRREQ; rddir4_cache_rele(rp, rdc); mutex_exit(&rp->r_statelock); return (error); } static void nfs4readdir_stub(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) { int stublength; dirent64_t *dp; u_longlong_t nodeid, pnodeid; vnode_t *dotdotvp = NULL; rnode4_t *rp = VTOR4(vp); nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; rdc->error = 0; rdc->entries = 0; rdc->actlen = rdc->entlen = 0; rdc->eof = TRUE; /* Check for EOF case for readdir of stub */ if (cookie != 0 && cookie != 1) return; nodeid = rp->r_attr.va_nodeid; if (vp->v_flag & VROOT) { pnodeid = nodeid; /* root of mount point */ } else { if (rdc->error = nfs4_lookup(vp, "..", &dotdotvp, 0, 0, 0, cr)) return; pnodeid = VTOR4(dotdotvp)->r_attr.va_nodeid; VN_RELE(dotdotvp); } stublength = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); rdc->entries = kmem_alloc(stublength, KM_SLEEP); rdc->entlen = rdc->buflen = stublength; rdc->eof = TRUE; dp = (dirent64_t *)rdc->entries; if (rdc->nfs4_cookie == (nfs_cookie4)0) { bcopy(nfs4_dot_entries, rdc->entries, DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2)); dp->d_ino = nodeid; dp = (struct dirent64 *)(((char *)dp) + DIRENT64_RECLEN(1)); dp->d_ino = pnodeid; rdc->actlen = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); } else { /* for ".." entry */ bcopy(nfs4_dot_dot_entry, rdc->entries, DIRENT64_RECLEN(2)); dp->d_ino = pnodeid; rdc->actlen = DIRENT64_RECLEN(2); } rdc->nfs4_ncookie = rdc->actlen; } /* * Read directory entries. * There are some weird things to look out for here. The uio_loffset * field is either 0 or it is the offset returned from a previous * readdir. It is an opaque value used by the server to find the * correct directory block to read. The count field is the number * of blocks to read on the server. This is advisory only, the server * may return only one block's worth of entries. Entries may be compressed * on the server. * * Generates the following compound request: * 1. If readdir offset is zero and no dnlc entry for parent exists, * must include a Lookupp as well. In this case, send: * { Putfh ; Readdir; Lookupp; Getfh; Getattr } * 2. Otherwise just do: { Putfh ; Readdir } * * Get complete attributes and filehandles for entries if this is the * first read of the directory. Otherwise, just get fileid's. */ static void nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; READDIR4args *rargs; READDIR4res_clnt *rd_res; bitmap4 rd_bitsval; nfs_argop4 argop[5]; nfs_resop4 *resop; rnode4_t *rp = VTOR4(vp); mntinfo4_t *mi = VTOMI4(vp); int doqueue; u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ vnode_t *dvp; nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; int num_ops, res_opcnt; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; hrtime_t t; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; ASSERT(curproc->p_zone == mi->mi_zone); ASSERT(rdc->flags & RDDIR); ASSERT(rdc->entries == NULL); if (rp->r_flags & R4SRVSTUB) { nfs4readdir_stub(vp, rdc, cr); return; } num_ops = 2; if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { /* * Since nfsv4 readdir may not return entries for "." and "..", * the client must recreate them: * To find the correct nodeid, do the following: * For current node, get nodeid from dnlc. * - if current node is rootvp, set pnodeid to nodeid. * - else if parent is in the dnlc, get its nodeid from there. * - else add LOOKUPP+GETATTR to compound. */ nodeid = rp->r_attr.va_nodeid; if (vp->v_flag & VROOT) { pnodeid = nodeid; /* root of mount point */ } else { dvp = dnlc_lookup(vp, ".."); if (dvp != NULL && dvp != DNLC_NO_VNODE) { /* parent in dnlc cache - no need for otw */ pnodeid = VTOR4(dvp)->r_attr.va_nodeid; } else { /* * parent not in dnlc cache, * do lookupp to get its id */ num_ops = 5; pnodeid = 0; /* set later by getattr parent */ } if (dvp) VN_RELE(dvp); } } recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; /* Save the original mount point security flavor */ (void) save_mnt_secinfo(mi->mi_curr_serv); recov_retry: args.ctag = TAG_READDIR; args.array = argop; args.array_len = num_ops; if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, &recov_state, NULL)) { /* * If readdir a node that is a stub for a crossed mount point, * keep the original secinfo flavor for the current file * system, not the crossed one. */ (void) check_mnt_secinfo(mi->mi_curr_serv, vp); rdc->error = e.error; return; } /* * Determine which attrs to request for dirents. This code * must be protected by nfs4_start/end_fop because of r_server * (which will change during failover recovery). * */ if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { /* * Get all vattr attrs plus filehandle and rdattr_error */ rd_bitsval = NFS4_VATTR_MASK | FATTR4_RDATTR_ERROR_MASK | FATTR4_FILEHANDLE_MASK; if (rp->r_flags & R4READDIRWATTR) { mutex_enter(&rp->r_statelock); rp->r_flags &= ~R4READDIRWATTR; mutex_exit(&rp->r_statelock); } } else { servinfo4_t *svp = rp->r_server; /* * Already read directory. Use readdir with * no attrs (except for mounted_on_fileid) for updates. */ rd_bitsval = FATTR4_RDATTR_ERROR_MASK; /* * request mounted on fileid if supported, else request * fileid. maybe we should verify that fileid is supported * and request something else if not. */ (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; nfs_rw_exit(&svp->sv_lock); } /* putfh directory fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; argop[1].argop = OP_READDIR; rargs = &argop[1].nfs_argop4_u.opreaddir; /* * 1 and 2 are reserved for client "." and ".." entry offset. * cookie 0 should be used over-the-wire to start reading at * the beginning of the directory excluding "." and "..". */ if (rdc->nfs4_cookie == 0 || rdc->nfs4_cookie == 1 || rdc->nfs4_cookie == 2) { rargs->cookie = (nfs_cookie4)0; rargs->cookieverf = 0; } else { rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; mutex_enter(&rp->r_statelock); rargs->cookieverf = rp->r_cookieverf4; mutex_exit(&rp->r_statelock); } rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); rargs->maxcount = mi->mi_tsize; rargs->attr_request = rd_bitsval; rargs->rdc = rdc; rargs->dvp = vp; rargs->mi = mi; rargs->cr = cr; /* * If count < than the minimum required, we return no entries * and fail with EINVAL */ if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { rdc->error = EINVAL; goto out; } if (args.array_len == 5) { /* * Add lookupp and getattr for parent nodeid. */ argop[2].argop = OP_LOOKUPP; argop[3].argop = OP_GETFH; /* getattr parent */ argop[4].argop = OP_GETATTR; argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; argop[4].nfs_argop4_u.opgetattr.mi = mi; } doqueue = 1; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } /* capture the time of this call */ rargs->t = t = gethrtime(); rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); /* * If RPC error occurred and it isn't an error that * triggers recovery, then go ahead and fail now. */ if (e.error != 0 && !needrecov) { rdc->error = e.error; goto out; } if (needrecov) { bool_t abort; NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4readdir: initiating recovery.\n")); abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, NULL, OP_READDIR, NULL); if (abort == FALSE) { nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, &recov_state, needrecov); if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); if (rdc->entries != NULL) { kmem_free(rdc->entries, rdc->entlen); rdc->entries = NULL; } goto recov_retry; } if (e.error != 0) { rdc->error = e.error; goto out; } /* fall through for res.status case */ } res_opcnt = res.array_len; /* * If compound failed first 2 ops (PUTFH+READDIR), then return * failure here. Subsequent ops are for filling out dot-dot * dirent, and if they fail, we still want to give the caller * the dirents returned by (the successful) READDIR op, so we need * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). * * One example where PUTFH+READDIR ops would succeed but * LOOKUPP+GETATTR would fail would be a dir that has r perm * but lacks x. In this case, a POSIX server's VOP_READDIR * would succeed; however, VOP_LOOKUP(..) would fail since no * x perm. We need to come up with a non-vendor-specific way * for a POSIX server to return d_ino from dotdot's dirent if * client only requests mounted_on_fileid, and just say the * LOOKUPP succeeded and fill out the GETATTR. However, if * client requested any mandatory attrs, server would be required * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR * for dotdot. */ if (res.status) { if (res_opcnt <= 2) { e.error = geterrno4(res.status); nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, &recov_state, needrecov); nfs4_purge_stale_fh(e.error, vp, cr); rdc->error = e.error; (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); if (rdc->entries != NULL) { kmem_free(rdc->entries, rdc->entlen); rdc->entries = NULL; } /* * If readdir a node that is a stub for a * crossed mount point, keep the original * secinfo flavor for the current file system, * not the crossed one. */ (void) check_mnt_secinfo(mi->mi_curr_serv, vp); return; } } resop = &res.array[1]; /* readdir res */ rd_res = &resop->nfs_resop4_u.opreaddirclnt; mutex_enter(&rp->r_statelock); rp->r_cookieverf4 = rd_res->cookieverf; mutex_exit(&rp->r_statelock); /* * For "." and ".." entries * e.g. * seek(cookie=0) -> "." entry with d_off = 1 * seek(cookie=1) -> ".." entry with d_off = 2 */ if (cookie == (nfs_cookie4) 0) { if (rd_res->dotp) rd_res->dotp->d_ino = nodeid; if (rd_res->dotdotp) rd_res->dotdotp->d_ino = pnodeid; } if (cookie == (nfs_cookie4) 1) { if (rd_res->dotdotp) rd_res->dotdotp->d_ino = pnodeid; } /* LOOKUPP+GETATTR attemped */ if (args.array_len == 5 && rd_res->dotdotp) { if (res.status == NFS4_OK && res_opcnt == 5) { nfs_fh4 *fhp; nfs4_sharedfh_t *sfhp; vnode_t *pvp; nfs4_ga_res_t *garp; resop++; /* lookupp */ resop++; /* getfh */ fhp = &resop->nfs_resop4_u.opgetfh.object; resop++; /* getattr of parent */ /* * First, take care of finishing the * readdir results. */ garp = &resop->nfs_resop4_u.opgetattr.ga_res; /* * The d_ino of .. must be the inode number * of the mounted filesystem. */ if (garp->n4g_va.va_mask & AT_NODEID) rd_res->dotdotp->d_ino = garp->n4g_va.va_nodeid; /* * Next, create the ".." dnlc entry */ sfhp = sfh4_get(fhp, mi); if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { dnlc_update(vp, "..", pvp); VN_RELE(pvp); } sfh4_rele(&sfhp); } } if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; mutex_exit(&mi->mi_lock); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); out: /* * If readdir a node that is a stub for a crossed mount point, * keep the original secinfo flavor for the current file system, * not the crossed one. */ (void) check_mnt_secinfo(mi->mi_curr_serv, vp); nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); } static int nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) { rnode4_t *rp = VTOR4(bp->b_vp); int count; int error; cred_t *cred_otw = NULL; offset_t offset; nfs4_open_stream_t *osp = NULL; bool_t first_time = TRUE; /* first time getting otw cred */ bool_t last_time = FALSE; /* last time getting otw cred */ ASSERT(curproc->p_zone == VTOMI4(bp->b_vp)->mi_zone); DTRACE_IO1(start, struct buf *, bp); offset = ldbtob(bp->b_lblkno); if (bp->b_flags & B_READ) { read_again: /* * Releases the osp, if it is provided. * Puts a hold on the cred_otw and the new osp (if found). */ cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, &first_time, &last_time); error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, offset, bp->b_bcount, &bp->b_resid, cred_otw, readahead, NULL); crfree(cred_otw); if (!error) { if (bp->b_resid) { /* * Didn't get it all because we hit EOF, * zero all the memory beyond the EOF. */ /* bzero(rdaddr + */ bzero(bp->b_un.b_addr + bp->b_bcount - bp->b_resid, bp->b_resid); } mutex_enter(&rp->r_statelock); if (bp->b_resid == bp->b_bcount && offset >= rp->r_size) { /* * We didn't read anything at all as we are * past EOF. Return an error indicator back * but don't destroy the pages (yet). */ error = NFS_EOF; } mutex_exit(&rp->r_statelock); } else if (error == EACCES && last_time == FALSE) { goto read_again; } } else { if (!(rp->r_flags & R4STALE)) { write_again: /* * Releases the osp, if it is provided. * Puts a hold on the cred_otw and the new * osp (if found). */ cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, &first_time, &last_time); mutex_enter(&rp->r_statelock); count = MIN(bp->b_bcount, rp->r_size - offset); mutex_exit(&rp->r_statelock); if (count < 0) cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); #ifdef DEBUG if (count == 0) { zoneid_t zoneid = getzoneid(); zcmn_err(zoneid, CE_WARN, "nfs4_bio: zero length write at %lld", offset); zcmn_err(zoneid, CE_CONT, "flags=0x%x, " "b_bcount=%ld, file size=%lld", rp->r_flags, (long)bp->b_bcount, rp->r_size); sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); if (nfs4_bio_do_stop) debug_enter("nfs4_bio"); } #endif error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, count, cred_otw, stab_comm); if (error == EACCES && last_time == FALSE) { crfree(cred_otw); goto write_again; } bp->b_error = error; if (error && error != EINTR && !(bp->b_vp->v_vfsp->vfs_flag && VFS_UNMOUNTED)) { /* * Don't print EDQUOT errors on the console. * Don't print asynchronous EACCES errors. * Don't print EFBIG errors. * Print all other write errors. */ if (error != EDQUOT && error != EFBIG && (error != EACCES || !(bp->b_flags & B_ASYNC))) nfs4_write_error(bp->b_vp, error, cred_otw); /* * Update r_error and r_flags as appropriate. * If the error was ESTALE, then mark the * rnode as not being writeable and save * the error status. Otherwise, save any * errors which occur from asynchronous * page invalidations. Any errors occurring * from other operations should be saved * by the caller. */ mutex_enter(&rp->r_statelock); if (error == ESTALE) { rp->r_flags |= R4STALE; if (!rp->r_error) rp->r_error = error; } else if (!rp->r_error && (bp->b_flags & (B_INVAL|B_FORCE|B_ASYNC)) == (B_INVAL|B_FORCE|B_ASYNC)) { rp->r_error = error; } mutex_exit(&rp->r_statelock); } crfree(cred_otw); } else error = rp->r_error; } if (error != 0 && error != NFS_EOF) bp->b_flags |= B_ERROR; if (osp) open_stream_rele(osp, rp); DTRACE_IO1(done, struct buf *, bp); return (error); } /* ARGSUSED */ static int nfs4_fid(vnode_t *vp, fid_t *fidp) { return (EREMOTE); } /* ARGSUSED2 */ static int nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) { rnode4_t *rp = VTOR4(vp); if (!write_lock) { (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); return (V_WRITELOCK_FALSE); } if ((rp->r_flags & R4DIRECTIO) || (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) return (V_WRITELOCK_FALSE); nfs_rw_exit(&rp->r_rwlock); } (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); return (V_WRITELOCK_TRUE); } /* ARGSUSED */ static void nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) { rnode4_t *rp = VTOR4(vp); nfs_rw_exit(&rp->r_rwlock); } /* ARGSUSED */ static int nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) { if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); /* * Because we stuff the readdir cookie into the offset field * someone may attempt to do an lseek with the cookie which * we want to succeed. */ if (vp->v_type == VDIR) return (0); if (*noffp < 0) return (EINVAL); return (0); } /* * Return all the pages from [off..off+len) in file */ static int nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, enum seg_rw rw, cred_t *cr) { rnode4_t *rp; int error; mntinfo4_t *mi; if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); rp = VTOR4(vp); if (IS_SHADOW(vp, rp)) vp = RTOV4(rp); if (vp->v_flag & VNOMAP) return (ENOSYS); if (protp != NULL) *protp = PROT_ALL; /* * Now validate that the caches are up to date. */ if (error = nfs4_validate_caches(vp, cr)) return (error); mi = VTOMI4(vp); retry: mutex_enter(&rp->r_statelock); /* * Don't create dirty pages faster than they * can be cleaned so that the system doesn't * get imbalanced. If the async queue is * maxed out, then wait for it to drain before * creating more dirty pages. Also, wait for * any threads doing pagewalks in the vop_getattr * entry points so that they don't block for * long periods. */ if (rw == S_CREATE) { while ((mi->mi_max_threads != 0 && rp->r_awcount > 2 * mi->mi_max_threads) || rp->r_gcount > 0) cv_wait(&rp->r_cv, &rp->r_statelock); } /* * If we are getting called as a side effect of an nfs_write() * operation the local file size might not be extended yet. * In this case we want to be able to return pages of zeroes. */ if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { NFS4_DEBUG(nfs4_pageio_debug, (CE_NOTE, "getpage beyond EOF: off=%lld, " "len=%llu, size=%llu, attrsize =%llu", off, (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); mutex_exit(&rp->r_statelock); return (EFAULT); /* beyond EOF */ } mutex_exit(&rp->r_statelock); if (len <= PAGESIZE) { error = nfs4_getapage(vp, off, len, protp, pl, plsz, seg, addr, rw, cr); NFS4_DEBUG(nfs4_pageio_debug && error, (CE_NOTE, "getpage error %d; off=%lld, " "len=%lld", error, off, (u_longlong_t)len)); } else { error = pvn_getpages(nfs4_getapage, vp, off, len, protp, pl, plsz, seg, addr, rw, cr); NFS4_DEBUG(nfs4_pageio_debug && error, (CE_NOTE, "getpages error %d; off=%lld, " "len=%lld", error, off, (u_longlong_t)len)); } switch (error) { case NFS_EOF: nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); goto retry; case ESTALE: nfs4_purge_stale_fh(error, vp, cr); } return (error); } /* * Called from pvn_getpages or nfs4_getpage to get a particular page. */ /* ARGSUSED */ static int nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, enum seg_rw rw, cred_t *cr) { rnode4_t *rp; uint_t bsize; struct buf *bp; page_t *pp; u_offset_t lbn; u_offset_t io_off; u_offset_t blkoff; u_offset_t rablkoff; size_t io_len; uint_t blksize; int error; int readahead; int readahead_issued = 0; int ra_window; /* readahead window */ page_t *pagefound; page_t *savepp; if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); rp = VTOR4(vp); ASSERT(!IS_SHADOW(vp, rp)); bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); reread: bp = NULL; pp = NULL; pagefound = NULL; if (pl != NULL) pl[0] = NULL; error = 0; lbn = off / bsize; blkoff = lbn * bsize; /* * Queueing up the readahead before doing the synchronous read * results in a significant increase in read throughput because * of the increased parallelism between the async threads and * the process context. */ if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && rw != S_CREATE && !