/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. * All Rights Reserved */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The hash queues for the access to active and cached rnodes * are organized as doubly linked lists. A reader/writer lock * for each hash bucket is used to control access and to synchronize * lookups, additions, and deletions from the hash queue. * * The rnode freelist is organized as a doubly linked list with * a head pointer. Additions and deletions are synchronized via * a single mutex. * * In order to add an rnode to the free list, it must be hashed into * a hash queue and the exclusive lock to the hash queue be held. * If an rnode is not hashed into a hash queue, then it is destroyed * because it represents no valuable information that can be reused * about the file. The exclusive lock to the hash queue must be * held in order to prevent a lookup in the hash queue from finding * the rnode and using it and assuming that the rnode is not on the * freelist. The lookup in the hash queue will have the hash queue * locked, either exclusive or shared. * * The vnode reference count for each rnode is not allowed to drop * below 1. This prevents external entities, such as the VM * subsystem, from acquiring references to vnodes already on the * freelist and then trying to place them back on the freelist * when their reference is released. This means that the when an * rnode is looked up in the hash queues, then either the rnode * is removed from the freelist and that reference is tranfered to * the new reference or the vnode reference count must be incremented * accordingly. The mutex for the freelist must be held in order to * accurately test to see if the rnode is on the freelist or not. * The hash queue lock might be held shared and it is possible that * two different threads may race to remove the rnode from the * freelist. This race can be resolved by holding the mutex for the * freelist. Please note that the mutex for the freelist does not * need to be held if the rnode is not on the freelist. It can not be * placed on the freelist due to the requirement that the thread * putting the rnode on the freelist must hold the exclusive lock * to the hash queue and the thread doing the lookup in the hash * queue is holding either a shared or exclusive lock to the hash * queue. * * The lock ordering is: * * hash bucket lock -> vnode lock * hash bucket lock -> freelist lock -> r_statelock */ r4hashq_t *rtable4; static kmutex_t rp4freelist_lock; static rnode4_t *rp4freelist = NULL; static long rnode4_new = 0; int rtable4size; static int rtable4mask; static struct kmem_cache *rnode4_cache; static int rnode4_hashlen = 4; static void r4inactive(rnode4_t *, cred_t *); static vnode_t *make_rnode4(nfs4_sharedfh_t *, r4hashq_t *, struct vfs *, struct vnodeops *, int (*)(vnode_t *, page_t *, u_offset_t *, size_t *, int, cred_t *), int *, cred_t *); static void rp4_rmfree(rnode4_t *); int nfs4_free_data_reclaim(rnode4_t *); static int nfs4_active_data_reclaim(rnode4_t *); static int nfs4_free_reclaim(void); static int nfs4_active_reclaim(void); static int nfs4_rnode_reclaim(void); static void nfs4_reclaim(void *); static int isrootfh(nfs4_sharedfh_t *, rnode4_t *); static void uninit_rnode4(rnode4_t *); static void destroy_rnode4(rnode4_t *); static void r4_stub_set(rnode4_t *, nfs4_stub_type_t); #ifdef DEBUG static int r4_check_for_dups = 0; /* Flag to enable dup rnode detection. */ static int nfs4_rnode_debug = 0; /* if nonzero, kmem_cache_free() rnodes rather than place on freelist */ static int nfs4_rnode_nofreelist = 0; /* give messages on colliding shared filehandles */ static void r4_dup_check(rnode4_t *, vfs_t *); #endif /* * If the vnode has pages, run the list and check for any that are * still dangling. We call this routine before putting an rnode on * the free list. */ static int nfs4_dross_pages(vnode_t *vp) { page_t *pp; kmutex_t *vphm; vphm = page_vnode_mutex(vp); mutex_enter(vphm); if ((pp = vp->v_pages) != NULL) { do { if (pp->p_fsdata != C_NOCOMMIT) { mutex_exit(vphm); return (1); } } while ((pp = pp->p_vpnext) != vp->v_pages); } mutex_exit(vphm); return (0); } /* * Flush any pages left on this rnode. */ static void r4flushpages(rnode4_t *rp, cred_t *cr) { vnode_t *vp; int error; /* * Before freeing anything, wait until all asynchronous * activity is done on this rnode. This will allow all * asynchronous read ahead and write behind i/o's to * finish. */ mutex_enter(&rp->r_statelock); while (rp->r_count > 0) cv_wait(&rp->r_cv, &rp->r_statelock); mutex_exit(&rp->r_statelock); /* * Flush and invalidate all pages associated with the vnode. */ vp = RTOV4(rp); if (nfs4_has_pages(vp)) { ASSERT(vp->v_type != VCHR); if ((rp->r_flags & R4DIRTY) && !rp->r_error) { error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, 0, cr); if (error && (error == ENOSPC || error == EDQUOT)) { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = error; mutex_exit(&rp->r_statelock); } } nfs4_invalidate_pages(vp, (u_offset_t)0, cr); } } /* * Free the resources associated with an rnode. */ static void r4inactive(rnode4_t *rp, cred_t *cr) { vnode_t *vp; char *contents; int size; vsecattr_t *vsp; vnode_t *xattr; r4flushpages(rp, cr); vp = RTOV4(rp); /* * Free any held caches which may be * associated with this rnode. */ mutex_enter(&rp->r_statelock); contents = rp->r_symlink.contents; size = rp->r_symlink.size; rp->r_symlink.contents = NULL; vsp = rp->r_secattr; rp->r_secattr = NULL; xattr = rp->r_xattr_dir; rp->r_xattr_dir = NULL; mutex_exit(&rp->r_statelock); /* * Free the access cache entries. */ (void) nfs4_access_purge_rp(rp); /* * Free the readdir cache entries. */ nfs4_purge_rddir_cache(vp); /* * Free the symbolic link cache. */ if (contents != NULL) { kmem_free((void *)contents, size); } /* * Free any cached ACL. */ if (vsp != NULL) nfs4_acl_free_cache(vsp); /* * Release the cached xattr_dir */ if (xattr != NULL) VN_RELE(xattr); } /* * We have seen a case that the fh passed in is for "." which * should be a VROOT node, however, the fh is different from the * root fh stored in the mntinfo4_t. The invalid fh might be * from a misbehaved server and will panic the client system at * a later time. To avoid the panic, we drop the bad fh, use * the root fh from mntinfo4_t, and print an error message * for attention. */ nfs4_sharedfh_t * badrootfh_check(nfs4_sharedfh_t *fh, nfs4_fname_t *nm, mntinfo4_t *mi, int *wasbad) { char *s; *wasbad = 0; s = fn_name(nm); ASSERT(strcmp(s, "..") != 0); if ((s[0] == '.' && s[1] == '\0') && fh && !SFH4_SAME(mi->mi_rootfh, fh)) { #ifdef DEBUG nfs4_fhandle_t fhandle; zcmn_err(mi->mi_zone->zone_id, CE_WARN, "Server %s returns a different " "root filehandle for the path %s:", mi->mi_curr_serv->sv_hostname, mi->mi_curr_serv->sv_path); /* print the bad fh */ fhandle.fh_len = fh->sfh_fh.nfs_fh4_len; bcopy(fh->sfh_fh.nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len); nfs4_printfhandle(&fhandle); /* print mi_rootfh */ fhandle.fh_len = mi->mi_rootfh->sfh_fh.nfs_fh4_len; bcopy(mi->mi_rootfh->sfh_fh.nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len); nfs4_printfhandle(&fhandle); #endif /* use mi_rootfh instead; fh will be rele by the caller */ fh = mi->mi_rootfh; *wasbad = 1; } kmem_free(s, MAXNAMELEN); return (fh); } void r4_do_attrcache(vnode_t *vp, nfs4_ga_res_t *garp, int newnode, hrtime_t t, cred_t *cr, int index) { int is_stub; vattr_t *attr; /* * Don't add to attrcache if time overflow, but * no need to check because either attr is null or the time * values in it were processed by nfs4_time_ntov(), which checks * for time overflows. */ attr = garp ? &garp->n4g_va : NULL; if (attr) { if (!newnode) { rw_exit(&rtable4[index].r_lock); #ifdef DEBUG if (vp->v_type != attr->va_type && vp->v_type != VNON && attr->va_type != VNON) { zcmn_err(VTOMI4(vp)->mi_zone->zone_id, CE_WARN, "makenfs4node: type (%d) doesn't " "match type of found node at %p (%d)", attr->va_type, (void *)vp, vp->v_type); } #endif nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); } else { rnode4_t *rp = VTOR4(vp); vp->v_type = attr->va_type; vp->v_rdev = attr->va_rdev; /* * Turn this object into a "stub" object if we * crossed an underlying server fs boundary. * To make this check, during mount we save the * fsid of the server object being mounted. * Here we compare this object's server fsid * with the fsid we saved at mount. If they * are different, we crossed server fs boundary. * * The stub type is set (or not) at rnode * creation time and it never changes for life * of the rnode. * * The stub type is also set during RO failover, * nfs4_remap_file(). * * This stub will be for a mirror-mount. * * We don't bother with taking r_state_lock to * set the stub type because this is a new rnode * and we're holding the hash bucket r_lock RW_WRITER. * No other thread could have obtained access * to this rnode. */ is_stub = 0; if (garp->n4g_fsid_valid) { fattr4_fsid ga_fsid = garp->n4g_fsid; servinfo4_t *svp = rp->r_server; rp->r_srv_fsid = ga_fsid; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); if (!FATTR4_FSID_EQ(&ga_fsid, &svp->sv_fsid)) is_stub = 1; nfs_rw_exit(&svp->sv_lock); } if (is_stub) r4_stub_mirrormount(rp); else r4_stub_none(rp); /* Can not cache partial attr */ if (attr->va_mask == AT_ALL) nfs4_attrcache_noinval(vp, garp, t); else PURGE_ATTRCACHE4(vp); rw_exit(&rtable4[index].r_lock); } } else { if (newnode) { PURGE_ATTRCACHE4(vp); } rw_exit(&rtable4[index].r_lock); } } /* * Find or create an rnode based primarily on filehandle. To be * used when dvp (vnode for parent directory) is not available; * otherwise, makenfs4node() should be used. * * The nfs4_fname_t argument *npp is consumed and nulled out. */ vnode_t * makenfs4node_by_fh(nfs4_sharedfh_t *sfh, nfs4_sharedfh_t *psfh, nfs4_fname_t **npp, nfs4_ga_res_t *garp, mntinfo4_t *mi, cred_t *cr, hrtime_t t) { vfs_t *vfsp = mi->mi_vfsp; int newnode = 0; vnode_t *vp; rnode4_t *rp; svnode_t *svp; nfs4_fname_t *name; int index; ASSERT(npp && *npp); name = *npp; *npp = NULL; index = rtable4hash(sfh); rw_enter(&rtable4[index].r_lock, RW_READER); rp = r4find(&rtable4[index], sfh, vfsp); if (rp != NULL) { rw_exit(&rtable4[index].r_lock); vp = RTOV4(rp); fn_rele(&name); return (vp); } vp = make_rnode4(sfh, &rtable4[index], vfsp, nfs4_vnodeops, nfs4_putapage, &newnode, cr); if (newnode) { svp = vtosv(vp); svp->sv_forw = svp->sv_back = svp; svp->sv_name = name; if (psfh != NULL) sfh4_hold(psfh); svp->sv_dfh = psfh; } else { fn_rele(&name); } ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock)); r4_do_attrcache(vp, garp, newnode, t, cr, index); ASSERT(rw_owner(&rtable4[index].r_lock) != curthread); return (vp); } /* * Find or create a vnode for the given filehandle, filesystem, parent, and * name. The reference to nm is consumed, so the caller must first do an * fn_hold() if it wants to continue using nm after this call. */ vnode_t * makenfs4node(nfs4_sharedfh_t *fh, nfs4_ga_res_t *garp, struct vfs *vfsp, hrtime_t t, cred_t *cr, vnode_t *dvp, nfs4_fname_t *nm) { vnode_t *vp; int newnode; int index; mntinfo4_t *mi = VFTOMI4(vfsp); int had_badfh = 0; rnode4_t *rp; ASSERT(dvp != NULL); fh = badrootfh_check(fh, nm, mi, &had_badfh); index = rtable4hash(fh); rw_enter(&rtable4[index].r_lock, RW_READER); /* * Note: make_rnode4() may upgrade the hash bucket lock to exclusive. */ vp = make_rnode4(fh, &rtable4[index], vfsp, nfs4_vnodeops, nfs4_putapage, &newnode, cr); rp = VTOR4(vp); sv_activate(&vp, dvp, &nm, newnode); if (dvp->v_flag & V_XATTRDIR) { mutex_enter(&rp->r_statelock); rp->r_flags |= R4ISXATTR; mutex_exit(&rp->r_statelock); } /* if getting a bad file handle, do not cache the attributes. */ if (had_badfh) { rw_exit(&rtable4[index].r_lock); return (vp); } ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock)); r4_do_attrcache(vp, garp, newnode, t, cr, index); ASSERT(rw_owner(&rtable4[index].r_lock) != curthread); return (vp); } /* * Hash on address of filehandle object. * XXX totally untuned. */ int rtable4hash(nfs4_sharedfh_t *fh) { return (((uintptr_t)fh / sizeof (*fh)) & rtable4mask); } /* * Find or create the vnode for the given filehandle and filesystem. * *newnode is set to zero if the vnode already existed; non-zero if it had * to be created. * * Note: make_rnode4() may upgrade the hash bucket lock to exclusive. */ static vnode_t * make_rnode4(nfs4_sharedfh_t *fh, r4hashq_t *rhtp, struct vfs *vfsp, struct vnodeops *vops, int (*putapage)(vnode_t *, page_t *, u_offset_t *, size_t *, int, cred_t *), int *newnode, cred_t *cr) { rnode4_t *rp; rnode4_t *trp; vnode_t *vp; mntinfo4_t *mi; ASSERT(RW_READ_HELD(&rhtp->r_lock)); mi = VFTOMI4(vfsp); start: if ((rp = r4find(rhtp, fh, vfsp)) != NULL) { vp = RTOV4(rp); *newnode = 0; return (vp); } rw_exit(&rhtp->r_lock); mutex_enter(&rp4freelist_lock); if (rp4freelist != NULL && rnode4_new >= nrnode) { rp = rp4freelist; rp4_rmfree(rp); mutex_exit(&rp4freelist_lock); vp = RTOV4(rp); if (rp->r_flags & R4HASHED) { rw_enter(&rp->r_hashq->r_lock, RW_WRITER); mutex_enter(&vp->v_lock); if (vp->v_count > 1) { vp->v_count--; mutex_exit(&vp->v_lock); rw_exit(&rp->r_hashq->r_lock); rw_enter(&rhtp->r_lock, RW_READER); goto start; } mutex_exit(&vp->v_lock); rp4_rmhash_locked(rp); rw_exit(&rp->r_hashq->r_lock); } r4inactive(rp, cr); mutex_enter(&vp->v_lock); if (vp->v_count > 1) { vp->v_count--; mutex_exit(&vp->v_lock); rw_enter(&rhtp->r_lock, RW_READER); goto start; } mutex_exit(&vp->v_lock); vn_invalid(vp); /* * destroy old locks before bzero'ing and * recreating the locks below. */ uninit_rnode4(rp); /* * Make sure that if rnode is recycled then * VFS count is decremented properly before * reuse. */ VFS_RELE(vp->v_vfsp); vn_reinit(vp); } else { vnode_t *new_vp; mutex_exit(&rp4freelist_lock); rp = kmem_cache_alloc(rnode4_cache, KM_SLEEP); new_vp = vn_alloc(KM_SLEEP); atomic_add_long((ulong_t *)&rnode4_new, 1); #ifdef DEBUG clstat4_debug.nrnode.value.ui64++; #endif vp = new_vp; } bzero(rp, sizeof (*rp)); rp->r_vnode = vp; nfs_rw_init(&rp->r_rwlock, NULL, RW_DEFAULT, NULL); nfs_rw_init(&rp->r_lkserlock, NULL, RW_DEFAULT, NULL); mutex_init(&rp->r_svlock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&rp->r_statelock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&rp->r_statev4_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&rp->r_os_lock, NULL, MUTEX_DEFAULT, NULL); rp->created_v4 = 0; list_create(&rp->r_open_streams, sizeof (nfs4_open_stream_t), offsetof(nfs4_open_stream_t, os_node)); rp->r_lo_head.lo_prev_rnode = &rp->r_lo_head; rp->r_lo_head.lo_next_rnode = &rp->r_lo_head; cv_init(&rp->r_cv, NULL, CV_DEFAULT, NULL); cv_init(&rp->r_commit.c_cv, NULL, CV_DEFAULT, NULL); rp->r_flags = R4READDIRWATTR; rp->r_fh = fh; rp->r_hashq = rhtp; sfh4_hold(rp->r_fh); rp->r_server = mi->mi_curr_serv; rp->r_deleg_type = OPEN_DELEGATE_NONE; rp->r_deleg_needs_recovery = OPEN_DELEGATE_NONE; nfs_rw_init(&rp->r_deleg_recall_lock, NULL, RW_DEFAULT, NULL); rddir4_cache_create(rp); rp->r_putapage = putapage; vn_setops(vp, vops); vp->v_data = (caddr_t)rp; vp->v_vfsp = vfsp; VFS_HOLD(vfsp); vp->v_type = VNON; if (isrootfh(fh, rp)) vp->v_flag = VROOT; vn_exists(vp); /* * There is a race condition if someone else * alloc's the rnode while no locks are held, so we * check again and recover if found. */ rw_enter(&rhtp->r_lock, RW_WRITER); if ((trp = r4find(rhtp, fh, vfsp)) != NULL) { vp = RTOV4(trp); *newnode = 0; rw_exit(&rhtp->r_lock); rp4_addfree(rp, cr); rw_enter(&rhtp->r_lock, RW_READER); return (vp); } rp4_addhash(rp); *newnode = 1; return (vp); } static void uninit_rnode4(rnode4_t *rp) { vnode_t *vp = RTOV4(rp); ASSERT(rp != NULL); ASSERT(vp != NULL); ASSERT(vp->v_count == 1); ASSERT(rp->r_count == 0); ASSERT(rp->r_mapcnt == 0); if (rp->r_flags & R4LODANGLERS) { nfs4_flush_lock_owners(rp); } ASSERT(rp->r_lo_head.lo_next_rnode == &rp->r_lo_head); ASSERT(rp->r_lo_head.lo_prev_rnode == &rp->r_lo_head); ASSERT(!