/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. * All rights reserved. */ /* * Copyright (c) 2013, Joyent, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *); static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, stable_how *); static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); static int nfs3_accessx(void *, int, cred_t *); static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, int, vnode_t **, cred_t *, int); static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, int, vnode_t **, cred_t *); static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, caller_context_t *); static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); static int nfs3_bio(struct buf *, stable_how *, cred_t *); static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, page_t *[], size_t, struct seg *, caddr_t, enum seg_rw, cred_t *); static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, cred_t *); static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *); static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *); static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); static void nfs3_set_mod(vnode_t *); static void nfs3_get_commit(vnode_t *); static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, cred_t *); static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, cred_t *); static void nfs3_delmap_callback(struct as *, void *, uint_t); /* * Error flags used to pass information about certain special errors * which need to be handled specially. */ #define NFS_EOF -98 #define NFS_VERF_MISMATCH -97 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ #define ALIGN64(x, ptr, sz) \ x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ if (x) { \ x = sizeof (uint64_t) - (x); \ sz -= (x); \ ptr += (x); \ } /* * These are the vnode ops routines which implement the vnode interface to * the networked file system. These routines just take their parameters, * make them look networkish by putting the right info into interface structs, * and then calling the appropriate remote routine(s) to do the work. * * Note on directory name lookup cacheing: If we detect a stale fhandle, * we purge the directory cache relative to that vnode. This way, the * user won't get burned by the cache repeatedly. See for * more details on rnode locking. */ static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, caller_context_t *); static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, caller_context_t *); static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, caller_context_t *); static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, caller_context_t *); static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, caller_context_t *); static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, caller_context_t *); static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, caller_context_t *); static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); static int nfs3_lookup(vnode_t *, char *, vnode_t **, struct pathname *, int, vnode_t *, cred_t *, caller_context_t *, int *, pathname_t *); static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, int, vnode_t **, cred_t *, int, caller_context_t *, vsecattr_t *); static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, int); static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, caller_context_t *, int); static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, caller_context_t *, int); static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, cred_t *, caller_context_t *, int, vsecattr_t *); static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, caller_context_t *, int); static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, cred_t *, caller_context_t *, int); static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, caller_context_t *, int); static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); static int nfs3_rwlock(vnode_t *, int, caller_context_t *); static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, page_t *[], size_t, struct seg *, caddr_t, enum seg_rw, cred_t *, caller_context_t *); static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, caller_context_t *); static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, struct flk_callback *, cred_t *, caller_context_t *); static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, cred_t *, caller_context_t *); static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, uint_t, uint_t, uint_t, cred_t *, caller_context_t *); static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, caller_context_t *); static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, cred_t *, caller_context_t *); static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, caller_context_t *); static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, caller_context_t *); static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, caller_context_t *); static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, caller_context_t *); struct vnodeops *nfs3_vnodeops; const fs_operation_def_t nfs3_vnodeops_template[] = { VOPNAME_OPEN, { .vop_open = nfs3_open }, VOPNAME_CLOSE, { .vop_close = nfs3_close }, VOPNAME_READ, { .vop_read = nfs3_read }, VOPNAME_WRITE, { .vop_write = nfs3_write }, VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, VOPNAME_ACCESS, { .vop_access = nfs3_access }, VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, VOPNAME_CREATE, { .vop_create = nfs3_create }, VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, VOPNAME_LINK, { .vop_link = nfs3_link }, VOPNAME_RENAME, { .vop_rename = nfs3_rename }, VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, VOPNAME_FID, { .vop_fid = nfs3_fid }, VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, VOPNAME_SEEK, { .vop_seek = nfs3_seek }, VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, VOPNAME_SPACE, { .vop_space = nfs3_space }, VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, VOPNAME_MAP, { .vop_map = nfs3_map }, VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, /* no separate nfs3_dump */ VOPNAME_DUMP, { .vop_dump = nfs_dump }, VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, NULL, NULL }; /* * XXX: This is referenced in modstubs.s */ struct vnodeops * nfs3_getvnodeops(void) { return (nfs3_vnodeops); } /* ARGSUSED */ static int nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) { int error; struct vattr va; rnode_t *rp; vnode_t *vp; vp = *vpp; if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); rp = VTOR(vp); mutex_enter(&rp->r_statelock); if (rp->r_cred == NULL) { crhold(cr); rp->r_cred = cr; } mutex_exit(&rp->r_statelock); /* * If there is no cached data or if close-to-open * consistency checking is turned off, we can avoid * the over the wire getattr. Otherwise, if the * file system is mounted readonly, then just verify * the caches are up to date using the normal mechanism. * Else, if the file is not mmap'd, then just mark * the attributes as timed out. They will be refreshed * and the caches validated prior to being used. * Else, the file system is mounted writeable so * force an over the wire GETATTR in order to ensure * that all cached data is valid. */ if (vp->v_count > 1 || ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && !(VTOMI(vp)->mi_flags & MI_NOCTO))) { if (vn_is_readonly(vp)) error = nfs3_validate_caches(vp, cr); else if (rp->r_mapcnt == 0 && vp->v_count == 1) { PURGE_ATTRCACHE(vp); error = 0; } else { va.va_mask = AT_ALL; error = nfs3_getattr_otw(vp, &va, cr); } } else error = 0; return (error); } /* ARGSUSED */ static int nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, caller_context_t *ct) { rnode_t *rp; int error; struct vattr va; /* * zone_enter(2) prevents processes from changing zones with NFS files * open; if we happen to get here from the wrong zone we can't do * anything over the wire. */ if (VTOMI(vp)->mi_zone != nfs_zone()) { /* * We could attempt to clean up locks, except we're sure * that the current process didn't acquire any locks on * the file: any attempt to lock a file belong to another zone * will fail, and one can't lock an NFS file and then change * zones, as that fails too. * * Returning an error here is the sane thing to do. A * subsequent call to VN_RELE() which translates to a * nfs3_inactive() will clean up state: if the zone of the * vnode's origin is still alive and kicking, an async worker * thread will handle the request (from the correct zone), and * everything (minus the commit and final nfs3_getattr_otw() * call) should be OK. If the zone is going away * nfs_async_inactive() will throw away cached pages inline. */ return (EIO); } /* * If we are using local locking for this filesystem, then * release all of the SYSV style record locks. Otherwise, * we are doing network locking and we need to release all * of the network locks. All of the locks held by this * process on this file are released no matter what the * incoming reference count is. */ if (VTOMI(vp)->mi_flags & MI_LLOCK) { cleanlocks(vp, ttoproc(curthread)->p_pid, 0); cleanshares(vp, ttoproc(curthread)->p_pid); } else nfs_lockrelease(vp, flag, offset, cr); if (count > 1) return (0); /* * If the file has been `unlinked', then purge the * DNLC so that this vnode will get reycled quicker * and the .nfs* file on the server will get removed. */ rp = VTOR(vp); if (rp->r_unldvp != NULL) dnlc_purge_vp(vp); /* * If the file was open for write and there are pages, * then if the file system was mounted using the "no-close- * to-open" semantics, then start an asynchronous flush * of the all of the pages in the file. * else the file system was not mounted using the "no-close- * to-open" semantics, then do a synchronous flush and * commit of all of the dirty and uncommitted pages. * * The asynchronous flush of the pages in the "nocto" path * mostly just associates a cred pointer with the rnode so * writes which happen later will have a better chance of * working. It also starts the data being written to the * server, but without unnecessarily delaying the application. */ if ((flag & FWRITE) && vn_has_cached_data(vp)) { if (VTOMI(vp)->mi_flags & MI_NOCTO) { error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, cr, ct); if (error == EAGAIN) error = 0; } else error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); if (!error) { mutex_enter(&rp->r_statelock); error = rp->r_error; rp->r_error = 0; mutex_exit(&rp->r_statelock); } } else { mutex_enter(&rp->r_statelock); error = rp->r_error; rp->r_error = 0; mutex_exit(&rp->r_statelock); } /* * If RWRITEATTR is set, then issue an over the wire GETATTR to * refresh the attribute cache with a set of attributes which * weren't returned from a WRITE. This will enable the close- * to-open processing to work. */ if (rp->r_flags & RWRITEATTR) (void) nfs3_getattr_otw(vp, &va, cr); return (error); } /* ARGSUSED */ static int nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) { mntinfo_t *mi; READ3args args; READ3uiores res; int tsize; offset_t offset; ssize_t count; int error; int douprintf; failinfo_t fi; char *sv_hostname; mi = VTOMI(vp); ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); sv_hostname = VTOR(vp)->r_server->sv_hostname; douprintf = 1; args.file = *VTOFH3(vp); fi.vp = vp; fi.fhp = (caddr_t)&args.file; fi.copyproc = nfs3copyfh; fi.lookupproc = nfs3lookup; fi.xattrdirproc = acl_getxattrdir3; res.uiop = uiop; res.wlist = NULL; offset = uiop->uio_loffset; count = uiop->uio_resid; do { if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } do { tsize = MIN(mi->mi_tsize, count); args.offset = (offset3)offset; args.count = (count3)tsize; res.size = (uint_t)tsize; args.res_uiop = uiop; args.res_data_val_alt = NULL; error = rfs3call(mi, NFSPROC3_READ, xdr_READ3args, (caddr_t)&args, xdr_READ3uiores, (caddr_t)&res, cr, &douprintf, &res.status, 0, &fi); } while (error == ENFS_TRYAGAIN); if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } if (error) return (error); error = geterrno3(res.status); if (error) return (error); if (res.count != res.size) { zcmn_err(getzoneid(), CE_WARN, "nfs3_directio_read: server %s returned incorrect amount", sv_hostname); return (EIO); } count -= res.count; offset += res.count; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; mutex_exit(&mi->mi_lock); } lwp_stat_update(LWP_STAT_INBLK, 1); } while (count && !res.eof); return (0); } /* ARGSUSED */ static int nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, caller_context_t *ct) { rnode_t *rp; u_offset_t off; offset_t diff; int on; size_t n; caddr_t base; uint_t flags; int error = 0; mntinfo_t *mi; rp = VTOR(vp); mi = VTOMI(vp); ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); if (nfs_zone() != mi->mi_zone) return (EIO); if (vp->v_type != VREG) return (EISDIR); if (uiop->uio_resid == 0) return (0); if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) return (EINVAL); /* * Bypass VM if caching has been disabled (e.g., locking) or if * using client-side direct I/O and the file is not mmap'd and * there are no cached pages. */ if ((vp->v_flag & VNOCACHE) || (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && rp->r_mapcnt == 0 && rp->r_inmap == 0 && !vn_has_cached_data(vp))) { return (nfs3_directio_read(vp, uiop, cr)); } do { off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ n = MIN(MAXBSIZE - on, uiop->uio_resid); error = nfs3_validate_caches(vp, cr); if (error) break; mutex_enter(&rp->r_statelock); while (rp->r_flags & RINCACHEPURGE) { if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { mutex_exit(&rp->r_statelock); return (EINTR); } } diff = rp->r_size - uiop->uio_loffset; mutex_exit(&rp->r_statelock); if (diff <= 0) break; if (diff < n) n = (size_t)diff; if (vpm_enable) { /* * Copy data. */ error = vpm_data_copy(vp, off + on, n, uiop, 1, NULL, 0, S_READ); } else { base = segmap_getmapflt(segkmap, vp, off + on, n, 1, S_READ); error = uiomove(base + on, n, UIO_READ, uiop); } if (!error) { /* * If read a whole block or read to eof, * won't need this buffer again soon. */ mutex_enter(&rp->r_statelock); if (n + on == MAXBSIZE || uiop->uio_loffset == rp->r_size) flags = SM_DONTNEED; else flags = 0; mutex_exit(&rp->r_statelock); if (vpm_enable) { error = vpm_sync_pages(vp, off, n, flags); } else { error = segmap_release(segkmap, base, flags); } } else { if (vpm_enable) { (void) vpm_sync_pages(vp, off, n, 0); } else { (void) segmap_release(segkmap, base, 0); } } } while (!error && uiop->uio_resid > 0); return (error); } /* ARGSUSED */ static int nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, caller_context_t *ct) { rlim64_t limit = uiop->uio_llimit; rnode_t *rp; u_offset_t off; caddr_t base; uint_t flags; int remainder; size_t n; int on; int error; int resid; offset_t offset; mntinfo_t *mi; uint_t bsize; rp = VTOR(vp); if (vp->v_type != VREG) return (EISDIR); mi = VTOMI(vp); if (nfs_zone() != mi->mi_zone) return (EIO); if (uiop->uio_resid == 0) return (0); if (ioflag & FAPPEND) { struct vattr va; /* * Must serialize if appending. */ if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { nfs_rw_exit(&rp->r_rwlock); if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) return (EINTR); } va.va_mask = AT_SIZE; error = nfs3getattr(vp, &va, cr); if (error) return (error); uiop->uio_loffset = va.va_size; } offset = uiop->uio_loffset + uiop->uio_resid; if (uiop->uio_loffset < 0 || offset < 0) return (EINVAL); if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) limit = MAXOFFSET_T; /* * Check to make sure that the process will not exceed * its limit on file size. It is okay to write up to * the limit, but not beyond. Thus, the write which * reaches the limit will be short and the next write * will return an error. */ remainder = 0; if (offset > limit) { remainder = offset - limit; uiop->uio_resid = limit - uiop->uio_loffset; if (uiop->uio_resid <= 0) { proc_t *p = ttoproc(curthread); uiop->uio_resid += remainder; mutex_enter(&p->p_lock); (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, p, RCA_UNSAFE_SIGINFO); mutex_exit(&p->p_lock); return (EFBIG); } } if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) return (EINTR); /* * Bypass VM if caching has been disabled (e.g., locking) or if * using client-side direct I/O and the file is not mmap'd and * there are no cached pages. */ if ((vp->v_flag & VNOCACHE) || (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && rp->r_mapcnt == 0 && rp->r_inmap == 0 && !vn_has_cached_data(vp))) { size_t bufsize; int count; u_offset_t org_offset; stable_how stab_comm; nfs3_fwrite: if (rp->r_flags & RSTALE) { resid = uiop->uio_resid; offset = uiop->uio_loffset; error = rp->r_error; /* * A close may have cleared r_error, if so, * propagate ESTALE error return properly */ if (error == 0) error = ESTALE; goto bottom; } bufsize = MIN(uiop->uio_resid, mi->mi_stsize); base = kmem_alloc(bufsize, KM_SLEEP); do { if (ioflag & FDSYNC) stab_comm = DATA_SYNC; else stab_comm = FILE_SYNC; resid = uiop->uio_resid; offset = uiop->uio_loffset; count = MIN(uiop->uio_resid, bufsize); org_offset = uiop->uio_loffset; error = uiomove(base, count, UIO_WRITE, uiop); if (!error) { error = nfs3write(vp, base, org_offset, count, cr, &stab_comm); } } while (!error && uiop->uio_resid > 0); kmem_free(base, bufsize); goto bottom; } bsize = vp->v_vfsp->vfs_bsize; do { off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ n = MIN(MAXBSIZE - on, uiop->uio_resid); resid = uiop->uio_resid; offset = uiop->uio_loffset; if (rp->r_flags & RSTALE) { error = rp->r_error; /* * A close may have cleared r_error, if so, * propagate ESTALE error return properly */ if (error == 0) error = ESTALE; break; } /* * Don't create dirty pages faster than they * can be cleaned so that the system doesn't * get imbalanced. If the async queue is * maxed out, then wait for it to drain before * creating more dirty pages. Also, wait for * any threads doing pagewalks in the vop_getattr * entry points so that they don't block for * long periods. */ mutex_enter(&rp->r_statelock); while ((mi->mi_max_threads != 0 && rp->r_awcount > 2 * mi->mi_max_threads) || rp->r_gcount > 0) { if (INTR(vp)) { klwp_t *lwp = ttolwp(curthread); if (lwp != NULL) lwp->lwp_nostop++; if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { mutex_exit(&rp->r_statelock); if (lwp != NULL) lwp->lwp_nostop--; error = EINTR; goto bottom; } if (lwp != NULL) lwp->lwp_nostop--; } else cv_wait(&rp->r_cv, &rp->r_statelock); } mutex_exit(&rp->r_statelock); /* * Touch the page and fault it in if it is not in core * before segmap_getmapflt or vpm_data_copy can lock it. * This is to avoid the deadlock if the buffer is mapped * to the same file through mmap which we want to