(vp->v_flag & VNOCACHE)) { mutex_enter(&rp->r_statelock); /* * Calculate the number of readaheads to do. * a) No readaheads at offset = 0. * b) Do maximum(nfs4_nra) readaheads when the readahead * window is closed. * c) Do readaheads between 1 to (nfs4_nra - 1) depending * upon how far the readahead window is open or close. * d) No readaheads if rp->r_nextr is not within the scope * of the readahead window (random i/o). */ if (off == 0) readahead = 0; else if (blkoff == rp->r_nextr) readahead = nfs4_nra; else if (rp->r_nextr > blkoff && ((ra_window = (rp->r_nextr - blkoff) / bsize) <= (nfs4_nra - 1))) readahead = nfs4_nra - ra_window; else readahead = 0; rablkoff = rp->r_nextr; while (readahead > 0 && rablkoff + bsize < rp->r_size) { mutex_exit(&rp->r_statelock); if (nfs4_async_readahead(vp, rablkoff + bsize, addr + (rablkoff + bsize - off), seg, cr, nfs4_readahead) < 0) { mutex_enter(&rp->r_statelock); break; } readahead--; rablkoff += bsize; /* * Indicate that we did a readahead so * readahead offset is not updated * by the synchronous read below. */ readahead_issued = 1; mutex_enter(&rp->r_statelock); /* * set readahead offset to * offset of last async readahead * request. */ rp->r_nextr = rablkoff; } mutex_exit(&rp->r_statelock); } again: if ((pagefound = page_exists(vp, off)) == NULL) { if (pl == NULL) { (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, nfs4_readahead); } else if (rw == S_CREATE) { /* * Block for this page is not allocated, or the offset * is beyond the current allocation size, or we're * allocating a swap slot and the page was not found, * so allocate it and return a zero page. */ if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, addr)) == NULL) cmn_err(CE_PANIC, "nfs4_getapage: page_create"); io_len = PAGESIZE; mutex_enter(&rp->r_statelock); rp->r_nextr = off + PAGESIZE; mutex_exit(&rp->r_statelock); } else { /* * Need to go to server to get a block */ mutex_enter(&rp->r_statelock); if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { /* * If less than a block left in * file read less than a block. */ if (rp->r_size <= off) { /* * Trying to access beyond EOF, * set up to get at least one page. */ blksize = off + PAGESIZE - blkoff; } else blksize = rp->r_size - blkoff; } else if ((off == 0) || (off != rp->r_nextr && !readahead_issued)) { blksize = PAGESIZE; blkoff = off; /* block = page here */ } else blksize = bsize; mutex_exit(&rp->r_statelock); pp = pvn_read_kluster(vp, off, seg, addr, &io_off, &io_len, blkoff, blksize, 0); /* * Some other thread has entered the page, * so just use it. */ if (pp == NULL) goto again; /* * Now round the request size up to page boundaries. * This ensures that the entire page will be * initialized to zeroes if EOF is encountered. */ io_len = ptob(btopr(io_len)); bp = pageio_setup(pp, io_len, vp, B_READ); ASSERT(bp != NULL); /* * pageio_setup should have set b_addr to 0. This * is correct since we want to do I/O on a page * boundary. bp_mapin will use this addr to calculate * an offset, and then set b_addr to the kernel virtual * address it allocated for us. */ ASSERT(bp->b_un.b_addr == 0); bp->b_edev = 0; bp->b_dev = 0; bp->b_lblkno = lbtodb(io_off); bp->b_file = vp; bp->b_offset = (offset_t)off; bp_mapin(bp); /* * If doing a write beyond what we believe is EOF, * don't bother trying to read the pages from the * server, we'll just zero the pages here. We * don't check that the rw flag is S_WRITE here * because some implementations may attempt a * read access to the buffer before copying data. */ mutex_enter(&rp->r_statelock); if (io_off >= rp->r_size && seg == segkmap) { mutex_exit(&rp->r_statelock); bzero(bp->b_un.b_addr, io_len); } else { mutex_exit(&rp->r_statelock); error = nfs4_bio(bp, NULL, cr, FALSE); } /* * Unmap the buffer before freeing it. */ bp_mapout(bp); pageio_done(bp); savepp = pp; do { pp->p_fsdata = C_NOCOMMIT; } while ((pp = pp->p_next) != savepp); if (error == NFS_EOF) { /* * If doing a write system call just return * zeroed pages, else user tried to get pages * beyond EOF, return error. We don't check * that the rw flag is S_WRITE here because * some implementations may attempt a read * access to the buffer before copying data. */ if (seg == segkmap) error = 0; else error = EFAULT; } if (!readahead_issued && !error) { mutex_enter(&rp->r_statelock); rp->r_nextr = io_off + io_len; mutex_exit(&rp->r_statelock); } } } out: if (pl == NULL) return (error); if (error) { if (pp != NULL) pvn_read_done(pp, B_ERROR); return (error); } if (pagefound) { se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); /* * Page exists in the cache, acquire the appropriate lock. * If this fails, start all over again. */ if ((pp = page_lookup(vp, off, se)) == NULL) { #ifdef DEBUG nfs4_lostpage++; #endif goto reread; } pl[0] = pp; pl[1] = NULL; return (0); } if (pp != NULL) pvn_plist_init(pp, pl, plsz, off, io_len, rw); return (error); } static void nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, cred_t *cr) { int error; page_t *pp; u_offset_t io_off; size_t io_len; struct buf *bp; uint_t bsize, blksize; rnode4_t *rp = VTOR4(vp); page_t *savepp; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); mutex_enter(&rp->r_statelock); if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { /* * If less than a block left in file read less * than a block. */ blksize = rp->r_size - blkoff; } else blksize = bsize; mutex_exit(&rp->r_statelock); pp = pvn_read_kluster(vp, blkoff, segkmap, addr, &io_off, &io_len, blkoff, blksize, 1); /* * The isra flag passed to the kluster function is 1, we may have * gotten a return value of NULL for a variety of reasons (# of free * pages < minfree, someone entered the page on the vnode etc). In all * cases, we want to punt on the readahead. */ if (pp == NULL) return; /* * Now round the request size up to page boundaries. * This ensures that the entire page will be * initialized to zeroes if EOF is encountered. */ io_len = ptob(btopr(io_len)); bp = pageio_setup(pp, io_len, vp, B_READ); ASSERT(bp != NULL); /* * pageio_setup should have set b_addr to 0. This is correct since * we want to do I/O on a page boundary. bp_mapin() will use this addr * to calculate an offset, and then set b_addr to the kernel virtual * address it allocated for us. */ ASSERT(bp->b_un.b_addr == 0); bp->b_edev = 0; bp->b_dev = 0; bp->b_lblkno = lbtodb(io_off); bp->b_file = vp; bp->b_offset = (offset_t)blkoff; bp_mapin(bp); /* * If doing a write beyond what we believe is EOF, don't bother trying * to read the pages from the server, we'll just zero the pages here. * We don't check that the rw flag is S_WRITE here because some * implementations may attempt a read access to the buffer before * copying data. */ mutex_enter(&rp->r_statelock); if (io_off >= rp->r_size && seg == segkmap) { mutex_exit(&rp->r_statelock); bzero(bp->b_un.b_addr, io_len); error = 0; } else { mutex_exit(&rp->r_statelock); error = nfs4_bio(bp, NULL, cr, TRUE); if (error == NFS_EOF) error = 0; } /* * Unmap the buffer before freeing it. */ bp_mapout(bp); pageio_done(bp); savepp = pp; do { pp->p_fsdata = C_NOCOMMIT; } while ((pp = pp->p_next) != savepp); pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); /* * In case of error set readahead offset * to the lowest offset. * pvn_read_done() calls VN_DISPOSE to destroy the pages */ if (error && rp->r_nextr > io_off) { mutex_enter(&rp->r_statelock); if (rp->r_nextr > io_off) rp->r_nextr = io_off; mutex_exit(&rp->r_statelock); } } /* * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} * If len == 0, do from off to EOF. * * The normal cases should be len == 0 && off == 0 (entire vp list) or * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE * (from pageout). */ static int nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) { int error; rnode4_t *rp; ASSERT(cr != NULL); if (!(flags & B_ASYNC) && curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); rp = VTOR4(vp); if (IS_SHADOW(vp, rp)) vp = RTOV4(rp); /* * XXX - Why should this check be made here? */ if (vp->v_flag & VNOMAP) return (ENOSYS); if (len == 0 && !(flags & B_INVAL) && (vp->v_vfsp->vfs_flag & VFS_RDONLY)) return (0); mutex_enter(&rp->r_statelock); rp->r_count++; mutex_exit(&rp->r_statelock); error = nfs4_putpages(vp, off, len, flags, cr); mutex_enter(&rp->r_statelock); rp->r_count--; cv_broadcast(&rp->r_cv); mutex_exit(&rp->r_statelock); return (error); } /* * Write out a single page, possibly klustering adjacent dirty pages. */ int nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, int flags, cred_t *cr) { u_offset_t io_off; u_offset_t lbn_off; u_offset_t lbn; size_t io_len; uint_t bsize; int error; rnode4_t *rp; ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); ASSERT(pp != NULL); ASSERT(cr != NULL); ASSERT((flags & B_ASYNC) || curproc->p_zone == VTOMI4(vp)->mi_zone); rp = VTOR4(vp); ASSERT(rp->r_count > 0); ASSERT(!IS_SHADOW(vp, rp)); bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); lbn = pp->p_offset / bsize; lbn_off = lbn * bsize; /* * Find a kluster that fits in one block, or in * one page if pages are bigger than blocks. If * there is less file space allocated than a whole * page, we'll shorten the i/o request below. */ pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, roundup(bsize, PAGESIZE), flags); /* * pvn_write_kluster shouldn't have returned a page with offset * behind the original page we were given. Verify that. */ ASSERT((pp->p_offset / bsize) >= lbn); /* * Now pp will have the list of kept dirty pages marked for * write back. It will also handle invalidation and freeing * of pages that are not dirty. Check for page length rounding * problems. */ if (io_off + io_len > lbn_off + bsize) { ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); io_len = lbn_off + bsize - io_off; } /* * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). * When R4MODINPROGRESS is set it indicates that a uiomove() is in * progress and the r_size has not been made consistent with the * new size of the file. When the uiomove() completes the r_size is * updated and the R4MODINPROGRESS flag is cleared. * * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a * consistent value of r_size. Without this handshaking, it is * possible that nfs4_bio() picks up the old value of r_size * before the uiomove() in writerp4() completes. This will result * in the write through nfs4_bio() being dropped. * * More precisely, there is a window between the time the uiomove() * completes and the time the r_size is updated. If a VOP_PUTPAGE() * operation intervenes in this window, the page will be picked up, * because it is dirty (it will be unlocked, unless it was * pagecreate'd). When the page is picked up as dirty, the dirty * bit is reset (pvn_getdirty()). In nfs4write(), r_size is * checked. This will still be the old size. Therefore the page will * not be written out. When segmap_release() calls VOP_PUTPAGE(), * the page will be found to be clean and the write will be dropped. */ if (rp->r_flags & R4MODINPROGRESS) { mutex_enter(&rp->r_statelock); if ((rp->r_flags & R4MODINPROGRESS) && rp->r_modaddr + MAXBSIZE > io_off && rp->r_modaddr < io_off + io_len) { page_t *plist; /* * A write is in progress for this region of the file. * If we did not detect R4MODINPROGRESS here then this * path through nfs_putapage() would eventually go to * nfs4_bio() and may not write out all of the data * in the pages. We end up losing data. So we decide * to set the modified bit on each page in the page * list and mark the rnode with R4DIRTY. This write * will be restarted at some later time. */ plist = pp; while (plist != NULL) { pp = plist; page_sub(&plist, pp); hat_setmod(pp); page_io_unlock(pp); page_unlock(pp); } rp->r_flags |= R4DIRTY; mutex_exit(&rp->r_statelock); if (offp) *offp = io_off; if (lenp) *lenp = io_len; return (0); } mutex_exit(&rp->r_statelock); } if (flags & B_ASYNC) { error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, nfs4_sync_putapage); } else error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); if (offp) *offp = io_off; if (lenp) *lenp = io_len; return (error); } static int nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, int flags, cred_t *cr) { int error; rnode4_t *rp; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); flags |= B_WRITE; error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); rp = VTOR4(vp); if ((error == ENOSPC || error == EDQUOT || error == EFBIG || error == EACCES) && (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { if (!(rp->r_flags & R4OUTOFSPACE)) { mutex_enter(&rp->r_statelock); rp->r_flags |= R4OUTOFSPACE; mutex_exit(&rp->r_statelock); } flags |= B_ERROR; pvn_write_done(pp, flags); /* * If this was not an async thread, then try again to * write out the pages, but this time, also destroy * them whether or not the write is successful. This * will prevent memory from filling up with these * pages and destroying them is the only alternative * if they can't be written out. * * Don't do this if this is an async thread because * when the pages are unlocked in pvn_write_done, * some other thread could have come along, locked * them, and queued for an async thread. It would be * possible for all of the async threads to be tied * up waiting to lock the pages again and they would * all already be locked and waiting for an async * thread to handle them. Deadlock. */ if (!(flags & B_ASYNC)) { error = nfs4_putpage(vp, io_off, io_len, B_INVAL | B_FORCE, cr); } } else { if (error) flags |= B_ERROR; else if (rp->r_flags & R4OUTOFSPACE) { mutex_enter(&rp->r_statelock); rp->r_flags &= ~R4OUTOFSPACE; mutex_exit(&rp->r_statelock); } pvn_write_done(pp, flags); if (freemem < desfree) (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, NFS4_WRITE_NOWAIT); } return (error); } #ifdef DEBUG int nfs4_force_open_before_mmap = 0; #endif static int nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) { struct segvn_crargs vn_a; int error = 0; rnode4_t *rp = VTOR4(vp); mntinfo4_t *mi = VTOMI4(vp); if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); if (vp->v_flag & VNOMAP) return (ENOSYS); if (off < 0 || (off + len) < 0) return (ENXIO); if (vp->v_type != VREG) return (ENODEV); /* * If the file is delegated to the client don't do anything. * If the file is not delegated, then validate the data cache. */ mutex_enter(&rp->r_statev4_lock); if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { mutex_exit(&rp->r_statev4_lock); error = nfs4_validate_caches(vp, cr); if (error) return (error); } else { mutex_exit(&rp->r_statev4_lock); } /* * Check to see if the vnode is currently marked as not cachable. * This means portions of the file are locked (through VOP_FRLOCK). * In this case the map request must be refused. We use * rp->r_lkserlock to avoid a race with concurrent lock requests. */ if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) return (EINTR); if (vp->v_flag & VNOCACHE) { error = EAGAIN; goto done; } /* * Don't allow concurrent locks and mapping if mandatory locking is * enabled. */ if (flk_has_remote_locks(vp)) { struct vattr va; va.va_mask = AT_MODE; error = nfs4getattr(vp, &va, cr); if (error != 0) goto done; if (MANDLOCK(vp, va.va_mode)) { error = EAGAIN; goto done; } } /* * It is possible that the rnode has a lost lock request that we * are still trying to recover, and that the request conflicts with * this map request. * * An alternative approach would be for nfs4_safemap() to consider * queued lock requests when deciding whether to set or clear * VNOCACHE. This would require the frlock code path to call * nfs4_safemap() after enqueing a lost request. */ if (nfs4_map_lost_lock_conflict(vp)) { error = EAGAIN; goto done; } as_rangelock(as); if (!(flags & MAP_FIXED)) { map_addr(addrp, len, off, 1, flags); if (*addrp == NULL) { as_rangeunlock(as); error = ENOMEM; goto done; } } else { /* * User specified address - blow away any previous mappings */ (void) as_unmap(as, *addrp, len); } if (vp->v_type == VREG) { /* * We need to retrieve the open stream */ nfs4_open_stream_t *osp = NULL; nfs4_open_owner_t *oop = NULL; oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); if (oop != NULL) { /* returns with 'os_sync_lock' held */ osp = find_open_stream(oop, rp); open_owner_rele(oop); } if (osp == NULL) { #ifdef DEBUG if (nfs4_force_open_before_mmap) { error = EIO; goto done; } #endif /* returns with 'os_sync_lock' held */ osp = open_and_get_osp(vp, cr, mi); if (osp == NULL) { NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_map: we tried to OPEN the file " "but again no osp, so fail with EIO")); error = EIO; goto done; } } if (osp->os_failed_reopen) { mutex_exit(&osp->os_sync_lock); open_stream_rele(osp, rp); NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4_map: os_failed_reopen set on " "osp %p, cr %p, rp %s", (void *)osp, (void *)cr, rnode4info(rp))); error = EIO; goto done; } mutex_exit(&osp->os_sync_lock); open_stream_rele(osp, rp); } vn_a.vp = vp; vn_a.offset = off; vn_a.type = (flags & MAP_TYPE); vn_a.prot = (uchar_t)prot; vn_a.maxprot = (uchar_t)maxprot; vn_a.flags = (flags & ~MAP_TYPE); vn_a.cred = cr; vn_a.amp = NULL; vn_a.szc = 0; vn_a.lgrp_mem_policy_flags = 0; error = as_map(as, *addrp, len, segvn_create, &vn_a); as_rangeunlock(as); done: nfs_rw_exit(&rp->r_lkserlock); return (error); } /* * We're most likely dealing with a kernel module that likes to READ * and mmap without OPENing the file (ie: lookup/read/mmap), so lets * officially OPEN the file to create the necessary client state * for bookkeeping of os_mmap_read/write counts. * * Since VOP_MAP only passes in a pointer to the vnode rather than * a double pointer, we can't handle the case where nfs4open_otw() * returns a different vnode than the one passed into VOP_MAP (since * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, * we return NULL and let nfs4_map() fail. Note: the only case where * this should happen is if the file got removed and replaced with the * same name on the server (in addition to the fact that we're trying * to VOP_MAP withouth VOP_OPENing the file in the first place). */ static nfs4_open_stream_t * open_and_get_osp(vnode_t *map_vp, cred_t *cr, mntinfo4_t *mi) { rnode4_t *rp, *drp; vnode_t *dvp, *open_vp; char *file_name; int just_created; nfs4_sharedfh_t *sfh; nfs4_open_stream_t *osp; nfs4_open_owner_t *oop; open_vp = map_vp; sfh = (open_vp->v_flag & VROOT) ? mi->mi_srvparentfh : VTOSV(open_vp)->sv_dfh; drp = r4find_unlocked(sfh, open_vp->v_vfsp); if (!drp) return (NULL); file_name = fn_name(VTOSV(open_vp)->sv_name); rp = VTOR4(open_vp); dvp = RTOV4(drp); mutex_enter(&rp->r_statev4_lock); if (rp->created_v4) { rp->created_v4 = 0; mutex_exit(&rp->r_statev4_lock); dnlc_update(dvp, file_name, open_vp); /* This is needed so we don't bump the open ref count */ just_created = 1; } else { mutex_exit(&rp->r_statev4_lock); just_created = 0; } VN_HOLD(map_vp); if (nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, just_created)) { kmem_free(file_name, MAXNAMELEN); VN_RELE(dvp); VN_RELE(map_vp); return (NULL); } kmem_free(file_name, MAXNAMELEN); VN_RELE(dvp); /* * If nfs4open_otw() returned a different vnode then "undo" * the open and return failure to the caller. */ if (!VN_CMP(open_vp, map_vp)) { nfs4_error_t e; NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " "open returned a different vnode")); /* * If there's an error, ignore it, * and let VOP_INACTIVE handle it. */ (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, CLOSE_NORM, 0, 0, 0); VN_RELE(map_vp); return (NULL); } VN_RELE(map_vp); oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); if (!oop) { nfs4_error_t e; NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " "no open owner")); /* * If there's an error, ignore it, * and let VOP_INACTIVE handle it. */ (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, CLOSE_NORM, 0, 0, 0); return (NULL); } osp = find_open_stream(oop, rp); open_owner_rele(oop); return (osp); } /* * Please be aware that when this function is called, the address space write * a_lock is held. Do not put over the wire calls in this function. */ /* ARGSUSED */ static int nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) { rnode4_t *rp; int error = 0; mntinfo4_t *mi; mi = VTOMI4(vp); rp = VTOR4(vp); if (curproc->p_zone != mi->mi_zone) return (EIO); if (vp->v_flag & VNOMAP) return (ENOSYS); /* * Need to hold rwlock while incrementing the mapcnt so that * mmap'ing can be serialized with writes so that the caching * can be handled correctly. * * Don't need to update the open stream first, since this * mmap can't add any additional share access that isn't * already contained in the open stream (for the case where we * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't * take into account os_mmap_read[write] counts). */ if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) return (EINTR); atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); nfs_rw_exit(&rp->r_rwlock); if (vp->v_type == VREG) { /* * We need to retrieve the open stream and update the counts. * If there is no open stream here, something is wrong. */ nfs4_open_stream_t *osp = NULL; nfs4_open_owner_t *oop = NULL; oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); if (oop != NULL) { /* returns with 'os_sync_lock' held */ osp = find_open_stream(oop, rp); open_owner_rele(oop); } if (osp == NULL) { NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: we should have an osp" "but we don't, so fail with EIO")); error = EIO; goto out; } NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); /* * Update the map count in the open stream. * This is necessary in the case where we * open/mmap/close/, then the server reboots, and we * attempt to reopen. If the mmap doesn't add share * access then we send an invalid reopen with * access = NONE. * * We need to specifically check each PROT_* so a mmap * call of (PROT_WRITE | PROT_EXEC) will ensure us both * read and write access. A simple comparison of prot * to ~PROT_WRITE to determine read access is insufficient * since prot can be |= with PROT_USER, etc. */ /* * Unless we're MAP_SHARED, no sense in adding os_mmap_write */ if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) osp->os_mmap_write += btopr(len); if (maxprot & PROT_READ) osp->os_mmap_read += btopr(len); if (maxprot & PROT_EXEC) osp->os_mmap_read += btopr(len); /* * Ensure that os_mmap_read gets incremented, even if * maxprot were to look like PROT_NONE. */ if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && !(maxprot & PROT_EXEC)) osp->os_mmap_read += btopr(len); osp->os_mapcnt += btopr(len); mutex_exit(&osp->os_sync_lock); open_stream_rele(osp, rp); } out: /* * If we got an error, then undo our * incrementing of 'r_mapcnt'. */ if (error) { atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); ASSERT(rp->r_mapcnt >= 0); } return (error); } static int nfs4_cmp(vnode_t *vp1, vnode_t *vp2) { return (VTOR4(vp1) == VTOR4(vp2)); } static int nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) { int rc; u_offset_t start, end; rnode4_t *rp; int error = 0, intr = INTR4(vp); nfs4_error_t e; if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); /* check for valid cmd parameter */ if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) return (EINVAL); /* Verify l_type. */ switch (bfp->l_type) { case F_RDLCK: if (cmd != F_GETLK && !(flag & FREAD)) return (EBADF); break; case F_WRLCK: if (cmd != F_GETLK && !(flag & FWRITE)) return (EBADF); break; case F_UNLCK: intr = 0; break; default: return (EINVAL); } /* check the validity of the lock range */ if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) return (rc); if (rc = flk_check_lock_data(start, end, MAXEND)) return (rc); /* * If the filesystem is mounted using local locking, pass the * request off to the local locking code. */ if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { if (cmd == F_SETLK || cmd == F_SETLKW) { /* * For complete safety, we should be holding * r_lkserlock. However, we can't call * nfs4_safelock and then fs_frlock while * holding r_lkserlock, so just invoke * nfs4_safelock and expect that this will * catch enough of the cases. */ if (!nfs4_safelock(vp, bfp, cr)) return (EAGAIN); } return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); } rp = VTOR4(vp); /* * Check whether the given lock request can proceed, given the * current file mappings. */ if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) return (EINTR); if (cmd == F_SETLK || cmd == F_SETLKW) { if (!nfs4_safelock(vp, bfp, cr)) { rc = EAGAIN; goto done; } } /* * Flush the cache after waiting for async I/O to finish. For new * locks, this is so that the process gets the latest bits from the * server. For unlocks, this is so that other clients see the * latest bits once the file has been unlocked. If currently dirty * pages can't be flushed, then don't allow a lock to be set. But * allow unlocks to succeed, to avoid having orphan locks on the * server. */ if (cmd != F_GETLK) { mutex_enter(&rp->r_statelock); while (rp->r_count > 0) { if (intr) { klwp_t *lwp = ttolwp(curthread); if (lwp != NULL) lwp->lwp_nostop++; if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { if (lwp != NULL) lwp->lwp_nostop--; rc = EINTR; break; } if (lwp != NULL) lwp->lwp_nostop--; } else cv_wait(&rp->r_cv, &rp->r_statelock); } mutex_exit(&rp->r_statelock); if (rc != 0) goto done; error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr); if (error) { if (error == ENOSPC || error == EDQUOT) { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = error; mutex_exit(&rp->r_statelock); } if (bfp->l_type != F_UNLCK) { rc = ENOLCK; goto done; } } } /* * Call the lock manager to do the real work of contacting * the server and obtaining the lock. */ nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, cr, &e, NULL, NULL); rc = e.error; if (rc == 0) nfs4_lockcompletion(vp, cmd); done: nfs_rw_exit(&rp->r_lkserlock); return (rc); } /* * Free storage space associated with the specified vnode. The portion * to be freed is specified by bfp->l_start and bfp->l_len (already * normalized to a "whence" of 0). * * This is an experimental facility whose continued existence is not * guaranteed. Currently, we only support the special case * of l_len == 0, meaning free to end of file. */ /* ARGSUSED */ static int nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, cred_t *cr, caller_context_t *ct) { int error; if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); ASSERT(vp->v_type == VREG); if (cmd != F_FREESP) return (EINVAL); error = convoff(vp, bfp, 0, offset); if (!error) { ASSERT(bfp->l_start >= 0); if (bfp->l_len == 0) { struct vattr va; va.va_mask = AT_SIZE; va.va_size = bfp->l_start; error = nfs4setattr(vp, &va, 0, cr, NULL); } else error = EINVAL; } return (error); } /* ARGSUSED */ static int nfs4_realvp(vnode_t *vp, vnode_t **vpp) { return (EINVAL); } /* * Setup and add an address space callback to do the work of the delmap call. * The callback will (and must be) deleted in the actual callback function. * * This is done in order to take care of the problem that we have with holding * the address space's a_lock for a long period of time (e.g. if the NFS server * is down). Callbacks will be executed in the address space code while the * a_lock is not held. Holding the address space's a_lock causes things such * as ps and fork to hang because they are trying to acquire this lock as well. */ /* ARGSUSED */ static int nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) { int caller_found; int error; rnode4_t *rp; nfs4_delmap_args_t *dmapp; nfs4_delmapcall_t *delmap_call; if (vp->v_flag & VNOMAP) return (ENOSYS); /* * A process may not change zones if it has NFS pages mmap'ed * in, so we can't legitimately get here from the wrong zone. */ ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); rp = VTOR4(vp); /* * The way that the address space of this process deletes its mapping * of this file is via the following call chains: * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() * * With the use of address space callbacks we are allowed to drop the * address space lock, a_lock, while executing the NFS operations that * need to go over the wire. Returning EAGAIN to the caller of this * function is what drives the execution of the callback that we add * below. The callback will be executed by the address space code * after dropping the a_lock. When the callback is finished, since * we dropped the a_lock, it must be re-acquired and segvn_unmap() * is called again on the same segment to finish the rest of the work * that needs to happen during unmapping. * * This action of calling back into the segment driver causes * nfs4_delmap() to get called again, but since the callback was * already executed at this point, it already did the work and there * is nothing left for us to do. * * To Summarize: * - The first time nfs4_delmap is called by the current thread is when * we add the caller associated with this delmap to the delmap caller * list, add the callback, and return EAGAIN. * - The second time in this call chain when nfs4_delmap is called we * will find this caller in the delmap caller list and realize there * is no more work to do thus removing this caller from the list and * returning the error that was set in the callback execution. */ caller_found = nfs4_find_and_delete_delmapcall(rp, &error); if (caller_found) { /* * 'error' is from the actual delmap operations. To avoid * hangs, we need to handle the return of EAGAIN differently * since this is what drives the callback execution. * In this case, we don't want to return EAGAIN and do the * callback execution because there are none to execute. */ if (error == EAGAIN) return (0); else return (error); } /* current caller was not in the list */ delmap_call = nfs4_init_delmapcall(); mutex_enter(&rp->r_statelock); list_insert_tail(&rp->r_indelmap, delmap_call); mutex_exit(&rp->r_statelock); dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); dmapp->vp = vp; dmapp->off = off; dmapp->addr = addr; dmapp->len = len; dmapp->prot = prot; dmapp->maxprot = maxprot; dmapp->flags = flags; dmapp->cr = cr; dmapp->caller = delmap_call; error = as_add_callback(as, nfs4_delmap_callback, dmapp, AS_UNMAP_EVENT, addr, len, KM_SLEEP); return (error ? error : EAGAIN); } static nfs4_delmapcall_t * nfs4_init_delmapcall() { nfs4_delmapcall_t *delmap_call; delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); delmap_call->call_id = curthread; delmap_call->error = 0; return (delmap_call); } static void nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) { kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); } /* * Searches for the current delmap caller (based on curthread) in the list of * callers. If it is found, we remove it and free the delmap caller. * Returns: * 0 if the caller wasn't found * 1 if the caller was found, removed and freed. *errp will be set * to what the result of the delmap was. */ static int nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) { nfs4_delmapcall_t *delmap_call; /* * If the list doesn't exist yet, we create it and return * that the caller wasn't found. No list = no callers. */ mutex_enter(&rp->r_statelock); if (!(rp->r_flags & R4DELMAPLIST)) { /* The list does not exist */ list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), offsetof(nfs4_delmapcall_t, call_node)); rp->r_flags |= R4DELMAPLIST; mutex_exit(&rp->r_statelock); return (0); } else { /* The list exists so search it */ for (delmap_call = list_head(&rp->r_indelmap); delmap_call != NULL; delmap_call = list_next(&rp->r_indelmap, delmap_call)) { if (delmap_call->call_id == curthread) { /* current caller is in the list */ *errp = delmap_call->error; list_remove(&rp->r_indelmap, delmap_call); mutex_exit(&rp->r_statelock); nfs4_free_delmapcall(delmap_call); return (1); } } } mutex_exit(&rp->r_statelock); return (0); } /* * Remove some pages from an mmap'd vnode. Just update the * count of pages. If doing close-to-open, then flush and * commit all of the pages associated with this file. * Otherwise, start an asynchronous page flush to write out * any dirty pages. This will also associate a credential * with the rnode which can be used to write the pages. */ /* ARGSUSED */ static void nfs4_delmap_callback(struct as *as, void *arg, uint_t event) { nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; rnode4_t *rp; mntinfo4_t *mi; nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; rp = VTOR4(dmapp->vp); mi = VTOMI4(dmapp->vp); atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); ASSERT(rp->r_mapcnt >= 0); /* * Initiate a page flush and potential commit if there are * pages, the file system was not mounted readonly, the segment * was mapped shared, and the pages themselves were writeable. */ if (nfs4_has_pages(dmapp->vp) && !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { mutex_enter(&rp->r_statelock); rp->r_flags |= R4DIRTY; mutex_exit(&rp->r_statelock); e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, dmapp->len, dmapp->cr); if (!e.error) { mutex_enter(&rp->r_statelock); e.error = rp->r_error; rp->r_error = 0; mutex_exit(&rp->r_statelock); } } else e.error = 0; if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, B_INVAL, dmapp->cr); if (e.error) { e.stat = puterrno4(e.error); nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, OP_COMMIT, FALSE, NULL, 0, dmapp->vp); dmapp->caller->error = e.error; } /* Check to see if we need to close the file */ if (dmapp->vp->v_type == VREG) { nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); if (e.error != 0 || e.stat != NFS4_OK) { /* * Since it is possible that e.error == 0 and * e.stat != NFS4_OK (and vice versa), * we do the proper checking in order to get both * e.error and e.stat reporting the correct info. */ if (e.stat == NFS4_OK) e.stat = puterrno4(e.error); if (e.error == 0) e.error = geterrno4(e.stat); nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, OP_CLOSE, FALSE, NULL, 0, dmapp->vp); dmapp->caller->error = e.error; } } (void) as_delete_callback(as, arg); kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); } static uint_t fattr4_maxfilesize_to_bits(uint64_t ll) { uint_t l = 1; if (ll == 0) { return (0); } if (ll & 0xffffffff00000000) { l += 32; ll >>= 32; } if (ll & 0xffff0000) { l += 16; ll >>= 16; } if (ll & 0xff00) { l += 8; ll >>= 8; } if (ll & 0xf0) { l += 4; ll >>= 4; } if (ll & 0xc) { l += 2; ll >>= 2; } if (ll & 0x2) { l += 1; } return (l); } static int nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) { int error; hrtime_t t; rnode4_t *rp; nfs4_ga_res_t gar; nfs4_ga_ext_res_t ger; gar.n4g_ext_res = &ger; if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { *valp = MAXPATHLEN; return (0); } if (cmd == _PC_ACL_ENABLED) { *valp = _ACL_ACE_ENABLED; return (0); } rp = VTOR4(vp); if (cmd == _PC_XATTR_EXISTS) { /* * Eventually should attempt small client readdir before * going otw with GETATTR(FATTR4_NAMED_ATTR). For now * just drive the OTW getattr. This is required because * _PC_XATTR_EXISTS can only return true if attributes * exist -- simply checking for existance of the attrdir * is not sufficient. * * pc4_xattr_valid can be only be trusted when r_xattr_dir * is NULL. Once the xadir vp exists, we can create xattrs, * and we don't have any way to update the "base" object's * pc4_xattr_exists from the xattr or xadir. Maybe FEM * could help out. */ if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && rp->r_xattr_dir == NULL) { *valp = rp->r_pathconf.pc4_xattr_exists; return (0); } } else { /* OLD CODE */ if (ATTRCACHE4_VALID(vp)) { mutex_enter(&rp->r_statelock); if (rp->r_pathconf.pc4_cache_valid) { error = 0; switch (cmd) { case _PC_FILESIZEBITS: *valp = rp->r_pathconf.pc4_filesizebits; break; case _PC_LINK_MAX: *valp = rp->r_pathconf.pc4_link_max; break; case _PC_NAME_MAX: *valp = rp->r_pathconf.pc4_name_max; break; case _PC_CHOWN_RESTRICTED: *valp = rp->r_pathconf.pc4_chown_restricted; break; case _PC_NO_TRUNC: *valp = rp->r_pathconf.pc4_no_trunc; break; default: error = EINVAL; break; } mutex_exit(&rp->r_statelock); #ifdef DEBUG nfs4_pathconf_cache_hits++; #endif return (error); } mutex_exit(&rp->r_statelock); } } #ifdef DEBUG nfs4_pathconf_cache_misses++; #endif t = gethrtime(); error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); if (error) { mutex_enter(&rp->r_statelock); rp->r_pathconf.pc4_cache_valid = FALSE; rp->r_pathconf.pc4_xattr_valid = FALSE; mutex_exit(&rp->r_statelock); return (error); } /* interpret the max filesize */ gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); /* Store the attributes we just received */ nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); switch (cmd) { case _PC_FILESIZEBITS: *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; break; case _PC_LINK_MAX: *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; break; case _PC_NAME_MAX: *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; break; case _PC_CHOWN_RESTRICTED: *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; break; case _PC_NO_TRUNC: *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; break; case _PC_XATTR_EXISTS: *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; break; default: return (EINVAL); } return (0); } /* * Called by async thread to do synchronous pageio. Do the i/o, wait * for it to complete, and cleanup the page list when done. */ static int nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, int flags, cred_t *cr) { int error; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); if (flags & B_READ) pvn_read_done(pp, (error ? B_ERROR : 0) | flags); else pvn_write_done(pp, (error ? B_ERROR : 0) | flags); return (error); } static int nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, int flags, cred_t *cr) { int error; rnode4_t *rp; if (!(flags & B_ASYNC) && curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); if (pp == NULL) return (EINVAL); rp = VTOR4(vp); mutex_enter(&rp->r_statelock); rp->r_count++; mutex_exit(&rp->r_statelock); if (flags & B_ASYNC) { error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, nfs4_sync_pageio); } else error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); mutex_enter(&rp->r_statelock); rp->r_count--; cv_broadcast(&rp->r_cv); mutex_exit(&rp->r_statelock); return (error); } static void nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr) { int error; rnode4_t *rp; page_t *plist; page_t *pptr; offset3 offset; count3 len; k_sigset_t smask; /* * We should get called with fl equal to either B_FREE or * B_INVAL. Any other value is illegal. * * The page that we are either supposed to free or destroy * should be exclusive locked and its io lock should not * be held. */ ASSERT(fl == B_FREE || fl == B_INVAL); ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); rp = VTOR4(vp); /* * If the page doesn't need to be committed or we shouldn't * even bother attempting to commit it, then just make sure * that the p_fsdata byte is clear and then either free or * destroy the page as appropriate. */ if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { pp->p_fsdata = C_NOCOMMIT; if (fl == B_FREE) page_free(pp, dn); else page_destroy(pp, dn); return; } /* * If there is a page invalidation operation going on, then * if this is one of the pages being destroyed, then just * clear the p_fsdata byte and then either free or destroy * the page as appropriate. */ mutex_enter(&rp->r_statelock); if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { mutex_exit(&rp->r_statelock); pp->p_fsdata = C_NOCOMMIT; if (fl == B_FREE) page_free(pp, dn); else page_destroy(pp, dn); return; } /* * If we are freeing this page and someone else is already * waiting to do a commit, then just unlock the page and * return. That other thread will take care of commiting * this page. The page can be freed sometime after the * commit has finished. Otherwise, if the page is marked * as delay commit, then we may be getting called from * pvn_write_done, one page at a time. This could result * in one commit per page, so we end up doing lots of small * commits instead of fewer larger commits. This is bad, * we want do as few commits as possible. */ if (fl == B_FREE) { if (rp->r_flags & R4COMMITWAIT) { page_unlock(pp); mutex_exit(&rp->r_statelock); return; } if (pp->p_fsdata == C_DELAYCOMMIT) { pp->p_fsdata = C_COMMIT; page_unlock(pp); mutex_exit(&rp->r_statelock); return; } } /* * Check to see if there is a signal which would prevent an * attempt to commit the pages from being successful. If so, * then don't bother with all of the work to gather pages and * generate the unsuccessful RPC. Just return from here and * let the page be committed at some later time. */ sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { sigunintr(&smask); page_unlock(pp); mutex_exit(&rp->r_statelock); return; } sigunintr(&smask); /* * We are starting to need to commit pages, so let's try * to commit as many as possible at once to reduce the * overhead. * * Set the `commit inprogress' state bit. We must * first wait until any current one finishes. Then * we initialize the c_pages list with this page. */ while (rp->r_flags & R4COMMIT) { rp->r_flags |= R4COMMITWAIT; cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); rp->r_flags &= ~R4COMMITWAIT; } rp->r_flags |= R4COMMIT; mutex_exit(&rp->r_statelock); ASSERT(rp->r_commit.c_pages == NULL); rp->r_commit.c_pages = pp; rp->r_commit.c_commbase = (offset3)pp->p_offset; rp->r_commit.c_commlen = PAGESIZE; /* * Gather together all other pages which can be committed. * They will all be chained off r_commit.c_pages. */ nfs4_get_commit(vp); /* * Clear the `commit inprogress' status and disconnect * the list of pages to be committed from the rnode. * At this same time, we also save the starting offset * and length of data to be committed on the server. */ plist = rp->r_commit.c_pages; rp->r_commit.c_pages = NULL; offset = rp->r_commit.c_commbase; len = rp->r_commit.c_commlen; mutex_enter(&rp->r_statelock); rp->r_flags &= ~R4COMMIT; cv_broadcast(&rp->r_commit.c_cv); mutex_exit(&rp->r_statelock); if (curproc == proc_pageout || curproc == proc_fsflush || curproc->p_zone != VTOMI4(vp)->mi_zone) { nfs4_async_commit(vp, plist, offset, len, cr, do_nfs4_async_commit); return; } /* * Actually generate the COMMIT op over the wire operation. */ error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); /* * If we got an error during the commit, just unlock all * of the pages. The pages will get retransmitted to the * server during a putpage operation. */ if (error) { while (plist != NULL) { pptr = plist; page_sub(&plist, pptr); page_unlock(pptr); } return; } /* * We've tried as hard as we can to commit the data to stable * storage on the server. We just unlock the rest of the pages * and clear the commit required state. They will be put * onto the tail of the cachelist if they are nolonger * mapped. */ while (plist != pp) { pptr = plist; page_sub(&plist, pptr); pptr->p_fsdata = C_NOCOMMIT; page_unlock(pptr); } /* * It is possible that nfs4_commit didn't return error but * some other thread has modified the page we are going * to free/destroy. * In this case we need to rewrite the page. Do an explicit check * before attempting to free/destroy the page. If modified, needs to * be rewritten so unlock the page and return. */ if (hat_ismod(pp)) { pp->p_fsdata = C_NOCOMMIT; page_unlock(pp); return; } /* * Now, as appropriate, either free or destroy