/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Vnode operations for the High Sierra filesystem */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * For struct modlinkage */ #include #include #include #include #include #include #include /* # of contiguous requests to detect sequential access pattern */ static int seq_contig_requests = 2; /* * This is the max number os taskq threads that will be created * if required. Since we are using a Dynamic TaskQ by default only * one thread is created initially. * * NOTE: In the usual hsfs use case this per fs instance number * of taskq threads should not place any undue load on a system. * Even on an unusual system with say 100 CDROM drives, 800 threads * will not be created unless all the drives are loaded and all * of them are saturated with I/O at the same time! If there is at * all a complaint of system load due to such an unusual case it * should be easy enough to change to one per-machine Dynamic TaskQ * for all hsfs mounts with a nthreads of say 32. */ static int hsfs_taskq_nthreads = 8; /* # of taskq threads per fs */ /* Min count of adjacent bufs that will avoid buf coalescing */ static int hsched_coalesce_min = 2; /* * Kmem caches for heavily used small allocations. Using these kmem * caches provides a factor of 3 reduction in system time and greatly * aids overall throughput esp. on SPARC. */ struct kmem_cache *hio_cache; struct kmem_cache *hio_info_cache; /* * This tunable allows us to ignore inode numbers from rrip-1.12. * In this case, we fall back to our default inode algorithm. */ extern int use_rrip_inodes; /* * Free behind logic from UFS to tame our thirst for * the page cache. * See usr/src/uts/common/fs/ufs/ufs_vnops.c for more * explanation. */ static int freebehind = 1; static int smallfile = 0; static int cache_read_ahead = 0; static u_offset_t smallfile64 = 32 * 1024; #define SMALLFILE1_D 1000 #define SMALLFILE2_D 10 static u_offset_t smallfile1 = 32 * 1024; static u_offset_t smallfile2 = 32 * 1024; static clock_t smallfile_update = 0; /* when to recompute */ static uint_t smallfile1_d = SMALLFILE1_D; static uint_t smallfile2_d = SMALLFILE2_D; static int hsched_deadline_compare(const void *x1, const void *x2); static int hsched_offset_compare(const void *x1, const void *x2); static void hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra); int hsched_invoke_strategy(struct hsfs *fsp); /* ARGSUSED */ static int hsfs_fsync(vnode_t *cp, int syncflag, cred_t *cred) { return (0); } /*ARGSUSED*/ static int hsfs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cred, struct caller_context *ct) { caddr_t base; offset_t diff; int error; struct hsnode *hp; uint_t filesize; int dofree; hp = VTOH(vp); /* * if vp is of type VDIR, make sure dirent * is filled up with all info (because of ptbl) */ if (vp->v_type == VDIR) { if (hp->hs_dirent.ext_size == 0) hs_filldirent(vp, &hp->hs_dirent); } filesize = hp->hs_dirent.ext_size; /* Sanity checks. */ if (uiop->uio_resid == 0 || /* No data wanted. */ uiop->uio_loffset > HS_MAXFILEOFF || /* Offset too big. */ uiop->uio_loffset >= filesize) /* Past EOF. */ return (0); do { /* * We want to ask for only the "right" amount of data. * In this case that means:- * * We can't get data from beyond our EOF. If asked, * we will give a short read. * * segmap_getmapflt returns buffers of MAXBSIZE bytes. * These buffers are always MAXBSIZE aligned. * If our starting offset is not MAXBSIZE aligned, * we can only ask for less than MAXBSIZE bytes. * * If our requested offset and length are such that * they belong in different MAXBSIZE aligned slots * then we'll be making more than one call on * segmap_getmapflt. * * This diagram shows the variables we use and their * relationships. * * |<-----MAXBSIZE----->| * +--------------------------...