write. */ uio_prefaultpages((long)n, uiop); if (vpm_enable) { /* * It will use kpm mappings, so no need to * pass an address. */ error = writerp(rp, NULL, n, uiop, 0); } else { if (segmap_kpm) { int pon = uiop->uio_loffset & PAGEOFFSET; size_t pn = MIN(PAGESIZE - pon, uiop->uio_resid); int pagecreate; mutex_enter(&rp->r_statelock); pagecreate = (pon == 0) && (pn == PAGESIZE || uiop->uio_loffset + pn >= rp->r_size); mutex_exit(&rp->r_statelock); base = segmap_getmapflt(segkmap, vp, off + on, pn, !pagecreate, S_WRITE); error = writerp(rp, base + pon, n, uiop, pagecreate); } else { base = segmap_getmapflt(segkmap, vp, off + on, n, 0, S_READ); error = writerp(rp, base + on, n, uiop, 0); } } if (!error) { if (mi->mi_flags & MI_NOAC) flags = SM_WRITE; else if ((uiop->uio_loffset % bsize) == 0 || IS_SWAPVP(vp)) { /* * Have written a whole block. * Start an asynchronous write * and mark the buffer to * indicate that it won't be * needed again soon. */ flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; } else flags = 0; if ((ioflag & (FSYNC|FDSYNC)) || (rp->r_flags & ROUTOFSPACE)) { flags &= ~SM_ASYNC; flags |= SM_WRITE; } if (vpm_enable) { error = vpm_sync_pages(vp, off, n, flags); } else { error = segmap_release(segkmap, base, flags); } } else { if (vpm_enable) { (void) vpm_sync_pages(vp, off, n, 0); } else { (void) segmap_release(segkmap, base, 0); } /* * In the event that we got an access error while * faulting in a page for a write-only file just * force a write. */ if (error == EACCES) goto nfs3_fwrite; } } while (!error && uiop->uio_resid > 0); bottom: if (error) { uiop->uio_resid = resid + remainder; uiop->uio_loffset = offset; } else uiop->uio_resid += remainder; nfs_rw_exit(&rp->r_lkserlock); return (error); } /* * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} */ static int nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, int flags, cred_t *cr) { struct buf *bp; int error; page_t *savepp; uchar_t fsdata; stable_how stab_comm; ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); bp = pageio_setup(pp, len, vp, flags); ASSERT(bp != NULL); /* * pageio_setup should have set b_addr to 0. This * is correct since we want to do I/O on a page * boundary. bp_mapin will use this addr to calculate * an offset, and then set b_addr to the kernel virtual * address it allocated for us. */ ASSERT(bp->b_un.b_addr == 0); bp->b_edev = 0; bp->b_dev = 0; bp->b_lblkno = lbtodb(off); bp->b_file = vp; bp->b_offset = (offset_t)off; bp_mapin(bp); /* * Calculate the desired level of stability to write data * on the server and then mark all of the pages to reflect * this. */ if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && freemem > desfree) { stab_comm = UNSTABLE; fsdata = C_DELAYCOMMIT; } else { stab_comm = FILE_SYNC; fsdata = C_NOCOMMIT; } savepp = pp; do { pp->p_fsdata = fsdata; } while ((pp = pp->p_next) != savepp); error = nfs3_bio(bp, &stab_comm, cr); bp_mapout(bp); pageio_done(bp); /* * If the server wrote pages in a more stable fashion than * was requested, then clear all of the marks in the pages * indicating that COMMIT operations were required. */ if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { do { pp->p_fsdata = C_NOCOMMIT; } while ((pp = pp->p_next) != savepp); } return (error); } /* * Write to file. Writes to remote server in largest size * chunks that the server can handle. Write is synchronous. */ static int nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, stable_how *stab_comm) { mntinfo_t *mi; WRITE3args args; WRITE3res res; int error; int tsize; rnode_t *rp; int douprintf; rp = VTOR(vp); mi = VTOMI(vp); ASSERT(nfs_zone() == mi->mi_zone); args.file = *VTOFH3(vp); args.stable = *stab_comm; *stab_comm = FILE_SYNC; douprintf = 1; do { if ((vp->v_flag & VNOCACHE) || (rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) tsize = MIN(mi->mi_stsize, count); else tsize = MIN(mi->mi_curwrite, count); args.offset = (offset3)offset; args.count = (count3)tsize; args.data.data_len = (uint_t)tsize; args.data.data_val = base; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } args.mblk = NULL; do { error = rfs3call(mi, NFSPROC3_WRITE, xdr_WRITE3args, (caddr_t)&args, xdr_WRITE3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); } while (error == ENFS_TRYAGAIN); if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } if (error) return (error); error = geterrno3(res.status); if (!error) { if (res.resok.count > args.count) { zcmn_err(getzoneid(), CE_WARN, "nfs3write: server %s wrote %u, " "requested was %u", rp->r_server->sv_hostname, res.resok.count, args.count); return (EIO); } if (res.resok.committed == UNSTABLE) { *stab_comm = UNSTABLE; if (args.stable == DATA_SYNC || args.stable == FILE_SYNC) { zcmn_err(getzoneid(), CE_WARN, "nfs3write: server %s did not commit to stable storage", rp->r_server->sv_hostname); return (EIO); } } tsize = (int)res.resok.count; count -= tsize; base += tsize; offset += tsize; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += tsize; mutex_exit(&mi->mi_lock); } lwp_stat_update(LWP_STAT_OUBLK, 1); mutex_enter(&rp->r_statelock); if (rp->r_flags & RHAVEVERF) { if (rp->r_verf != res.resok.verf) { nfs3_set_mod(vp); rp->r_verf = res.resok.verf; /* * If the data was written UNSTABLE, * then might as well stop because * the whole block will have to get * rewritten anyway. */ if (*stab_comm == UNSTABLE) { mutex_exit(&rp->r_statelock); break; } } } else { rp->r_verf = res.resok.verf; rp->r_flags |= RHAVEVERF; } /* * Mark the attribute cache as timed out and * set RWRITEATTR to indicate that the file * was modified with a WRITE operation and * that the attributes can not be trusted. */ PURGE_ATTRCACHE_LOCKED(rp); rp->r_flags |= RWRITEATTR; mutex_exit(&rp->r_statelock); } } while (!error && count); return (error); } /* * Read from a file. Reads data in largest chunks our interface can handle. */ static int nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, size_t *residp, cred_t *cr) { mntinfo_t *mi; READ3args args; READ3vres res; int tsize; int error; int douprintf; failinfo_t fi; rnode_t *rp; struct vattr va; hrtime_t t; rp = VTOR(vp); mi = VTOMI(vp); ASSERT(nfs_zone() == mi->mi_zone); douprintf = 1; args.file = *VTOFH3(vp); fi.vp = vp; fi.fhp = (caddr_t)&args.file; fi.copyproc = nfs3copyfh; fi.lookupproc = nfs3lookup; fi.xattrdirproc = acl_getxattrdir3; res.pov.fres.vp = vp; res.pov.fres.vap = &va; res.wlist = NULL; *residp = count; do { if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } do { if ((vp->v_flag & VNOCACHE) || (rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) tsize = MIN(mi->mi_tsize, count); else tsize = MIN(mi->mi_curread, count); res.data.data_val = base; res.data.data_len = tsize; args.offset = (offset3)offset; args.count = (count3)tsize; args.res_uiop = NULL; args.res_data_val_alt = base; t = gethrtime(); error = rfs3call(mi, NFSPROC3_READ, xdr_READ3args, (caddr_t)&args, xdr_READ3vres, (caddr_t)&res, cr, &douprintf, &res.status, 0, &fi); } while (error == ENFS_TRYAGAIN); if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } if (error) return (error); error = geterrno3(res.status); if (error) return (error); if (res.count != res.data.data_len) { zcmn_err(getzoneid(), CE_WARN, "nfs3read: server %s returned incorrect amount", rp->r_server->sv_hostname); return (EIO); } count -= res.count; *residp = count; base += res.count; offset += res.count; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; mutex_exit(&mi->mi_lock); } lwp_stat_update(LWP_STAT_INBLK, 1); } while (count && !res.eof); if (res.pov.attributes) { mutex_enter(&rp->r_statelock); if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { mutex_exit(&rp->r_statelock); PURGE_ATTRCACHE(vp); } else { if (rp->r_mtime <= t) nfs_attrcache_va(vp, &va); mutex_exit(&rp->r_statelock); } } return (0); } /* ARGSUSED */ static int nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, caller_context_t *ct) { if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); switch (cmd) { case _FIODIRECTIO: return (nfs_directio(vp, (int)arg, cr)); default: return (ENOTTY); } } /* ARGSUSED */ static int nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, caller_context_t *ct) { int error; rnode_t *rp; if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); /* * If it has been specified that the return value will * just be used as a hint, and we are only being asked * for size, fsid or rdevid, then return the client's * notion of these values without checking to make sure * that the attribute cache is up to date. * The whole point is to avoid an over the wire GETATTR * call. */ rp = VTOR(vp); if (flags & ATTR_HINT) { if (vap->va_mask == (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { mutex_enter(&rp->r_statelock); if (vap->va_mask | AT_SIZE) vap->va_size = rp->r_size; if (vap->va_mask | AT_FSID) vap->va_fsid = rp->r_attr.va_fsid; if (vap->va_mask | AT_RDEV) vap->va_rdev = rp->r_attr.va_rdev; mutex_exit(&rp->r_statelock); return (0); } } /* * Only need to flush pages if asking for the mtime * and if there any dirty pages or any outstanding * asynchronous (write) requests for this file. */ if (vap->va_mask & AT_MTIME) { if (vn_has_cached_data(vp) && ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { mutex_enter(&rp->r_statelock); rp->r_gcount++; mutex_exit(&rp->r_statelock); error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); mutex_enter(&rp->r_statelock); if (error && (error == ENOSPC || error == EDQUOT)) { if (!rp->r_error) rp->r_error = error; } if (--rp->r_gcount == 0) cv_broadcast(&rp->r_cv); mutex_exit(&rp->r_statelock); } } return (nfs3getattr(vp, vap, cr)); } /*ARGSUSED4*/ static int nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, caller_context_t *ct) { int error; struct vattr va; if (vap->va_mask & AT_NOSET) return (EINVAL); if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); va.va_mask = AT_UID | AT_MODE; error = nfs3getattr(vp, &va, cr); if (error) return (error); error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, vp); if (error) return (error); error = nfs3setattr(vp, vap, flags, cr); if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) vnevent_truncate(vp, ct); return (error); } static int nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) { int error; uint_t mask; SETATTR3args args; SETATTR3res res; int douprintf; rnode_t *rp; struct vattr va; mode_t omode; vsecattr_t *vsp; hrtime_t t; ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); mask = vap->va_mask; rp = VTOR(vp); /* * Only need to flush pages if there are any pages and * if the file is marked as dirty in some fashion. The * file must be flushed so that we can accurately * determine the size of the file and the cached data * after the SETATTR returns. A file is considered to * be dirty if it is either marked with RDIRTY, has * outstanding i/o's active, or is mmap'd. In this * last case, we can't tell whether there are dirty * pages, so we flush just to be sure. */ if (vn_has_cached_data(vp) && ((rp->r_flags & RDIRTY) || rp->r_count > 0 || rp->r_mapcnt > 0)) { ASSERT(vp->v_type != VCHR); error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); if (error && (error == ENOSPC || error == EDQUOT)) { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = error; mutex_exit(&rp->r_statelock); } } args.object = *RTOFH3(rp); /* * If the intent is for the server to set the times, * there is no point in have the mask indicating set mtime or * atime, because the vap values may be junk, and so result * in an overflow error. Remove these flags from the vap mask * before calling in this case, and restore them afterwards. */ if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { /* Use server times, so don't set the args time fields */ vap->va_mask &= ~(AT_ATIME | AT_MTIME); error = vattr_to_sattr3(vap, &args.new_attributes); vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); if (mask & AT_ATIME) { args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; } if (mask & AT_MTIME) { args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; } } else { /* Either do not set times or use the client specified times */ error = vattr_to_sattr3(vap, &args.new_attributes); } if (error) { /* req time field(s) overflow - return immediately */ return (error); } va.va_mask = AT_MODE | AT_CTIME; error = nfs3getattr(vp, &va, cr); if (error) return (error); omode = va.va_mode; tryagain: if (mask & AT_SIZE) { args.guard.check = TRUE; args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; } else args.guard.check = FALSE; douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, xdr_SETATTR3args, (caddr_t)&args, xdr_SETATTR3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); /* * Purge the access cache and ACL cache if changing either the * owner of the file, the group owner, or the mode. These may * change the access permissions of the file, so purge old * information and start over again. */ if (mask & (AT_UID | AT_GID | AT_MODE)) { (void) nfs_access_purge_rp(rp); if (rp->r_secattr != NULL) { mutex_enter(&rp->r_statelock); vsp = rp->r_secattr; rp->r_secattr = NULL; mutex_exit(&rp->r_statelock); if (vsp != NULL) nfs_acl_free(vsp); } } if (error) { PURGE_ATTRCACHE(vp); return (error); } error = geterrno3(res.status); if (!error) { /* * If changing the size of the file, invalidate * any local cached data which is no longer part * of the file. We also possibly invalidate the * last page in the file. We could use * pvn_vpzero(), but this would mark the page as * modified and require it to be written back to * the server for no particularly good reason. * This way, if we access it, then we bring it * back in. A read should be cheaper than a * write. */ if (mask & AT_SIZE) { nfs_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); } nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); /* * Some servers will change the mode to clear the setuid * and setgid bits when changing the uid or gid. The * client needs to compensate appropriately. */ if (mask & (AT_UID | AT_GID)) { int terror; va.va_mask = AT_MODE; terror = nfs3getattr(vp, &va, cr); if (!terror && (((mask & AT_MODE) && va.va_mode != vap->va_mode) || (!(mask & AT_MODE) && va.va_mode != omode))) { va.va_mask = AT_MODE; if (mask & AT_MODE) va.va_mode = vap->va_mode; else va.va_mode = omode; (void) nfs3setattr(vp, &va, 0, cr); } } } else { nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); /* * If we got back a "not synchronized" error, then * we need to retry with a new guard value. The * guard value used is the change time. If the * server returned post_op_attr, then we can just * retry because we have the latest attributes. * Otherwise, we issue a GETATTR to get the latest * attributes and then retry. If we couldn't get * the attributes this way either, then we give * up because we can't complete the operation as * required. */ if (res.status == NFS3ERR_NOT_SYNC) { va.va_mask = AT_CTIME; if (nfs3getattr(vp, &va, cr) == 0) goto tryagain; } PURGE_STALE_FH(error, vp, cr); } return (error); } static int nfs3_accessx(void *vp, int mode, cred_t *cr) { ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); return (nfs3_access(vp, mode, 0, cr, NULL)); } /* ARGSUSED */ static int nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) { int error; ACCESS3args args; ACCESS3res res; int douprintf; uint32 acc; rnode_t *rp; cred_t *cred, *ncr, *ncrfree = NULL; failinfo_t fi; nfs_access_type_t cacc; hrtime_t t; acc = 0; if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); if (mode & VREAD) acc |= ACCESS3_READ; if (mode & VWRITE) { if (vn_is_readonly(vp) && !IS_DEVVP(vp)) return (EROFS); if (vp->v_type == VDIR) acc |= ACCESS3_DELETE; acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; } if (mode & VEXEC) { if (vp->v_type == VDIR) acc |= ACCESS3_LOOKUP; else acc |= ACCESS3_EXECUTE; } rp = VTOR(vp); args.object = *VTOFH3(vp); if (vp->v_type == VDIR) { args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | ACCESS3_EXTEND | ACCESS3_LOOKUP; } else { args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | ACCESS3_EXECUTE; } fi.vp = vp; fi.fhp = (caddr_t)&args.object; fi.copyproc = nfs3copyfh; fi.lookupproc = nfs3lookup; fi.xattrdirproc = acl_getxattrdir3; cred = cr; /* * ncr and ncrfree both initially * point to the memory area returned * by crnetadjust(); * ncrfree not NULL when exiting means * that we need to release it */ ncr = crnetadjust(cred); ncrfree = ncr; tryagain: if (rp->r_acache != NULL) { cacc = nfs_access_check(rp, acc, cred); if (cacc == NFS_ACCESS_ALLOWED) { if (ncrfree != NULL) crfree(ncrfree); return (0); } if (cacc == NFS_ACCESS_DENIED) { /* * If the cred can be adjusted, try again * with the new cred. */ if (ncr != NULL) { cred = ncr; ncr = NULL; goto tryagain; } if (ncrfree != NULL) crfree(ncrfree); return (EACCES); } } douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, xdr_ACCESS3args, (caddr_t)&args, xdr_ACCESS3res, (caddr_t)&res, cred, &douprintf, &res.status, 0, &fi); if (error) { if (ncrfree != NULL) crfree(ncrfree); return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); nfs_access_cache(rp, args.access, res.resok.access, cred); /* * we just cached results with cred; if cred is the * adjusted credentials from crnetadjust, we do not want * to release them before exiting: hence setting ncrfree * to NULL */ if (cred != cr) ncrfree = NULL; if ((acc & res.resok.access) != acc) { /* * If the cred can be adjusted, try again * with the new cred. */ if (ncr != NULL) { cred = ncr; ncr = NULL; goto tryagain; } error = EACCES; } } else { nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); PURGE_STALE_FH(error, vp, cr); } if (ncrfree != NULL) crfree(ncrfree); return (error); } static int nfs3_do_symlink_cache = 1; /* ARGSUSED */ static int nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) { int error; READLINK3args args; READLINK3res res; nfspath3 resdata_backup; rnode_t *rp; int douprintf; int len; failinfo_t fi; hrtime_t t; /* * Can't readlink anything other than a symbolic link. */ if (vp->v_type != VLNK) return (EINVAL); if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); rp = VTOR(vp); if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { error = nfs3_validate_caches(vp, cr); if (error) return (error); mutex_enter(&rp->r_statelock); if (rp->r_symlink.contents != NULL) { error = uiomove(rp->r_symlink.contents, rp->r_symlink.len, UIO_READ, uiop); mutex_exit(&rp->r_statelock); return (error); } mutex_exit(&rp->r_statelock); } args.symlink = *VTOFH3(vp); fi.vp = vp; fi.fhp = (caddr_t)&args.symlink; fi.copyproc = nfs3copyfh; fi.lookupproc = nfs3lookup; fi.xattrdirproc = acl_getxattrdir3; res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); resdata_backup = res.resok.data; douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, xdr_READLINK3args, (caddr_t)&args, xdr_READLINK3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, &fi); if (res.resok.data == nfs3nametoolong) error = EINVAL; if (error) { kmem_free(resdata_backup, MAXPATHLEN); return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, cr); len = strlen(res.resok.data); error = uiomove(res.resok.data, len, UIO_READ, uiop); if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { mutex_enter(&rp->r_statelock); if (rp->r_symlink.contents == NULL) { rp->r_symlink.contents = res.resok.data; rp->r_symlink.len = len; rp->r_symlink.size = MAXPATHLEN; mutex_exit(&rp->r_statelock); } else { mutex_exit(&rp->r_statelock); kmem_free((void *)res.resok.data, MAXPATHLEN); } } else { kmem_free((void *)res.resok.data, MAXPATHLEN); } } else { nfs3_cache_post_op_attr(vp, &res.resfail.symlink_attributes, t, cr); PURGE_STALE_FH(error, vp, cr); kmem_free((void *)res.resok.data, MAXPATHLEN); } /* * The over the wire error for attempting to readlink something * other than a symbolic link is ENXIO. However, we need to * return EINVAL instead of ENXIO, so we map it here. */ return (error == ENXIO ? EINVAL : error); } /* * Flush local dirty pages to stable storage on the server. * * If FNODSYNC is specified, then there is nothing to do because * metadata changes are not cached on the client before being * sent to the server. */ /* ARGSUSED */ static int nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) { int error; if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) return (0); if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); if (!error) error = VTOR(vp)->r_error; return (error); } /* * Weirdness: if the file was removed or the target of a rename * operation while it was open, it got renamed instead. Here we * remove the renamed file. */ /* ARGSUSED */ static void nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) { rnode_t *rp; ASSERT(vp != DNLC_NO_VNODE); /* * If this is coming from the wrong zone, we let someone in the right * zone take care of it asynchronously. We can get here due to * VN_RELE() being called from pageout() or fsflush(). This call may * potentially turn into an expensive no-op if, for instance, v_count * gets incremented in the meantime, but it's still correct. */ if (nfs_zone() != VTOMI(vp)->mi_zone) { nfs_async_inactive(vp, cr, nfs3_inactive); return; } rp = VTOR(vp); redo: if (rp->r_unldvp != NULL) { /* * Save the vnode pointer for the directory where the * unlinked-open file got renamed, then set it to NULL * to prevent another thread from getting here before * we're done with the remove. While we have the * statelock, make local copies of the pertinent rnode * fields. If we weren't to do this in an atomic way, the * the unl* fields could become inconsistent with respect * to each other due to a race condition between this * code and nfs_remove(). See bug report 1034328. */ mutex_enter(&rp->r_statelock); if (rp->r_unldvp != NULL) { vnode_t *unldvp; char *unlname; cred_t *unlcred; REMOVE3args args; REMOVE3res res; int douprintf; int error; hrtime_t t; unldvp = rp->r_unldvp; rp->r_unldvp = NULL; unlname = rp->r_unlname; rp->r_unlname = NULL; unlcred = rp->r_unlcred; rp->r_unlcred = NULL; mutex_exit(&rp->r_statelock); /* * If there are any dirty pages left, then flush * them. This is unfortunate because they just * may get thrown away during the remove operation, * but we have to do this for correctness. */ if (vn_has_cached_data(vp) && ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { ASSERT(vp->v_type != VCHR); error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); if (error) { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = error; mutex_exit(&rp->r_statelock); } } /* * Do the remove operation on the renamed file */ setdiropargs3(&args.object, unlname, unldvp); douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, xdr_diropargs3, (caddr_t)&args, xdr_REMOVE3res, (caddr_t)&res, unlcred, &douprintf, &res.status, 0, NULL); if (error) { PURGE_ATTRCACHE(unldvp); } else { error = geterrno3(res.status); if (!error) { nfs3_cache_wcc_data(unldvp, &res.resok.dir_wcc, t, cr); if (HAVE_RDDIR_CACHE(VTOR(unldvp))) nfs_purge_rddir_cache(unldvp); } else { nfs3_cache_wcc_data(unldvp, &res.resfail.dir_wcc, t, cr); PURGE_STALE_FH(error, unldvp, cr); } } /* * Release stuff held for the remove */ VN_RELE(unldvp); kmem_free(unlname, MAXNAMELEN); crfree(unlcred); goto redo; } mutex_exit(&rp->r_statelock); } rp_addfree(rp, cr); } /* * Remote file system operations having to do with directory manipulation. */ /* ARGSUSED */ static int nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, int *direntflags, pathname_t *realpnp) { int error; vnode_t *vp; vnode_t *avp = NULL; rnode_t *drp; if (nfs_zone() != VTOMI(dvp)->mi_zone) return (EPERM); drp = VTOR(dvp); /* * Are we looking up extended attributes? If so, "dvp" is * the file or directory for which we want attributes, and * we need a lookup of the hidden attribute directory * before we lookup the rest of the path. */ if (flags & LOOKUP_XATTR) { bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); mntinfo_t *mi; mi = VTOMI(dvp); if (!(mi->mi_flags & MI_EXTATTR)) return (EINVAL); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) return (EINTR); (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); if (avp == NULL) error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); else error = 0; nfs_rw_exit(&drp->r_rwlock); if (error) { if (mi->mi_flags & MI_EXTATTR) return (error); return (EINVAL); } dvp = avp; drp = VTOR(dvp); } if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { error = EINTR; goto out; } error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); nfs_rw_exit(&drp->r_rwlock); /* * If vnode is a device, create special vnode. */ if (!error && IS_DEVVP(*vpp)) { vp = *vpp; *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); VN_RELE(vp); } out: if (avp != NULL) VN_RELE(avp); return (error); } static int nfs3_lookup_neg_cache = 1; #ifdef DEBUG static int nfs3_lookup_dnlc_hits = 0; static int nfs3_lookup_dnlc_misses = 0; static int nfs3_lookup_dnlc_neg_hits = 0; static int nfs3_lookup_dnlc_disappears = 0; static int nfs3_lookup_dnlc_lookups = 0; #endif /* ARGSUSED */ int nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) { int error; rnode_t *drp; ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); /* * If lookup is for "", just return dvp. Don't need * to send it over the wire, look it up in the dnlc, * or perform any access checks. */ if (*nm == '\0') { VN_HOLD(dvp); *vpp = dvp; return (0); } /* * Can't do lookups in non-directories. */ if (dvp->v_type != VDIR) return (ENOTDIR); /* * If we're called with RFSCALL_SOFT, it's important that * the only rfscall is one we make directly; if we permit * an access call because we're looking up "." or validating * a dnlc hit, we'll deadlock because that rfscall will not * have the RFSCALL_SOFT set. */ if (rfscall_flags & RFSCALL_SOFT) goto callit; /* * If lookup is for ".", just return dvp. Don't need * to send it over the wire or look it up in the dnlc, * just need to check access. */ if (strcmp(nm, ".") == 0) { error = nfs3_access(dvp, VEXEC, 0, cr, NULL); if (error) return (error); VN_HOLD(dvp); *vpp = dvp; return (0); } drp = VTOR(dvp); if (!(drp->r_flags & RLOOKUP)) { mutex_enter(&drp->r_statelock); drp->r_flags |= RLOOKUP; mutex_exit(&drp->r_statelock); } /* * Lookup this name in the DNLC. If there was a valid entry, * then return the results of the lookup. */ error = nfs3lookup_dnlc(dvp, nm, vpp, cr); if (error || *vpp != NULL) return (error); callit: error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); return (error); } static int nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) { int error; vnode_t *vp; ASSERT(*nm != '\0'); ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); /* * Lookup this name in the DNLC. If successful, then validate * the caches and then recheck the DNLC. The DNLC is rechecked * just in case this entry got invalidated during the call * to nfs3_validate_caches. * * An assumption is being made that it is safe to say that a * file exists which may not on the server. Any operations to * the server will fail with ESTALE. */ #ifdef DEBUG nfs3_lookup_dnlc_lookups++; #endif vp = dnlc_lookup(dvp, nm); if (vp != NULL) { VN_RELE(vp); if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { PURGE_ATTRCACHE(dvp); } error = nfs3_validate_caches(dvp, cr); if (error) return (error); vp = dnlc_lookup(dvp, nm); if (vp != NULL) { error = nfs3_access(dvp, VEXEC, 0, cr, NULL); if (error) { VN_RELE(vp); return (error); } if (vp == DNLC_NO_VNODE) { VN_RELE(vp); #ifdef DEBUG nfs3_lookup_dnlc_neg_hits++; #endif return (ENOENT); } *vpp = vp; #ifdef DEBUG nfs3_lookup_dnlc_hits++; #endif return (0); } #ifdef DEBUG nfs3_lookup_dnlc_disappears++; #endif } #ifdef DEBUG else nfs3_lookup_dnlc_misses++; #endif *vpp = NULL; return (0); } static int nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int rfscall_flags) { int error; LOOKUP3args args; LOOKUP3vres res; int douprintf; struct vattr vattr; struct vattr dvattr; vnode_t *vp; failinfo_t fi; hrtime_t t; ASSERT(*nm != '\0'); ASSERT(dvp->v_type == VDIR); ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); setdiropargs3(&args.what, nm, dvp); fi.vp = dvp; fi.fhp = (caddr_t)&args.what.dir; fi.copyproc = nfs3copyfh; fi.lookupproc = nfs3lookup; fi.xattrdirproc = acl_getxattrdir3; res.obj_attributes.fres.vp = dvp; res.obj_attributes.fres.vap = &vattr; res.dir_attributes.fres.vp = dvp; res.dir_attributes.fres.vap = &dvattr; douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, xdr_diropargs3, (caddr_t)&args, xdr_LOOKUP3vres, (caddr_t)&res, cr, &douprintf, &res.status, rfscall_flags, &fi); if (error) return (error); nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); error = geterrno3(res.status); if (error) { PURGE_STALE_FH(error, dvp, cr); if (error == ENOENT && nfs3_lookup_neg_cache) dnlc_enter(dvp, nm, DNLC_NO_VNODE); return (error); } if (res.obj_attributes.attributes) { vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); } else { vp = makenfs3node_va(&res.object, NULL, dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); if (vp->v_type == VNON) { vattr.va_mask = AT_TYPE; error = nfs3getattr(vp, &vattr, cr); if (error) { VN_RELE(vp); return (error); } vp->v_type = vattr.va_type; } } if (!(rfscall_flags & RFSCALL_SOFT)) dnlc_update(dvp, nm, vp); *vpp = vp; return (error); } #ifdef DEBUG static int nfs3_create_misses = 0; #endif /* ARGSUSED */ static int nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, vsecattr_t *vsecp) { int error; vnode_t *vp; rnode_t *rp; struct vattr vattr; rnode_t *drp; vnode_t *tempvp; drp = VTOR(dvp); if (nfs_zone() != VTOMI(dvp)->mi_zone) return (EPERM); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) return (EINTR); top: /* * We make a copy of the attributes because the caller does not * expect us to change what va points to. */ vattr = *va; /* * If the pathname is "", just use dvp. Don't need * to send it over the wire, look it up in the dnlc, * or perform any access checks. */ if (*nm == '\0') { error = 0; VN_HOLD(dvp); vp = dvp; /* * If the pathname is ".", just use dvp. Don't need * to send it over the wire or look it up in the dnlc, * just need to check access. */ } else if (strcmp(nm, ".") == 0) { error = nfs3_access(dvp, VEXEC, 0, cr, ct); if (error) { nfs_rw_exit(&drp->r_rwlock); return (error); } VN_HOLD(dvp); vp = dvp; /* * We need to go over the wire, just to be sure whether the * file exists or not. Using the DNLC can be dangerous in * this case when making a decision regarding existence. */ } else { error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); } if (!error) { if (exclusive == EXCL) error = EEXIST; else if (vp->v_type == VDIR && (mode & VWRITE)) error = EISDIR; else { /* * If vnode is a device, create special vnode. */ if (IS_DEVVP(vp)) { tempvp = vp; vp = specvp(vp, vp->v_rdev, vp->v_type, cr); VN_RELE(tempvp); } if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { if ((vattr.va_mask & AT_SIZE) && vp->v_type == VREG) { rp = VTOR(vp); /* * Check here for large file handled * by LF-unaware process (as * ufs_create() does) */ if (!(lfaware & FOFFMAX)) { mutex_enter(&rp->r_statelock); if (rp->r_size > MAXOFF32_T) error = EOVERFLOW; mutex_exit(&rp->r_statelock); } if (!error) { vattr.va_mask = AT_SIZE; error = nfs3setattr(vp, &vattr, 0, cr); /* * Existing file was truncated; * emit a create event. */ vnevent_create(vp, ct); } } } } nfs_rw_exit(&drp->r_rwlock); if (error) { VN_RELE(vp); } else { *vpp = vp; } return (error); } dnlc_remove(dvp, nm); /* * Decide what the group-id of the created file should be. * Set it in attribute list as advisory... */ error = setdirgid(dvp, &vattr.va_gid, cr); if (error) { nfs_rw_exit(&drp->r_rwlock); return (error); } vattr.va_mask |= AT_GID; ASSERT(vattr.va_mask & AT_TYPE); if (vattr.va_type == VREG) { ASSERT(vattr.va_mask & AT_MODE); if (MANDMODE(vattr.va_mode)) { nfs_rw_exit(&drp->r_rwlock); return (EACCES); } error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, lfaware); /* * If this is not an exclusive create, then the CREATE * request will be made with the GUARDED mode set. This * means that the server will return EEXIST if the file * exists. The file could exist because of a retransmitted * request. In this case, we recover by starting over and * checking to see whether the file exists. This second * time through it should and a CREATE request will not be * sent. * * This handles the problem of a dangling CREATE request * which contains attributes which indicate that the file * should be truncated. This retransmitted request could * possibly truncate valid data in the file if not caught * by the duplicate request mechanism on the server or if * not caught by other means. The scenario is: * * Client transmits CREATE request with size = 0 * Client times out, retransmits request. * Response to the first request arrives from the server * and the client proceeds on. * Client writes data to the file. * The server now processes retransmitted CREATE request * and truncates file. * * The use of the GUARDED CREATE request prevents this from * happening because the retransmitted CREATE would fail * with EEXIST and would not truncate the file. */ if (error == EEXIST && exclusive == NONEXCL) { #ifdef DEBUG nfs3_create_misses++; #endif goto top; } nfs_rw_exit(&drp->r_rwlock); return (error); } error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); nfs_rw_exit(&drp->r_rwlock); return (error); } /* ARGSUSED */ static int nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, int mode, vnode_t **vpp, cred_t *cr, int lfaware) { int error; CREATE3args args; CREATE3res res; int douprintf; vnode_t *vp; struct vattr vattr; nfstime3 *verfp; rnode_t *rp; timestruc_t now; hrtime_t t; ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); setdiropargs3(&args.where, nm, dvp); if (exclusive == EXCL) { args.how.mode = EXCLUSIVE; /* * Construct the create verifier. This verifier needs * to be unique between different clients. It also needs * to vary for each exclusive create request generated * from the client to the server. * * The first attempt is made to use the hostid and a * unique number on the client. If the hostid has not * been set, the high resolution time that the exclusive * create request is being made is used. This will work * unless two different clients, both with the hostid * not set, attempt an exclusive create request on the * same file, at exactly the same clock time. The * chances of this happening seem small enough to be * reasonable. */ verfp = (nfstime3 *)&args.how.createhow3_u.verf; verfp->seconds = zone_get_hostid(NULL); if (verfp->seconds != 0) verfp->nseconds = newnum(); else { gethrestime(&now); verfp->seconds = now.tv_sec; verfp->nseconds = now.tv_nsec; } /* * Since the server will use this value for the mtime, * make sure that it can't overflow. Zero out the MSB. * The actual value does not matter here, only its uniqeness. */ verfp->seconds %= INT32_MAX; } else { /* * Issue the non-exclusive create in guarded mode. This * may result in some false EEXIST responses for * retransmitted requests, but these will be handled at * a higher level. By using GUARDED, duplicate requests * to do file truncation and possible access problems * can be avoided. */ args.how.mode = GUARDED; error = vattr_to_sattr3(va, &args.how.createhow3_u.obj_attributes); if (error) { /* req time field(s) overflow - return immediately */ return (error); } } douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, xdr_CREATE3args, (caddr_t)&args, xdr_CREATE3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); if (error) { PURGE_ATTRCACHE(dvp); return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); if (HAVE_RDDIR_CACHE(VTOR(dvp))) nfs_purge_rddir_cache(dvp); /* * On exclusive create the times need to be explicitly * set to clear any potential verifier that may be stored * in one of these fields (see comment below). This * is done here to cover the case where no post op attrs * were returned or a 'invalid' time was returned in * the attributes. */ if (exclusive == EXCL) va->va_mask |= (AT_MTIME | AT_ATIME); if (!res.resok.obj.handle_follows) { error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); if (error) return (error); } else { if (res.resok.obj_attributes.attributes) { vp = makenfs3node(&res.resok.obj.handle, &res.resok.obj_attributes.attr, dvp->v_vfsp, t, cr, NULL, NULL); } else { vp = makenfs3node(&res.resok.obj.handle, NULL, dvp->v_vfsp, t, cr, NULL, NULL); /* * On an exclusive create, it is possible * that attributes were returned but those * postop attributes failed to decode * properly. If this is the case, * then most likely the atime or mtime * were invalid for our client; this * is caused by the server storing the * create verifier in one of the time * fields(most likely mtime). * So... we are going to setattr just the * atime/mtime to clear things up. */ if (exclusive == EXCL) { if (error = nfs3excl_create_settimes(vp, va, cr)) { /* * Setting the times failed. * Remove the file and return * the error. */ VN_RELE(vp); (void) nfs3_remove(dvp, nm, cr, NULL, 0); return (error); } } /* * This handles the non-exclusive case * and the exclusive case where no post op * attrs were returned. */ if (vp->v_type == VNON) { vattr.va_mask = AT_TYPE; error = nfs3getattr(vp, &vattr, cr); if (error) { VN_RELE(vp); return (error); } vp->v_type = vattr.va_type; } } dnlc_update(dvp, nm, vp); } rp = VTOR(vp); /* * Check here for large file handled by * LF-unaware process (as ufs_create() does) */ if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && !(lfaware & FOFFMAX)) { mutex_enter(&rp->r_statelock); if (rp->r_size > MAXOFF32_T) { mutex_exit(&rp->r_statelock); VN_RELE(vp); return (EOVERFLOW); } mutex_exit(&rp->r_statelock); } if (exclusive == EXCL && (va->va_mask & ~(AT_GID | AT_SIZE))) { /* * If doing an exclusive create, then generate * a SETATTR to set the initial attributes. * Try to set the mtime and the atime to the * server's current time. It is somewhat * expected that these fields will be used to * store the exclusive create cookie. If not, * server implementors will need to know that * a SETATTR will follow an exclusive create * and the cookie should be destroyed if * appropriate. This work may have been done * earlier in this function if post op attrs * were not available. * * The AT_GID and AT_SIZE bits are turned off * so that the SETATTR request will not attempt * to process these. The gid will be set * separately if appropriate. The size is turned * off because it is assumed that a new file will * be created empty and if the file wasn't empty, * then the exclusive create will have failed * because the file must have existed already. * Therefore, no truncate operation is needed. */ va->va_mask &= ~(AT_GID | AT_SIZE); error = nfs3setattr(vp, va, 0, cr); if (error) { /* * Couldn't correct the attributes of * the newly created file and the * attributes are wrong. Remove the * file and return an error to the * application. */ VN_RELE(vp); (void) nfs3_remove(dvp, nm, cr, NULL, 0); return (error); } } if (va->va_gid != rp->r_attr.va_gid) { /* * If the gid on the file isn't right, then * generate a SETATTR to attempt to change * it. This may or may not work, depending * upon the server's semantics for allowing * file ownership changes. */ va->va_mask = AT_GID; (void) nfs3setattr(vp, va, 0, cr); } /* * If vnode is a device create special vnode */ if (IS_DEVVP(vp)) { *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); VN_RELE(vp); } else *vpp = vp; } else { nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); PURGE_STALE_FH(error, dvp, cr); } return (error); } /* * Special setattr function to take care of rest of atime/mtime * after successful exclusive create. This function exists to avoid * handling attributes from the server; exclusive the atime/mtime fields * may be 'invalid' in client's view and therefore can not be trusted. */ static int nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) { int error; uint_t mask; SETATTR3args args; SETATTR3res res; int douprintf; rnode_t *rp; hrtime_t t; ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); /* save the caller's mask so that it can be reset later */ mask = vap->va_mask; rp = VTOR(vp); args.object = *RTOFH3(rp); args.guard.check = FALSE; /* Use the mask to initialize the arguments */ vap->va_mask = 0; error = vattr_to_sattr3(vap, &args.new_attributes); /* We want to set just atime/mtime on this request */ args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, xdr_SETATTR3args, (caddr_t)&args, xdr_SETATTR3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); if (error) { vap->va_mask = mask; return (error); } error = geterrno3(res.status); if (!error) { /* * It is important to pick up the attributes. * Since this is the exclusive create path, the * attributes on the initial create were ignored * and we need these to have the correct info. */ nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); /* * No need to do the atime/mtime work again so clear * the bits. */ mask &= ~(AT_ATIME | AT_MTIME); } else { nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); } vap->va_mask = mask; return (error); } /* ARGSUSED */ static int nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, int mode, vnode_t **vpp, cred_t *cr) { int error; MKNOD3args args; MKNOD3res res; int douprintf; vnode_t *vp; struct vattr vattr; hrtime_t t; ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); switch (va->va_type) { case VCHR: case VBLK: setdiropargs3(&args.where, nm, dvp); args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; error = vattr_to_sattr3(va, &args.what.mknoddata3_u.device.dev_attributes); if (error) { /* req time field(s) overflow - return immediately */ return (error); } args.what.mknoddata3_u.device.spec.specdata1 = getmajor(va->va_rdev); args.what.mknoddata3_u.device.spec.specdata2 = getminor(va->va_rdev); break; case VFIFO: case VSOCK: setdiropargs3(&args.where, nm, dvp); args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; error = vattr_to_sattr3(va, &args.what.mknoddata3_u.pipe_attributes); if (error) { /* req time field(s) overflow - return immediately */ return (error); } break; default: return (EINVAL); } douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, xdr_MKNOD3args, (caddr_t)&args, xdr_MKNOD3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); if (error) { PURGE_ATTRCACHE(dvp); return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); if (HAVE_RDDIR_CACHE(VTOR(dvp))) nfs_purge_rddir_cache(dvp); if (!res.resok.obj.handle_follows) { error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); if (error) return (error); } else { if (res.resok.obj_attributes.attributes) { vp = makenfs3node(&res.resok.obj.handle, &res.resok.obj_attributes.attr, dvp->v_vfsp, t, cr, NULL, NULL); } else { vp = makenfs3node(&res.resok.obj.handle, NULL, dvp->v_vfsp, t, cr, NULL, NULL); if (vp->v_type == VNON) { vattr.va_mask = AT_TYPE; error = nfs3getattr(vp, &vattr, cr); if (error) { VN_RELE(vp); return (error); } vp->v_type = vattr.va_type; } } dnlc_update(dvp, nm, vp); } if (va->va_gid != VTOR(vp)->r_attr.va_gid) { va->va_mask = AT_GID; (void) nfs3setattr(vp, va, 0, cr); } /* * If vnode is a device create special vnode */ if (IS_DEVVP(vp)) { *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); VN_RELE(vp); } else *vpp = vp; } else { nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); PURGE_STALE_FH(error, dvp, cr); } return (error); } /* * Weirdness: if the vnode to be removed is open * we rename it instead of removing it and nfs_inactive * will remove the new name. */ /* ARGSUSED */ static int nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) { int error; REMOVE3args args; REMOVE3res res; vnode_t *vp; char *tmpname; int douprintf; rnode_t *rp; rnode_t *drp; hrtime_t t; if (nfs_zone() != VTOMI(dvp)->mi_zone) return (EPERM); drp = VTOR(dvp); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) return (EINTR); error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); if (error) { nfs_rw_exit(&drp->r_rwlock); return (error); } if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (EPERM); } /* * First just remove the entry from the name cache, as it * is most likely the only entry for this vp. */ dnlc_remove(dvp, nm); /* * If the file has a v_count > 1 then there may be more than one * entry in the name cache due multiple links or an open file, * but we don't have the real reference count so flush all * possible entries. */ if (vp->v_count > 1) dnlc_purge_vp(vp); /* * Now we have the real reference count on the vnode */ rp = VTOR(vp); mutex_enter(&rp->r_statelock); if (vp->v_count > 1 && (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { mutex_exit(&rp->r_statelock); tmpname = newname(); error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); if (error) kmem_free(tmpname, MAXNAMELEN); else { mutex_enter(&rp->r_statelock); if (rp->r_unldvp == NULL) { VN_HOLD(dvp); rp->r_unldvp = dvp; if (rp->r_unlcred != NULL) crfree(rp->r_unlcred); crhold(cr); rp->r_unlcred = cr; rp->r_unlname = tmpname; } else { kmem_free(rp->r_unlname, MAXNAMELEN); rp->r_unlname = tmpname; } mutex_exit(&rp->r_statelock); } } else { mutex_exit(&rp->r_statelock); /* * We need to flush any dirty pages which happen to * be hanging around before removing the file. This * shouldn't happen very often and mostly on file * systems mounted "nocto". */ if (vn_has_cached_data(vp) && ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); if (error && (error == ENOSPC || error == EDQUOT)) { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = error; mutex_exit(&rp->r_statelock); } } setdiropargs3(&args.object, nm, dvp); douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, xdr_diropargs3, (caddr_t)&args, xdr_REMOVE3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); /* * The xattr dir may be gone after last attr is removed, * so flush it from dnlc. */ if (dvp->v_flag & V_XATTRDIR) dnlc_purge_vp(dvp); PURGE_ATTRCACHE(vp); if (error) { PURGE_ATTRCACHE(dvp); } else { error = geterrno3(res.status); if (!error) { nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); if (HAVE_RDDIR_CACHE(drp)) nfs_purge_rddir_cache(dvp); } else { nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); PURGE_STALE_FH(error, dvp, cr); } } } if (error == 0) { vnevent_remove(vp, dvp, nm, ct); } VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (error); } /* ARGSUSED */ static int nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, caller_context_t *ct, int flags) { int error; LINK3args args; LINK3res res; vnode_t *realvp; int douprintf; mntinfo_t *mi; rnode_t *tdrp; hrtime_t t; if (nfs_zone() != VTOMI(tdvp)->mi_zone) return (EPERM); if (VOP_REALVP(svp, &realvp, ct) == 0) svp = realvp; mi = VTOMI(svp); if (!(mi->mi_flags & MI_LINK)) return (EOPNOTSUPP); args.file = *VTOFH3(svp); setdiropargs3(&args.link, tnm, tdvp); tdrp = VTOR(tdvp); if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) return (EINTR); dnlc_remove(tdvp, tnm); douprintf = 1; t = gethrtime(); error = rfs3call(mi, NFSPROC3_LINK, xdr_LINK3args, (caddr_t)&args, xdr_LINK3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); if (error) { PURGE_ATTRCACHE(tdvp); PURGE_ATTRCACHE(svp); nfs_rw_exit(&tdrp->r_rwlock); return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); if (HAVE_RDDIR_CACHE(tdrp)) nfs_purge_rddir_cache(tdvp); dnlc_update(tdvp, tnm, svp); } else { nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, cr); nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); if (error == EOPNOTSUPP) { mutex_enter(&mi->mi_lock); mi->mi_flags &= ~MI_LINK; mutex_exit(&mi->mi_lock); } } nfs_rw_exit(&tdrp->r_rwlock); if (!error) { /* * Notify the source file of this link operation. */ vnevent_link(svp, ct); } return (error); } /* ARGSUSED */ static int nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, caller_context_t *ct, int flags) { vnode_t *realvp; if (nfs_zone() != VTOMI(odvp)->mi_zone) return (EPERM); if (VOP_REALVP(ndvp, &realvp, ct) == 0) ndvp = realvp; return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); } /* * nfs3rename does the real work of renaming in NFS Version 3. */ static int nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, caller_context_t *ct) { int error; RENAME3args args; RENAME3res res; int douprintf; vnode_t *nvp = NULL; vnode_t *ovp = NULL; char *tmpname; rnode_t *rp; rnode_t *odrp; rnode_t *ndrp; hrtime_t t; ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) return (EINVAL); odrp = VTOR(odvp); ndrp = VTOR(ndvp); if ((intptr_t)odrp < (intptr_t)ndrp) { if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) return (EINTR); if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { nfs_rw_exit(&odrp->r_rwlock); return (EINTR); } } else { if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) return (EINTR); if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { nfs_rw_exit(&ndrp->r_rwlock); return (EINTR); } } /* * Lookup the target file. If it exists, it needs to be * checked to see whether it is a mount point and whether * it is active (open). */ error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); if (!error) { /* * If this file has been mounted on, then just * return busy because renaming to it would remove * the mounted file system from the name space. */ if (vn_mountedvfs(nvp) != NULL) { VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (EBUSY); } /* * Purge the name cache of all references to this vnode * so that we can check the reference count to infer * whether it is active or not. */ /* * First just remove the entry from the name cache, as it * is most likely the only entry for this vp. */ dnlc_remove(ndvp, nnm); /* * If the file has a v_count > 1 then there may be more * than one entry in the name cache due multiple links * or an open file, but we don't have the real reference * count so flush all possible entries. */ if (nvp->v_count > 1) dnlc_purge_vp(nvp); /* * If the vnode is active and is not a directory, * arrange to rename it to a * temporary file so that it will continue to be * accessible. This implements the "unlink-open-file" * semantics for the target of a rename operation. * Before doing this though, make sure that the * source and target files are not already the same. */ if (nvp->v_count > 1 && nvp->v_type != VDIR) { /* * Lookup the source name. */ error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); /* * The source name *should* already exist. */ if (error) { VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (error); } /* * Compare the two vnodes. If they are the same, * just release all held vnodes and return success. */ if (ovp == nvp) { VN_RELE(ovp); VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (0); } /* * Can't mix and match directories and non- * directories in rename operations. We already * know that the target is not a directory. If * the source is a directory, return an error. */ if (ovp->v_type == VDIR) { VN_RELE(ovp); VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (ENOTDIR); } /* * The target file exists, is not the same as * the source file, and is active. Link it * to a temporary filename to avoid having * the server removing the file completely. */ tmpname = newname(); error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); if (error == EOPNOTSUPP) { error = nfs3_rename(ndvp, nnm, ndvp, tmpname, cr, NULL, 0); } if (error) { kmem_free(tmpname, MAXNAMELEN); VN_RELE(ovp); VN_RELE(nvp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (error); } rp = VTOR(nvp); mutex_enter(&rp->r_statelock); if (rp->r_unldvp == NULL) { VN_HOLD(ndvp); rp->r_unldvp = ndvp; if (rp->r_unlcred != NULL) crfree(rp->r_unlcred); crhold(cr); rp->r_unlcred = cr; rp->r_unlname = tmpname; } else { kmem_free(rp->r_unlname, MAXNAMELEN); rp->r_unlname = tmpname; } mutex_exit(&rp->r_statelock); } } if (ovp == NULL) { /* * When renaming directories to be a subdirectory of a * different parent, the dnlc entry for ".." will no * longer be valid, so it must be removed. * * We do a lookup here to determine whether we are renaming * a directory and we need to check if we are renaming * an unlinked file. This might have already been done * in previous code, so we check ovp == NULL to avoid * doing it twice. */ error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); /* * The source name *should* already exist. */ if (error) { nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); if (nvp) { VN_RELE(nvp); } return (error); } ASSERT(ovp != NULL); } dnlc_remove(odvp, onm); dnlc_remove(ndvp, nnm); setdiropargs3(&args.from, onm, odvp); setdiropargs3(&args.to, nnm, ndvp); douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, xdr_RENAME3args, (caddr_t)&args, xdr_RENAME3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); if (error) { PURGE_ATTRCACHE(odvp); PURGE_ATTRCACHE(ndvp); VN_RELE(ovp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); if (nvp) { VN_RELE(nvp); } return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); if (HAVE_RDDIR_CACHE(odrp)) nfs_purge_rddir_cache(odvp); if (ndvp != odvp) { nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); if (HAVE_RDDIR_CACHE(ndrp)) nfs_purge_rddir_cache(ndvp); } /* * when renaming directories to be a subdirectory of a * different parent, the dnlc entry for ".." will no * longer be valid, so it must be removed */ rp = VTOR(ovp); if (ndvp != odvp) { if (ovp->v_type == VDIR) { dnlc_remove(ovp, ".."); if (HAVE_RDDIR_CACHE(rp)) nfs_purge_rddir_cache(ovp); } } /* * If we are renaming the unlinked file, update the * r_unldvp and r_unlname as needed. */ mutex_enter(&rp->r_statelock); if (rp->r_unldvp != NULL) { if (strcmp(rp->r_unlname, onm) == 0) { (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); rp->r_unlname[MAXNAMELEN - 1] = '\0'; if (ndvp != rp->r_unldvp) { VN_RELE(rp->r_unldvp); rp->r_unldvp = ndvp; VN_HOLD(ndvp); } } } mutex_exit(&rp->r_statelock); } else { nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); if (ndvp != odvp) { nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, cr); } /* * System V defines rename to return EEXIST, not * ENOTEMPTY if the target directory is not empty. * Over the wire, the error is NFSERR_ENOTEMPTY * which geterrno maps to ENOTEMPTY. */ if (error == ENOTEMPTY) error = EEXIST; } if (error == 0) { if (nvp) vnevent_rename_dest(nvp, ndvp, nnm, ct); if (odvp != ndvp) vnevent_rename_dest_dir(ndvp, ct); ASSERT(ovp != NULL); vnevent_rename_src(ovp, odvp, onm, ct); } if (nvp) { VN_RELE(nvp); } VN_RELE(ovp); nfs_rw_exit(&odrp->r_rwlock); nfs_rw_exit(&ndrp->r_rwlock); return (error); } /* ARGSUSED */ static int nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, caller_context_t *ct, int flags, vsecattr_t *vsecp) { int error; MKDIR3args args; MKDIR3res res; int douprintf; struct vattr vattr; vnode_t *vp; rnode_t *drp; hrtime_t t; if (nfs_zone() != VTOMI(dvp)->mi_zone) return (EPERM); setdiropargs3(&args.where, nm, dvp); /* * Decide what the group-id and set-gid bit of the created directory * should be. May have to do a setattr to get the gid right. */ error = setdirgid(dvp, &va->va_gid, cr); if (error) return (error); error = setdirmode(dvp, &va->va_mode, cr); if (error) return (error); va->va_mask |= AT_MODE|AT_GID; error = vattr_to_sattr3(va, &args.attributes); if (error) { /* req time field(s) overflow - return immediately */ return (error); } drp = VTOR(dvp); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) return (EINTR); dnlc_remove(dvp, nm); douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, xdr_MKDIR3args, (caddr_t)&args, xdr_MKDIR3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); if (error) { PURGE_ATTRCACHE(dvp); nfs_rw_exit(&drp->r_rwlock); return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); if (HAVE_RDDIR_CACHE(drp)) nfs_purge_rddir_cache(dvp); if (!res.resok.obj.handle_follows) { error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); if (error) { nfs_rw_exit(&drp->r_rwlock); return (error); } } else { if (res.resok.obj_attributes.attributes) { vp = makenfs3node(&res.resok.obj.handle, &res.resok.obj_attributes.attr, dvp->v_vfsp, t, cr, NULL, NULL); } else { vp = makenfs3node(&res.resok.obj.handle, NULL, dvp->v_vfsp, t, cr, NULL, NULL); if (vp->v_type == VNON) { vattr.va_mask = AT_TYPE; error = nfs3getattr(vp, &vattr, cr); if (error) { VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (error); } vp->v_type = vattr.va_type; } } dnlc_update(dvp, nm, vp); } if (va->va_gid != VTOR(vp)->r_attr.va_gid) { va->va_mask = AT_GID; (void) nfs3setattr(vp, va, 0, cr); } *vpp = vp; } else { nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); PURGE_STALE_FH(error, dvp, cr); } nfs_rw_exit(&drp->r_rwlock); return (error); } /* ARGSUSED */ static int nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, caller_context_t *ct, int flags) { int error; RMDIR3args args; RMDIR3res res; vnode_t *vp; int douprintf; rnode_t *drp; hrtime_t t; if (nfs_zone() != VTOMI(dvp)->mi_zone) return (EPERM); drp = VTOR(dvp); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) return (EINTR); /* * Attempt to prevent a rmdir(".") from succeeding. */ error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); if (error) { nfs_rw_exit(&drp->r_rwlock); return (error); } if (vp == cdir) { VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (EINVAL); } setdiropargs3(&args.object, nm, dvp); /* * First just remove the entry from the name cache, as it * is most likely an entry for this vp. */ dnlc_remove(dvp, nm); /* * If there vnode reference count is greater than one, then * there may be additional references in the DNLC which will * need to be purged. First, trying removing the entry for * the parent directory and see if that removes the additional * reference(s). If that doesn't do it, then use dnlc_purge_vp * to completely remove any references to the directory which * might still exist in the DNLC. */ if (vp->v_count > 1) { dnlc_remove(vp, ".."); if (vp->v_count > 1) dnlc_purge_vp(vp); } douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, xdr_diropargs3, (caddr_t)&args, xdr_RMDIR3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); PURGE_ATTRCACHE(vp); if (error) { PURGE_ATTRCACHE(dvp); VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); if (HAVE_RDDIR_CACHE(drp)) nfs_purge_rddir_cache(dvp); if (HAVE_RDDIR_CACHE(VTOR(vp))) nfs_purge_rddir_cache(vp); } else { nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); PURGE_STALE_FH(error, dvp, cr); /* * System V defines rmdir to return EEXIST, not * ENOTEMPTY if the directory is not empty. Over * the wire, the error is NFSERR_ENOTEMPTY which * geterrno maps to ENOTEMPTY. */ if (error == ENOTEMPTY) error = EEXIST; } if (error == 0) { vnevent_rmdir(vp, dvp, nm, ct); } VN_RELE(vp); nfs_rw_exit(&drp->r_rwlock); return (error); } /* ARGSUSED */ static int nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, caller_context_t *ct, int flags) { int error; SYMLINK3args args; SYMLINK3res res; int douprintf; mntinfo_t *mi; vnode_t *vp; rnode_t *rp; char *contents; rnode_t *drp; hrtime_t t; mi = VTOMI(dvp); if (nfs_zone() != mi->mi_zone) return (EPERM); if (!(mi->mi_flags & MI_SYMLINK)) return (EOPNOTSUPP); setdiropargs3(&args.where, lnm, dvp); error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); if (error) { /* req time field(s) overflow - return immediately */ return (error); } args.symlink.symlink_data = tnm; drp = VTOR(dvp); if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) return (EINTR); dnlc_remove(dvp, lnm); douprintf = 1; t = gethrtime(); error = rfs3call(mi, NFSPROC3_SYMLINK, xdr_SYMLINK3args, (caddr_t)&args, xdr_SYMLINK3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, NULL); if (error) { PURGE_ATTRCACHE(dvp); nfs_rw_exit(&drp->r_rwlock); return (error); } error = geterrno3(res.status); if (!error) { nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); if (HAVE_RDDIR_CACHE(drp)) nfs_purge_rddir_cache(dvp); if (res.resok.obj.handle_follows) { if (res.resok.obj_attributes.attributes) { vp = makenfs3node(&res.resok.obj.handle, &res.resok.obj_attributes.attr, dvp->v_vfsp, t, cr, NULL, NULL); } else { vp = makenfs3node(&res.resok.obj.handle, NULL, dvp->v_vfsp, t, cr, NULL, NULL); vp->v_type = VLNK; vp->v_rdev = 0; } dnlc_update(dvp, lnm, vp); rp = VTOR(vp); if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { contents = kmem_alloc(MAXPATHLEN, KM_NOSLEEP); if (contents != NULL) { mutex_enter(&rp->r_statelock); if (rp->r_symlink.contents == NULL) { rp->r_symlink.len = strlen(tnm); bcopy(tnm, contents, rp->r_symlink.len); rp->r_symlink.contents = contents; rp->r_symlink.size = MAXPATHLEN; mutex_exit(&rp->r_statelock); } else { mutex_exit(&rp->r_statelock); kmem_free((void *)contents, MAXPATHLEN); } } } VN_RELE(vp); } } else { nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); PURGE_STALE_FH(error, dvp, cr); if (error == EOPNOTSUPP) { mutex_enter(&mi->mi_lock); mi->mi_flags &= ~MI_SYMLINK; mutex_exit(&mi->mi_lock); } } nfs_rw_exit(&drp->r_rwlock); return (error); } #ifdef DEBUG static int nfs3_readdir_cache_hits = 0; static int nfs3_readdir_cache_shorts = 0; static int nfs3_readdir_cache_waits = 0; static int nfs3_readdir_cache_misses = 0; static int nfs3_readdir_readahead = 0; #endif static int nfs3_shrinkreaddir = 0; /* * Read directory entries. * There are some weird things to look out for here. The uio_loffset * field is either 0 or it is the offset returned from a previous * readdir. It is an opaque value used by the server to find the * correct directory block to read. The count field is the number * of blocks to read on the server. This is advisory only, the server * may return only one block's worth of entries. Entries may be compressed * on the server. */ /* ARGSUSED */ static int nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, caller_context_t *ct, int flags) { int error; size_t count; rnode_t *rp; rddir_cache *rdc; rddir_cache *nrdc; rddir_cache *rrdc; #ifdef DEBUG int missed; #endif int doreadahead; rddir_cache srdc; avl_index_t where; if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); rp = VTOR(vp); ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); /* * Make sure that the directory cache is valid. */ if (HAVE_RDDIR_CACHE(rp)) { if (nfs_disable_rddir_cache) { /* * Setting nfs_disable_rddir_cache in /etc/system * allows interoperability with servers that do not * properly update the attributes of directories. * Any cached information gets purged before an * access is made to it. */ nfs_purge_rddir_cache(vp); } else { error = nfs3_validate_caches(vp, cr); if (error) return (error); } } /* * It is possible that some servers may not be able to correctly * handle a large READDIR or READDIRPLUS request due to bugs in * their implementation. In order to continue to interoperate * with them, this workaround is provided to limit the maximum * size of a READDIRPLUS request to 1024. In any case, the request * size is limited to MAXBSIZE. */ count = MIN(uiop->uio_iov->iov_len, nfs3_shrinkreaddir ? 1024 : MAXBSIZE); nrdc = NULL; #ifdef DEBUG missed = 0; #endif top: /* * Short circuit last readdir which always returns 0 bytes. * This can be done after the directory has been read through * completely at least once. This will set r_direof which * can be used to find the value of the last cookie. */ mutex_enter(&rp->r_statelock); if (rp->r_direof != NULL && uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { mutex_exit(&rp->r_statelock); #ifdef DEBUG nfs3_readdir_cache_shorts++; #endif if (eofp) *eofp = 1; if (nrdc != NULL) rddir_cache_rele(nrdc); return (0); } /* * Look for a cache entry. Cache entries are identified * by the NFS cookie value and the byte count requested. */ srdc.nfs3_cookie = uiop->uio_loffset; srdc.buflen = count; rdc = avl_find(&rp->r_dir, &srdc, &where); if (rdc != NULL) { rddir_cache_hold(rdc); /* * If the cache entry is in the process of being * filled in, wait until this completes. The * RDDIRWAIT bit is set to indicate that someone * is waiting and then the thread currently * filling the entry is done, it should do a * cv_broadcast to wakeup all of the threads * waiting for it to finish. */ if (rdc->flags & RDDIR) { nfs_rw_exit(&rp->r_rwlock); rdc->flags |= RDDIRWAIT; #ifdef DEBUG nfs3_readdir_cache_waits++; #endif if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { /* * We got interrupted, probably * the user typed ^C or an alarm * fired. We free the new entry * if we allocated one. */ mutex_exit(&rp->r_statelock); (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); rddir_cache_rele(rdc); if (nrdc != NULL) rddir_cache_rele(nrdc); return (EINTR); } mutex_exit(&rp->r_statelock); (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); rddir_cache_rele(rdc); goto top; } /* * Check to see if a readdir is required to * fill the entry. If so, mark this entry * as being filled, remove our reference, * and branch to the code to fill the entry. */ if (rdc->flags & RDDIRREQ) { rdc->flags &= ~RDDIRREQ; rdc->flags |= RDDIR; if (nrdc != NULL) rddir_cache_rele(nrdc); nrdc = rdc; mutex_exit(&rp->r_statelock); goto bottom; } #ifdef DEBUG if (!missed) nfs3_readdir_cache_hits++; #endif /* * If an error occurred while attempting * to fill the cache entry, just return it. */ if (rdc->error) { error = rdc->error; mutex_exit(&rp->r_statelock); rddir_cache_rele(rdc); if (nrdc != NULL) rddir_cache_rele(nrdc); return (error); } /* * The cache entry is complete and good, * copyout the dirent structs to the calling * thread. */ error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); /* * If no error occurred during the copyout, * update the offset in the uio struct to * contain the value of the next cookie * and set the eof value appropriately. */ if (!error) { uiop->uio_loffset = rdc->nfs3_ncookie; if (eofp) *eofp = rdc->eof; } /* * Decide whether to do readahead. * * Don't if have already read to the end of * directory. There is nothing more to read. * * Don't if the application is not doing * lookups in the directory. The readahead * is only effective if the application can * be doing work while an async thread is * handling the over the wire request. */ if (rdc->eof) { rp->r_direof = rdc; doreadahead = FALSE; } else if (!(rp->r_flags & RLOOKUP)) doreadahead = FALSE; else doreadahead = TRUE; if (!doreadahead) { mutex_exit(&rp->r_statelock); rddir_cache_rele(rdc); if (nrdc != NULL) rddir_cache_rele(nrdc); return (error); } /* * Check to see whether we found an entry * for the readahead. If so, we don't need * to do anything further, so free the new * entry if one was allocated. Otherwise, * allocate a new entry, add it to the cache, * and then initiate an asynchronous readdir * operation to fill it. */ srdc.nfs3_cookie = rdc->nfs3_ncookie; srdc.buflen = count; rrdc = avl_find(&rp->r_dir, &srdc, &where); if (rrdc != NULL) { if (nrdc != NULL) rddir_cache_rele(nrdc); } else { if (nrdc != NULL) rrdc = nrdc; else { rrdc = rddir_cache_alloc(KM_NOSLEEP); } if (rrdc != NULL) { rrdc->nfs3_cookie = rdc->nfs3_ncookie; rrdc->buflen = count; avl_insert(&rp->r_dir, rrdc, where); rddir_cache_hold(rrdc); mutex_exit(&rp->r_statelock); rddir_cache_rele(rdc); #ifdef DEBUG nfs3_readdir_readahead++; #endif nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); return (error); } } mutex_exit(&rp->r_statelock); rddir_cache_rele(rdc); return (error); } /* * Didn't find an entry in the cache. Construct a new empty * entry and link it into the cache. Other processes attempting * to access this entry will need to wait until it is filled in. * * Since kmem_alloc may block, another pass through the cache * will need to be taken to make sure that another process * hasn't already added an entry to the cache for this request. */ if (nrdc == NULL) { mutex_exit(&rp->r_statelock); nrdc = rddir_cache_alloc(KM_SLEEP); nrdc->nfs3_cookie = uiop->uio_loffset; nrdc->buflen = count; goto top; } /* * Add this entry to the cache. */ avl_insert(&rp->r_dir, nrdc, where); rddir_cache_hold(nrdc); mutex_exit(&rp->r_statelock); bottom: #ifdef DEBUG missed = 1; nfs3_readdir_cache_misses++; #endif /* * Do the readdir. This routine decides whether to use * READDIR or READDIRPLUS. */ error = do_nfs3readdir(vp, nrdc, cr); /* * If this operation failed, just return the error which occurred. */ if (error != 0) return (error); /* * Since the RPC operation will have taken sometime and blocked * this process, another pass through the cache will need to be * taken to find the correct cache entry. It is possible that * the correct cache entry will not be there (although one was * added) because the directory changed during the RPC operation * and the readdir cache was flushed. In this case, just start * over. It is hoped that this will not happen too often... :-) */ nrdc = NULL; goto top; /* NOTREACHED */ } static int do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) { int error; rnode_t *rp; mntinfo_t *mi; rp = VTOR(vp); mi = VTOMI(vp); ASSERT(nfs_zone() == mi->mi_zone); /* * Issue the proper request. * * If the server does not support READDIRPLUS, then use READDIR. * * Otherwise -- * Issue a READDIRPLUS if reading to fill an empty cache or if * an application has performed a lookup in the directory which * required an over the wire lookup. The use of READDIRPLUS * will help to (re)populate the DNLC. */ if (!(mi->mi_flags & MI_READDIRONLY) && (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { if (rp->r_flags & RREADDIRPLUS) { mutex_enter(&rp->r_statelock); rp->r_flags &= ~RREADDIRPLUS; mutex_exit(&rp->r_statelock); } nfs3readdirplus(vp, rdc, cr); if (rdc->error == EOPNOTSUPP) nfs3readdir(vp, rdc, cr); } else nfs3readdir(vp, rdc, cr); mutex_enter(&rp->r_statelock); rdc->flags &= ~RDDIR; if (rdc->flags & RDDIRWAIT) { rdc->flags &= ~RDDIRWAIT; cv_broadcast(&rdc->cv); } error = rdc->error; if (error) rdc->flags |= RDDIRREQ; mutex_exit(&rp->r_statelock); rddir_cache_rele(rdc); return (error); } static void nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) { int error; READDIR3args args; READDIR3vres res; vattr_t dva; rnode_t *rp; int douprintf; failinfo_t fi, *fip = NULL; mntinfo_t *mi; hrtime_t t; rp = VTOR(vp); mi = VTOMI(vp); ASSERT(nfs_zone() == mi->mi_zone); args.dir = *RTOFH3(rp); args.cookie = (cookie3)rdc->nfs3_cookie; args.cookieverf = rp->r_cookieverf; args.count = rdc->buflen; /* * NFS client failover support * suppress failover unless we have a zero cookie */ if (args.cookie == (cookie3) 0) { fi.vp = vp; fi.fhp = (caddr_t)&args.dir; fi.copyproc = nfs3copyfh; fi.lookupproc = nfs3lookup; fi.xattrdirproc = acl_getxattrdir3; fip = &fi; } #ifdef DEBUG rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); #else rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); #endif res.entries = (dirent64_t *)rdc->entries; res.entries_size = rdc->buflen; res.dir_attributes.fres.vap = &dva; res.dir_attributes.fres.vp = vp; res.loff = rdc->nfs3_cookie; douprintf = 1; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } t = gethrtime(); error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, xdr_READDIR3args, (caddr_t)&args, xdr_READDIR3vres, (caddr_t)&res, cr, &douprintf, &res.status, 0, fip); if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } if (error) goto err; nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); error = geterrno3(res.status); if (error) { PURGE_STALE_FH(error, vp, cr); goto err; } if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; mutex_exit(&mi->mi_lock); } rdc->nfs3_ncookie = res.loff; rp->r_cookieverf = res.cookieverf; rdc->eof = res.eof ? 1 : 0; rdc->entlen = res.size; ASSERT(rdc->entlen <= rdc->buflen); rdc->error = 0; return; err: kmem_free(rdc->entries, rdc->buflen); rdc->entries = NULL; rdc->error = error; } /* * Read directory entries. * There are some weird things to look out for here. The uio_loffset * field is either 0 or it is the offset returned from a previous * readdir. It is an opaque value used by the server to find the * correct directory block to read. The count field is the number * of blocks to read on the server. This is advisory only, the server * may return only one block's worth of entries. Entries may be compressed * on the server. */ static void nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) { int error; READDIRPLUS3args args; READDIRPLUS3vres res; vattr_t dva; rnode_t *rp; mntinfo_t *mi; int douprintf; failinfo_t fi, *fip = NULL; rp = VTOR(vp); mi = VTOMI(vp); ASSERT(nfs_zone() == mi->mi_zone); args.dir = *RTOFH3(rp); args.cookie = (cookie3)rdc->nfs3_cookie; args.cookieverf = rp->r_cookieverf; args.dircount = rdc->buflen; args.maxcount = mi->mi_tsize; /* * NFS client failover support * suppress failover unless we have a zero cookie */ if (args.cookie == (cookie3)0) { fi.vp = vp; fi.fhp = (caddr_t)&args.dir; fi.copyproc = nfs3copyfh; fi.lookupproc = nfs3lookup; fi.xattrdirproc = acl_getxattrdir3; fip = &fi; } #ifdef DEBUG rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); #else rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); #endif res.entries = (dirent64_t *)rdc->entries; res.entries_size = rdc->buflen; res.dir_attributes.fres.vap = &dva; res.dir_attributes.fres.vp = vp; res.loff = rdc->nfs3_cookie; res.credentials = cr; douprintf = 1; if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } res.time = gethrtime(); error = rfs3call(mi, NFSPROC3_READDIRPLUS, xdr_READDIRPLUS3args, (caddr_t)&args, xdr_READDIRPLUS3vres, (caddr_t)&res, cr, &douprintf, &res.status, 0, fip); if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); mutex_exit(&mi->mi_lock); } if (error) { goto err; } nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); error = geterrno3(res.status); if (error) { PURGE_STALE_FH(error, vp, cr); if (error == EOPNOTSUPP) { mutex_enter(&mi->mi_lock); mi->mi_flags |= MI_READDIRONLY; mutex_exit(&mi->mi_lock); } goto err; } if (mi->mi_io_kstats) { mutex_enter(&mi->mi_lock); KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; mutex_exit(&mi->mi_lock); } rdc->nfs3_ncookie = res.loff; rp->r_cookieverf = res.cookieverf; rdc->eof = res.eof ? 1 : 0; rdc->entlen = res.size; ASSERT(rdc->entlen <= rdc->buflen); rdc->error = 0; return; err: kmem_free(rdc->entries, rdc->buflen); rdc->entries = NULL; rdc->error = error; } #ifdef DEBUG static int nfs3_bio_do_stop = 0; #endif static int nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) { rnode_t *rp = VTOR(bp->b_vp); int count; int error; cred_t *cred; offset_t offset; ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); offset = ldbtob(bp->b_lblkno); DTRACE_IO1(start, struct buf *, bp); if (bp->b_flags & B_READ) { mutex_enter(&rp->r_statelock); if (rp->r_cred != NULL) { cred = rp->r_cred; crhold(cred); } else { rp->r_cred = cr; crhold(cr); cred = cr; crhold(cred); } mutex_exit(&rp->r_statelock); read_again: error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, offset, bp->b_bcount, &bp->b_resid, cred); crfree(cred); if (!error) { if (bp->b_resid) { /* * Didn't get it all because we hit EOF, * zero all the memory beyond the EOF. */ /* bzero(rdaddr + */ bzero(bp->b_un.b_addr + bp->b_bcount - bp->b_resid, bp->b_resid); } mutex_enter(&rp->r_statelock); if (bp->b_resid == bp->b_bcount && offset >= rp->r_size) { /* * We didn't read anything at all as we are * past EOF. Return an error indicator back * but don't destroy the pages (yet). */ error = NFS_EOF; } mutex_exit(&rp->r_statelock); } else if (error == EACCES) { mutex_enter(&rp->r_statelock); if (cred != cr) { if (rp->r_cred != NULL) crfree(rp->r_cred); rp->r_cred = cr; crhold(cr); cred = cr; crhold(cred); mutex_exit(&rp->r_statelock); goto read_again; } mutex_exit(&rp->r_statelock); } } else { if (!