the page * that we were called with. */ pp->p_fsdata = C_NOCOMMIT; if (fl == B_FREE) page_free(pp, dn); else page_destroy(pp, dn); } /* * Commit requires that the current fh be the file written to. * The compound op structure is: * PUTFH(file), COMMIT */ static int nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; COMMIT4res *cm_res; nfs_argop4 argop[2]; nfs_resop4 *resop; int doqueue; mntinfo4_t *mi; rnode4_t *rp; cred_t *cred_otw = NULL; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; nfs4_open_stream_t *osp = NULL; bool_t first_time = TRUE; /* first time getting OTW cred */ bool_t last_time = FALSE; /* last time getting OTW cred */ nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); rp = VTOR4(vp); mi = VTOMI4(vp); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; get_commit_cred: /* * Releases the osp, if a valid open stream is provided. * Puts a hold on the cred_otw and the new osp (if found). */ cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, &first_time, &last_time); args.ctag = TAG_COMMIT; recov_retry: /* * Commit ops: putfh file; commit */ args.array_len = 2; args.array = argop; e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, NULL); if (e.error) { crfree(cred_otw); if (osp != NULL) open_stream_rele(osp, rp); return (e.error); } /* putfh directory */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; /* commit */ argop[1].argop = OP_COMMIT; argop[1].nfs_argop4_u.opcommit.offset = offset; argop[1].nfs_argop4_u.opcommit.count = count; doqueue = 1; rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); if (!needrecov && e.error) { nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); crfree(cred_otw); if (e.error == EACCES && last_time == FALSE) goto get_commit_cred; if (osp != NULL) open_stream_rele(osp, rp); return (e.error); } if (needrecov) { if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, NULL, OP_COMMIT, NULL) == FALSE) { nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } if (e.error) { nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); crfree(cred_otw); if (osp != NULL) open_stream_rele(osp, rp); return (e.error); } /* fall through for res.status case */ } if (res.status) { e.error = geterrno4(res.status); if (e.error == EACCES && last_time == FALSE) { crfree(cred_otw); nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto get_commit_cred; } /* * Can't do a nfs4_purge_stale_fh here because this * can cause a deadlock. nfs4_commit can * be called from nfs4_dispose which can be called * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh * can call back to pvn_vplist_dirty. */ if (e.error == ESTALE) { mutex_enter(&rp->r_statelock); rp->r_flags |= R4STALE; if (!rp->r_error) rp->r_error = e.error; mutex_exit(&rp->r_statelock); PURGE_ATTRCACHE4(vp); } else { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = e.error; mutex_exit(&rp->r_statelock); } } else { ASSERT(rp->r_flags & R4HAVEVERF); resop = &res.array[1]; /* commit res */ cm_res = &resop->nfs_resop4_u.opcommit; mutex_enter(&rp->r_statelock); if (cm_res->writeverf == rp->r_writeverf) { mutex_exit(&rp->r_statelock); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); crfree(cred_otw); if (osp != NULL) open_stream_rele(osp, rp); return (0); } nfs4_set_mod(vp); rp->r_writeverf = cm_res->writeverf; mutex_exit(&rp->r_statelock); e.error = NFS_VERF_MISMATCH; } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); crfree(cred_otw); if (osp != NULL) open_stream_rele(osp, rp); return (e.error); } static void nfs4_set_mod(vnode_t *vp) { page_t *pp; kmutex_t *vphm; rnode4_t *rp; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); /* make sure we're looking at the master vnode, not a shadow */ rp = VTOR4(vp); if (IS_SHADOW(vp, rp)) vp = RTOV4(rp); vphm = page_vnode_mutex(vp); mutex_enter(vphm); /* * If there are no pages associated with this vnode, then * just return. */ if ((pp = vp->v_pages) == NULL) { mutex_exit(vphm); return; } do { if (pp->p_fsdata != C_NOCOMMIT) { hat_setmod(pp); pp->p_fsdata = C_NOCOMMIT; } } while ((pp = pp->p_vpnext) != vp->v_pages); mutex_exit(vphm); } /* * This function is used to gather a page list of the pages which * can be committed on the server. * * The calling thread must have set R4COMMIT. This bit is used to * serialize access to the commit structure in the rnode. As long * as the thread has set R4COMMIT, then it can manipulate the commit * structure without requiring any other locks. * * When this function is called from nfs4_dispose() the page passed * into nfs4_dispose() will be SE_EXCL locked, and so this function * will skip it. This is not a problem since we initially add the * page to the r_commit page list. * */ static void nfs4_get_commit(vnode_t *vp) { rnode4_t *rp; page_t *pp; kmutex_t *vphm; rp = VTOR4(vp); ASSERT(rp->r_flags & R4COMMIT); /* make sure we're looking at the master vnode, not a shadow */ if (IS_SHADOW(vp, rp)) vp = RTOV4(rp); vphm = page_vnode_mutex(vp); mutex_enter(vphm); /* * If there are no pages associated with this vnode, then * just return. */ if ((pp = vp->v_pages) == NULL) { mutex_exit(vphm); return; } /* * Step through all of the pages associated with this vnode * looking for pages which need to be committed. */ do { /* * First short-cut everything (without the page_lock) * and see if this page does not need to be committed * or is modified if so then we'll just skip it. */ if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) continue; /* * Attempt to lock the page. If we can't, then * someone else is messing with it or we have been * called from nfs4_dispose and this is the page that * nfs4_dispose was called with.. anyway just skip it. */ if (!page_trylock(pp, SE_EXCL)) continue; /* * Lets check again now that we have the page lock. */ if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { page_unlock(pp); continue; } /* this had better not be a free page */ ASSERT(PP_ISFREE(pp) == 0); /* * The page needs to be committed and we locked it. * Update the base and length parameters and add it * to r_pages. */ if (rp->r_commit.c_pages == NULL) { rp->r_commit.c_commbase = (offset3)pp->p_offset; rp->r_commit.c_commlen = PAGESIZE; } else if (pp->p_offset < rp->r_commit.c_commbase) { rp->r_commit.c_commlen = rp->r_commit.c_commbase - (offset3)pp->p_offset + rp->r_commit.c_commlen; rp->r_commit.c_commbase = (offset3)pp->p_offset; } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) <= pp->p_offset) { rp->r_commit.c_commlen = (offset3)pp->p_offset - rp->r_commit.c_commbase + PAGESIZE; } page_add(&rp->r_commit.c_pages, pp); } while ((pp = pp->p_vpnext) != vp->v_pages); mutex_exit(vphm); } /* * This routine is used to gather together a page list of the pages * which are to be committed on the server. This routine must not * be called if the calling thread holds any locked pages. * * The calling thread must have set R4COMMIT. This bit is used to * serialize access to the commit structure in the rnode. As long * as the thread has set R4COMMIT, then it can manipulate the commit * structure without requiring any other locks. */ static void nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) { rnode4_t *rp; page_t *pp; u_offset_t end; u_offset_t off; ASSERT(len != 0); rp = VTOR4(vp); ASSERT(rp->r_flags & R4COMMIT); ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); /* make sure we're looking at the master vnode, not a shadow */ if (IS_SHADOW(vp, rp)) vp = RTOV4(rp); /* * If there are no pages associated with this vnode, then * just return. */ if ((pp = vp->v_pages) == NULL) return; /* * Calculate the ending offset. */ end = soff + len; for (off = soff; off < end; off += PAGESIZE) { /* * Lookup each page by vp, offset. */ if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) continue; /* * If this page does not need to be committed or is * modified, then just skip it. */ if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { page_unlock(pp); continue; } ASSERT(PP_ISFREE(pp) == 0); /* * The page needs to be committed and we locked it. * Update the base and length parameters and add it * to r_pages. */ if (rp->r_commit.c_pages == NULL) { rp->r_commit.c_commbase = (offset3)pp->p_offset; rp->r_commit.c_commlen = PAGESIZE; } else { rp->r_commit.c_commlen = (offset3)pp->p_offset - rp->r_commit.c_commbase + PAGESIZE; } page_add(&rp->r_commit.c_pages, pp); } } /* * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). * Flushes and commits data to the server. */ static int nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) { int error; verifier4 write_verf; rnode4_t *rp = VTOR4(vp); ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); /* * Flush the data portion of the file and then commit any * portions which need to be committed. This may need to * be done twice if the server has changed state since * data was last written. The data will need to be * rewritten to the server and then a new commit done. * * In fact, this may need to be done several times if the * server is having problems and crashing while we are * attempting to do this. */ top: /* * Do a flush based on the poff and plen arguments. This * will synchronously write out any modified pages in the * range specified by (poff, plen). This starts all of the * i/o operations which will be waited for in the next * call to nfs4_putpage */ mutex_enter(&rp->r_statelock); write_verf = rp->r_writeverf; mutex_exit(&rp->r_statelock); error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr); if (error == EAGAIN) error = 0; /* * Do a flush based on the poff and plen arguments. This * will synchronously write out any modified pages in the * range specified by (poff, plen) and wait until all of * the asynchronous i/o's in that range are done as well. */ if (!error) error = nfs4_putpage(vp, poff, plen, 0, cr); if (error) return (error); mutex_enter(&rp->r_statelock); if (rp->r_writeverf != write_verf) { mutex_exit(&rp->r_statelock); goto top; } mutex_exit(&rp->r_statelock); /* * Now commit any pages which might need to be committed. * If the error, NFS_VERF_MISMATCH, is returned, then * start over with the flush operation. */ error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); if (error == NFS_VERF_MISMATCH) goto top; return (error); } /* * nfs4_commit_vp() will wait for other pending commits and * will either commit the whole file or a range, plen dictates * if we commit whole file. a value of zero indicates the whole * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() */ static int nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr, int wait_on_writes) { rnode4_t *rp; page_t *plist; offset3 offset; count3 len; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); rp = VTOR4(vp); /* * before we gather commitable pages make * sure there are no outstanding async writes */ if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { mutex_enter(&rp->r_statelock); while (rp->r_count > 0) { cv_wait(&rp->r_cv, &rp->r_statelock); } mutex_exit(&rp->r_statelock); } /* * Set the `commit inprogress' state bit. We must * first wait until any current one finishes. */ mutex_enter(&rp->r_statelock); while (rp->r_flags & R4COMMIT) { rp->r_flags |= R4COMMITWAIT; cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); rp->r_flags &= ~R4COMMITWAIT; } rp->r_flags |= R4COMMIT; mutex_exit(&rp->r_statelock); /* * Gather all of the pages which need to be * committed. */ if (plen == 0) nfs4_get_commit(vp); else nfs4_get_commit_range(vp, poff, plen); /* * Clear the `commit inprogress' bit and disconnect the * page list which was gathered by nfs4_get_commit. */ plist = rp->r_commit.c_pages; rp->r_commit.c_pages = NULL; offset = rp->r_commit.c_commbase; len = rp->r_commit.c_commlen; mutex_enter(&rp->r_statelock); rp->r_flags &= ~R4COMMIT; cv_broadcast(&rp->r_commit.c_cv); mutex_exit(&rp->r_statelock); /* * If any pages need to be committed, commit them and * then unlock them so that they can be freed some * time later. */ if (plist == NULL) return (0); /* * No error occurred during the flush portion * of this operation, so now attempt to commit * the data to stable storage on the server. * * This will unlock all of the pages on the list. */ return (nfs4_sync_commit(vp, plist, offset, len, cr)); } static int nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, cred_t *cr) { int error; page_t *pp; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); /* * If we got an error, then just unlock all of the pages * on the list. */ if (error) { while (plist != NULL) { pp = plist; page_sub(&plist, pp); page_unlock(pp); } return (error); } /* * We've tried as hard as we can to commit the data to stable * storage on the server. We just unlock the pages and clear * the commit required state. They will get freed later. */ while (plist != NULL) { pp = plist; page_sub(&plist, pp); pp->p_fsdata = C_NOCOMMIT; page_unlock(pp); } return (error); } static void do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, cred_t *cr) { (void) nfs4_sync_commit(vp, plist, offset, count, cr); } /*ARGSUSED*/ static int nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) { int error = 0; mntinfo4_t *mi; vattr_t va; vsecattr_t nfsace4_vsap; mi = VTOMI4(vp); if (curproc->p_zone != mi->mi_zone) return (EIO); if (mi->mi_flags & MI4_ACL) { /* if we have a delegation, return it */ if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) (void) nfs4delegreturn(VTOR4(vp), NFS4_DR_REOPEN|NFS4_DR_PUSH); error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_SET); if (error) /* EINVAL */ return (error); if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { /* * These are aclent_t type entries. */ error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, vp->v_type == VDIR, FALSE); if (error) return (error); } else { /* * These are ace_t type entries. */ error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, vp->v_type == VDIR, FALSE); if (error) return (error); } bzero(&va, sizeof (va)); error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); vs_ace4_destroy(&nfsace4_vsap); return (error); } return (ENOSYS); } static int nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) { int error; mntinfo4_t *mi; nfs4_ga_res_t gar; rnode4_t *rp = VTOR4(vp); mi = VTOMI4(vp); if (curproc->p_zone != mi->mi_zone) return (EIO); bzero(&gar, sizeof (gar)); gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; /* * vsecattr->vsa_mask holds the original acl request mask. * This is needed when determining what to return. * (See: nfs4_create_getsecattr_return()) */ error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); if (error) /* EINVAL */ return (error); if (mi->mi_flags & MI4_ACL) { /* * Check if the data is cached and the cache is valid. If it * is we don't go over the wire. */ if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { mutex_enter(&rp->r_statelock); if (rp->r_secattr != NULL) { error = nfs4_create_getsecattr_return( rp->r_secattr, vsecattr, rp->r_attr.va_uid, rp->r_attr.va_gid, vp->v_type == VDIR); if (!error) { /* error == 0 - Success! */ mutex_exit(&rp->r_statelock); return (error); } } mutex_exit(&rp->r_statelock); } /* * The getattr otw call will always get both the acl, in * the form of a list of nfsace4's, and the number of acl * entries; independent of the value of gar.n4g_vsa.vsa_mask. */ gar.n4g_va.va_mask = AT_ALL; error = nfs4_getattr_otw(vp, &gar, cr, 1); if (error) { vs_ace4_destroy(&gar.n4g_vsa); if (error == ENOTSUP || error == EOPNOTSUPP) error = fs_fab_acl(vp, vsecattr, flag, cr); return (error); } if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { /* * No error was returned, but according to the response * bitmap, neither was an acl. */ vs_ace4_destroy(&gar.n4g_vsa); error = fs_fab_acl(vp, vsecattr, flag, cr); return (error); } /* * Update the cache with the ACL. */ nfs4_acl_fill_cache(rp, &gar.n4g_vsa); error = nfs4_create_getsecattr_return(&gar.n4g_vsa, vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, vp->v_type == VDIR); vs_ace4_destroy(&gar.n4g_vsa); if ((error) && (vsecattr->vsa_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && (error != EACCES)) { error = fs_fab_acl(vp, vsecattr, flag, cr); } return (error); } error = fs_fab_acl(vp, vsecattr, flag, cr); return (error); } /* * The function returns: * - 0 (zero) if the passed in "acl_mask" is a valid request. * - EINVAL if the passed in "acl_mask" is an invalid request. * * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) * * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) * - We have a count field set without the corresponding acl field set. (e.g. - * VSA_ACECNT is set, but VSA_ACE is not) */ static int nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) { /* Shortcut the masks that are always valid. */ if (acl_mask == (VSA_ACE | VSA_ACECNT)) return (0); if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) return (0); if (acl_mask & (VSA_ACE | VSA_ACECNT)) { /* * We can't have any VSA_ACL type stuff in the mask now. */ if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) return (EINVAL); if (op == NFS4_ACL_SET) { if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) return (EINVAL); } } if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { /* * We can't have any VSA_ACE type stuff in the mask now. */ if (acl_mask & (VSA_ACE | VSA_ACECNT)) return (EINVAL); if (op == NFS4_ACL_SET) { if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) return (EINVAL); if ((acl_mask & VSA_DFACLCNT) && !(acl_mask & VSA_DFACL)) return (EINVAL); } } return (0); } /* * The theory behind creating the correct getsecattr return is simply this: * "Don't return anything that the caller is not expecting to have to free." */ static int nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, uid_t uid, gid_t gid, int isdir) { int error = 0; /* Save the mask since the translators modify it. */ uint_t orig_mask = vsap->vsa_mask; if (orig_mask & (VSA_ACE | VSA_ACECNT)) { error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, isdir, FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); if (error) return (error); /* * If the caller only asked for the ace count (VSA_ACECNT) * don't give them the full acl (VSA_ACE), free it. */ if (!orig_mask & VSA_ACE) { if (vsap->vsa_aclentp != NULL) { kmem_free(vsap->vsa_aclentp, vsap->vsa_aclcnt * sizeof (ace_t)); vsap->vsa_aclentp = NULL; } } vsap->vsa_mask = orig_mask; } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, isdir, FALSE, ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); if (error) return (error); /* * If the caller only asked for the acl count (VSA_ACLCNT) * and/or the default acl count (VSA_DFACLCNT) don't give them * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. */ if (!orig_mask & VSA_ACL) { if (vsap->vsa_aclentp != NULL) { kmem_free(vsap->vsa_aclentp, vsap->vsa_aclcnt * sizeof (aclent_t)); vsap->vsa_aclentp = NULL; } } if (!orig_mask & VSA_DFACL) { if (vsap->vsa_dfaclentp != NULL) { kmem_free(vsap->vsa_dfaclentp, vsap->vsa_dfaclcnt * sizeof (aclent_t)); vsap->vsa_dfaclentp = NULL; } } vsap->vsa_mask = orig_mask; } return (0); } static int nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) { int error; if (curproc->p_zone != VTOMI4(vp)->mi_zone) return (EIO); /* * check for valid cmd parameter */ if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) return (EINVAL); /* * Check access permissions */ if ((cmd & F_SHARE) && (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) return (EBADF); /* * If the filesystem is mounted using local locking, pass the * request off to the local share code. */ if (VTOMI4(vp)->mi_flags & MI4_LLOCK) return (fs_shrlock(vp, cmd, shr, flag, cr)); switch (cmd) { case F_SHARE: case F_UNSHARE: /* * This will be properly implemented later, * see RFE: 4823948 . */ error = EAGAIN; break; case F_HASREMOTELOCKS: /* * NFS client can't store remote locks itself */ shr->s_access = 0; error = 0; break; default: error = EINVAL; break; } return (error); } /* * Common code called by directory ops to update the attrcache */ static int nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, hrtime_t t, vnode_t *vp, cred_t *cr) { int error = 0; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); if (status != NFS4_OK) { /* getattr not done or failed */ PURGE_ATTRCACHE4(vp); return (error); } if (garp) { nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); } else { PURGE_ATTRCACHE4(vp); } return (error); } /* * Update directory caches for directory modification ops (link, rename, etc.) * When dinfo is NULL, manage dircaches in the old way. */ static void nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, dirattr_info_t *dinfo) { rnode4_t *drp = VTOR4(dvp); ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); /* Purge