(rp->r_flags & R4HASHED)); ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL); nfs4_clear_open_streams(rp); list_destroy(&rp->r_open_streams); /* * Destroy the rddir cache first since we need to grab the r_statelock. */ mutex_enter(&rp->r_statelock); rddir4_cache_destroy(rp); mutex_exit(&rp->r_statelock); sv_uninit(&rp->r_svnode); sfh4_rele(&rp->r_fh); nfs_rw_destroy(&rp->r_rwlock); nfs_rw_destroy(&rp->r_lkserlock); mutex_destroy(&rp->r_statelock); mutex_destroy(&rp->r_statev4_lock); mutex_destroy(&rp->r_os_lock); cv_destroy(&rp->r_cv); cv_destroy(&rp->r_commit.c_cv); nfs_rw_destroy(&rp->r_deleg_recall_lock); if (rp->r_flags & R4DELMAPLIST) list_destroy(&rp->r_indelmap); } /* * Put an rnode on the free list. * * Rnodes which were allocated above and beyond the normal limit * are immediately freed. */ void rp4_addfree(rnode4_t *rp, cred_t *cr) { vnode_t *vp; vnode_t *xattr; struct vfs *vfsp; vp = RTOV4(rp); ASSERT(vp->v_count >= 1); ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL); /* * If we have too many rnodes allocated and there are no * references to this rnode, or if the rnode is no longer * accessible by it does not reside in the hash queues, * or if an i/o error occurred while writing to the file, * then just free it instead of putting it on the rnode * freelist. */ vfsp = vp->v_vfsp; if (((rnode4_new > nrnode || !(rp->r_flags & R4HASHED) || #ifdef DEBUG (nfs4_rnode_nofreelist != 0) || #endif rp->r_error || (rp->r_flags & R4RECOVERR) || (vfsp->vfs_flag & VFS_UNMOUNTED)) && rp->r_count == 0)) { if (rp->r_flags & R4HASHED) { rw_enter(&rp->r_hashq->r_lock, RW_WRITER); mutex_enter(&vp->v_lock); if (vp->v_count > 1) { vp->v_count--; mutex_exit(&vp->v_lock); rw_exit(&rp->r_hashq->r_lock); return; } mutex_exit(&vp->v_lock); rp4_rmhash_locked(rp); rw_exit(&rp->r_hashq->r_lock); } /* * Make sure we don't have a delegation on this rnode * before destroying it. */ if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { (void) nfs4delegreturn(rp, NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN); } r4inactive(rp, cr); /* * Recheck the vnode reference count. We need to * make sure that another reference has not been * acquired while we were not holding v_lock. The * rnode is not in the rnode hash queues; one * way for a reference to have been acquired * is for a VOP_PUTPAGE because the rnode was marked * with R4DIRTY or for a modified page. This * reference may have been acquired before our call * to r4inactive. The i/o may have been completed, * thus allowing r4inactive to complete, but the * reference to the vnode may not have been released * yet. In any case, the rnode can not be destroyed * until the other references to this vnode have been * released. The other references will take care of * either destroying the rnode or placing it on the * rnode freelist. If there are no other references, * then the rnode may be safely destroyed. */ mutex_enter(&vp->v_lock); if (vp->v_count > 1) { vp->v_count--; mutex_exit(&vp->v_lock); return; } mutex_exit(&vp->v_lock); destroy_rnode4(rp); return; } /* * Lock the hash queue and then recheck the reference count * to ensure that no other threads have acquired a reference * to indicate that the rnode should not be placed on the * freelist. If another reference has been acquired, then * just release this one and let the other thread complete * the processing of adding this rnode to the freelist. */ again: rw_enter(&rp->r_hashq->r_lock, RW_WRITER); mutex_enter(&vp->v_lock); if (vp->v_count > 1) { vp->v_count--; mutex_exit(&vp->v_lock); rw_exit(&rp->r_hashq->r_lock); return; } mutex_exit(&vp->v_lock); /* * Make sure we don't put an rnode with a delegation * on the free list. */ if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { rw_exit(&rp->r_hashq->r_lock); (void) nfs4delegreturn(rp, NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN); goto again; } /* * Now that we have the hash queue lock, and we know there * are not anymore references on the vnode, check to make * sure there aren't any open streams still on the rnode. * If so, drop the hash queue lock, remove the open streams, * and recheck the v_count. */ mutex_enter(&rp->r_os_lock); if (list_head(&rp->r_open_streams) != NULL) { mutex_exit(&rp->r_os_lock); rw_exit(&rp->r_hashq->r_lock); if (nfs_zone() != VTOMI4(vp)->mi_zone) nfs4_clear_open_streams(rp); else (void) nfs4close_all(vp, cr); goto again; } mutex_exit(&rp->r_os_lock); /* * Before we put it on the freelist, make sure there are no pages. * If there are, flush and commit of all of the dirty and * uncommitted pages, assuming the file system isn't read only. */ if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY) && nfs4_dross_pages(vp)) { rw_exit(&rp->r_hashq->r_lock); r4flushpages(rp, cr); goto again; } /* * Before we put it on the freelist, make sure there is no * active xattr directory cached, the freelist will not * have its entries r4inactive'd if there is still an active * rnode, thus nothing in the freelist can hold another * rnode active. */ xattr = rp->r_xattr_dir; rp->r_xattr_dir = NULL; /* * If there is no cached data or metadata for this file, then * put the rnode on the front of the freelist so that it will * be reused before other rnodes which may have cached data or * metadata associated with them. */ mutex_enter(&rp4freelist_lock); if (rp4freelist == NULL) { rp->r_freef = rp; rp->r_freeb = rp; rp4freelist = rp; } else { rp->r_freef = rp4freelist; rp->r_freeb = rp4freelist->r_freeb; rp4freelist->r_freeb->r_freef = rp; rp4freelist->r_freeb = rp; if (!nfs4_has_pages(vp) && rp->r_dir == NULL && rp->r_symlink.contents == NULL && rp->r_secattr == NULL) rp4freelist = rp; } mutex_exit(&rp4freelist_lock); rw_exit(&rp->r_hashq->r_lock); if (xattr) VN_RELE(xattr); } /* * Remove an rnode from the free list. * * The caller must be holding rp4freelist_lock and the rnode * must be on the freelist. */ static void rp4_rmfree(rnode4_t *rp) { ASSERT(MUTEX_HELD(&rp4freelist_lock)); ASSERT(rp->r_freef != NULL && rp->r_freeb != NULL); if (rp == rp4freelist) { rp4freelist = rp->r_freef; if (rp == rp4freelist) rp4freelist = NULL; } rp->r_freeb->r_freef = rp->r_freef; rp->r_freef->r_freeb = rp->r_freeb; rp->r_freef = rp->r_freeb = NULL; } /* * Put a rnode in the hash table. * * The caller must be holding the exclusive hash queue lock */ void rp4_addhash(rnode4_t *rp) { ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock)); ASSERT(!(rp->r_flags & R4HASHED)); #ifdef DEBUG r4_dup_check(rp, RTOV4(rp)->v_vfsp); #endif rp->r_hashf = rp->r_hashq->r_hashf; rp->r_hashq->r_hashf = rp; rp->r_hashb = (rnode4_t *)rp->r_hashq; rp->r_hashf->r_hashb = rp; mutex_enter(&rp->r_statelock); rp->r_flags |= R4HASHED; mutex_exit(&rp->r_statelock); } /* * Remove a rnode from the hash table. * * The caller must be holding the hash queue lock. */ void rp4_rmhash_locked(rnode4_t *rp) { ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock)); ASSERT(rp->r_flags & R4HASHED); rp->r_hashb->r_hashf = rp->r_hashf; rp->r_hashf->r_hashb = rp->r_hashb; mutex_enter(&rp->r_statelock); rp->r_flags &= ~R4HASHED; mutex_exit(&rp->r_statelock); } /* * Remove a rnode from the hash table. * * The caller must not be holding the hash queue lock. */ void rp4_rmhash(rnode4_t *rp) { rw_enter(&rp->r_hashq->r_lock, RW_WRITER); rp4_rmhash_locked(rp); rw_exit(&rp->r_hashq->r_lock); } /* * Lookup a rnode by fhandle. Ignores rnodes that had failed recovery. * Returns NULL if no match. If an rnode is returned, the reference count * on the master vnode is incremented. * * The caller must be holding the hash queue lock, either shared or exclusive. */ rnode4_t * r4find(r4hashq_t *rhtp, nfs4_sharedfh_t *fh, struct vfs *vfsp) { rnode4_t *rp; vnode_t *vp; ASSERT(RW_LOCK_HELD(&rhtp->r_lock)); for (rp = rhtp->r_hashf; rp != (rnode4_t *)rhtp; rp = rp->r_hashf) { vp = RTOV4(rp); if (vp->v_vfsp == vfsp && SFH4_SAME(rp->r_fh, fh)) { mutex_enter(&rp->r_statelock); if (rp->r_flags & R4RECOVERR) { mutex_exit(&rp->r_statelock); continue; } mutex_exit(&rp->r_statelock); #ifdef DEBUG r4_dup_check(rp, vfsp); #endif if (rp->r_freef != NULL) { mutex_enter(&rp4freelist_lock); /* * If the rnode is on the freelist, * then remove it and use that reference * as the new reference. Otherwise, * need to increment the reference count. */ if (rp->r_freef != NULL) { rp4_rmfree(rp); mutex_exit(&rp4freelist_lock); } else { mutex_exit(&rp4freelist_lock); VN_HOLD(vp); } } else VN_HOLD(vp); /* * if root vnode, set v_flag to indicate that */ if (isrootfh(fh, rp)) { if (!(vp->v_flag & VROOT)) { mutex_enter(&vp->v_lock); vp->v_flag |= VROOT; mutex_exit(&vp->v_lock); } } return (rp); } } return (NULL); } /* * Lookup an rnode by fhandle. Just a wrapper for r4find() * that assumes the caller hasn't already got the lock * on the hash bucket. */ rnode4_t * r4find_unlocked(nfs4_sharedfh_t *fh, struct vfs *vfsp) { rnode4_t *rp; int index; index = rtable4hash(fh); rw_enter(&rtable4[index].r_lock, RW_READER); rp = r4find(&rtable4[index], fh, vfsp); rw_exit(&rtable4[index].r_lock); return (rp); } /* * Return 1 if there is a active vnode belonging to this vfs in the * rtable4 cache. * * Several of these checks are done without holding the usual * locks. This is safe because destroy_rtable(), rp_addfree(), * etc. will redo the necessary checks before actually destroying * any rnodes. */ int check_rtable4(struct vfs *vfsp) { rnode4_t *rp; vnode_t *vp; char *busy = NULL; int index; for (index = 0; index < rtable4size; index++) { rw_enter(&rtable4[index].r_lock, RW_READER); for (rp = rtable4[index].r_hashf; rp != (rnode4_t *)(&rtable4[index]); rp = rp->r_hashf) { vp = RTOV4(rp); if (vp->v_vfsp == vfsp) { if (rp->r_freef == NULL) { busy = "not on free list"; } else if (nfs4_has_pages(vp) && (rp->r_flags & R4DIRTY)) { busy = "dirty pages"; } else if (rp->r_count > 0) { busy = "r_count > 0"; } if (busy != NULL) { #ifdef DEBUG char *path; path = fn_path(rp->r_svnode.sv_name); NFS4_DEBUG(nfs4_rnode_debug, (CE_NOTE, "check_rtable4: " "%s %s", path, busy)); kmem_free(path, strlen(path)+1); #endif rw_exit(&rtable4[index].r_lock); return (1); } } } rw_exit(&rtable4[index].r_lock); } return (0); } /* * Destroy inactive vnodes from the hash queues which * belong to this vfs. All of the vnodes should be inactive. * It is essential that we destroy all