(rp->r_flags & RSTALE)) { mutex_enter(&rp->r_statelock); if (rp->r_cred != NULL) { cred = rp->r_cred; crhold(cred); } else { rp->r_cred = cr; crhold(cr); cred = cr; crhold(cred); } mutex_exit(&rp->r_statelock); write_again: mutex_enter(&rp->r_statelock); count = MIN(bp->b_bcount, rp->r_size - offset); mutex_exit(&rp->r_statelock); if (count < 0) cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); #ifdef DEBUG if (count == 0) { zcmn_err(getzoneid(), CE_WARN, "nfs3_bio: zero length write at %lld", offset); nfs_printfhandle(&rp->r_fh); if (nfs3_bio_do_stop) debug_enter("nfs3_bio"); } #endif error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, count, cred, stab_comm); if (error == EACCES) { mutex_enter(&rp->r_statelock); if (cred != cr) { if (rp->r_cred != NULL) crfree(rp->r_cred); rp->r_cred = cr; crhold(cr); crfree(cred); cred = cr; crhold(cred); mutex_exit(&rp->r_statelock); goto write_again; } mutex_exit(&rp->r_statelock); } bp->b_error = error; if (error && error != EINTR) { /* * Don't print EDQUOT errors on the console. * Don't print asynchronous EACCES errors. * Don't print EFBIG errors. * Print all other write errors. */ if (error != EDQUOT && error != EFBIG && (error != EACCES || !(bp->b_flags & B_ASYNC))) nfs_write_error(bp->b_vp, error, cred); /* * Update r_error and r_flags as appropriate. * If the error was ESTALE, then mark the * rnode as not being writeable and save * the error status. Otherwise, save any * errors which occur from asynchronous * page invalidations. Any errors occurring * from other operations should be saved * by the caller. */ mutex_enter(&rp->r_statelock); if (error == ESTALE) { rp->r_flags |= RSTALE; if (!rp->r_error) rp->r_error = error; } else if (!rp->r_error && (bp->b_flags & (B_INVAL|B_FORCE|B_ASYNC)) == (B_INVAL|B_FORCE|B_ASYNC)) { rp->r_error = error; } mutex_exit(&rp->r_statelock); } crfree(cred); } else { error = rp->r_error; /* * A close may have cleared r_error, if so, * propagate ESTALE error return properly */ if (error == 0) error = ESTALE; } } if (error != 0 && error != NFS_EOF) bp->b_flags |= B_ERROR; DTRACE_IO1(done, struct buf *, bp); return (error); } /* ARGSUSED */ static int nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) { rnode_t *rp; if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); rp = VTOR(vp); if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { fidp->fid_len = rp->r_fh.fh_len; return (ENOSPC); } fidp->fid_len = rp->r_fh.fh_len; bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); return (0); } /* ARGSUSED2 */ static int nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) { rnode_t *rp = VTOR(vp); if (!write_lock) { (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); return (V_WRITELOCK_FALSE); } if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) return (V_WRITELOCK_FALSE); nfs_rw_exit(&rp->r_rwlock); } (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); return (V_WRITELOCK_TRUE); } /* ARGSUSED */ static void nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) { rnode_t *rp = VTOR(vp); nfs_rw_exit(&rp->r_rwlock); } /* ARGSUSED */ static int nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) { /* * Because we stuff the readdir cookie into the offset field * someone may attempt to do an lseek with the cookie which * we want to succeed. */ if (vp->v_type == VDIR) return (0); if (*noffp < 0) return (EINVAL); return (0); } /* * number of nfs3_bsize blocks to read ahead. */ static int nfs3_nra = 4; #ifdef DEBUG static int nfs3_lostpage = 0; /* number of times we lost original page */ #endif /* * Return all the pages from [off..off+len) in file */ /* ARGSUSED */ static int nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, enum seg_rw rw, cred_t *cr, caller_context_t *ct) { rnode_t *rp; int error; mntinfo_t *mi; if (vp->v_flag & VNOMAP) return (ENOSYS); if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); if (protp != NULL) *protp = PROT_ALL; /* * Now valididate that the caches are up to date. */ error = nfs3_validate_caches(vp, cr); if (error) return (error); rp = VTOR(vp); mi = VTOMI(vp); retry: mutex_enter(&rp->r_statelock); /* * Don't create dirty pages faster than they * can be cleaned so that the system doesn't * get imbalanced. If the async queue is * maxed out, then wait for it to drain before * creating more dirty pages. Also, wait for * any threads doing pagewalks in the vop_getattr * entry points so that they don't block for * long periods. */ if (rw == S_CREATE) { while ((mi->mi_max_threads != 0 && rp->r_awcount > 2 * mi->mi_max_threads) || rp->r_gcount > 0) cv_wait(&rp->r_cv, &rp->r_statelock); } /* * If we are getting called as a side effect of an nfs_write() * operation the local file size might not be extended yet. * In this case we want to be able to return pages of zeroes. */ if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { mutex_exit(&rp->r_statelock); return (EFAULT); /* beyond EOF */ } mutex_exit(&rp->r_statelock); if (len <= PAGESIZE) { error = nfs3_getapage(vp, off, len, protp, pl, plsz, seg, addr, rw, cr); } else { error = pvn_getpages(nfs3_getapage, vp, off, len, protp, pl, plsz, seg, addr, rw, cr); } switch (error) { case NFS_EOF: nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); goto retry; case ESTALE: PURGE_STALE_FH(error, vp, cr); } return (error); } /* * Called from pvn_getpages or nfs3_getpage to get a particular page. */ /* ARGSUSED */ static int nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, enum seg_rw rw, cred_t *cr) { rnode_t *rp; uint_t bsize; struct buf *bp; page_t *pp; u_offset_t lbn; u_offset_t io_off; u_offset_t blkoff; u_offset_t rablkoff; size_t io_len; uint_t blksize; int error; int readahead; int readahead_issued = 0; int ra_window; /* readahead window */ page_t *pagefound; page_t *savepp; if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); rp = VTOR(vp); bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); reread: bp = NULL; pp = NULL; pagefound = NULL; if (pl != NULL) pl[0] = NULL; error = 0; lbn = off / bsize; blkoff = lbn * bsize; /* * Queueing up the readahead before doing the synchronous read * results in a significant increase in read throughput because * of the increased parallelism between the async threads and * the process context. */ if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && rw != S_CREATE && !(vp->v_flag & VNOCACHE)) { mutex_enter(&rp->r_statelock); /* * Calculate the number of readaheads to do. * a) No readaheads at offset = 0. * b) Do maximum(nfs3_nra) readaheads when the readahead * window is closed. * c) Do readaheads between 1 to (nfs3_nra - 1) depending * upon how far the readahead window is open or close. * d) No readaheads if rp->r_nextr is not within the scope * of the readahead window (random i/o). */ if (off == 0) readahead = 0; else if (blkoff == rp->r_nextr) readahead = nfs3_nra; else if (rp->r_nextr > blkoff && ((ra_window = (rp->r_nextr - blkoff) / bsize) <= (nfs3_nra - 1))) readahead = nfs3_nra - ra_window; else readahead = 0; rablkoff = rp->r_nextr; while (readahead > 0 && rablkoff + bsize < rp->r_size) { mutex_exit(&rp->r_statelock); if (nfs_async_readahead(vp, rablkoff + bsize, addr + (rablkoff + bsize - off), seg, cr, nfs3_readahead) < 0) { mutex_enter(&rp->r_statelock); break; } readahead--; rablkoff += bsize; /* * Indicate that we did a readahead so * readahead offset is not updated * by the synchronous read below. */ readahead_issued = 1; mutex_enter(&rp->r_statelock); /* * set readahead offset to * offset of last async readahead * request. */ rp->r_nextr = rablkoff; } mutex_exit(&rp->r_statelock); } again: if ((pagefound = page_exists(vp, off)) == NULL) { if (pl == NULL) { (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, nfs3_readahead); } else if (rw == S_CREATE) { /* * Block for this page is not allocated, or the offset * is beyond the current allocation size, or we're * allocating a swap slot and the page was not found, * so allocate it and return a zero page. */ if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, addr)) == NULL) cmn_err(CE_PANIC, "nfs3_getapage: page_create"); io_len = PAGESIZE; mutex_enter(&rp->r_statelock); rp->r_nextr = off + PAGESIZE; mutex_exit(&rp->r_statelock); } else { /* * Need to go to server to get a BLOCK, exception to * that being while reading at offset = 0 or doing * random i/o, in that case read only a PAGE. */ mutex_enter(&rp->r_statelock); if (blkoff < rp->r_size && blkoff + bsize >= rp->r_size) { /* * If only a block or less is left in * the file, read all that is remaining. */ if (rp->r_size <= off) { /* * Trying to access beyond EOF, * set up to get at least one page. */ blksize = off + PAGESIZE - blkoff; } else blksize = rp->r_size - blkoff; } else if ((off == 0) || (off != rp->r_nextr && !readahead_issued)) { blksize = PAGESIZE; blkoff = off; /* block = page here */ } else blksize = bsize; mutex_exit(&rp->r_statelock); pp = pvn_read_kluster(vp, off, seg, addr, &io_off, &io_len, blkoff, blksize, 0); /* * Some other thread has entered the page, * so just use it. */ if (pp == NULL) goto again; /* * Now round the request size up to page boundaries. * This ensures that the entire page will be * initialized to zeroes if EOF is encountered. */ io_len = ptob(btopr(io_len)); bp = pageio_setup(pp, io_len, vp, B_READ); ASSERT(bp != NULL); /* * pageio_setup should have set b_addr to 0. This * is correct since we want to do I/O on a page * boundary. bp_mapin will use this addr to calculate * an offset, and then set b_addr to the kernel virtual * address it allocated for us. */ ASSERT(bp->b_un.b_addr == 0); bp->b_edev = 0; bp->b_dev = 0; bp->b_lblkno = lbtodb(io_off); bp->b_file = vp; bp->b_offset = (offset_t)off; bp_mapin(bp); /* * If doing a write beyond what we believe is EOF, * don't bother trying to read the pages from the * server, we'll just zero the pages here. We * don't check that the rw flag is S_WRITE here * because some implementations may attempt a * read access to the buffer before copying data. */ mutex_enter(&rp->r_statelock); if (io_off >= rp->r_size && seg == segkmap) { mutex_exit(&rp->r_statelock); bzero(bp->b_un.b_addr, io_len); } else { mutex_exit(&rp->r_statelock); error = nfs3_bio(bp, NULL, cr); } /* * Unmap the buffer before freeing it. */ bp_mapout(bp); pageio_done(bp); savepp = pp; do { pp->p_fsdata = C_NOCOMMIT; } while ((pp = pp->p_next) != savepp); if (error == NFS_EOF) { /* * If doing a write system call just return * zeroed pages, else user tried to get pages * beyond EOF, return error. We don't check * that the rw flag is S_WRITE here because * some implementations may attempt a read * access to the buffer before copying data. */ if (seg == segkmap) error = 0; else error = EFAULT; } if (!readahead_issued && !error) { mutex_enter(&rp->r_statelock); rp->r_nextr = io_off + io_len; mutex_exit(&rp->r_statelock); } } } out: if (pl == NULL) return (error); if (error) { if (pp != NULL) pvn_read_done(pp, B_ERROR); return (error); } if (pagefound) { se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); /* * Page exists in the cache, acquire the appropriate lock. * If this fails, start all over again. */ if ((pp = page_lookup(vp, off, se)) == NULL) { #ifdef DEBUG nfs3_lostpage++; #endif goto reread; } pl[0] = pp; pl[1] = NULL; return (0); } if (pp != NULL) pvn_plist_init(pp, pl, plsz, off, io_len, rw); return (error); } static void nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, cred_t *cr) { int error; page_t *pp; u_offset_t io_off; size_t io_len; struct buf *bp; uint_t bsize, blksize; rnode_t *rp = VTOR(vp); page_t *savepp; ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); mutex_enter(&rp->r_statelock); if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { /* * If less than a block left in file read less * than a block. */ blksize = rp->r_size - blkoff; } else blksize = bsize; mutex_exit(&rp->r_statelock); pp = pvn_read_kluster(vp, blkoff, segkmap, addr, &io_off, &io_len, blkoff, blksize, 1); /* * The isra flag passed to the kluster function is 1, we may have * gotten a return value of NULL for a variety of reasons (# of free * pages < minfree, someone entered the page on the vnode etc). In all * cases, we want to punt on the readahead. */ if (pp == NULL) return; /* * Now round the request size up to page boundaries. * This ensures that the entire page will be * initialized to zeroes if EOF is encountered. */ io_len = ptob(btopr(io_len)); bp = pageio_setup(pp, io_len, vp, B_READ); ASSERT(bp != NULL); /* * pageio_setup should have set b_addr to 0. This is correct since * we want to do I/O on a page boundary. bp_mapin() will use this addr * to calculate an offset, and then set b_addr to the kernel virtual * address it allocated for us. */ ASSERT(bp->b_un.b_addr == 0); bp->b_edev = 0; bp->b_dev = 0; bp->b_lblkno = lbtodb(io_off); bp->b_file = vp; bp->b_offset = (offset_t)blkoff; bp_mapin(bp); /* * If doing a write beyond what we believe is EOF, don't bother trying * to read the pages from the server, we'll just zero the pages here. * We don't check that the rw flag is S_WRITE here because some * implementations may attempt a read access to the buffer before * copying data. */ mutex_enter(&rp->r_statelock); if (io_off >= rp->r_size && seg == segkmap) { mutex_exit(&rp->r_statelock); bzero(bp->b_un.b_addr, io_len); error = 0; } else { mutex_exit(&rp->r_statelock); error = nfs3_bio(bp, NULL, cr); if (error == NFS_EOF) error = 0; } /* * Unmap the buffer before freeing it. */ bp_mapout(bp); pageio_done(bp); savepp = pp; do { pp->p_fsdata = C_NOCOMMIT; } while ((pp = pp->p_next) != savepp); pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); /* * In case of error set readahead offset * to the lowest offset. * pvn_read_done() calls VN_DISPOSE to destroy the pages */ if (error && rp->r_nextr > io_off) { mutex_enter(&rp->r_statelock); if (rp->r_nextr > io_off) rp->r_nextr = io_off; mutex_exit(&rp->r_statelock); } } /* * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} * If len == 0, do from off to EOF. * * The normal cases should be len == 0 && off == 0 (entire vp list), * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE * (from pageout). */ /* ARGSUSED */ static int nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, caller_context_t *ct) { int error; rnode_t *rp; ASSERT(cr != NULL); /* * XXX - Why should this check be made here? */ if (vp->v_flag & VNOMAP) return (ENOSYS); if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) return (0); if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); rp = VTOR(vp); mutex_enter(&rp->r_statelock); rp->r_count++; mutex_exit(&rp->r_statelock); error = nfs_putpages(vp, off, len, flags, cr); mutex_enter(&rp->r_statelock); rp->r_count--; cv_broadcast(&rp->r_cv); mutex_exit(&rp->r_statelock); return (error); } /* * Write out a single page, possibly klustering adjacent dirty pages. */ int nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, int flags, cred_t *cr) { u_offset_t io_off; u_offset_t lbn_off; u_offset_t lbn; size_t io_len; uint_t bsize; int error; rnode_t *rp; ASSERT(!vn_is_readonly(vp)); ASSERT(pp != NULL); ASSERT(cr != NULL); ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); rp = VTOR(vp); ASSERT(rp->r_count > 0); bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); lbn = pp->p_offset / bsize; lbn_off = lbn * bsize; /* * Find a kluster that fits in one block, or in * one page if pages are bigger than blocks. If * there is less file space allocated than a whole * page, we'll shorten the i/o request below. */ pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, roundup(bsize, PAGESIZE), flags); /* * pvn_write_kluster shouldn't have returned a page with offset * behind the original page we were given. Verify that. */ ASSERT((pp->p_offset / bsize) >= lbn); /* * Now pp will have the list of kept dirty pages marked for * write back. It will also handle invalidation and freeing * of pages that are not dirty. Check for page length rounding * problems. */ if (io_off + io_len > lbn_off + bsize) { ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); io_len = lbn_off + bsize - io_off; } /* * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a * consistent value of r_size. RMODINPROGRESS is set in writerp(). * When RMODINPROGRESS is set it indicates that a uiomove() is in * progress and the r_size has not been made consistent with the * new size of the file. When the uiomove() completes the r_size is * updated and the RMODINPROGRESS flag is cleared. * * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a * consistent value of r_size. Without this handshaking, it is * possible that nfs(3)_bio() picks up the old value of r_size * before the uiomove() in writerp() completes. This will result * in the write through nfs(3)_bio() being dropped. * * More precisely, there is a window between the time the uiomove() * completes and the time the r_size is updated. If a VOP_PUTPAGE() * operation intervenes in this window, the page will be picked up, * because it is dirty (it will be unlocked, unless it was * pagecreate'd). When the page is picked up as dirty, the dirty * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is * checked. This will still be the old size. Therefore the page will * not be written out. When segmap_release() calls VOP_PUTPAGE(), * the page will be found to be clean and the write will be dropped. */ if (rp->r_flags & RMODINPROGRESS) { mutex_enter(&rp->r_statelock); if ((rp->r_flags & RMODINPROGRESS) && rp->r_modaddr + MAXBSIZE > io_off && rp->r_modaddr < io_off + io_len) { page_t *plist; /* * A write is in progress for this region of the file. * If we did not detect RMODINPROGRESS here then this * path through nfs_putapage() would eventually go to * nfs(3)_bio() and may not write out all of the data * in the pages. We end up losing data. So we decide * to set the modified bit on each page in the page * list and mark the rnode with RDIRTY. This write * will be restarted at some later time. */ plist = pp; while (plist != NULL) { pp = plist; page_sub(&plist, pp); hat_setmod(pp); page_io_unlock(pp); page_unlock(pp); } rp->r_flags |= RDIRTY; mutex_exit(&rp->r_statelock); if (offp) *offp = io_off; if (lenp) *lenp = io_len; return (0); } mutex_exit(&rp->r_statelock); } if (flags & B_ASYNC) { error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, nfs3_sync_putapage); } else error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); if (offp) *offp = io_off; if (lenp) *lenp = io_len; return (error); } static int nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, int flags, cred_t *cr) { int error; rnode_t *rp; ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); flags |= B_WRITE; error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); rp = VTOR(vp); if ((error == ENOSPC || error == EDQUOT || error == EFBIG || error == EACCES) && (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { if (!