rddir cache for dir since it changed */ if (drp->r_dir != NULL) nfs4_purge_rddir_cache(dvp); /* * If caller provided dinfo, then use it to manage dir caches. */ if (dinfo != NULL) { if (vp != NULL) { mutex_enter(&VTOR4(vp)->r_statev4_lock); if (!VTOR4(vp)->created_v4) { mutex_exit(&VTOR4(vp)->r_statev4_lock); dnlc_update(dvp, nm, vp); } else { /* * XXX don't update if the created_v4 flag is * set */ mutex_exit(&VTOR4(vp)->r_statev4_lock); NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_update_dircaches: " "don't update dnlc: created_v4 flag")); } } nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, dinfo->di_cred, FALSE, cinfo); return; } /* * Caller didn't provide dinfo, then check change_info4 to update DNLC. * Since caller modified dir but didn't receive post-dirmod-op dir * attrs, the dir's attrs must be purged. * * XXX this check and dnlc update/purge should really be atomic, * XXX but can't use rnode statelock because it'll deadlock in * XXX dnlc_purge_vp, however, the risk is minimal even if a race * XXX does occur. * * XXX We also may want to check that atomic is true in the * XXX change_info struct. If it is not, the change_info may * XXX reflect changes by more than one clients which means that * XXX our cache may not be valid. */ PURGE_ATTRCACHE4(dvp); if (drp->r_change == cinfo->before) { /* no changes took place in the directory prior to our link */ if (vp != NULL) { mutex_enter(&VTOR4(vp)->r_statev4_lock); if (!VTOR4(vp)->created_v4) { mutex_exit(&VTOR4(vp)->r_statev4_lock); dnlc_update(dvp, nm, vp); } else { /* * XXX dont' update if the created_v4 flag * is set */ mutex_exit(&VTOR4(vp)->r_statev4_lock); NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_update_dircaches: don't" " update dnlc: created_v4 flag")); } } } else { /* Another client modified directory - purge its dnlc cache */ dnlc_purge_vp(dvp); } } /* * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a * file. * * The 'reopening_file' boolean should be set to TRUE if we are reopening this * file (ie: client recovery) and otherwise set to FALSE. * * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery * initiated) calling functions. * * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result * of resending a 'lost' open request. * * 'num_bseqid_retryp' makes sure we don't loop forever on a broken * server that hands out BAD_SEQID on open confirm. * * Errors are returned via the nfs4_error_t parameter. */ void nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; nfs_argop4 argop[2]; nfs_resop4 *resop; int doqueue = 1; mntinfo4_t *mi; OPEN_CONFIRM4args *open_confirm_args; int needrecov; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); #if DEBUG mutex_enter(&oop->oo_lock); ASSERT(oop->oo_seqid_inuse); mutex_exit(&oop->oo_lock); #endif recov_retry_confirm: nfs4_error_zinit(ep); *retry_open = FALSE; if (resend) args.ctag = TAG_OPEN_CONFIRM_LOST; else args.ctag = TAG_OPEN_CONFIRM; args.array_len = 2; args.array = argop; /* putfh target fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; argop[1].argop = OP_OPEN_CONFIRM; open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; (*seqid) += 1; open_confirm_args->seqid = *seqid; open_confirm_args->open_stateid = *stateid; mi = VTOMI4(vp); rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); if (!ep->error && nfs4_need_to_bump_seqid(&res)) { nfs4_set_open_seqid((*seqid), oop, args.ctag); } needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); if (!needrecov && ep->error) return; if (needrecov) { bool_t abort = FALSE; if (reopening_file == FALSE) { nfs4_bseqid_entry_t *bsep = NULL; if (!ep->error && res.status == NFS4ERR_BAD_SEQID) bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, args.ctag, open_confirm_args->seqid); abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); if (bsep) { kmem_free(bsep, sizeof (*bsep)); if (num_bseqid_retryp && --(*num_bseqid_retryp) == 0) abort = TRUE; } } if ((ep->error == ETIMEDOUT || res.status == NFS4ERR_RESOURCE) && abort == FALSE && resend == FALSE) { if (!ep->error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); delay(SEC_TO_TICK(confirm_retry_sec)); goto recov_retry_confirm; } /* State may have changed so retry the entire OPEN op */ if (abort == FALSE) *retry_open = TRUE; else *retry_open = FALSE; if (!ep->error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } if (res.status) { (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } resop = &res.array[1]; /* open confirm res */ bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, stateid, sizeof (*stateid)); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } /* * Return the credentials associated with a client state object. The * caller is responsible for freeing the credentials. */ static cred_t * state_to_cred(nfs4_open_stream_t *osp) { cred_t *cr; /* * It's ok to not lock the open stream and open owner to get * the oo_cred since this is only written once (upon creation) * and will not change. */ cr = osp->os_open_owner->oo_cred; crhold(cr); return (cr); } /* * nfs4_find_sysid * * Find the sysid for the knetconfig associated with the given mi. */ static struct lm_sysid * nfs4_find_sysid(mntinfo4_t *mi) { ASSERT(curproc->p_zone == mi->mi_zone); /* * Switch from RDMA knconf to original mount knconf */ return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, mi->mi_curr_serv->sv_hostname, NULL)); } #ifdef DEBUG /* * Return a string version of the call type for easy reading. */ static char * nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) { switch (ctype) { case NFS4_LCK_CTYPE_NORM: return ("NORMAL"); case NFS4_LCK_CTYPE_RECLAIM: return ("RECLAIM"); case NFS4_LCK_CTYPE_RESEND: return ("RESEND"); case NFS4_LCK_CTYPE_REINSTATE: return ("REINSTATE"); default: cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " "type %d", ctype); return (""); } } #endif /* * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type * Unlock requests don't have an over-the-wire locktype, so we just return * something non-threatening. */ static nfs_lock_type4 flk_to_locktype(int cmd, int l_type) { ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); switch (l_type) { case F_UNLCK: return (READ_LT); case F_RDLCK: if (cmd == F_SETLK) return (READ_LT); else return (READW_LT); case F_WRLCK: if (cmd == F_SETLK) return (WRITE_LT); else return (WRITEW_LT); } panic("flk_to_locktype"); /*NOTREACHED*/ } /* * Do some preliminary checks for nfs4frlock. */ static int nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, u_offset_t offset) { int error = 0; /* * If we are setting a lock, check that the file is opened * with the correct mode. */ if (cmd == F_SETLK || cmd == F_SETLKW) { if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock_validate_args: file was opened with " "incorrect mode")); return (EBADF); } } /* Convert the offset. It may need to be restored before returning. */ if (error = convoff(vp, flk, 0, offset)) { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock_validate_args: convoff => error= %d\n", error)); return (error); } return (error); } /* * Set the flock64's lm_sysid for nfs4frlock. */ static int nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) { ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); /* Find the lm_sysid */ *lspp = nfs4_find_sysid(VTOMI4(vp)); if (*lspp == NULL) { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock_get_sysid: no sysid, return ENOLCK")); return (ENOLCK); } flk->l_sysid = lm_sysidt(*lspp); return (0); } /* * Do the remaining preliminary setup for nfs4frlock. */ static void nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, cred_t **cred_otw) { /* * set tick_delay to the base delay time. * (NFS4_BASE_WAIT_TIME is in secs) */ *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); /* * If lock is relative to EOF, we need the newest length of the * file. Therefore invalidate the ATTR_CACHE. */ *whencep = flk->l_whence; if (*whencep == 2) /* SEEK_END */ PURGE_ATTRCACHE4(vp); recov_statep->rs_flags = 0; recov_statep->rs_num_retry_despite_err = 0; *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); } /* * Initialize and allocate the data structures necessary for * the nfs4frlock call. * Allocates argsp's op array, frees up the saved_rqstpp if there is one. */ static void nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) { int argoplist_size; int num_ops = 2; *retry = FALSE; *did_start_fop = FALSE; *skip_get_err = FALSE; lost_rqstp->lr_op = 0; argoplist_size = num_ops * sizeof (nfs_argop4); /* fill array with zero */ *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); *argspp = argsp; *respp = NULL; argsp->array_len = num_ops; argsp->array = *argopp; /* initialize in case of error; will get real value down below */ argsp->ctag = TAG_NONE; if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) *op_hintp = OH_LOCKU; else *op_hintp = OH_OTHER; } /* * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign * the proper nfs4_server_t for this instance of nfs4frlock. * Returns 0 (success) or an errno value. */ static int nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, bool_t *did_start_fop, bool_t *startrecovp) { int error = 0; rnode4_t *rp; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); if (ctype == NFS4_LCK_CTYPE_NORM) { error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, startrecovp); if (error) return (error); *did_start_fop = TRUE; } else { *did_start_fop = FALSE; *startrecovp = FALSE; } if (!error) { rp = VTOR4(vp); /* If the file failed recovery, just quit. */ mutex_enter(&rp->r_statelock); if (rp->r_flags & R4RECOVERR) { error = EIO; } mutex_exit(&rp->r_statelock); } return (error); } /* * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A * resend nfs4frlock call is initiated by the recovery framework. * Acquires the lop and oop seqid synchronization. */ static void nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, LOCK4args **lock_argsp, LOCKU4args **locku_argsp) { mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); int error; NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), (CE_NOTE, "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); ASSERT(resend_rqstp != NULL); ASSERT(resend_rqstp->lr_op == OP_LOCK || resend_rqstp->lr_op == OP_LOCKU); *oopp = resend_rqstp->lr_oop; if (resend_rqstp->lr_oop) { open_owner_hold(resend_rqstp->lr_oop); error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); ASSERT(error == 0); /* recov thread always succeeds */ } /* Must resend this lost lock/locku request. */ ASSERT(resend_rqstp->lr_lop != NULL); *lopp = resend_rqstp->lr_lop; lock_owner_hold(resend_rqstp->lr_lop); error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); ASSERT(error == 0); /* recov thread always succeeds */ *ospp = resend_rqstp->lr_osp; if (*ospp) open_stream_hold(resend_rqstp->lr_osp); if (resend_rqstp->lr_op == OP_LOCK) { LOCK4args *lock_args; argop->argop = OP_LOCK; *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; lock_args->locktype = resend_rqstp->lr_locktype; lock_args->reclaim = (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); lock_args->offset = resend_rqstp->lr_flk->l_start; lock_args->length = resend_rqstp->lr_flk->l_len; if (lock_args->length == 0) lock_args->length = ~lock_args->length; nfs4_setup_lock_args(*lopp, *oopp, *ospp, mi2clientid(mi), &lock_args->locker); switch (resend_rqstp->lr_ctype) { case NFS4_LCK_CTYPE_RESEND: argsp->ctag = TAG_LOCK_RESEND; break; case NFS4_LCK_CTYPE_REINSTATE: argsp->ctag = TAG_LOCK_REINSTATE; break; case NFS4_LCK_CTYPE_RECLAIM: argsp->ctag = TAG_LOCK_RECLAIM; break; default: argsp->ctag = TAG_LOCK_UNKNOWN; break; } } else { LOCKU4args *locku_args; nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; argop->argop = OP_LOCKU; *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; locku_args->locktype = READ_LT; locku_args->seqid = lop->lock_seqid + 1; mutex_enter(&lop->lo_lock); locku_args->lock_stateid = lop->lock_stateid; mutex_exit(&lop->lo_lock); locku_args->offset = resend_rqstp->lr_flk->l_start; locku_args->length = resend_rqstp->lr_flk->l_len; if (locku_args->length == 0) locku_args->length = ~locku_args->length; switch (resend_rqstp->lr_ctype) { case NFS4_LCK_CTYPE_RESEND: argsp->ctag = TAG_LOCKU_RESEND; break; case NFS4_LCK_CTYPE_REINSTATE: argsp->ctag = TAG_LOCKU_REINSTATE; break; default: argsp->ctag = TAG_LOCK_UNKNOWN; break; } } } /* * Setup the LOCKT4 arguments. */ static void nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, rnode4_t *rp) { LOCKT4args *lockt_args; ASSERT(curproc->p_zone == VTOMI4(RTOV4(rp))->mi_zone); ASSERT(ctype == NFS4_LCK_CTYPE_NORM); argop->argop = OP_LOCKT; argsp->ctag = TAG_LOCKT; lockt_args = &argop->nfs_argop4_u.oplockt; /* * The locktype will be READ_LT unless it's * a write lock. We do this because the Solaris * system call allows the combination of * F_UNLCK and F_GETLK* and so in that case the * unlock is mapped to a read. */ if (flk->l_type == F_WRLCK) lockt_args->locktype = WRITE_LT; else lockt_args->locktype = READ_LT; lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); /* set the lock owner4 args */ nfs4_setlockowner_args(&lockt_args->owner, rp, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : flk->l_pid); lockt_args->offset = flk->l_start; lockt_args->length = flk->l_len; if (flk->l_len == 0) lockt_args->length = ~lockt_args->length; *lockt_argsp = lockt_args; } /* * If the client is holding a delegation, and the open stream to be used * with this lock request is a delegation open stream, then re-open the stream. * Sets the nfs4_error_t to all zeros unless the open stream has already * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY * means the caller should retry (like a recovery retry). */ static void nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) { open_delegation_type4 dt; bool_t reopen_needed, force; nfs4_open_stream_t *osp; open_claim_type4 oclaim; rnode4_t *rp = VTOR4(vp); mntinfo4_t *mi = VTOMI4(vp); ASSERT(curproc->p_zone == mi->mi_zone); nfs4_error_zinit(ep); mutex_enter(&rp->r_statev4_lock); dt = rp->r_deleg_type; mutex_exit(&rp->r_statev4_lock); if (dt != OPEN_DELEGATE_NONE) { nfs4_open_owner_t *oop; oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); if (!oop) { ep->stat = NFS4ERR_IO; return; } /* returns with 'os_sync_lock' held */ osp = find_open_stream(oop, rp); if (!osp) { open_owner_rele(oop); ep->stat = NFS4ERR_IO; return; } if (osp->os_failed_reopen) { NFS4_DEBUG((nfs4_open_stream_debug || nfs4_client_lock_debug), (CE_NOTE, "nfs4frlock_check_deleg: os_failed_reopen set " "for osp %p, cr %p, rp %s", (void *)osp, (void *)cr, rnode4info(rp))); mutex_exit(&osp->os_sync_lock); open_stream_rele(osp, rp); open_owner_rele(oop); ep->stat = NFS4ERR_IO; return; } /* * Determine whether a reopen is needed. If this * is a delegation open stream, then send the open * to the server to give visibility to the open owner. * Even if it isn't a delegation open stream, we need * to check if the previous open CLAIM_DELEGATE_CUR * was sufficient. */ reopen_needed = osp->os_delegation || ((lt == F_RDLCK && !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || (lt == F_WRLCK && !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); mutex_exit(&osp->os_sync_lock); open_owner_rele(oop); if (reopen_needed) { /* * Always use CLAIM_PREVIOUS after server reboot. * The server will reject CLAIM_DELEGATE_CUR if * it is used during the grace period. */ mutex_enter(&mi->mi_lock); if (mi->mi_recovflags & MI4R_SRV_REBOOT) { oclaim = CLAIM_PREVIOUS; force = TRUE; } else { oclaim = CLAIM_DELEGATE_CUR; force = FALSE; } mutex_exit(&mi->mi_lock); nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); if (ep->error == EAGAIN) { nfs4_error_zinit(ep); ep->stat = NFS4ERR_DELAY; } } open_stream_rele(osp, rp); osp = NULL; } } /* * Setup the LOCKU4 arguments. * Returns errors via the nfs4_error_t. * NFS4_OK no problems. *go_otwp is TRUE if call should go * over-the-wire. The caller must release the * reference on *lopp. * NFS4ERR_DELAY caller should retry (like recovery retry) * (other) unrecoverable error. */ static void nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, LOCKU4args **locku_argsp, flock64_t *flk, nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, bool_t *skip_get_err, bool_t *go_otwp) { nfs4_lock_owner_t *lop = NULL; LOCKU4args *locku_args; pid_t pid; bool_t is_spec = FALSE; rnode4_t *rp = VTOR4(vp); ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); ASSERT(ctype == NFS4_LCK_CTYPE_NORM); nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); if (ep->error || ep->stat) return; argop->argop = OP_LOCKU; if (ctype == NFS4_LCK_CTYPE_REINSTATE) argsp->ctag = TAG_LOCKU_REINSTATE; else argsp->ctag = TAG_LOCKU; locku_args = &argop->nfs_argop4_u.oplocku; *locku_argsp = locku_args; /* * XXX what should locku_args->locktype be? * setting to ALWAYS be READ_LT so at least * it is a valid locktype. */ locku_args->locktype = READ_LT; pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : flk->l_pid; /* * Get the lock owner stateid. If no lock owner * exists, return success. */ lop = find_lock_owner(rp, pid, LOWN_ANY); *lopp = lop; if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) is_spec = TRUE; if (!lop || is_spec) { /* * No lock owner so no locks to unlock. * Return success. If there was a failed * reclaim earlier, the lock might still be * registered with the local locking code, * so notify it of the unlock. * * If the lockowner is using a special stateid, * then the original lock request (that created * this lockowner) was never successful, so we * have no lock to undo OTW. */ NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock_setup_locku_args: LOCKU: no lock owner " "(%ld) so return success", (long)pid)); if (ctype == NFS4_LCK_CTYPE_NORM) flk->l_pid = curproc->p_pid; nfs4_register_lock_locally(vp, flk, flag, offset); /* * Release our hold and NULL out so final_cleanup * doesn't try to end a lock seqid sync we * never started. */ if (is_spec) { lock_owner_rele(lop); *lopp = NULL; } *skip_get_err = TRUE; *go_otwp = FALSE; return; } ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); if (ep->error == EAGAIN) { lock_owner_rele(lop); *lopp = NULL; return; } mutex_enter(&lop->lo_lock); locku_args->lock_stateid = lop->lock_stateid; mutex_exit(&lop->lo_lock); locku_args->seqid = lop->lock_seqid + 1; /* leave the ref count on lop, rele after RPC call */ locku_args->offset = flk->l_start; locku_args->length = flk->l_len; if (flk->l_len == 0) locku_args->length = ~locku_args->length; *go_otwp = TRUE; } /* * Setup the LOCK4 arguments. * * Returns errors via the nfs4_error_t. * NFS4_OK no problems * NFS4ERR_DELAY caller should retry (like recovery retry) * (other) unrecoverable error */ static void nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) { LOCK4args *lock_args; nfs4_open_owner_t *oop = NULL; nfs4_open_stream_t *osp = NULL; nfs4_lock_owner_t *lop = NULL; pid_t pid; rnode4_t *rp = VTOR4(vp); ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); if (ep->error || ep->stat != NFS4_OK) return; argop->argop = OP_LOCK; if (ctype == NFS4_LCK_CTYPE_NORM) argsp->ctag = TAG_LOCK; else if (ctype == NFS4_LCK_CTYPE_RECLAIM) argsp->ctag = TAG_RELOCK; else argsp->ctag = TAG_LOCK_REINSTATE; lock_args = &argop->nfs_argop4_u.oplock; lock_args->locktype = flk_to_locktype(cmd, flk->l_type); lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; /* * Get the lock owner. If no lock owner exists, * create a 'temporary' one and grab the open seqid * synchronization (which puts a hold on the open * owner and open stream). * This also grabs the lock seqid synchronization. */ pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; ep->stat = nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); if (ep->stat != NFS4_OK) goto out; nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), &lock_args->locker); lock_args->offset = flk->l_start; lock_args->length = flk->l_len; if (flk->l_len == 0) lock_args->length = ~lock_args->length; *lock_argsp = lock_args; out: *oopp = oop; *ospp = osp; *lopp = lop; } /* * After we get the reply from the server, record the proper information * for possible resend lock requests. * * Allocates memory for the saved_rqstp if we have a lost lock to save. */ static void nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, nfs_lock_type4 locktype, nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) { bool_t unlock = (flk->l_type == F_UNLCK); ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); ASSERT(ctype == NFS4_LCK_CTYPE_NORM || ctype == NFS4_LCK_CTYPE_REINSTATE); if (error != 0 && !unlock) { NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), (CE_NOTE, "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " " for lop %p", (void *)lop)); ASSERT(lop != NULL); mutex_enter(&lop->lo_lock); lop->lo_pending_rqsts = 1; mutex_exit(&lop->lo_lock); } lost_rqstp->lr_putfirst = FALSE; lost_rqstp->lr_op = 0; /* * For lock/locku requests, we treat EINTR as ETIMEDOUT for * recovery purposes so that the lock request that was sent * can be saved and re-issued later. Ditto for EIO from a forced * unmount. This is done to have the client's local locking state * match the v4 server's state; that is, the request was * potentially received and accepted by the server but the client * thinks it was not. */ if (error == ETIMEDOUT || error == EINTR || NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), (CE_NOTE, "nfs4frlock_save_lost_rqst: got a lost %s lock for " "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", (void *)lop, (void *)oop, (void *)osp)); if (unlock) lost_rqstp->lr_op = OP_LOCKU; else { lost_rqstp->lr_op = OP_LOCK; lost_rqstp->lr_locktype = locktype; } /* * Objects are held and rele'd via the recovery code. * See nfs4_save_lost_rqst. */ lost_rqstp->lr_vp = vp; lost_rqstp->lr_dvp = NULL; lost_rqstp->lr_oop = oop; lost_rqstp->lr_osp = osp; lost_rqstp->lr_lop = lop; lost_rqstp->lr_cr = cr; switch (ctype) { case NFS4_LCK_CTYPE_NORM: flk->l_pid = ttoproc(curthread)->p_pid; lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; break; case NFS4_LCK_CTYPE_REINSTATE: lost_rqstp->lr_putfirst = TRUE; lost_rqstp->lr_ctype = ctype; break; default: break; } lost_rqstp->lr_flk = flk; } } /* * Update lop's seqid. Also update the seqid stored in a resend request, * if any. (Some recovery errors increment the seqid, and we may have to * send the resend request again.) */ static void nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) { if (lock_args) { if (lock_args->locker.new_lock_owner == TRUE) nfs4_get_and_set_next_open_seqid(oop, tag_type); else { ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); } } else if (locku_args) { ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); nfs4_set_lock_seqid(lop->lock_seqid +1, lop); } } /* * Calls nfs4_end_fop, drops the seqid syncs, and frees up the * COMPOUND4 args/res for calls that need to retry. * Switches the *cred_otwp to base_cr. */ static void nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) { nfs4_open_owner_t *oop = *oopp; nfs4_open_stream_t *osp = *ospp; nfs4_lock_owner_t *lop = *lopp; nfs_argop4 *argop = (*argspp)->array; if (*did_start_fop) { nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, needrecov); *did_start_fop = FALSE; } ASSERT((*argspp)->array_len == 2); if (argop[1].argop == OP_LOCK) nfs4args_lock_free(&argop[1]); else if (argop[1].argop == OP_LOCKT) nfs4args_lockt_free(&argop[1]); kmem_free(argop, 2 * sizeof (nfs_argop4)); if (!error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); *argspp = NULL; *respp = NULL; if (lop) { nfs4_end_lock_seqid_sync(lop); lock_owner_rele(lop); *lopp = NULL; } /* need to free up the reference on osp for lock args */ if (osp != NULL) { open_stream_rele(osp, VTOR4(vp)); *ospp = NULL; } /* need to free up the reference on oop for lock args */ if (oop != NULL) { nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); *oopp = NULL; } crfree(*cred_otwp); *cred_otwp = base_cr; crhold(*cred_otwp); } /* * Function to process the client's recovery for nfs4frlock. * Returns TRUE if we should retry the lock request; FALSE otherwise. * * Calls nfs4_end_fop, drops the seqid syncs, and frees up the * COMPOUND4 args/res for calls that need to retry. * * Note: the rp's r_lkserlock is *not* dropped during this path. */ static bool_t nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, LOCK4args *lock_args, LOCKU4args *locku_args, nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) { nfs4_open_owner_t *oop = *oopp; nfs4_open_stream_t *osp = *ospp; nfs4_lock_owner_t *lop = *lopp; bool_t abort, retry; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); ASSERT((*argspp) != NULL); ASSERT((*respp) != NULL); if (lock_args || locku_args) ASSERT(lop != NULL); NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); retry = TRUE; abort = FALSE; if (needrecov) { nfs4_bseqid_entry_t *bsep = NULL; nfs_opnum4 op; op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { seqid4 seqid; if (lock_args) { if (lock_args->locker.new_lock_owner == TRUE) seqid = lock_args->locker.locker4_u. open_owner.open_seqid; else seqid = lock_args->locker.locker4_u. lock_owner.lock_seqid; } else if (locku_args) { seqid = locku_args->seqid; } else { seqid = 0; } bsep = nfs4_create_bseqid_entry(oop, lop, vp, flk->l_pid, (*argspp)->ctag, seqid); } abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : NULL, op, bsep); if (bsep) kmem_free(bsep, sizeof (*bsep)); } /* * Return that we do not want to retry the request for 3 cases: * 1. If we received EINTR or are bailing out because of a forced * unmount, we came into this code path just for the sake of * initiating recovery, we now need to return the error. * 2. If we have aborted recovery. * 3. We received NFS4ERR_BAD_SEQID. */ if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) retry = FALSE; if (*did_start_fop == TRUE) { nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, needrecov); *did_start_fop = FALSE; } if (retry == TRUE) { nfs_argop4 *argop; argop = (*argspp)->array; ASSERT((*argspp)->array_len == 2); if (argop[1].argop == OP_LOCK) nfs4args_lock_free(&argop[1]); else if (argop[1].argop == OP_LOCKT) nfs4args_lockt_free(&argop[1]); kmem_free(argop, 2 * sizeof (nfs_argop4)); if (!ep->error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); *respp = NULL; *argspp = NULL; } if (lop != NULL) { nfs4_end_lock_seqid_sync(lop); lock_owner_rele(lop); } *lopp = NULL; /* need to free up the reference on osp for lock args */ if (osp != NULL) { open_stream_rele(osp, rp); *ospp = NULL; } /* need to free up the reference on oop for lock args */ if (oop != NULL) { nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); *oopp = NULL; } return (retry); } /* * Handles the succesful reply from the server for nfs4frlock. */ static void nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, vnode_t *vp, int flag, u_offset_t offset, nfs4_lost_rqst_t *resend_rqstp) { ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); if ((cmd == F_SETLK || cmd == F_SETLKW) && (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { if (ctype == NFS4_LCK_CTYPE_NORM) { flk->l_pid = ttoproc(curthread)->p_pid; /* * We do not register lost locks locally in * the 'resend' case since the user/application * doesn't think we have the lock. */ ASSERT(!resend_rqstp); nfs4_register_lock_locally(vp, flk, flag, offset); } } } /* * Handle the DENIED reply from the server for nfs4frlock. * Returns TRUE if we should retry the request; FALSE otherwise. * * Calls nfs4_end_fop, drops the seqid syncs, and frees up the * COMPOUND4 args/res for calls that need to retry. Can also * drop and regrab the r_lkserlock. */ static bool_t nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, int needrecov, COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, clock_t *tick_delayp, short *whencep, int *errorp, nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, bool_t *skip_get_err) { ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); if (lock_args) { nfs4_open_owner_t *oop = *oopp; nfs4_open_stream_t *osp = *ospp; nfs4_lock_owner_t *lop = *lopp; int intr; /* * Blocking lock needs to sleep and retry from the request. * * Do not block and wait for 'resend' or 'reinstate' * lock requests, just return the error. * * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. */ if (cmd == F_SETLKW) { rnode4_t *rp = VTOR4(vp); nfs_argop4 *argop = (*argspp)->array; ASSERT(ctype == NFS4_LCK_CTYPE_NORM); nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, needrecov); *did_start_fop = FALSE; ASSERT((*argspp)->array_len == 2); if (argop[1].argop == OP_LOCK) nfs4args_lock_free(&argop[1]); else if (argop[1].argop == OP_LOCKT) nfs4args_lockt_free(&argop[1]); kmem_free(argop, 2 * sizeof (nfs_argop4)); if (*respp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); *argspp = NULL; *respp = NULL; nfs4_end_lock_seqid_sync(lop); lock_owner_rele(lop); *lopp = NULL; if (osp != NULL) { open_stream_rele(osp, rp); *ospp = NULL; } if (oop != NULL) { nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); *oopp = NULL; } nfs_rw_exit(&rp->r_lkserlock); intr = nfs4_block_and_wait(tick_delayp, rp); if (intr) { (void) nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, FALSE); *errorp = EINTR; return (FALSE); } (void) nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, FALSE); /* * Make sure we are still safe to lock with * regards to mmapping. */ if (!nfs4_safelock(vp, flk, cr)) { *errorp = EAGAIN; return (FALSE); } return (TRUE); } if (ctype == NFS4_LCK_CTYPE_NORM) *errorp = EAGAIN; *skip_get_err = TRUE; flk->l_whence = 0; *whencep = 0; return (FALSE); } else if (lockt_args) { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock_results_denied: OP_LOCKT DENIED")); denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, flk, lockt_args); /* according to NLM code */ *errorp = 0; *whencep = 0; *skip_get_err = TRUE; return (FALSE); } return (FALSE); } /* * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. */ static void nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) { switch (resp->status) { case NFS4ERR_ACCESS: case NFS4ERR_ADMIN_REVOKED: case NFS4ERR_BADHANDLE: case NFS4ERR_BAD_RANGE: case NFS4ERR_BAD_SEQID: case NFS4ERR_BAD_STATEID: case NFS4ERR_BADXDR: case NFS4ERR_DEADLOCK: case NFS4ERR_DELAY: case NFS4ERR_EXPIRED: case NFS4ERR_FHEXPIRED: case NFS4ERR_GRACE: case NFS4ERR_INVAL: case NFS4ERR_ISDIR: case NFS4ERR_LEASE_MOVED: case NFS4ERR_LOCK_NOTSUPP: case NFS4ERR_LOCK_RANGE: case NFS4ERR_MOVED: case NFS4ERR_NOFILEHANDLE: case NFS4ERR_NO_GRACE: case NFS4ERR_OLD_STATEID: case NFS4ERR_OPENMODE: case NFS4ERR_RECLAIM_BAD: case NFS4ERR_RECLAIM_CONFLICT: case NFS4ERR_RESOURCE: case NFS4ERR_SERVERFAULT: case NFS4ERR_STALE: case NFS4ERR_STALE_CLIENTID: case NFS4ERR_STALE_STATEID: return; default: NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock_results_default: got unrecognizable " "res.status %d", resp->status)); *errorp = NFS4ERR_INVAL; } } /* * The lock request was successful, so update the client's state. */ static void nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, vnode_t *vp, flock64_t *flk, cred_t *cr, nfs4_lost_rqst_t *resend_rqstp) { ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); if (lock_args) { LOCK4res *lock_res; lock_res = &resop->nfs_resop4_u.oplock; /* update the stateid with server's response */ if (lock_args->locker.new_lock_owner == TRUE) { mutex_enter(&lop->lo_lock); lop->lo_just_created = NFS4_PERM_CREATED; mutex_exit(&lop->lo_lock); } nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); /* * If the lock was the result of a resending a lost * request, we've synched up the stateid and seqid * with the server, but now the server might be out of sync * with what the application thinks it has for locks. * Clean that up here. It's unclear whether we should do * this even if the filesystem has been forcibly unmounted. * For most servers, it's probably wasted effort, but * RFC3530 lets servers require that unlocks exactly match * the locks that are held. */ if (resend_rqstp != NULL && resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); } else { flk->l_whence = 0; } } else if (locku_args) { LOCKU4res *locku_res; locku_res = &resop->nfs_resop4_u.oplocku; /* Update the stateid with the server's response */ nfs4_set_lock_stateid(lop, locku_res->lock_stateid); } else if (lockt_args) { /* Switch the lock type to express success, see fcntl */ flk->l_type = F_UNLCK; flk->l_whence = 0; } } /* * Do final cleanup before exiting nfs4frlock. * Calls nfs4_end_fop, drops the seqid syncs, and frees up the * COMPOUND4 args/res for calls that haven't already. */ static void nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, short whence, u_offset_t offset, struct lm_sysid *ls, int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, bool_t did_start_fop, bool_t skip_get_err, cred_t *cred_otw, cred_t *cred) { mntinfo4_t *mi = VTOMI4(vp); rnode4_t *rp = VTOR4(vp); int error = *errorp; nfs_argop4 *argop; ASSERT(curproc->p_zone == mi->mi_zone); /* * The client recovery code wants the raw status information, * so don't map the NFS status code to an errno value for * non-normal call types. */ if (ctype == NFS4_LCK_CTYPE_NORM) { if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) *errorp = geterrno4(resp->status); if (did_start_fop == TRUE) nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, needrecov); if (!error && resp && resp->status == NFS4_OK) { /* * We've established a new lock on the server, so invalidate * the pages associated with the vnode to get the most up to * date pages from the server after acquiring the lock. We * want to be sure that the read operation gets the newest data. * N.B. * We used to do this in nfs4frlock_results_ok but that doesn't * work since VOP_PUTPAGE can call nfs4_commit which calls * nfs4_start_fop. We flush the pages below after calling * nfs4_end_fop above */ int error; error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cred); if (error && (error == ENOSPC || error == EDQUOT)) { rnode4_t *rp = VTOR4(vp); mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = error; mutex_exit(&rp->r_statelock); } } } if (argsp) { ASSERT(argsp->array_len == 2); argop = argsp->array; if (argop[1].argop == OP_LOCK) nfs4args_lock_free(&argop[1]); else if (argop[1].argop == OP_LOCKT) nfs4args_lockt_free(&argop[1]); kmem_free(argop, 2 * sizeof (nfs_argop4)); if (resp) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); } /* free the reference on the lock owner */ if (lop != NULL) { nfs4_end_lock_seqid_sync(lop); lock_owner_rele(lop); } /* need to free up the reference on osp for lock args */ if (osp != NULL) open_stream_rele(osp, rp); /* need to free up the reference on oop for lock args */ if (oop != NULL) { nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); } (void) convoff(vp, flk, whence, offset); lm_rel_sysid(ls); /* * Record debug information in the event we get EINVAL. */ mutex_enter(&mi->mi_lock); if (*errorp == EINVAL && (lock_args || locku_args) && (!(mi->mi_flags & MI4_POSIX_LOCK))) { if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { zcmn_err(getzoneid(), CE_NOTE, "%s operation failed with " "EINVAL probably since the server, %s," " doesn't support POSIX style locking", lock_args ? "LOCK" : "LOCKU", mi->mi_curr_serv->sv_hostname); mi->mi_flags |= MI4_LOCK_DEBUG; } } mutex_exit(&mi->mi_lock); if (cred_otw) crfree(cred_otw); } /* * This calls the server and the local locking code. * * Client locks are registerred locally by oring the sysid with * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. * We need to distinguish between the two to avoid collision in case one * machine is used as both client and server. * * Blocking lock requests will continually retry to acquire the lock * forever. * * The ctype is defined as follows: * NFS4_LCK_CTYPE_NORM: normal lock request. * * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client * recovery, get the pid from flk instead of curproc, and don't reregister * the lock locally. * * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition * that we will use the information passed in via resend_rqstp to setup the * lock/locku request. This resend is the exact same request as the 'lost * lock', and is initiated by the recovery framework. A successful resend * request can initiate one or more reinstate requests. * * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it * does not trigger additional reinstate requests. This lock call type is * set for setting the v4 server's locking state back to match what the * client's local locking state is in the event of a received 'lost lock'. * * Errors are returned via the nfs4_error_t parameter. */ void nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) { COMPOUND4args_clnt args, *argsp = NULL; COMPOUND4res_clnt res, *resp = NULL; nfs_argop4 *argop; nfs_resop4 *resop; rnode4_t *rp; int doqueue = 1; clock_t tick_delay; /* delay in clock ticks */ struct lm_sysid *ls; LOCK4args *lock_args = NULL; LOCKU4args *locku_args = NULL; LOCKT4args *lockt_args = NULL; nfs4_open_owner_t *oop = NULL; nfs4_open_stream_t *osp = NULL; nfs4_lock_owner_t *lop = NULL; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; short whence; nfs4_op_hint_t op_hint; nfs4_lost_rqst_t lost_rqst; bool_t retry = FALSE; bool_t did_start_fop = FALSE; bool_t skip_get_err = FALSE; cred_t *cred_otw = NULL; bool_t recovonly; /* just queue request */ int frc_no_reclaim = 0; #ifdef DEBUG char *name; #endif ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); #ifdef DEBUG name = fn_name(VTOSV(vp)->sv_name); NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " "length %"PRIu64", pid %d, sysid %d, call type %s, " "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), resend_rqstp ? "TRUE" : "FALSE")); kmem_free(name, MAXNAMELEN); #endif nfs4_error_zinit(ep); ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); if (ep->error) return; ep->error = nfs4frlock_get_sysid(&ls, vp, flk); if (ep->error) return; nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, vp, cr, &cred_otw); recov_retry: nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); rp = VTOR4(vp); ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, &did_start_fop, &recovonly); if (ep->error) goto out; if (recovonly) { /* * Leave the request for the recovery system to deal with. */ ASSERT(ctype == NFS4_LCK_CTYPE_NORM); ASSERT(cmd != F_GETLK); ASSERT(flk->l_type == F_UNLCK); nfs4_error_init(ep, EINTR); needrecov = TRUE; lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); if (lop != NULL) { nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, NULL, NULL, lop, flk, &lost_rqst, cr, vp); (void) nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, (lost_rqst.lr_op == OP_LOCK || lost_rqst.lr_op == OP_LOCKU) ? &lost_rqst : NULL, OP_LOCKU, NULL); lock_owner_rele(lop); lop = NULL; } flk->l_pid = curproc->p_pid; nfs4_register_lock_locally(vp, flk, flag, offset); goto out; } /* putfh directory fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; /* * Set up the over-the-wire arguments and get references to the * open owner, etc. */ if (ctype == NFS4_LCK_CTYPE_RESEND || ctype == NFS4_LCK_CTYPE_REINSTATE) { nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); } else { bool_t go_otw = TRUE; ASSERT(resend_rqstp == NULL); switch (cmd) { case F_GETLK: case F_O_GETLK: nfs4frlock_setup_lockt_args(ctype, &argop[1], &lockt_args, argsp, flk, rp); break; case F_SETLKW: case F_SETLK: if (flk->l_type == F_UNLCK) nfs4frlock_setup_locku_args(ctype, &argop[1], &locku_args, flk, &lop, ep, argsp, vp, flag, offset, cr, &skip_get_err, &go_otw); else nfs4frlock_setup_lock_args(ctype, &lock_args, &oop, &osp, &lop, &argop[1], argsp, flk, cmd, vp, cr, ep); if (ep->error) goto out; switch (ep->stat) { case NFS4_OK: break; case NFS4ERR_DELAY: /* recov thread never gets this error */ ASSERT(resend_rqstp == NULL); ASSERT(did_start_fop); nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, &recov_state, TRUE); did_start_fop = FALSE; if (argop[1].argop == OP_LOCK) nfs4args_lock_free(&argop[1]); else if (argop[1].argop == OP_LOCKT) nfs4args_lockt_free(&argop[1]); kmem_free(argop, 2 * sizeof (nfs_argop4)); argsp = NULL; goto recov_retry; default: ep->error = EIO; goto out; } break; default: NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_frlock: invalid cmd %d", cmd)); ep->error = EINVAL; goto out; } if (!go_otw) goto out; } /* XXX should we use the local reclock as a cache ? */ /* * Unregister the lock with the local locking code before * contacting the server. This avoids a potential race where * another process gets notified that it has been granted a lock * before we can unregister ourselves locally. */ if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { if (ctype == NFS4_LCK_CTYPE_NORM) flk->l_pid = ttoproc(curthread)->p_pid; nfs4_register_lock_locally(vp, flk, flag, offset); } /* * Send the server the lock request. Continually loop with a delay * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. */ resp = &res; NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), (CE_NOTE, "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", rnode4info(rp))); if (lock_args && frc_no_reclaim) { ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: frc_no_reclaim: clearing reclaim")); lock_args->reclaim = FALSE; if (did_reclaimp) *did_reclaimp = 0; } /* * Do the OTW call. */ rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: error %d, status %d", ep->error, resp->status)); needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: needrecov %d", needrecov)); if (ep->error != 0 && !needrecov && ep->error != EACCES) goto out; if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, args.ctag); if ((ep->error == EACCES || (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && cred_otw != cr) { nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, cr, &cred_otw); goto recov_retry; } if (needrecov) { /* * LOCKT requests don't need to recover from lost * requests since they don't create/modify state. */ if ((ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && lockt_args) goto out; /* * Do not attempt recovery for requests initiated by * the recovery framework. Let the framework redrive them. */ if (ctype != NFS4_LCK_CTYPE_NORM) goto out; else { ASSERT(resend_rqstp == NULL); } nfs4frlock_save_lost_rqst(ctype, ep->error, flk_to_locktype(cmd, flk->l_type), oop, osp, lop, flk, &lost_rqst, cred_otw, vp); retry = nfs4frlock_recovery(needrecov, ep, &argsp, &resp, lock_args, locku_args, &oop, &osp, &lop, rp, vp, &recov_state, op_hint, &did_start_fop, cmd != F_GETLK ? &lost_rqst : NULL, flk); if (retry) { ASSERT(oop == NULL); ASSERT(osp == NULL); ASSERT(lop == NULL); goto recov_retry; } goto out; } /* * Process the reply. */ switch (resp->status) { case NFS4_OK: resop = &resp->array[1]; nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, resend_rqstp); /* * Have a successful lock operation, now update state. */ nfs4frlock_update_state(lock_args, locku_args, lockt_args, resop, lop, vp, flk, cr, resend_rqstp); break; case NFS4ERR_DENIED: resop = &resp->array[1]; retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, &oop, &osp, &lop, cmd, vp, flk, op_hint, &recov_state, needrecov, &argsp, &resp, &tick_delay, &whence, &ep->error, resop, cr, &did_start_fop, &skip_get_err); if (retry) { ASSERT(oop == NULL); ASSERT(osp == NULL); ASSERT(lop == NULL); goto recov_retry; } break; /* * If the server won't let us reclaim, fall-back to trying to lock * the file from scratch. Code elsewhere will check the changeinfo * to ensure the file hasn't been changed. */ case NFS4ERR_NO_GRACE: if (lock_args && lock_args->reclaim == TRUE) { ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); frc_no_reclaim = 1; /* clean up before retrying */ needrecov = 0; (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, lock_args, locku_args, &oop, &osp, &lop, rp, vp, &recov_state, op_hint, &did_start_fop, NULL, flk); goto recov_retry; } /* FALLTHROUGH */ default: nfs4frlock_results_default(resp, &ep->error); break; } out: /* * Process and cleanup from error. Make interrupted unlock * requests look successful, since they will be handled by the * client recovery code. */ nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, lock_args, locku_args, did_start_fop, skip_get_err, cred_otw, cr); if (ep->error == EINTR && flk->l_type == F_UNLCK && (cmd == F_SETLK || cmd == F_SETLKW)) ep->error = 0; } /* * nfs4_safelock: * * Return non-zero if the given lock request can be handled without * violating the constraints on concurrent mapping and locking. */ static int nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) { rnode4_t *rp = VTOR4(vp); struct vattr va; int error; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); ASSERT(rp->r_mapcnt >= 0); NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", bfp->l_start, bfp->l_len, rp->r_mapcnt)); if (rp->r_mapcnt == 0) return (1); /* always safe if not mapped */ /* * If the file is already mapped and there are locks, then they * should be all safe locks. So adding or removing a lock is safe * as long as the new request is safe (i.e., whole-file, meaning * length and starting offset are both zero). */ if (bfp->l_start != 0 || bfp->l_len != 0) { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " "cannot lock a memory mapped file unless locking the " "entire file: start %"PRIx64", len %"PRIx64, bfp->l_start, bfp->l_len)); return (0); } /* mandatory locking and mapping don't mix */ va.va_mask = AT_MODE; error = VOP_GETATTR(vp, &va, 0, cr); if (error != 0) { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " "getattr error %d", error)); return (0); /* treat errors conservatively */ } if (MANDLOCK(vp, va.va_mode)) { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " "cannot mandatory lock and mmap a file")); return (0); } return (1); } /* * Register the lock locally within Solaris. * As the client, we "or" the sysid with LM_SYSID_CLIENT when * recording locks locally. * * This should handle conflicts/cooperation with NFS v2/v3 since all locks * are registered locally. */ void nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, u_offset_t offset) { int oldsysid; int error; #ifdef DEBUG char *name; #endif ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); #ifdef DEBUG name = fn_name(VTOSV(vp)->sv_name); NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, flk->l_sysid)); kmem_free(name, MAXNAMELEN); #endif /* register the lock with local locking */ oldsysid = flk->l_sysid; flk->l_sysid |= LM_SYSID_CLIENT; error = reclock(vp, flk, SETFLCK, flag, offset, NULL); #ifdef DEBUG if (error != 0) { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_register_lock_locally: could not register with" " local locking")); NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, "error %d, vp 0x%p, pid %d, sysid 0x%x", error, (void *)vp, flk->l_pid, flk->l_sysid)); NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, "type %d off 0x%" PRIx64 " len 0x%" PRIx64, flk->l_type, flk->l_start, flk->l_len)); (void) reclock(vp, flk, 0, flag, offset, NULL); NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, "blocked by pid %d sysid 0x%x type %d " "off 0x%" PRIx64 " len 0x%" PRIx64, flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, flk->l_len)); } #endif flk->l_sysid = oldsysid; } /* * nfs4_lockrelease: * * Release any locks on the given vnode that are held by the current * process. Also removes the lock owner (if one exists) from the rnode's * list. */ static int nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) { flock64_t ld; int ret, error; rnode4_t *rp; nfs4_lock_owner_t *lop; nfs4_recov_state_t recov_state; mntinfo4_t *mi; bool_t possible_orphan = FALSE; bool_t recovonly; ASSERT((uintptr_t)vp > KERNELBASE); ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); rp = VTOR4(vp); mi = VTOMI4(vp); /* * If we have not locked anything then we can * just return since we have no work to do. */ if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { return (0); } /* * We need to comprehend that another thread may * kick off recovery and the lock_owner we have stashed * in lop might be invalid so we should NOT cache it * locally! */ recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, &recovonly); if (error) { mutex_enter(&rp->r_statelock); rp->r_flags |= R4LODANGLERS; mutex_exit(&rp->r_statelock); return (error); } lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); /* * Check if the lock owner might have a lock (request was sent but * no response was received). Also check if there are any remote * locks on the file. (In theory we shouldn't have to make this * second check if there's no lock owner, but for now we'll be * conservative and do it anyway.) If either condition is true, * send an unlock for the entire file to the server. * * Note that no explicit synchronization is needed here. At worst, * flk_has_remote_locks() will return a false positive, in which case * the unlock call wastes time but doesn't harm correctness. */ if (lop) { mutex_enter(&lop->lo_lock); possible_orphan = lop->lo_pending_rqsts; mutex_exit(&lop->lo_lock); lock_owner_rele(lop); } nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_lockrelease: possible orphan %d, remote locks %d, for " "lop %p.", possible_orphan, flk_has_remote_locks(vp), (void *)lop)); if (possible_orphan || flk_has_remote_locks(vp)) { ld.l_type = F_UNLCK; /* set to unlock entire file */ ld.l_whence = 0; /* unlock from start of file */ ld.l_start = 0; ld.l_len = 0; /* do entire file */ ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr); if (ret != 0) { /* * If VOP_FRLOCK fails, make sure we unregister * local locks before we continue. */ ld.l_pid = ttoproc(curthread)->p_pid; nfs4_register_lock_locally(vp, &ld, flag, offset); NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_lockrelease: lock release error on vp" " %p: error %d.\n", (void *)vp, ret)); } } recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, &recovonly); if (error) { mutex_enter(&rp->r_statelock); rp->r_flags |= R4LODANGLERS; mutex_exit(&rp->r_statelock); return (error); } /* * So, here we're going to need to retrieve the lock-owner * again (in case recovery has done a switch-a-roo) and * remove it because we can. */ lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); if (lop) { nfs4_rnode_remove_lock_owner(rp, lop); lock_owner_rele(lop); } nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); return (0); } /* * Wait for 'tick_delay' clock ticks. * Implement exponential backoff until hit the lease_time of this nfs4_server. * NOTE: lock_lease_time is in seconds. * * XXX For future improvements, should implement a waiting queue scheme. */ static int nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) { long milliseconds_delay; time_t lock_lease_time; /* wait tick_delay clock ticks or siginteruptus */ if (delay_sig(*tick_delay)) { return (EINTR); } NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " "reissue the lock request: blocked for %ld clock ticks: %ld " "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); /* get the lease time */ lock_lease_time = r2lease_time(rp); /* drv_hztousec converts ticks to microseconds */ milliseconds_delay = drv_hztousec(*tick_delay) / 1000; if (milliseconds_delay < lock_lease_time * 1000) { *tick_delay = 2 * *tick_delay; if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) *tick_delay = drv_usectohz(lock_lease_time*1000*1000); } return (0); } void nfs4_vnops_init(void) { } void nfs4_vnops_fini(void) { } /* * Return a reference to the directory (parent) vnode for a given vnode, * using the saved pathname information and the directory file handle. The * caller is responsible for disposing of the reference. * Returns zero or an errno value. * * Caller should set need_start_op to FALSE if it is the recovery * thread, or if a start_fop has already been done. Otherwise, TRUE. */ int vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) { svnode_t *svnp; vnode_t *dvp = NULL; servinfo4_t *svp; nfs4_fname_t *mfname; int error; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); if (vp->v_flag & VROOT) { nfs4_sharedfh_t *sfh; nfs_fh4 fh; mntinfo4_t *mi; ASSERT(vp->v_type == VREG); mi = VTOMI4(vp); svp = mi->mi_curr_serv; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; sfh = sfh4_get(&fh, VTOMI4(vp)); nfs_rw_exit(&svp->sv_lock); mfname = mi->mi_fname; fn_hold(mfname); dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); sfh4_rele(&sfh); if (dvp->v_type == VNON) dvp->v_type = VDIR; *dvpp = dvp; return (0); } svnp = VTOSV(vp); if (svnp == NULL) { NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " "shadow node is NULL")); return (EINVAL); } if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " "shadow node name or dfh val == NULL")); return (EINVAL); } error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, (int)need_start_op); if (error != 0) { NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " "nfs4_make_dotdot returned %d", error)); return (error); } if (!dvp) { NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " "nfs4_make_dotdot returned a NULL dvp")); return (EIO); } if (dvp->v_type == VNON) dvp->v_type = VDIR; ASSERT(dvp->v_type == VDIR); if (VTOR4(vp)->r_flags & R4ISXATTR) { mutex_enter(&dvp->v_lock); dvp->v_flag |= V_XATTRDIR; mutex_exit(&dvp->v_lock); } *dvpp = dvp; return (0); } /* * Copy the (final) component name of vp to fnamep. maxlen is the maximum * length that fnamep can accept, including the trailing null. * Returns 0 if okay, returns an errno value if there was a problem. */ int vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) { char *fn; int err = 0; servinfo4_t *svp; svnode_t *shvp; /* * If the file being opened has VROOT set, then this is * a "file" mount. sv_name will not be interesting, so * go back to the servinfo4 to get the original mount * path and strip off all but the final edge. Otherwise * just return the name from the shadow vnode. */ if (vp->v_flag & VROOT) { svp = VTOMI4(vp)->mi_curr_serv; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); fn = strrchr(svp->sv_path, '/'); if (fn == NULL) err = EINVAL; else fn++; } else { shvp = VTOSV(vp); fn = fn_name(shvp->sv_name); } if (err == 0) if (strlen(fn) < maxlen) (void) strcpy(fnamep, fn); else err = ENAMETOOLONG; if (vp->v_flag & VROOT) nfs_rw_exit(&svp->sv_lock); else kmem_free(fn, MAXNAMELEN); return (err); } /* * If the vnode has pages, run the list and check for * any that are still dangling. We call this function * before the OTW CLOSE occurs so we can B_INVAL the * danglers. */ static int nfs4_dross_pages(vnode_t *vp) { page_t *pp; kmutex_t *vphm; rnode4_t *rp; /* make sure we're looking at the master vnode, not a shadow */ rp = VTOR4(vp); if (IS_SHADOW(vp, rp)) vp = RTOV4(rp); vphm = page_vnode_mutex(vp); mutex_enter(vphm); if ((pp = vp->v_pages) != NULL) { do { if (pp->p_fsdata != C_NOCOMMIT) { mutex_exit(vphm); return (1); } } while ((pp = pp->p_vpnext) != vp->v_pages); } mutex_exit(vphm); return (0); } /* * Bookkeeping for a close that doesn't need to go over the wire. * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise * it is left at 1. */ void nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) { rnode4_t *rp; mntinfo4_t *mi; mi = VTOMI4(vp); rp = VTOR4(vp); NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " "rp=%p osp=%p", (void *)rp, (void *)osp)); ASSERT(curproc->p_zone == mi->mi_zone); ASSERT(mutex_owned(&osp->os_sync_lock)); ASSERT(*have_lockp); if (!osp->os_valid || osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { return; } /* * This removes the reference obtained at OPEN; ie, * when the open stream structure was created. * * We don't have to worry about calling 'open_stream_rele' * since we our currently holding a reference to this * open stream which means the count can not go to 0 with * this decrement. */ ASSERT(osp->os_ref_count >= 2); osp->os_ref_count--; osp->os_valid = 0; mutex_exit(&osp->os_sync_lock); *have_lockp = 0; nfs4_dec_state_ref_count(mi); } /* * Close all remaining open streams on the rnode. These open streams * could be here because: * - The close attempted at either close or delmap failed * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE * - Someone did mknod on a regular file but never opened it */ int nfs4close_all(vnode_t *vp, cred_t *cr) { nfs4_open_stream_t *osp; int error; nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; rnode4_t *rp; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); error = 0; rp = VTOR4(vp); /* * At this point, all we know is that the last time * someone called vn_rele, the count was 1. Since then, * the vnode could have been re-activated. We want to * loop through the open streams and close each one, but * we have to be careful since once we release the rnode * hash bucket lock, someone else is free to come in and * re-activate the rnode and add new open streams. The * strategy is take the rnode hash bucket lock, verify that * the count is still 1, grab the open stream off the * head of the list and mark it invalid, then release the * rnode hash bucket lock and proceed with that open stream. * This is ok because nfs4close_one() will acquire the proper * open/create to close/destroy synchronization for open * streams, and will ensure that if someone has reopened * the open stream after we've dropped the hash bucket lock * then we'll just simply return without destroying the * open stream. * Repeat until the list is empty. */ for (;;) { /* make sure vnode hasn't been reactivated */ rw_enter(&rp->r_hashq->r_lock, RW_READER); mutex_enter(&vp->v_lock); if (vp->v_count > 1) { mutex_exit(&vp->v_lock); rw_exit(&rp->r_hashq->r_lock); break; } /* * Grabbing r_os_lock before releasing v_lock prevents * a window where the rnode/open stream could get * reactivated (and os_force_close set to 0) before we * had a chance to set os_force_close to 1. */ mutex_enter(&rp->r_os_lock); mutex_exit(&vp->v_lock); osp = list_head(&rp->r_open_streams); if (!osp) { /* nothing left to CLOSE OTW, so return */ mutex_exit(&rp->r_os_lock); rw_exit(&rp->r_hashq->r_lock); break; } mutex_enter(&rp->r_statev4_lock); /* the file can't still be mem mapped */ ASSERT(rp->r_mapcnt == 0); if (rp->created_v4) rp->created_v4 = 0; mutex_exit(&rp->r_statev4_lock); /* * Grab a ref on this open stream; nfs4close_one * will mark it as invalid */ mutex_enter(&osp->os_sync_lock); osp->os_ref_count++; osp->os_force_close = 1; mutex_exit(&osp->os_sync_lock); mutex_exit(&rp->r_os_lock); rw_exit(&rp->r_hashq->r_lock); nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); /* Update error if it isn't already non-zero */ if (error == 0) { if (e.error) error = e.error; else if (e.stat) error = geterrno4(e.stat); } #ifdef DEBUG nfs4close_all_cnt++; #endif /* Release the ref on osp acquired above. */ open_stream_rele(osp, rp); /* Proceed to the next open stream, if any */ } return (error); } /* * nfs4close_one - close one open stream for a file if needed. * * "close_type" indicates which close path this is: * CLOSE_NORM: close initiated via VOP_CLOSE. * CLOSE_DELMAP: close initiated via VOP_DELMAP. * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces * the close and release of client state for this open stream * (unless someone else has the open stream open). * CLOSE_RESEND: indicates the request is a replay of an earlier request * (e.g., due to abort because of a signal). * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. * * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client * recovery. Instead, the caller is expected to deal with retries. * * The caller can either pass in the osp ('provided_osp') or not. * * 'access_bits' represents the access we are closing/downgrading. * * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the * number of bytes we are unmapping, 'maxprot' is the mmap protection, and * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). * * Errors are returned via the nfs4_error_t. */ void nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, nfs4_close_type_t close_type, size_t len, uint_t maxprot, uint_t mmap_flags) { nfs4_open_owner_t *oop; nfs4_open_stream_t *osp = NULL; int retry = 0; int num_retries = NFS4_NUM_RECOV_RETRIES; rnode4_t *rp; mntinfo4_t *mi; nfs4_recov_state_t recov_state; cred_t *cred_otw = NULL; bool_t recovonly = FALSE; int isrecov; int force_close; int close_failed = 0; int did_dec_count = 0; int did_start_op = 0; int did_force_recovlock = 0; int did_start_seqid_sync = 0; int have_sync_lock = 0; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", (void *)vp, (void *)provided_osp, (void *)lrp, close_type, len, maxprot, mmap_flags, access_bits)); nfs4_error_zinit(ep); rp = VTOR4(vp); mi = VTOMI4(vp); isrecov = (close_type == CLOSE_RESEND || close_type == CLOSE_AFTER_RESEND); /* * First get the open owner. */ if (!provided_osp) { oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); } else { oop = provided_osp->os_open_owner; ASSERT(oop != NULL); open_owner_hold(oop); } if (!oop) { NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " "close type %d", (void *)rp, (void *)mi, (void *)cr, (void *)provided_osp, close_type)); ep->error = EIO; goto out; } cred_otw = nfs4_get_otw_cred(cr, mi, oop); recov_retry: osp = NULL; close_failed = 0; force_close = (close_type == CLOSE_FORCE); retry = 0; did_start_op = 0; did_force_recovlock = 0; did_start_seqid_sync = 0; have_sync_lock = 0; recovonly = FALSE; recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; /* * Second synchronize with recovery. */ if (!isrecov) { ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, &recov_state, &recovonly); if (!ep->error) { did_start_op = 1; } else { close_failed = 1; /* * If we couldn't get start_fop, but have to * cleanup state, then at least acquire the * mi_recovlock so we can synchronize with * recovery. */ if (close_type == CLOSE_FORCE) { (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, FALSE); did_force_recovlock = 1; } else goto out; } } /* * We cannot attempt to get the open seqid sync if nfs4_start_fop * set 'recovonly' to TRUE since most likely this is due to * reovery being active (MI4_RECOV_ACTIV). If recovery is active, * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us * to retry, causing us to loop until recovery finishes. Plus we * don't need protection over the open seqid since we're not going * OTW, hence don't need to use the seqid. */ if (recovonly == FALSE) { /* need to grab the open owner sync before 'os_sync_lock' */ ep->error = nfs4_start_open_seqid_sync(oop, mi); if (ep->error == EAGAIN) { ASSERT(!isrecov); if (did_start_op) nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, TRUE); if (did_force_recovlock) nfs_rw_exit(&mi->mi_recovlock); goto recov_retry; } did_start_seqid_sync = 1; } /* * Third get an open stream and acquire 'os_sync_lock' to * sychronize the opening/creating of an open stream with the * closing/destroying of an open stream. */ if (!provided_osp) { /* returns with 'os_sync_lock' held */ osp = find_open_stream(oop, rp); if (!osp) { ep->error = EIO; goto out; } } else { osp = provided_osp; open_stream_hold(osp); mutex_enter(&osp->os_sync_lock); } have_sync_lock = 1; ASSERT(oop == osp->os_open_owner); /* * Fourth, do any special pre-OTW CLOSE processing * based on the specific close type. */ if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && !did_dec_count) { ASSERT(osp->os_open_ref_count > 0); osp->os_open_ref_count--; did_dec_count = 1; if (osp->os_open_ref_count == 0) osp->os_final_close = 1; } if (close_type == CLOSE_FORCE) { /* see if somebody reopened the open stream. */ if (!osp->os_force_close) { NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "nfs4close_one: skip CLOSE_FORCE as osp %p " "was reopened, vp %p", (void *)osp, (void *)vp)); ep->error = 0; ep->stat = NFS4_OK; goto out; } if (!osp->os_final_close && !did_dec_count) { osp->os_open_ref_count--; did_dec_count = 1; } /* * We can't depend on os_open_ref_count being 0 due to the * way executables are opened (VN_RELE to match a VOP_OPEN). */ #ifdef NOTYET ASSERT(osp->os_open_ref_count == 0); #endif if (osp->os_open_ref_count != 0) { NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "nfs4close_one: should panic here on an " "ASSERT(osp->os_open_ref_count == 0). Ignoring " "since this is probably the exec problem.")); osp->os_open_ref_count = 0; } /* * There is the possibility that nfs4close_one() * for close_type == CLOSE_DELMAP couldn't find the * open stream, thus couldn't decrement its os_mapcnt; * therefore we can't use this ASSERT yet. */ #ifdef NOTYET ASSERT(osp->os_mapcnt == 0); #endif osp->os_mapcnt = 0; } if (close_type == CLOSE_DELMAP && !did_dec_count) { ASSERT(osp->os_mapcnt >= btopr(len)); if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) osp->os_mmap_write -= btopr(len); if (maxprot & PROT_READ) osp->os_mmap_read -= btopr(len); if (maxprot & PROT_EXEC) osp->os_mmap_read -= btopr(len); /* mirror the PROT_NONE check in nfs4_addmap() */ if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && !(maxprot & PROT_EXEC)) osp->os_mmap_read -= btopr(len); osp->os_mapcnt -= btopr(len); did_dec_count = 1; } if (recovonly) { nfs4_lost_rqst_t lost_rqst; /* request should not already be in recovery queue */ ASSERT(lrp == NULL); nfs4_error_init(ep, EINTR); nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, osp, cred_otw, vp); mutex_exit(&osp->os_sync_lock); have_sync_lock = 0; (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, lost_rqst.lr_op == OP_CLOSE ? &lost_rqst : NULL, OP_CLOSE, NULL); close_failed = 1; force_close = 0; goto close_cleanup; } /* * If a previous OTW call got NFS4ERR_BAD_SEQID, then * we stopped operating on the open owner's * space, which means we stopped operating on the open stream * too. So don't go OTW (as the seqid is likely bad, and the * stateid could be stale, potentially triggering a false * setclientid), and just clean up the client's internal state. */ if (osp->os_orig_oo_name != oop->oo_name) { NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " "oo_name %" PRIx64")", (void *)osp, (void *)oop, osp->os_orig_oo_name, oop->oo_name)); close_failed = 1; } /* If the file failed recovery, just quit. */ mutex_enter(&rp->r_statelock); if (rp->r_flags & R4RECOVERR) { close_failed = 1; } mutex_exit(&rp->r_statelock); /* * If the force close path failed to obtain start_fop * then skip the OTW close and just remove the state. */ if (close_failed) goto close_cleanup; /* * Fifth, check to see if there are still mapped pages or other * opens using this open stream. If there are then we can't * close yet but we can see if an OPEN_DOWNGRADE is necessary. */ if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { nfs4_lost_rqst_t new_lost_rqst; bool_t needrecov = FALSE; cred_t *odg_cred_otw = NULL; seqid4 open_dg_seqid = 0; if (osp->os_delegation) { /* * If this open stream was never OPENed OTW then we * surely can't DOWNGRADE it (especially since the * osp->open_stateid is really a delegation stateid * when os_delegation is 1). */ if (access_bits & FREAD) osp->os_share_acc_read--; if (access_bits & FWRITE) osp->os_share_acc_write--; osp->os_share_deny_none--; nfs4_error_zinit(ep); goto out; } nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, lrp, ep, &odg_cred_otw, &open_dg_seqid); needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); if (needrecov && !isrecov) { bool_t abort; nfs4_bseqid_entry_t *bsep = NULL; if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, open_dg_seqid); nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, oop, osp, odg_cred_otw, vp, access_bits, 0); mutex_exit(&osp->os_sync_lock); have_sync_lock = 0; abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, bsep); if (odg_cred_otw) crfree(odg_cred_otw); if (bsep) kmem_free(bsep, sizeof (*bsep)); if (abort == TRUE) goto out; if (did_start_seqid_sync) { nfs4_end_open_seqid_sync(oop); did_start_seqid_sync = 0; } open_stream_rele(osp, rp); if (did_start_op) nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, FALSE); if (did_force_recovlock) nfs_rw_exit(&mi->mi_recovlock); goto recov_retry; } else { if (odg_cred_otw) crfree(odg_cred_otw); } goto out; } /* * If this open stream was created as the results of an open * while holding a delegation, then just release it; no need * to do an OTW close. Otherwise do a "normal" OTW close. */ if (osp->os_delegation) { nfs4close_notw(vp, osp, &have_sync_lock); nfs4_error_zinit(ep); goto out; } /* * If this stream is not valid, we're done. */ if (!osp->os_valid) { nfs4_error_zinit(ep); goto out; } /* * Last open or mmap ref has vanished, need to do an OTW close. * First check to see if a close is still necessary. */ if (osp->os_failed_reopen) { NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "don't close OTW osp %p since reopen failed.", (void *)osp)); /* * Reopen of the open stream failed, hence the * stateid of the open stream is invalid/stale, and * sending this OTW would incorrectly cause another * round of recovery. In this case, we need to set * the 'os_valid' bit to 0 so another thread doesn't * come in and re-open this open stream before * this "closing" thread cleans up state (decrementing * the nfs4_server_t's state_ref_count and decrementing * the os_ref_count). */ osp->os_valid = 0; /* * This removes the reference obtained at OPEN; ie, * when the open stream structure was created. * * We don't have to worry about calling 'open_stream_rele' * since we our currently holding a reference to this * open stream which means the count can not go to 0 with * this decrement. */ ASSERT(osp->os_ref_count >= 2); osp->os_ref_count--; nfs4_error_zinit(ep); close_failed = 0; goto close_cleanup; } ASSERT(osp->os_ref_count > 1); if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY) && nfs4_dross_pages(vp)) { nfs4_invalidate_pages(vp, 0, cred_otw); } /* * Sixth, try the CLOSE OTW. */ nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, close_type, ep, &have_sync_lock); if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { /* * Let the recovery thread be responsible for * removing the state for CLOSE. */ close_failed = 1; force_close = 0; retry = 0; } /* See if we need to retry with a different cred */ if ((ep->error == EACCES || (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && cred_otw != cr) { crfree(cred_otw); cred_otw = cr; crhold(cred_otw); retry = 1; } if (ep->error || ep->stat) close_failed = 1; if (retry && !isrecov && num_retries-- > 0) { if (have_sync_lock) { mutex_exit(&osp->os_sync_lock); have_sync_lock = 0; } if (did_start_seqid_sync) { nfs4_end_open_seqid_sync(oop); did_start_seqid_sync = 0; } open_stream_rele(osp, rp); if (did_start_op) nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, FALSE); if (did_force_recovlock) nfs_rw_exit(&mi->mi_recovlock); NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4close_one: need to retry the close " "operation")); goto recov_retry; } close_cleanup: /* * Seventh and lastly, process our results. */ if (close_failed && force_close) { /* * It's ok to drop and regrab the 'os_sync_lock' since * nfs4close_notw() will recheck to make sure the * "close"/removal of state should happen. */ if (!have_sync_lock) { mutex_enter(&osp->os_sync_lock); have_sync_lock = 1; } /* * This is last call, remove the ref on the open * stream created by open and clean everything up. */ osp->os_pending_close = 0; nfs4close_notw(vp, osp, &have_sync_lock); nfs4_error_zinit(ep); } if (!close_failed) { if (have_sync_lock) { osp->os_pending_close = 0; mutex_exit(&osp->os_sync_lock); have_sync_lock = 0; } else { mutex_enter(&osp->os_sync_lock); osp->os_pending_close = 0; mutex_exit(&osp->os_sync_lock); } if (did_start_op && recov_state.rs_sp != NULL) { mutex_enter(&recov_state.rs_sp->s_lock); nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); mutex_exit(&recov_state.rs_sp->s_lock); } else { nfs4_dec_state_ref_count(mi); } nfs4_error_zinit(ep); } out: if (have_sync_lock) mutex_exit(&osp->os_sync_lock); if (did_start_op) nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, recovonly ? TRUE : FALSE); if (did_force_recovlock) nfs_rw_exit(&mi->mi_recovlock); if (cred_otw) crfree(cred_otw); if (osp) open_stream_rele(osp, rp); if (oop) { if (did_start_seqid_sync) nfs4_end_open_seqid_sync(oop); open_owner_rele(oop); } } /* * Convert information returned by the server in the LOCK4denied * structure to the form required by fcntl. */ static void denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) { nfs4_lo_name_t *lo; #ifdef DEBUG if (denied_to_flk_debug) { lockt_denied_debug = lockt_denied; debug_enter("lockt_denied"); } #endif flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; flk->l_whence = 0; /* aka SEEK_SET */ flk->l_start = lockt_denied->offset; flk->l_len = lockt_denied->length; /* * If the blocking clientid matches our client id, then we can * interpret the lockowner (since we built it). If not, then * fabricate a sysid and pid. Note that the l_sysid field * in *flk already has the local sysid. */ if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { if (lockt_denied->owner.owner_len == sizeof (*lo)) { lo = (nfs4_lo_name_t *) lockt_denied->owner.owner_val; flk->l_pid = lo->ln_pid; } else { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "denied_to_flk: bad lock owner length\n")); flk->l_pid = lo_to_pid(&lockt_denied->owner); } } else { NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "denied_to_flk: foreign clientid\n")); /* * Construct a new sysid which should be different from * sysids of other systems. */ flk->l_sysid++; flk->l_pid = lo_to_pid(&lockt_denied->owner); } } static pid_t lo_to_pid(lock_owner4 *lop) { pid_t pid = 0; uchar_t *cp; int i; cp = (uchar_t *)&lop->clientid; for (i = 0; i < sizeof (lop->clientid); i++) pid += (pid_t)*cp++; cp = (uchar_t *)lop->owner_val; for (i = 0; i < lop->owner_len; i++) pid += (pid_t)*cp++; return (pid); } /* * Given a lock pointer, returns the length of that lock. * "end" is the last locked offset the "l_len" covers from * the start of the lock. */ static off64_t lock_to_end(flock64_t *lock) { off64_t lock_end; if (lock->l_len == 0) lock_end = (off64_t)MAXEND; else lock_end = lock->l_start + lock->l_len - 1; return (lock_end); } /* * Given the end of a lock, it will return you the length "l_len" for that lock. */ static off64_t end_to_len(off64_t start, off64_t end) { off64_t lock_len; ASSERT(end >= start); if (end == MAXEND) lock_len = 0; else lock_len = end - start + 1; return (lock_len); } /* * On given end for a lock it determines if it is the last locked offset * or not, if so keeps it as is, else adds one to return the length for * valid start. */ static off64_t start_check(off64_t x) { if (x == MAXEND) return (x); else return (x + 1); } /* * See if these two locks overlap, and if so return 1; * otherwise, return 0. */ static int locks_intersect(flock64_t *llfp, flock64_t *curfp) { off64_t llfp_end, curfp_end; llfp_end = lock_to_end(llfp); curfp_end = lock_to_end(curfp); if (((llfp_end >= curfp->l_start) && (llfp->l_start <= curfp->l_start)) || ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) return (1); return (0); } /* * Determine what the interseting lock region is, and add that to the * 'nl_llpp' locklist in increasing order (by l_start). */ static void nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, locklist_t **nl_llpp, vnode_t *vp) { locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; off64_t lost_flp_end, local_flp_end, len, start; NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); if (!locks_intersect(lost_flp, local_flp)) return; NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " "locks intersect")); lost_flp_end = lock_to_end(lost_flp); local_flp_end = lock_to_end(local_flp); /* Find the starting point of the intersecting region */ if (local_flp->l_start > lost_flp->l_start) start = local_flp->l_start; else start = lost_flp->l_start; /* Find the lenght of the intersecting region */ if (lost_flp_end < local_flp_end) len = end_to_len(start, lost_flp_end); else len = end_to_len(start, local_flp_end); /* * Prepare the flock structure for the intersection found and insert * it into the new list in increasing l_start order. This list contains * intersections of locks registered by the client with the local host * and the lost lock. * The lock type of this lock is the same as that of the local_flp. */ intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); intersect_llp->ll_flock.l_start = start; intersect_llp->ll_flock.l_len = len; intersect_llp->ll_flock.l_type = local_flp->l_type; intersect_llp->ll_flock.l_pid = local_flp->l_pid; intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ intersect_llp->ll_vp = vp; tmp_fllp = *nl_llpp; cur_fllp = NULL; while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < intersect_llp->ll_flock.l_start) { cur_fllp = tmp_fllp; tmp_fllp = tmp_fllp->ll_next; } if (cur_fllp == NULL) { /* first on the list */ intersect_llp->ll_next = *nl_llpp; *nl_llpp = intersect_llp; } else { intersect_llp->ll_next = cur_fllp->ll_next; cur_fllp->ll_next = intersect_llp; } NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", intersect_llp->ll_flock.l_start, intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); } /* * Our local locking current state is potentially different than * what the NFSv4 server thinks we have due to a lost lock that was * resent and then received. We need to reset our "NFSv4" locking * state to match the current local locking state for this pid since * that is what the user/application sees as what the world is. * * We cannot afford to drop the open/lock seqid sync since then we can * get confused about what the current local locking state "is" versus * "was". * * If we are unable to fix up the locks, we send SIGLOST to the affected * process. This is not done if the filesystem has been forcibly * unmounted, in case the process has already exited and a new process * exists with the same pid. */ static void nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, nfs4_lock_owner_t *lop) { locklist_t *locks, *llp, *ri_llp, *tmp_llp; mntinfo4_t *mi = VTOMI4(vp); const int cmd = F_SETLK; off64_t cur_start, llp_ll_flock_end, lost_flp_end; flock64_t ul_fl; NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_reinstitute_local_lock_state")); /* * Find active locks for this vp from the local locking code. * Scan through this list and find out the locks that intersect with * the lost lock. Once we find the lock that intersects, add the * intersection area as a new lock to a new list "ri_llp". The lock * type of the intersection region lock added to ri_llp is the same * as that found in the active lock list, "list". The intersecting * region locks are added to ri_llp in increasing l_start order. */ ASSERT(curproc->p_zone == mi->mi_zone); locks = flk_active_locks_for_vp(vp); ri_llp = NULL; for (llp = locks; llp != NULL; llp = llp->ll_next) { ASSERT(llp->ll_vp == vp); /* * Pick locks that belong to this pid/lockowner */ if (llp->ll_flock.l_pid != lost_flp->l_pid) continue; nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); } /* * Now we have the list of intersections with the lost lock. These are * the locks that were/are active before the server replied to the * last/lost lock. Issue these locks to the server here. Playing these * locks to the server will re-establish aur current local locking state * with the v4 server. * If we get an error, send SIGLOST to the application for that lock. */ for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_reinstitute_local_lock_state: need to issue " "flock: [%"PRIx64" - %"PRIx64"] : %s", llp->ll_flock.l_start, llp->ll_flock.l_start + llp->ll_flock.l_len, llp->ll_flock.l_type == F_RDLCK ? "READ" : llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); /* * No need to relock what we already have */ if (llp->ll_flock.l_type == lost_flp->l_type) continue; push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); } /* * Now keeping the start of the lost lock as our reference parse the * newly created ri_llp locklist to find the ranges that we have locked * with the v4 server but not in the current local locking. We need * to unlock these ranges. * These ranges can also be reffered to as those ranges, where the lost * lock does not overlap with the locks in the ri_llp but are locked * since the server replied to the lost lock. */ cur_start = lost_flp->l_start; lost_flp_end = lock_to_end(lost_flp); ul_fl.l_type = F_UNLCK; ul_fl.l_whence = 0; /* aka SEEK_SET */ ul_fl.l_sysid = lost_flp->l_sysid; ul_fl.l_pid = lost_flp->l_pid; for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { llp_ll_flock_end = lock_to_end(&llp->ll_flock); if (llp->ll_flock.l_start <= cur_start) { cur_start = start_check(llp_ll_flock_end); continue; } NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_reinstitute_local_lock_state: " "UNLOCK [%"PRIx64" - %"PRIx64"]", cur_start, llp->ll_flock.l_start)); ul_fl.l_start = cur_start; ul_fl.l_len = end_to_len(cur_start, (llp->ll_flock.l_start - 1)); push_reinstate(vp, cmd, &ul_fl, cr, lop); cur_start = start_check(llp_ll_flock_end); } /* * In the case where the lost lock ends after all intersecting locks, * unlock the last part of the lost lock range. */ if (cur_start != start_check(lost_flp_end)) { NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_reinstitute_local_lock_state: UNLOCK end of the " "lost lock region [%"PRIx64" - %"PRIx64"]", cur_start, lost_flp->l_start + lost_flp->l_len)); ul_fl.l_start = cur_start; /* * Is it an to-EOF lock? if so unlock till the end */ if (lost_flp->l_len == 0) ul_fl.l_len = 0; else ul_fl.l_len = start_check(lost_flp_end) - cur_start; push_reinstate(vp, cmd, &ul_fl, cr, lop); } if (locks != NULL) flk_free_locklist(locks); /* Free up our newly created locklist */ for (llp = ri_llp; llp != NULL; ) { tmp_llp = llp->ll_next; kmem_free(llp, sizeof (locklist_t)); llp = tmp_llp; } /* * Now return back to the original calling nfs4frlock() * and let us naturally drop our seqid syncs. */ } /* * Create a lost state record for the given lock reinstantiation request * and push it onto the lost state queue. */ static void push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, nfs4_lock_owner_t *lop) { nfs4_lost_rqst_t req; nfs_lock_type4 locktype; nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); locktype = flk_to_locktype(cmd, flk->l_type); nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, NULL, NULL, lop, flk, &req, cr, vp); (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, NULL); }