rnodes in case of * forced unmount as well as in normal unmount case. */ void destroy_rtable4(struct vfs *vfsp, cred_t *cr) { int index; vnode_t *vp; rnode4_t *rp, *r_hashf, *rlist; rlist = NULL; for (index = 0; index < rtable4size; index++) { rw_enter(&rtable4[index].r_lock, RW_WRITER); for (rp = rtable4[index].r_hashf; rp != (rnode4_t *)(&rtable4[index]); rp = r_hashf) { /* save the hash pointer before destroying */ r_hashf = rp->r_hashf; vp = RTOV4(rp); if (vp->v_vfsp == vfsp) { mutex_enter(&rp4freelist_lock); if (rp->r_freef != NULL) { rp4_rmfree(rp); mutex_exit(&rp4freelist_lock); rp4_rmhash_locked(rp); rp->r_hashf = rlist; rlist = rp; } else mutex_exit(&rp4freelist_lock); } } rw_exit(&rtable4[index].r_lock); } for (rp = rlist; rp != NULL; rp = r_hashf) { r_hashf = rp->r_hashf; /* * This call to rp4_addfree will end up destroying the * rnode, but in a safe way with the appropriate set * of checks done. */ rp4_addfree(rp, cr); } } /* * This routine destroys all the resources of an rnode * and finally the rnode itself. */ static void destroy_rnode4(rnode4_t *rp) { vnode_t *vp; vfs_t *vfsp; ASSERT(rp->r_deleg_type == OPEN_DELEGATE_NONE); vp = RTOV4(rp); vfsp = vp->v_vfsp; uninit_rnode4(rp); atomic_add_long((ulong_t *)&rnode4_new, -1); #ifdef DEBUG clstat4_debug.nrnode.value.ui64--; #endif kmem_cache_free(rnode4_cache, rp); vn_invalid(vp); vn_free(vp); VFS_RELE(vfsp); } /* * Invalidate the attributes on all rnodes forcing the next getattr * to go over the wire. Used to flush stale uid and gid mappings. * Maybe done on a per vfsp, or all rnodes (vfsp == NULL) */ void nfs4_rnode_invalidate(struct vfs *vfsp) { int index; rnode4_t *rp; vnode_t *vp; /* * Walk the hash queues looking for rnodes. */ for (index = 0; index < rtable4size; index++) { rw_enter(&rtable4[index].r_lock, RW_READER); for (rp = rtable4[index].r_hashf; rp != (rnode4_t *)(&rtable4[index]); rp = rp->r_hashf) { vp = RTOV4(rp); if (vfsp != NULL && vp->v_vfsp != vfsp) continue; if (!mutex_tryenter(&rp->r_statelock)) continue; /* * Expire the attributes by resetting the change * and attr timeout. */ rp->r_change = 0; PURGE_ATTRCACHE4_LOCKED(rp); mutex_exit(&rp->r_statelock); } rw_exit(&rtable4[index].r_lock); } } /* * Flush all vnodes in this (or every) vfs. * Used by nfs_sync and by nfs_unmount. */ void r4flush(struct vfs *vfsp, cred_t *cr) { int index; rnode4_t *rp; vnode_t *vp, **vplist; long num, cnt; /* * Check to see whether there is anything to do. */ num = rnode4_new; if (num == 0) return; /* * Allocate a slot for all currently active rnodes on the * supposition that they all may need flushing. */ vplist = kmem_alloc(num * sizeof (*vplist), KM_SLEEP); cnt = 0; /* * Walk the hash queues looking for rnodes with page * lists associated with them. Make a list of these * files. */ for (index = 0; index < rtable4size; index++) { rw_enter(&rtable4[index].r_lock, RW_READER); for (rp = rtable4[index].r_hashf; rp != (rnode4_t *)(&rtable4[index]); rp = rp->r_hashf) { vp = RTOV4(rp); /* * Don't bother sync'ing a vp if it * is part of virtual swap device or * if VFS is read-only */ if (IS_SWAPVP(vp) || vn_is_readonly(vp)) continue; /* * If flushing all mounted file systems or * the vnode belongs to this vfs, has pages * and is marked as either dirty or mmap'd, * hold and add this vnode to the list of * vnodes to flush. */ if ((vfsp == NULL || vp->v_vfsp == vfsp) && nfs4_has_pages(vp) && ((rp->r_flags & R4DIRTY) || rp->r_mapcnt > 0)) { VN_HOLD(vp); vplist[cnt++] = vp; if (cnt == num) { rw_exit(&rtable4[index].r_lock); goto toomany; } } } rw_exit(&rtable4[index].r_lock); } toomany: /* * Flush and release all of the files on the list. */ while (cnt-- > 0) { vp = vplist[cnt]; (void) VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_ASYNC, cr); VN_RELE(vp); } /* * Free the space allocated to hold the list. */ kmem_free(vplist, num * sizeof (*vplist)); } int nfs4_free_data_reclaim(rnode4_t *rp) { char *contents; vnode_t *xattr; int size; vsecattr_t *vsp; int freed; bool_t rdc = FALSE; /* * Free any held caches which may * be associated with this rnode. */ mutex_enter(&rp->r_statelock); if (rp->r_dir != NULL) rdc = TRUE; contents = rp->r_symlink.contents; size = rp->r_symlink.size; rp->r_symlink.contents = NULL; vsp = rp->r_secattr; rp->r_secattr = NULL; xattr = rp->r_xattr_dir; rp->r_xattr_dir = NULL; mutex_exit(&rp->r_statelock); /* * Free the access cache entries. */ freed = nfs4_access_purge_rp(rp); if (rdc == FALSE && contents == NULL && vsp == NULL && xattr == NULL) return (freed); /* * Free the readdir cache entries, incompletely if we can't block. */ nfs4_purge_rddir_cache(RTOV4(rp)); /* * Free the symbolic link cache. */ if (contents != NULL) { kmem_free((void *)contents, size); } /* * Free any cached ACL. */ if (vsp != NULL) nfs4_acl_free_cache(vsp); /* * Release the xattr directory vnode */ if (xattr != NULL) VN_RELE(xattr); return (1); } static int nfs4_active_data_reclaim(rnode4_t *rp) { char *contents; vnode_t *xattr; int size; vsecattr_t *vsp; int freed; bool_t rdc = FALSE; /* * Free any held credentials and caches which * may be associated with this rnode. */ if (!mutex_tryenter(&rp->r_statelock)) return (0); contents = rp->r_symlink.contents; size = rp->r_symlink.size; rp->r_symlink.contents = NULL; vsp = rp->r_secattr; rp->r_secattr = NULL; if (rp->r_dir != NULL) rdc = TRUE; xattr = rp->r_xattr_dir; rp->r_xattr_dir = NULL; mutex_exit(&rp->r_statelock); /* * Free the access cache entries. */ freed = nfs4_access_purge_rp(rp); if (contents == NULL && vsp == NULL && rdc == FALSE && xattr == NULL) return (freed); /* * Free the symbolic link cache. */ if (contents != NULL) { kmem_free((void *)contents, size); } /* * Free any cached ACL. */ if (vsp != NULL) nfs4_acl_free_cache(vsp); nfs4_purge_rddir_cache(RTOV4(rp)); /* * Release the xattr directory vnode */ if (xattr != NULL) VN_RELE(xattr); return (1); } static int nfs4_free_reclaim(void) { int freed; rnode4_t *rp; #ifdef DEBUG clstat4_debug.f_reclaim.value.ui64++; #endif freed = 0; mutex_enter(&rp4freelist_lock); rp = rp4freelist; if (rp != NULL) { do { if (nfs4_free_data_reclaim(rp)) freed = 1; } while ((rp = rp->r_freef) != rp4freelist); } mutex_exit(&rp4freelist_lock); return (freed); } static int nfs4_active_reclaim(void) { int freed; int index; rnode4_t *rp; #ifdef DEBUG clstat4_debug.a_reclaim.value.ui64++; #endif freed = 0; for (index = 0; index < rtable4size; index++) { rw_enter(&rtable4[index].r_lock, RW_READER); for (rp = rtable4[index].r_hashf; rp != (rnode4_t *)(&rtable4[index]); rp = rp->r_hashf) { if (nfs4_active_data_reclaim(rp)) freed = 1; } rw_exit(&rtable4[index].r_lock); } return (freed); } static int nfs4_rnode_reclaim(void) { int freed; rnode4_t *rp; vnode_t *vp; #ifdef DEBUG clstat4_debug.r_reclaim.value.ui64++; #endif freed = 0; mutex_enter(&rp4freelist_lock); while ((rp = rp4freelist) != NULL) { rp4_rmfree(rp); mutex_exit(&rp4freelist_lock); if (rp->r_flags & R4HASHED) { vp = RTOV4(rp); rw_enter(&rp->r_hashq->r_lock, RW_WRITER); mutex_enter(&vp->v_lock); if (vp->v_count > 1) { vp->v_count--; mutex_exit(&vp->v_lock); rw_exit(&rp->r_hashq->r_lock); mutex_enter(&rp4freelist_lock); continue; } mutex_exit(&vp->v_lock); rp4_rmhash_locked(rp); rw_exit(&rp->r_hashq->r_lock); } /* * This call to rp_addfree will end up destroying the * rnode, but in a safe way with the appropriate set * of checks done. */ rp4_addfree(rp, CRED()); mutex_enter(&rp4freelist_lock); } mutex_exit(&rp4freelist_lock); return (freed); } /*ARGSUSED*/ static void nfs4_reclaim(void *cdrarg) { #ifdef DEBUG clstat4_debug.reclaim.value.ui64++; #endif if (nfs4_free_reclaim()) return; if (nfs4_active_reclaim()) return; (void) nfs4_rnode_reclaim(); } /* * Returns the clientid4 to use for the given mntinfo4. Note that the * clientid can change if the caller drops mi_recovlock. */ clientid4 mi2clientid(mntinfo4_t *mi) { nfs4_server_t *sp; clientid4 clientid = 0; /* this locks down sp if it is found */ sp = find_nfs4_server(mi); if (sp != NULL) { clientid = sp->clientid; mutex_exit(&sp->s_lock); nfs4_server_rele(sp); } return (clientid); } /* * Return the current lease time for the server associated with the given * file. Note that the lease time could change immediately after this * call. */ time_t r2lease_time(rnode4_t *rp) { nfs4_server_t *sp; time_t lease_time; mntinfo4_t *mi = VTOMI4(RTOV4(rp)); (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); /* this locks down sp if it is found */ sp = find_nfs4_server(VTOMI4(RTOV4(rp))); if (VTOMI4(RTOV4(rp))->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { if (sp != NULL) { mutex_exit(&sp->s_lock); nfs4_server_rele(sp); } nfs_rw_exit(&mi->mi_recovlock); return (1); /* 1 second */ } ASSERT(sp != NULL); lease_time = sp->s_lease_time; mutex_exit(&sp->s_lock); nfs4_server_rele(sp); nfs_rw_exit(&mi->mi_recovlock); return (lease_time); } /* * Return a list with information about all the known open instances for * a filesystem. The caller must call r4releopenlist() when done with the * list. * * We are safe at looking at os_valid and os_pending_close across dropping * the 'os_sync_lock' to count up the number of open streams and then * allocate memory for the osp list due to: * -Looking at os_pending_close is safe since this routine is * only called via recovery, and os_pending_close can only be set via * a non-recovery operation (which are all blocked when recovery * is active). * * -Examining os_valid is safe since non-recovery operations, which * could potentially switch os_valid to 0, are blocked (via * nfs4_start_fop) and recovery is single-threaded per mntinfo4_t * (which means we are the only recovery thread potentially acting * on this open stream). */ nfs4_opinst_t * r4mkopenlist(mntinfo4_t *mi) { nfs4_opinst_t *reopenlist, *rep; rnode4_t *rp; vnode_t *vp; vfs_t *vfsp = mi->mi_vfsp; int numosp; nfs4_open_stream_t *osp; int index; open_delegation_type4 dtype; int hold_vnode; reopenlist = NULL; for (index = 0; index < rtable4size; index++) { rw_enter(&rtable4[index].r_lock, RW_READER); for (rp = rtable4[index].r_hashf; rp != (rnode4_t *)(&rtable4[index]); rp = rp->r_hashf) { vp = RTOV4(rp); if (vp->v_vfsp != vfsp) continue; hold_vnode = 0; mutex_enter(&rp->r_os_lock); /* Count the number of valid open_streams of the file */ numosp = 0; for (osp = list_head(&rp->r_open_streams); osp != NULL; osp = list_next(&rp->r_open_streams, osp)) { mutex_enter(&osp->os_sync_lock); if (osp->os_valid && !osp->os_pending_close) numosp++; mutex_exit(&osp->os_sync_lock); } /* Fill