(rp->r_flags & ROUTOFSPACE)) { mutex_enter(&rp->r_statelock); rp->r_flags |= ROUTOFSPACE; mutex_exit(&rp->r_statelock); } flags |= B_ERROR; pvn_write_done(pp, flags); /* * If this was not an async thread, then try again to * write out the pages, but this time, also destroy * them whether or not the write is successful. This * will prevent memory from filling up with these * pages and destroying them is the only alternative * if they can't be written out. * * Don't do this if this is an async thread because * when the pages are unlocked in pvn_write_done, * some other thread could have come along, locked * them, and queued for an async thread. It would be * possible for all of the async threads to be tied * up waiting to lock the pages again and they would * all already be locked and waiting for an async * thread to handle them. Deadlock. */ if (!(flags & B_ASYNC)) { error = nfs3_putpage(vp, io_off, io_len, B_INVAL | B_FORCE, cr, NULL); } } else { if (error) flags |= B_ERROR; else if (rp->r_flags & ROUTOFSPACE) { mutex_enter(&rp->r_statelock); rp->r_flags &= ~ROUTOFSPACE; mutex_exit(&rp->r_statelock); } pvn_write_done(pp, flags); if (freemem < desfree) (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); } return (error); } /* ARGSUSED */ static int nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, caller_context_t *ct) { struct segvn_crargs vn_a; int error; rnode_t *rp; struct vattr va; if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); if (vp->v_flag & VNOMAP) return (ENOSYS); if (off < 0 || off + len < 0) return (ENXIO); if (vp->v_type != VREG) return (ENODEV); /* * If there is cached data and if close-to-open consistency * checking is not turned off and if the file system is not * mounted readonly, then force an over the wire getattr. * Otherwise, just invoke nfs3getattr to get a copy of the * attributes. The attribute cache will be used unless it * is timed out and if it is, then an over the wire getattr * will be issued. */ va.va_mask = AT_ALL; if (vn_has_cached_data(vp) && !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) error = nfs3_getattr_otw(vp, &va, cr); else error = nfs3getattr(vp, &va, cr); if (error) return (error); /* * Check to see if the vnode is currently marked as not cachable. * This means portions of the file are locked (through VOP_FRLOCK). * In this case the map request must be refused. We use * rp->r_lkserlock to avoid a race with concurrent lock requests. */ rp = VTOR(vp); /* * Atomically increment r_inmap after acquiring r_rwlock. The * idea here is to acquire r_rwlock to block read/write and * not to protect r_inmap. r_inmap will inform nfs3_read/write() * that we are in nfs3_map(). Now, r_rwlock is acquired in order * and we can prevent the deadlock that would have occurred * when nfs3_addmap() would have acquired it out of order. * * Since we are not protecting r_inmap by any lock, we do not * hold any lock when we decrement it. We atomically decrement * r_inmap after we release r_lkserlock. */ if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) return (EINTR); atomic_inc_uint(&rp->r_inmap); nfs_rw_exit(&rp->r_rwlock); if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { atomic_dec_uint(&rp->r_inmap); return (EINTR); } if (vp->v_flag & VNOCACHE) { error = EAGAIN; goto done; } /* * Don't allow concurrent locks and mapping if mandatory locking is * enabled. */ if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && MANDLOCK(vp, va.va_mode)) { error = EAGAIN; goto done; } as_rangelock(as); error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); if (error != 0) { as_rangeunlock(as); goto done; } vn_a.vp = vp; vn_a.offset = off; vn_a.type = (flags & MAP_TYPE); vn_a.prot = (uchar_t)prot; vn_a.maxprot = (uchar_t)maxprot; vn_a.flags = (flags & ~MAP_TYPE); vn_a.cred = cr; vn_a.amp = NULL; vn_a.szc = 0; vn_a.lgrp_mem_policy_flags = 0; error = as_map(as, *addrp, len, segvn_create, &vn_a); as_rangeunlock(as); done: nfs_rw_exit(&rp->r_lkserlock); atomic_dec_uint(&rp->r_inmap); return (error); } /* ARGSUSED */ static int nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, caller_context_t *ct) { rnode_t *rp; if (vp->v_flag & VNOMAP) return (ENOSYS); if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); rp = VTOR(vp); atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); return (0); } /* ARGSUSED */ static int nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) { netobj lm_fh3; int rc; u_offset_t start, end; rnode_t *rp; int error = 0, intr = INTR(vp); if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); /* check for valid cmd parameter */ if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) return (EINVAL); /* Verify l_type. */ switch (bfp->l_type) { case F_RDLCK: if (cmd != F_GETLK && !(flag & FREAD)) return (EBADF); break; case F_WRLCK: if (cmd != F_GETLK && !(flag & FWRITE)) return (EBADF); break; case F_UNLCK: intr = 0; break; default: return (EINVAL); } /* check the validity of the lock range */ if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) return (rc); if (rc = flk_check_lock_data(start, end, MAXEND)) return (rc); /* * If the filesystem is mounted using local locking, pass the * request off to the local locking code. */ if (VTOMI(vp)->mi_flags & MI_LLOCK) { if (cmd == F_SETLK || cmd == F_SETLKW) { /* * For complete safety, we should be holding * r_lkserlock. However, we can't call * lm_safelock and then fs_frlock while * holding r_lkserlock, so just invoke * lm_safelock and expect that this will * catch enough of the cases. */ if (!lm_safelock(vp, bfp, cr)) return (EAGAIN); } return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); } rp = VTOR(vp); /* * Check whether the given lock request can proceed, given the * current file mappings. */ if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) return (EINTR); if (cmd == F_SETLK || cmd == F_SETLKW) { if (!lm_safelock(vp, bfp, cr)) { rc = EAGAIN; goto done; } } /* * Flush the cache after waiting for async I/O to finish. For new * locks, this is so that the process gets the latest bits from the * server. For unlocks, this is so that other clients see the * latest bits once the file has been unlocked. If currently dirty * pages can't be flushed, then don't allow a lock to be set. But * allow unlocks to succeed, to avoid having orphan locks on the * server. */ if (cmd != F_GETLK) { mutex_enter(&rp->r_statelock); while (rp->r_count > 0) { if (intr) { klwp_t *lwp = ttolwp(curthread); if (lwp != NULL) lwp->lwp_nostop++; if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { if (lwp != NULL) lwp->lwp_nostop--; rc = EINTR; break; } if (lwp != NULL) lwp->lwp_nostop--; } else cv_wait(&rp->r_cv, &rp->r_statelock); } mutex_exit(&rp->r_statelock); if (rc != 0) goto done; error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); if (error) { if (error == ENOSPC || error == EDQUOT) { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = error; mutex_exit(&rp->r_statelock); } if (bfp->l_type != F_UNLCK) { rc = ENOLCK; goto done; } } } lm_fh3.n_len = VTOFH3(vp)->fh3_length; lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); /* * Call the lock manager to do the real work of contacting * the server and obtaining the lock. */ rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); if (rc == 0) nfs_lockcompletion(vp, cmd); done: nfs_rw_exit(&rp->r_lkserlock); return (rc); } /* * Free storage space associated with the specified vnode. The portion * to be freed is specified by bfp->l_start and bfp->l_len (already * normalized to a "whence" of 0). * * This is an experimental facility whose continued existence is not * guaranteed. Currently, we only support the special case * of l_len == 0, meaning free to end of file. */ /* ARGSUSED */ static int nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, cred_t *cr, caller_context_t *ct) { int error; ASSERT(vp->v_type == VREG); if (cmd != F_FREESP) return (EINVAL); if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); error = convoff(vp, bfp, 0, offset); if (!error) { ASSERT(bfp->l_start >= 0); if (bfp->l_len == 0) { struct vattr va; /* * ftruncate should not change the ctime and * mtime if we truncate the file to its * previous size. */ va.va_mask = AT_SIZE; error = nfs3getattr(vp, &va, cr); if (error || va.va_size == bfp->l_start) return (error); va.va_mask = AT_SIZE; va.va_size = bfp->l_start; error = nfs3setattr(vp, &va, 0, cr); if (error == 0 && bfp->l_start == 0) vnevent_truncate(vp, ct); } else error = EINVAL; } return (error); } /* ARGSUSED */ static int nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) { return (EINVAL); } /* * Setup and add an address space callback to do the work of the delmap call. * The callback will (and must be) deleted in the actual callback function. * * This is done in order to take care of the problem that we have with holding * the address space's a_lock for a long period of time (e.g. if the NFS server * is down). Callbacks will be executed in the address space code while the * a_lock is not held. Holding the address space's a_lock causes things such * as ps and fork to hang because they are trying to acquire this lock as well. */ /* ARGSUSED */ static int nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, caller_context_t *ct) { int caller_found; int error; rnode_t *rp; nfs_delmap_args_t *dmapp; nfs_delmapcall_t *delmap_call; if (vp->v_flag & VNOMAP) return (ENOSYS); /* * A process may not change zones if it has NFS pages mmap'ed * in, so we can't legitimately get here from the wrong zone. */ ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); rp = VTOR(vp); /* * The way that the address space of this process deletes its mapping * of this file is via the following call chains: * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() * * With the use of address space callbacks we are allowed to drop the * address space lock, a_lock, while executing the NFS operations that * need to go over the wire. Returning EAGAIN to the caller of this * function is what drives the execution of the callback that we add * below. The callback will be executed by the address space code * after dropping the a_lock. When the callback is finished, since * we dropped the a_lock, it must be re-acquired and segvn_unmap() * is called again on the same segment to finish the rest of the work * that needs to happen during unmapping. * * This action of calling back into the segment driver causes * nfs3_delmap() to get called again, but since the callback was * already executed at this point, it already did the work and there * is nothing left for us to do. * * To Summarize: * - The first time nfs3_delmap is called by the current thread is when * we add the caller associated with this delmap to the delmap caller * list, add the callback, and return EAGAIN. * - The second time in this call chain when nfs3_delmap is called we * will find this caller in the delmap caller list and realize there * is no more work to do thus removing this caller from the list and * returning the error that was set in the callback execution. */ caller_found = nfs_find_and_delete_delmapcall(rp, &error); if (caller_found) { /* * 'error' is from the actual delmap operations. To avoid * hangs, we need to handle the return of EAGAIN differently * since this is what drives the callback execution. * In this case, we don't want to return EAGAIN and do the * callback execution because there are none to execute. */ if (error == EAGAIN) return (0); else return (error); } /* current caller was not in the list */ delmap_call = nfs_init_delmapcall(); mutex_enter(&rp->r_statelock); list_insert_tail(&rp->r_indelmap, delmap_call); mutex_exit(&rp->r_statelock); dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); dmapp->vp = vp; dmapp->off = off; dmapp->addr = addr; dmapp->len = len; dmapp->prot = prot; dmapp->maxprot = maxprot; dmapp->flags = flags; dmapp->cr = cr; dmapp->caller = delmap_call; error = as_add_callback(as, nfs3_delmap_callback, dmapp, AS_UNMAP_EVENT, addr, len, KM_SLEEP); return (error ? error : EAGAIN); } /* * Remove some pages from an mmap'd vnode. Just update the * count of pages. If doing close-to-open, then flush and * commit all of the pages associated with this file. * Otherwise, start an asynchronous page flush to write out * any dirty pages. This will also associate a credential * with the rnode which can be used to write the pages. */ /* ARGSUSED */ static void nfs3_delmap_callback(struct as *as, void *arg, uint_t event) { int error; rnode_t *rp; mntinfo_t *mi; nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; rp = VTOR(dmapp->vp); mi = VTOMI(dmapp->vp); atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); ASSERT(rp->r_mapcnt >= 0); /* * Initiate a page flush and potential commit if there are * pages, the file system was not mounted readonly, the segment * was mapped shared, and the pages themselves were writeable. */ if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { mutex_enter(&rp->r_statelock); rp->r_flags |= RDIRTY; mutex_exit(&rp->r_statelock); /* * If this is a cross-zone access a sync putpage won't work, so * the best we can do is try an async putpage. That seems * better than something more draconian such as discarding the * dirty pages. */ if ((mi->mi_flags & MI_NOCTO) || nfs_zone() != mi->mi_zone) error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, B_ASYNC, dmapp->cr, NULL); else error = nfs3_putpage_commit(dmapp->vp, dmapp->off, dmapp->len, dmapp->cr); if (!error) { mutex_enter(&rp->r_statelock); error = rp->r_error; rp->r_error = 0; mutex_exit(&rp->r_statelock); } } else error = 0; if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, B_INVAL, dmapp->cr, NULL); dmapp->caller->error = error; (void) as_delete_callback(as, arg); kmem_free(dmapp, sizeof (nfs_delmap_args_t)); } static int nfs3_pathconf_disable_cache = 0; #ifdef DEBUG static int nfs3_pathconf_cache_hits = 0; static int nfs3_pathconf_cache_misses = 0; #endif /* ARGSUSED */ static int nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, caller_context_t *ct) { int error; PATHCONF3args args; PATHCONF3res res; int douprintf; failinfo_t fi; rnode_t *rp; hrtime_t t; if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); /* * Large file spec - need to base answer on info stored * on original FSINFO response. */ if (cmd == _PC_FILESIZEBITS) { unsigned long long ll; long l = 1; ll = VTOMI(vp)->mi_maxfilesize; if (ll == 0) { *valp = 0; return (0); } if (ll & 0xffffffff00000000) { l += 32; ll >>= 32; } if (ll & 0xffff0000) { l += 16; ll >>= 16; } if (ll & 0xff00) { l += 8; ll >>= 8; } if (ll & 0xf0) { l += 4; ll >>= 4; } if (ll & 0xc) { l += 2; ll >>= 2; } if (ll & 0x2) l += 2; else if (ll & 0x1) l += 1; *valp = l; return (0); } if (cmd == _PC_ACL_ENABLED) { *valp = _ACL_ACLENT_ENABLED; return (0); } if (cmd == _PC_XATTR_EXISTS) { error = 0; *valp = 0; if (vp->v_vfsp->vfs_flag & VFS_XATTR) { vnode_t *avp; rnode_t *rp; int error = 0; mntinfo_t *mi = VTOMI(vp); if (!