in the valid open streams per vp */ if (numosp > 0) { int j; hold_vnode = 1; /* * Add a new open instance to the list */ rep = kmem_zalloc(sizeof (*reopenlist), KM_SLEEP); rep->re_next = reopenlist; reopenlist = rep; rep->re_vp = vp; rep->re_osp = kmem_zalloc( numosp * sizeof (*(rep->re_osp)), KM_SLEEP); rep->re_numosp = numosp; j = 0; for (osp = list_head(&rp->r_open_streams); osp != NULL; osp = list_next(&rp->r_open_streams, osp)) { mutex_enter(&osp->os_sync_lock); if (osp->os_valid && !osp->os_pending_close) { osp->os_ref_count++; rep->re_osp[j] = osp; j++; } mutex_exit(&osp->os_sync_lock); } /* * Assuming valid osp(s) stays valid between * the time obtaining j and numosp. */ ASSERT(j == numosp); } mutex_exit(&rp->r_os_lock); /* do this here to keep v_lock > r_os_lock */ if (hold_vnode) VN_HOLD(vp); mutex_enter(&rp->r_statev4_lock); if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { /* * If this rnode holds a delegation, * but if there are no valid open streams, * then just discard the delegation * without doing delegreturn. */ if (numosp > 0) rp->r_deleg_needs_recovery = rp->r_deleg_type; } /* Save the delegation type for use outside the lock */ dtype = rp->r_deleg_type; mutex_exit(&rp->r_statev4_lock); /* * If we have a delegation then get rid of it. * We've set rp->r_deleg_needs_recovery so we have * enough information to recover. */ if (dtype != OPEN_DELEGATE_NONE) { (void) nfs4delegreturn(rp, NFS4_DR_DISCARD); } } rw_exit(&rtable4[index].r_lock); } return (reopenlist); } /* * Release the list of open instance references. */ void r4releopenlist(nfs4_opinst_t *reopenp) { nfs4_opinst_t *rep, *next; int i; for (rep = reopenp; rep; rep = next) { next = rep->re_next; for (i = 0; i < rep->re_numosp; i++) open_stream_rele(rep->re_osp[i], VTOR4(rep->re_vp)); VN_RELE(rep->re_vp); kmem_free(rep->re_osp, rep->re_numosp * sizeof (*(rep->re_osp))); kmem_free(rep, sizeof (*rep)); } } int nfs4_rnode_init(void) { ulong_t nrnode4_max; int i; /* * Compute the size of the rnode4 hash table */ if (nrnode <= 0) nrnode = ncsize; nrnode4_max = (ulong_t)((kmem_maxavail() >> 2) / sizeof (struct rnode4)); if (nrnode > nrnode4_max || (nrnode == 0 && ncsize == 0)) { zcmn_err(GLOBAL_ZONEID, CE_NOTE, "setting nrnode to max value of %ld", nrnode4_max); nrnode = nrnode4_max; } rtable4size = 1 << highbit(nrnode / rnode4_hashlen); rtable4mask = rtable4size - 1; /* * Allocate and initialize the hash buckets */ rtable4 = kmem_alloc(rtable4size * sizeof (*rtable4), KM_SLEEP); for (i = 0; i < rtable4size; i++) { rtable4[i].r_hashf = (rnode4_t *)(&rtable4[i]); rtable4[i].r_hashb = (rnode4_t *)(&rtable4[i]); rw_init(&rtable4[i].r_lock, NULL, RW_DEFAULT, NULL); } rnode4_cache = kmem_cache_create("rnode4_cache", sizeof (rnode4_t), 0, NULL, NULL, nfs4_reclaim, NULL, NULL, 0); return (0); } int nfs4_rnode_fini(void) { int i; /* * Deallocate the rnode hash queues */ kmem_cache_destroy(rnode4_cache); for (i = 0; i < rtable4size; i++) rw_destroy(&rtable4[i].r_lock); kmem_free(rtable4, rtable4size * sizeof (*rtable4)); return (0); } /* * Return non-zero if the given filehandle refers to the root filehandle * for the given rnode. */ static int isrootfh(nfs4_sharedfh_t *fh, rnode4_t *rp) { int isroot; isroot = 0; if (SFH4_SAME(VTOMI4(RTOV4(rp))->mi_rootfh, fh)) isroot = 1; return (isroot); } /* * The r4_stub_* routines assume that the rnode is newly activated, and * that the caller either holds the hash bucket r_lock for this rnode as * RW_WRITER, or holds r_statelock. */ static void r4_stub_set(rnode4_t *rp, nfs4_stub_type_t type) { vnode_t *vp = RTOV4(rp); krwlock_t *hash_lock = &rp->r_hashq->r_lock; ASSERT(RW_WRITE_HELD(hash_lock) || MUTEX_HELD(&rp->r_statelock)); rp->r_stub_type = type; /* * Safely switch this vnode to the trigger vnodeops. * * Currently, we don't ever switch a trigger vnode back to using * "regular" v4 vnodeops. NFS4_STUB_NONE is only used to note that * a new v4 object is not a trigger, and it will already have the * correct v4 vnodeops by default. So, no "else" case required here. */ if (type != NFS4_STUB_NONE) vn_setops(vp, nfs4_trigger_vnodeops); } void r4_stub_mirrormount(rnode4_t *rp) { r4_stub_set(rp, NFS4_STUB_MIRRORMOUNT); } void r4_stub_none(rnode4_t *rp) { r4_stub_set(rp, NFS4_STUB_NONE); } #ifdef DEBUG /* * Look in the rnode table for other rnodes that have the same filehandle. * Assume the lock is held for the hash chain of checkrp */ static void r4_dup_check(rnode4_t *checkrp, vfs_t *vfsp) { rnode4_t *rp; vnode_t *tvp; nfs4_fhandle_t fh, fh2; int index; if (!r4_check_for_dups) return; ASSERT(RW_LOCK_HELD(&checkrp->r_hashq->r_lock)); sfh4_copyval(checkrp->r_fh, &fh); for (index = 0; index < rtable4size; index++) { if (&rtable4[index] != checkrp->r_hashq) rw_enter(&rtable4[index].r_lock, RW_READER); for (rp = rtable4[index].r_hashf; rp != (rnode4_t *)(&rtable4[index]); rp = rp->r_hashf) { if (rp == checkrp) continue; tvp = RTOV4(rp); if (tvp->v_vfsp != vfsp) continue; sfh4_copyval(rp->r_fh, &fh2); if (nfs4cmpfhandle(&fh, &fh2) == 0) { cmn_err(CE_PANIC, "rnodes with same fs, fh " "(%p, %p)", (void *)checkrp, (void *)rp); } } if (&rtable4[index] != checkrp->r_hashq) rw_exit(&rtable4[index].r_lock); } } #endif /* DEBUG */