(mi->mi_flags & MI_EXTATTR)) return (0); rp = VTOR(vp); if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, INTR(vp))) return (EINTR); error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); if (error || avp == NULL) error = acl_getxattrdir3(vp, &avp, 0, cr, 0); nfs_rw_exit(&rp->r_rwlock); if (error == 0 && avp != NULL) { error = do_xattr_exists_check(avp, valp, cr); VN_RELE(avp); } else if (error == ENOENT) { error = 0; *valp = 0; } } return (error); } rp = VTOR(vp); if (rp->r_pathconf != NULL) { mutex_enter(&rp->r_statelock); if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); rp->r_pathconf = NULL; } if (rp->r_pathconf != NULL) { error = 0; switch (cmd) { case _PC_LINK_MAX: *valp = rp->r_pathconf->link_max; break; case _PC_NAME_MAX: *valp = rp->r_pathconf->name_max; break; case _PC_PATH_MAX: case _PC_SYMLINK_MAX: *valp = MAXPATHLEN; break; case _PC_CHOWN_RESTRICTED: *valp = rp->r_pathconf->chown_restricted; break; case _PC_NO_TRUNC: *valp = rp->r_pathconf->no_trunc; break; default: error = EINVAL; break; } mutex_exit(&rp->r_statelock); #ifdef DEBUG nfs3_pathconf_cache_hits++; #endif return (error); } mutex_exit(&rp->r_statelock); } #ifdef DEBUG nfs3_pathconf_cache_misses++; #endif args.object = *VTOFH3(vp); fi.vp = vp; fi.fhp = (caddr_t)&args.object; fi.copyproc = nfs3copyfh; fi.lookupproc = nfs3lookup; fi.xattrdirproc = acl_getxattrdir3; douprintf = 1; t = gethrtime(); error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, xdr_nfs_fh3, (caddr_t)&args, xdr_PATHCONF3res, (caddr_t)&res, cr, &douprintf, &res.status, 0, &fi); if (error) return (error); error = geterrno3(res.status); if (!error) { nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); if (!nfs3_pathconf_disable_cache) { mutex_enter(&rp->r_statelock); if (rp->r_pathconf == NULL) { rp->r_pathconf = kmem_alloc( sizeof (*rp->r_pathconf), KM_NOSLEEP); if (rp->r_pathconf != NULL) *rp->r_pathconf = res.resok.info; } mutex_exit(&rp->r_statelock); } switch (cmd) { case _PC_LINK_MAX: *valp = res.resok.info.link_max; break; case _PC_NAME_MAX: *valp = res.resok.info.name_max; break; case _PC_PATH_MAX: case _PC_SYMLINK_MAX: *valp = MAXPATHLEN; break; case _PC_CHOWN_RESTRICTED: *valp = res.resok.info.chown_restricted; break; case _PC_NO_TRUNC: *valp = res.resok.info.no_trunc; break; default: return (EINVAL); } } else { nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); PURGE_STALE_FH(error, vp, cr); } return (error); } /* * Called by async thread to do synchronous pageio. Do the i/o, wait * for it to complete, and cleanup the page list when done. */ static int nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, int flags, cred_t *cr) { int error; ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); if (flags & B_READ) pvn_read_done(pp, (error ? B_ERROR : 0) | flags); else pvn_write_done(pp, (error ? B_ERROR : 0) | flags); return (error); } /* ARGSUSED */ static int nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, int flags, cred_t *cr, caller_context_t *ct) { int error; rnode_t *rp; if (pp == NULL) return (EINVAL); if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); rp = VTOR(vp); mutex_enter(&rp->r_statelock); rp->r_count++; mutex_exit(&rp->r_statelock); if (flags & B_ASYNC) { error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, nfs3_sync_pageio); } else error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); mutex_enter(&rp->r_statelock); rp->r_count--; cv_broadcast(&rp->r_cv); mutex_exit(&rp->r_statelock); return (error); } /* ARGSUSED */ static void nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, caller_context_t *ct) { int error; rnode_t *rp; page_t *plist; page_t *pptr; offset3 offset; count3 len; k_sigset_t smask; /* * We should get called with fl equal to either B_FREE or * B_INVAL. Any other value is illegal. * * The page that we are either supposed to free or destroy * should be exclusive locked and its io lock should not * be held. */ ASSERT(fl == B_FREE || fl == B_INVAL); ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); rp = VTOR(vp); /* * If the page doesn't need to be committed or we shouldn't * even bother attempting to commit it, then just make sure * that the p_fsdata byte is clear and then either free or * destroy the page as appropriate. */ if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { pp->p_fsdata = C_NOCOMMIT; if (fl == B_FREE) page_free(pp, dn); else page_destroy(pp, dn); return; } /* * If there is a page invalidation operation going on, then * if this is one of the pages being destroyed, then just * clear the p_fsdata byte and then either free or destroy * the page as appropriate. */ mutex_enter(&rp->r_statelock); if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { mutex_exit(&rp->r_statelock); pp->p_fsdata = C_NOCOMMIT; if (fl == B_FREE) page_free(pp, dn); else page_destroy(pp, dn); return; } /* * If we are freeing this page and someone else is already * waiting to do a commit, then just unlock the page and * return. That other thread will take care of commiting * this page. The page can be freed sometime after the * commit has finished. Otherwise, if the page is marked * as delay commit, then we may be getting called from * pvn_write_done, one page at a time. This could result * in one commit per page, so we end up doing lots of small * commits instead of fewer larger commits. This is bad, * we want do as few commits as possible. */ if (fl == B_FREE) { if (rp->r_flags & RCOMMITWAIT) { page_unlock(pp); mutex_exit(&rp->r_statelock); return; } if (pp->p_fsdata == C_DELAYCOMMIT) { pp->p_fsdata = C_COMMIT; page_unlock(pp); mutex_exit(&rp->r_statelock); return; } } /* * Check to see if there is a signal which would prevent an * attempt to commit the pages from being successful. If so, * then don't bother with all of the work to gather pages and * generate the unsuccessful RPC. Just return from here and * let the page be committed at some later time. */ sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { sigunintr(&smask); page_unlock(pp); mutex_exit(&rp->r_statelock); return; } sigunintr(&smask); /* * We are starting to need to commit pages, so let's try * to commit as many as possible at once to reduce the * overhead. * * Set the `commit inprogress' state bit. We must * first wait until any current one finishes. Then * we initialize the c_pages list with this page. */ while (rp->r_flags & RCOMMIT) { rp->r_flags |= RCOMMITWAIT; cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); rp->r_flags &= ~RCOMMITWAIT; } rp->r_flags |= RCOMMIT; mutex_exit(&rp->r_statelock); ASSERT(rp->r_commit.c_pages == NULL); rp->r_commit.c_pages = pp; rp->r_commit.c_commbase = (offset3)pp->p_offset; rp->r_commit.c_commlen = PAGESIZE; /* * Gather together all other pages which can be committed. * They will all be chained off r_commit.c_pages. */ nfs3_get_commit(vp); /* * Clear the `commit inprogress' status and disconnect * the list of pages to be committed from the rnode. * At this same time, we also save the starting offset * and length of data to be committed on the server. */ plist = rp->r_commit.c_pages; rp->r_commit.c_pages = NULL; offset = rp->r_commit.c_commbase; len = rp->r_commit.c_commlen; mutex_enter(&rp->r_statelock); rp->r_flags &= ~RCOMMIT; cv_broadcast(&rp->r_commit.c_cv); mutex_exit(&rp->r_statelock); if (curproc == proc_pageout || curproc == proc_fsflush || nfs_zone() != VTOMI(vp)->mi_zone) { nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); return; } /* * Actually generate the COMMIT3 over the wire operation. */ error = nfs3_commit(vp, offset, len, cr); /* * If we got an error during the commit, just unlock all * of the pages. The pages will get retransmitted to the * server during a putpage operation. */ if (error) { while (plist != NULL) { pptr = plist; page_sub(&plist, pptr); page_unlock(pptr); } return; } /* * We've tried as hard as we can to commit the data to stable * storage on the server. We release the rest of the pages * and clear the commit required state. They will be put * onto the tail of the cachelist if they are nolonger * mapped. */ while (plist != pp) { pptr = plist; page_sub(&plist, pptr); pptr->p_fsdata = C_NOCOMMIT; (void) page_release(pptr, 1); } /* * It is possible that nfs3_commit didn't return error but * some other thread has modified the page we are going * to free/destroy. * In this case we need to rewrite the page. Do an explicit check * before attempting to free/destroy the page. If modified, needs to * be rewritten so unlock the page and return. */ if (hat_ismod(pp)) { pp->p_fsdata = C_NOCOMMIT; page_unlock(pp); return; } /* * Now, as appropriate, either free or destroy the page * that we were called with. */ pp->p_fsdata = C_NOCOMMIT; if (fl == B_FREE) page_free(pp, dn); else page_destroy(pp, dn); } static int nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) { int error; rnode_t *rp; COMMIT3args args; COMMIT3res res; int douprintf; cred_t *cred; rp = VTOR(vp); ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); mutex_enter(&rp->r_statelock); if (rp->r_cred != NULL) { cred = rp->r_cred; crhold(cred); } else { rp->r_cred = cr; crhold(cr); cred = cr; crhold(cred); } mutex_exit(&rp->r_statelock); args.file = *VTOFH3(vp); args.offset = offset; args.count = count; doitagain: douprintf = 1; error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, xdr_COMMIT3args, (caddr_t)&args, xdr_COMMIT3res, (caddr_t)&res, cred, &douprintf, &res.status, 0, NULL); crfree(cred); if (error) return (error); error = geterrno3(res.status); if (!error) { ASSERT(rp->r_flags & RHAVEVERF); mutex_enter(&rp->r_statelock); if (rp->r_verf == res.resok.verf) { mutex_exit(&rp->r_statelock); return (0); } nfs3_set_mod(vp); rp->r_verf = res.resok.verf; mutex_exit(&rp->r_statelock); error = NFS_VERF_MISMATCH; } else { if (error == EACCES) { mutex_enter(&rp->r_statelock); if (cred != cr) { if (rp->r_cred != NULL) crfree(rp->r_cred); rp->r_cred = cr; crhold(cr); cred = cr; crhold(cred); mutex_exit(&rp->r_statelock); goto doitagain; } mutex_exit(&rp->r_statelock); } /* * Can't do a PURGE_STALE_FH here because this * can cause a deadlock. nfs3_commit can * be called from nfs3_dispose which can be called * indirectly via pvn_vplist_dirty. PURGE_STALE_FH * can call back to pvn_vplist_dirty. */ if (error == ESTALE) { mutex_enter(&rp->r_statelock); rp->r_flags |= RSTALE; if (!rp->r_error) rp->r_error = error; mutex_exit(&rp->r_statelock); PURGE_ATTRCACHE(vp); } else { mutex_enter(&rp->r_statelock); if (!rp->r_error) rp->r_error = error; mutex_exit(&rp->r_statelock); } } return (error); } static void nfs3_set_mod(vnode_t *vp) { ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); pvn_vplist_setdirty(vp, nfs_setmod_check); } /* * This routine is used to gather together a page list of the pages * which are to be committed on the server. This routine must not * be called if the calling thread holds any locked pages. * * The calling thread must have set RCOMMIT. This bit is used to * serialize access to the commit structure in the rnode. As long * as the thread has set RCOMMIT, then it can manipulate the commit * structure without requiring any other locks. */ static void nfs3_get_commit(vnode_t *vp) { rnode_t *rp; page_t *pp; kmutex_t *vphm; rp = VTOR(vp); ASSERT(rp->r_flags & RCOMMIT); vphm = page_vnode_mutex(vp); mutex_enter(vphm); /* * If there are no pages associated with this vnode, then * just return. */ if ((pp = vp->v_pages) == NULL) { mutex_exit(vphm); return; } /* * Step through all of the pages associated with this vnode * looking for pages which need to be committed. */ do { /* Skip marker pages. */ if (pp->p_hash == PVN_VPLIST_HASH_TAG) continue; /* * If this page does not need to be committed or is * modified, then just skip it. */ if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) continue; /* * Attempt to lock the page. If we can't, then * someone else is messing with it and we will * just skip it. */ if (!page_trylock(pp, SE_EXCL)) continue; /* * If this page does not need to be committed or is * modified, then just skip it. Recheck now that * the page is locked. */ if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { page_unlock(pp); continue; } if (PP_ISFREE(pp)) { cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", (void *)pp); } /* * The page needs to be committed and we locked it. * Update the base and length parameters and add it * to r_pages. */ if (rp->r_commit.c_pages == NULL) { rp->r_commit.c_commbase = (offset3)pp->p_offset; rp->r_commit.c_commlen = PAGESIZE; } else if (pp->p_offset < rp->r_commit.c_commbase) { rp->r_commit.c_commlen = rp->r_commit.c_commbase - (offset3)pp->p_offset + rp->r_commit.c_commlen; rp->r_commit.c_commbase = (offset3)pp->p_offset; } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) <= pp->p_offset) { rp->r_commit.c_commlen = (offset3)pp->p_offset - rp->r_commit.c_commbase + PAGESIZE; } page_add(&rp->r_commit.c_pages, pp); } while ((pp = pp->p_vpnext) != vp->v_pages); mutex_exit(vphm); } /* * This routine is used to gather together a page list of the pages * which are to be committed on the server. This routine must not * be called if the calling thread holds any locked pages. * * The calling thread must have set RCOMMIT. This bit is used to * serialize access to the commit structure in the rnode. As long * as the thread has set RCOMMIT, then it can manipulate the commit * structure without requiring any other locks. */ static void nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) { rnode_t *rp; page_t *pp; u_offset_t end; u_offset_t off; ASSERT(len != 0); rp = VTOR(vp); ASSERT(rp->r_flags & RCOMMIT); ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); /* * If there are no pages associated with this vnode, then * just return. */ if ((pp = vp->v_pages) == NULL) return; /* * Calculate the ending offset. */ end = soff + len; for (off = soff; off < end; off += PAGESIZE) { /* * Lookup each page by vp, offset. */ if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) continue; /* * If this page does not need to be committed or is * modified, then just skip it. */ if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { page_unlock(pp); continue; } ASSERT(PP_ISFREE(pp) == 0); /* * The page needs to be committed and we locked it. * Update the base and length parameters and add it * to r_pages. */ if (rp->r_commit.c_pages == NULL) { rp->r_commit.c_commbase = (offset3)pp->p_offset; rp->r_commit.c_commlen = PAGESIZE; } else { rp->r_commit.c_commlen = (offset3)pp->p_offset - rp->r_commit.c_commbase + PAGESIZE; } page_add(&rp->r_commit.c_pages, pp); } } static int nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) { int error; writeverf3 write_verf; rnode_t *rp = VTOR(vp); ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); /* * Flush the data portion of the file and then commit any * portions which need to be committed. This may need to * be done twice if the server has changed state since * data was last written. The data will need to be * rewritten to the server and then a new commit done. * * In fact, this may need to be done several times if the * server is having problems and crashing while we are * attempting to do this. */ top: /* * Do a flush based on the poff and plen arguments. This * will asynchronously write out any modified pages in the * range specified by (poff, plen). This starts all of the * i/o operations which will be waited for in the next * call to nfs3_putpage */ mutex_enter(&rp->r_statelock); write_verf = rp->r_verf; mutex_exit(&rp->r_statelock); error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); if (error == EAGAIN) error = 0; /* * Do a flush based on the poff and plen arguments. This * will synchronously write out any modified pages in the * range specified by (poff, plen) and wait until all of * the asynchronous i/o's in that range are done as well. */ if (!error) error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); if (error) return (error); mutex_enter(&rp->r_statelock); if (rp->r_verf != write_verf) { mutex_exit(&rp->r_statelock); goto top; } mutex_exit(&rp->r_statelock); /* * Now commit any pages which might need to be committed. * If the error, NFS_VERF_MISMATCH, is returned, then * start over with the flush operation. */ error = nfs3_commit_vp(vp, poff, plen, cr); if (error == NFS_VERF_MISMATCH) goto top; return (error); } static int nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) { rnode_t *rp; page_t *plist; offset3 offset; count3 len; rp = VTOR(vp); if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); /* * Set the `commit inprogress' state bit. We must * first wait until any current one finishes. */ mutex_enter(&rp->r_statelock); while (rp->r_flags & RCOMMIT) { rp->r_flags |= RCOMMITWAIT; cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); rp->r_flags &= ~RCOMMITWAIT; } rp->r_flags |= RCOMMIT; mutex_exit(&rp->r_statelock); /* * Gather together all of the pages which need to be * committed. */ if (plen == 0) nfs3_get_commit(vp); else nfs3_get_commit_range(vp, poff, plen); /* * Clear the `commit inprogress' bit and disconnect the * page list which was gathered together in nfs3_get_commit. */ plist = rp->r_commit.c_pages; rp->r_commit.c_pages = NULL; offset = rp->r_commit.c_commbase; len = rp->r_commit.c_commlen; mutex_enter(&rp->r_statelock); rp->r_flags &= ~RCOMMIT; cv_broadcast(&rp->r_commit.c_cv); mutex_exit(&rp->r_statelock); /* * If any pages need to be committed, commit them and * then unlock them so that they can be freed some * time later. */ if (plist != NULL) { /* * No error occurred during the flush portion * of this operation, so now attempt to commit * the data to stable storage on the server. * * This will unlock all of the pages on the list. */ return (nfs3_sync_commit(vp, plist, offset, len, cr)); } return (0); } static int nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, cred_t *cr) { int error; page_t *pp; ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); error = nfs3_commit(vp, offset, count, cr); /* * If we got an error, then just unlock all of the pages * on the list. */ if (error) { while (plist != NULL) { pp = plist; page_sub(&plist, pp); page_unlock(pp); } return (error); } /* * We've tried as hard as we can to commit the data to stable * storage on the server. We just unlock the pages and clear * the commit required state. They will get freed later. */ while (plist != NULL) { pp = plist; page_sub(&plist, pp); pp->p_fsdata = C_NOCOMMIT; page_unlock(pp); } return (error); } static void nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, cred_t *cr) { ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); (void) nfs3_sync_commit(vp, plist, offset, count, cr); } /* ARGSUSED */ static int nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, caller_context_t *ct) { int error; mntinfo_t *mi; mi = VTOMI(vp); if (nfs_zone() != mi->mi_zone) return (EIO); if (mi->mi_flags & MI_ACL) { error = acl_setacl3(vp, vsecattr, flag, cr); if (mi->mi_flags & MI_ACL) return (error); } return (ENOSYS); } /* ARGSUSED */ static int nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, caller_context_t *ct) { int error; mntinfo_t *mi; mi = VTOMI(vp); if (nfs_zone() != mi->mi_zone) return (EIO); if (mi->mi_flags & MI_ACL) { error = acl_getacl3(vp, vsecattr, flag, cr); if (mi->mi_flags & MI_ACL) return (error); } return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); } /* ARGSUSED */ static int nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, caller_context_t *ct) { int error; struct shrlock nshr; struct nfs_owner nfs_owner; netobj lm_fh3; if (nfs_zone() != VTOMI(vp)->mi_zone) return (EIO); /* * check for valid cmd parameter */ if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) return (EINVAL); /* * Check access permissions */ if (cmd == F_SHARE && (((shr->s_access & F_RDACC) && !(flag & FREAD)) || ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) return (EBADF); /* * If the filesystem is mounted using local locking, pass the * request off to the local share code. */ if (VTOMI(vp)->mi_flags & MI_LLOCK) return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); switch (cmd) { case F_SHARE: case F_UNSHARE: lm_fh3.n_len = VTOFH3(vp)->fh3_length; lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); /* * If passed an owner that is too large to fit in an * nfs_owner it is likely a recursive call from the * lock manager client and pass it straight through. If * it is not a nfs_owner then simply return an error. */ if (shr->s_own_len > sizeof (nfs_owner.lowner)) { if (((struct nfs_owner *)shr->s_owner)->magic != NFS_OWNER_MAGIC) return (EINVAL); if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { error = set_errno(error); } return (error); } /* * Remote share reservations owner is a combination of * a magic number, hostname, and the local owner */ bzero(&nfs_owner, sizeof (nfs_owner)); nfs_owner.magic = NFS_OWNER_MAGIC; (void) strncpy(nfs_owner.hname, uts_nodename(), sizeof (nfs_owner.hname)); bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); nshr.s_access = shr->s_access; nshr.s_deny = shr->s_deny; nshr.s_sysid = 0; nshr.s_pid = ttoproc(curthread)->p_pid; nshr.s_own_len = sizeof (nfs_owner); nshr.s_owner = (caddr_t)&nfs_owner; if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { error = set_errno(error); } break; case F_HASREMOTELOCKS: /* * NFS client can't store remote locks itself */ shr->s_access = 0; error = 0; break; default: error = EINVAL; break; } return (error); }