+ * |.....mapon->|<--n-->|....*...|EOF * +--------------------------...+ * uio_loffset->| * uio_resid....|<---------->| * diff.........|<-------------->| * * So, in this case our offset is not aligned * and our request takes us outside of the * MAXBSIZE window. We will break this up into * two segmap_getmapflt calls. */ size_t nbytes; offset_t mapon; size_t n; uint_t flags; mapon = uiop->uio_loffset & MAXBOFFSET; diff = filesize - uiop->uio_loffset; nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid); n = MIN(diff, nbytes); if (n <= 0) { /* EOF or request satisfied. */ return (0); } /* * Freebehind computation taken from: * usr/src/uts/common/fs/ufs/ufs_vnops.c */ if (drv_hztousec(ddi_get_lbolt()) >= smallfile_update) { uint64_t percpufreeb; if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; percpufreeb = ptob((uint64_t)freemem) / ncpus_online; smallfile1 = percpufreeb / smallfile1_d; smallfile2 = percpufreeb / smallfile2_d; smallfile1 = MAX(smallfile1, smallfile); smallfile1 = MAX(smallfile1, smallfile64); smallfile2 = MAX(smallfile1, smallfile2); smallfile_update = drv_hztousec(ddi_get_lbolt()) + 1000000; } dofree = freebehind && hp->hs_prev_offset == uiop->uio_loffset && hp->hs_ra_bytes > 0; base = segmap_getmapflt(segkmap, vp, (u_offset_t)uiop->uio_loffset, n, 1, S_READ); error = uiomove(base + mapon, n, UIO_READ, uiop); if (error == 0) { /* * if read a whole block, or read to eof, * won't need this buffer again soon. */ if (n + mapon == MAXBSIZE || uiop->uio_loffset == filesize) flags = SM_DONTNEED; else flags = 0; if (dofree) { flags = SM_FREE | SM_ASYNC; if ((cache_read_ahead == 0) && uiop->uio_loffset > smallfile2) flags |= SM_DONTNEED; } error = segmap_release(segkmap, base, flags); } else (void) segmap_release(segkmap, base, 0); } while (error == 0 && uiop->uio_resid > 0); return (error); } /*ARGSUSED2*/ static int hsfs_getattr( struct vnode *vp, struct vattr *vap, int flags, struct cred *cred) { struct hsnode *hp; struct vfs *vfsp; struct hsfs *fsp; hp = VTOH(vp); fsp = VFS_TO_HSFS(vp->v_vfsp); vfsp = vp->v_vfsp; if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) { hs_filldirent(vp, &hp->hs_dirent); } vap->va_type = IFTOVT(hp->hs_dirent.mode); vap->va_mode = hp->hs_dirent.mode; vap->va_uid = hp->hs_dirent.uid; vap->va_gid = hp->hs_dirent.gid; vap->va_fsid = vfsp->vfs_dev; vap->va_nodeid = (ino64_t)hp->hs_nodeid; vap->va_nlink = hp->hs_dirent.nlink; vap->va_size = (offset_t)hp->hs_dirent.ext_size; vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec; vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000; vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec; vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000; vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec; vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000; if (vp->v_type == VCHR || vp->v_type == VBLK) vap->va_rdev = hp->hs_dirent.r_dev; else vap->va_rdev = 0; vap->va_blksize = vfsp->vfs_bsize; /* no. of blocks = no. of data blocks + no. of xar blocks */ vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t) (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE); vap->va_seq = hp->hs_seq; return (0); } /*ARGSUSED*/ static int hsfs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cred) { struct hsnode *hp; if (vp->v_type != VLNK) return (EINVAL); hp = VTOH(vp); if (hp->hs_dirent.sym_link == (char *)NULL) return (ENOENT); return (uiomove(hp->hs_dirent.sym_link, (size_t)MIN(hp->hs_dirent.ext_size, uiop->uio_resid), UIO_READ, uiop)); } /*ARGSUSED*/ static void hsfs_inactive(struct vnode *vp, struct cred *cred) { struct hsnode *hp; struct hsfs *fsp; int nopage; hp = VTOH(vp); fsp = VFS_TO_HSFS(vp->v_vfsp); /* * Note: acquiring and holding v_lock for quite a while * here serializes on the vnode; this is unfortunate, but * likely not to overly impact performance, as the underlying * device (CDROM drive) is quite slow. */ rw_enter(&fsp->hsfs_hash_lock, RW_WRITER); mutex_enter(&hp->hs_contents_lock); mutex_enter(&vp->v_lock); if (vp->v_count < 1) { panic("hsfs_inactive: v_count < 1"); /*NOTREACHED*/ } if (vp->v_count > 1 || (hp->hs_flags & HREF) == 0) { vp->v_count--; /* release hold from vn_rele */ mutex_exit(&vp->v_lock); mutex_exit(&hp->hs_contents_lock); rw_exit(&fsp->hsfs_hash_lock); return; } vp->v_count--; /* release hold from vn_rele */ if (vp->v_count == 0) { /* * Free the hsnode. * If there are no pages associated with the * hsnode, give it back to the kmem_cache, * else put at the end of this file system's * internal free list. */ nopage = !vn_has_cached_data(vp); hp->hs_flags = 0; /* * exit these locks now, since hs_freenode may * kmem_free the hsnode and embedded vnode */ mutex_exit(&vp->v_lock); mutex_exit(&hp->hs_contents_lock); hs_freenode(vp, fsp, nopage); } else { mutex_exit(&vp->v_lock); mutex_exit(&hp->hs_contents_lock); } rw_exit(&fsp->hsfs_hash_lock); } /*ARGSUSED*/ static int hsfs_lookup( struct vnode *dvp, char *nm, struct vnode **vpp, struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cred) { int error; int namelen = (int)strlen(nm); if (*nm == '\0') { VN_HOLD(dvp); *vpp = dvp; return (0); } /* * If we're looking for ourself, life is simple. */ if (namelen == 1 && *nm == '.') { if (error = hs_access(dvp, (mode_t)VEXEC, cred)) return (error); VN_HOLD(dvp); *vpp = dvp; return (0); } return (hs_dirlook(dvp, nm, namelen, vpp, cred)); } /*ARGSUSED*/ static int hsfs_readdir( struct vnode *vp, struct uio *uiop, struct cred *cred, int *eofp) { struct hsnode *dhp; struct hsfs *fsp; struct hs_direntry hd; struct dirent64 *nd; int error; uint_t offset; /* real offset in directory */ uint_t dirsiz; /* real size of directory */ uchar_t *blkp; int hdlen; /* length of hs directory entry */ long ndlen; /* length of dirent entry */ int bytes_wanted; size_t bufsize; /* size of dirent buffer */ char *outbuf; /* ptr to dirent buffer */ char *dname; int dnamelen; size_t dname_size; struct fbuf *fbp; uint_t last_offset; /* last index into current dir block */ ino64_t dirino; /* temporary storage before storing in dirent */ off_t diroff; dhp = VTOH(vp); fsp = VFS_TO_HSFS(vp->v_vfsp); if (dhp->hs_dirent.ext_size == 0) hs_filldirent(vp, &dhp->hs_dirent); dirsiz = dhp->hs_dirent.ext_size; if (uiop->uio_loffset >= dirsiz) { /* at or beyond EOF */ if (eofp) *eofp = 1; return (0); } ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF); offset = uiop->uio_loffset; dname_size = fsp->hsfs_namemax + 1; /* 1 for the ending NUL */ dname = kmem_alloc(dname_size, KM_SLEEP); bufsize = uiop->uio_resid + sizeof (struct dirent64); outbuf = kmem_alloc(bufsize, KM_SLEEP); nd = (struct dirent64 *)outbuf; while (offset < dirsiz) { bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK)); error = fbread(vp, (offset_t)(offset & MAXBMASK), (unsigned int)bytes_wanted, S_READ, &fbp); if (error) goto done; blkp = (uchar_t *)fbp->fb_addr; last_offset = (offset & MAXBMASK) + fbp->fb_count; #define rel_offset(offset) ((offset) & MAXBOFFSET) /* index into blkp */ while (offset < last_offset) { /* * Very similar validation code is found in * process_dirblock(), hsfs_node.c. * For an explanation, see there. * It may make sense for the future to * "consolidate" the code in hs_parsedir(), * process_dirblock() and hsfs_readdir() into * a single utility function. */ hdlen = (int)((uchar_t) HDE_DIR_LEN(&blkp[rel_offset(offset)])); if (hdlen < HDE_ROOT_DIR_REC_SIZE || offset + hdlen > last_offset) { /* * advance to next sector boundary */ offset = roundup(offset + 1, HS_SECTOR_SIZE); if (hdlen) hs_log_bogus_disk_warning(fsp, HSFS_ERR_TRAILING_JUNK, 0); continue; } bzero(&hd, sizeof (hd)); /* * Just ignore invalid directory entries. * XXX - maybe hs_parsedir() will detect EXISTENCE bit */ if (!hs_parsedir(fsp, &blkp[rel_offset(offset)], &hd, dname, &dnamelen, last_offset - offset)) { /* * Determine if there is enough room */ ndlen = (long)DIRENT64_RECLEN((dnamelen)); if ((ndlen + ((char *)nd - outbuf)) > uiop->uio_resid) { fbrelse(fbp, S_READ); goto done; /* output buffer full */ } diroff = offset + hdlen; /* * If the media carries rrip-v1.12 or newer, * and we trust the inodes from the rrip data * (use_rrip_inodes != 0), use that data. If the * media has been created by a recent mkisofs * version, we may trust all numbers in the * starting extent number; otherwise, we cannot * do this for zero sized files and symlinks, * because if we did we'd end up mapping all of * them to the same node. We use HS_DUMMY_INO * in this case and make sure that we will not * map all files to the same meta data. */ if (hd.inode != 0 && use_rrip_inodes) { dirino = hd.inode; } else if ((hd.ext_size == 0 || hd.sym_link != (char *)NULL) && (fsp->hsfs_flags & HSFSMNT_INODE) == 0) { dirino = HS_DUMMY_INO; } else { dirino = hd.ext_lbn; } /* strncpy(9f) will zero uninitialized bytes */ ASSERT(strlen(dname) + 1 <= DIRENT64_NAMELEN(ndlen)); (void) strncpy(nd->d_name, dname, DIRENT64_NAMELEN(ndlen)); nd->d_reclen = (ushort_t)ndlen; nd->d_off = (offset_t)diroff; nd->d_ino = dirino; nd = (struct dirent64 *)((char *)nd + ndlen); /* * free up space allocated for symlink */ if (hd.sym_link != (char *)NULL) { kmem_free(hd.sym_link, (size_t)(hd.ext_size+1)); hd.sym_link = (char *)NULL; } } offset += hdlen; } fbrelse(fbp, S_READ); } /* * Got here for one of the following reasons: * 1) outbuf is full (error == 0) * 2) end of directory reached (error == 0) * 3) error reading directory sector (error != 0) * 4) directory entry crosses sector boundary (error == 0) * * If any directory entries have been copied, don't report * case 4. Instead, return the valid directory entries. * * If no entries have been copied, report the error. * If case 4, this will be indistiguishable from EOF. */ done: ndlen = ((char *)nd - outbuf); if (ndlen != 0) { error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop); uiop->uio_loffset = offset; } kmem_free(dname, dname_size); kmem_free(outbuf, bufsize); if (eofp && error == 0) *eofp = (uiop->uio_loffset >= dirsiz); return (error); } static int hsfs_fid(struct vnode *vp, struct fid *fidp) { struct hsnode *hp; struct hsfid *fid; if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) { fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len); return (ENOSPC); } fid = (struct hsfid *)fidp; fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len); hp = VTOH(vp); mutex_enter(&hp->hs_contents_lock); fid->hf_dir_lbn = hp->hs_dir_lbn; fid->hf_dir_off = (ushort_t)hp->hs_dir_off; fid->hf_ino = hp->hs_nodeid; mutex_exit(&hp->hs_contents_lock); return (0); } /*ARGSUSED*/ static int hsfs_open(struct vnode **vpp, int flag, struct cred *cred) { return (0); } /*ARGSUSED*/ static int hsfs_close( struct vnode *vp, int flag, int count, offset_t offset, struct cred *cred) { (void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0); cleanshares(vp, ttoproc(curthread)->p_pid); return (0); } /*ARGSUSED2*/ static int hsfs_access(struct vnode *vp, int mode, int flags, cred_t *cred) { return (hs_access(vp, (mode_t)mode, cred)); } /* * the seek time of a CD-ROM is very slow, and data transfer * rate is even worse (max. 150K per sec). The design * decision is to reduce access to cd-rom as much as possible, * and to transfer a sizable block (read-ahead) of data at a time. * UFS style of read ahead one block at a time is not appropriate, * and is not supported */ /* * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS. */ #define KLUSTSIZE (56 * 1024) /* we don't support read ahead */ int hsfs_lostpage; /* no. of times we lost original page */ /* * Used to prevent biodone() from releasing buf resources that * we didn't allocate in quite the usual way. */ /*ARGSUSED*/ int hsfs_iodone(struct buf *bp) { sema_v(&bp->b_io); return (0); } /* * The taskq thread that invokes the scheduling function to ensure * that all readaheads are complete and cleans up the associated * memory and releases the page lock. */ void hsfs_ra_task(void *arg) { struct hio_info *info = arg; uint_t count; struct buf *wbuf; ASSERT(info->pp != NULL); for (count = 0; count < info->bufsused; count++) { wbuf = &(info->bufs[count]); DTRACE_PROBE1(hsfs_io_wait_ra, struct buf *, wbuf); while (sema_tryp(&(info->sema[count])) == 0) { if (hsched_invoke_strategy(info->fsp)) { sema_p(&(info->sema[count])); break; } } sema_destroy(&(info->sema[count])); DTRACE_PROBE1(hsfs_io_done_ra, struct buf *, wbuf); biofini(&(info->bufs[count])); } for (count = 0; count < info->bufsused; count++) { if (info->vas[count] != NULL) { ppmapout(info->vas[count]); } } kmem_free(info->vas, info->bufcnt * sizeof (caddr_t)); kmem_free(info->bufs, info->bufcnt * sizeof (struct buf)); kmem_free(info->sema, info->bufcnt * sizeof (ksema_t)); pvn_read_done(info->pp, 0); kmem_cache_free(hio_info_cache, info); } /* * Submit asynchronous readahead requests to the I/O scheduler * depending on the number of pages to read ahead. These requests * are asynchronous to the calling thread but I/O requests issued * subsequently by other threads with higher LBNs must wait for * these readaheads to complete since we have a single ordered * I/O pipeline. Thus these readaheads are semi-asynchronous. * A TaskQ handles waiting for the readaheads to complete. * * This function is mostly a copy of hsfs_getapage but somewhat * simpler. A readahead request is aborted if page allocation * fails. */ /*ARGSUSED*/ static int hsfs_getpage_ra( struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr, struct hsnode *hp, struct hsfs *fsp, int xarsiz, offset_t bof, int chunk_lbn_count, int chunk_data_bytes) { struct buf *bufs; caddr_t *vas; caddr_t va; struct page *pp, *searchp, *lastp; struct vnode *devvp; ulong_t byte_offset; size_t io_len_tmp; uint_t io_off, io_len; uint_t xlen; uint_t filsiz; uint_t secsize; uint_t bufcnt; uint_t bufsused; uint_t count; uint_t io_end; uint_t which_chunk_lbn; uint_t offset_lbn; uint_t offset_extra; offset_t offset_bytes; uint_t remaining_bytes; uint_t extension; int remainder; /* must be signed */ diskaddr_t driver_block; u_offset_t io_off_tmp; ksema_t *fio_done; struct hio_info *info; size_t len; ASSERT(fsp->hqueue != NULL); if (addr >= seg->s_base + seg->s_size) { return (-1); } devvp = fsp->hsfs_devvp; secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */ /* file data size */ filsiz = hp->hs_dirent.ext_size; if (off >= filsiz) return (0); extension = 0; pp = NULL; extension += hp->hs_ra_bytes; /* * Some cd writers don't write sectors that aren't used. Also, * there's no point in reading sectors we'll never look at. So, * if we're asked to go beyond the end of a file, truncate to the * length of that file. * * Additionally, this behaviour is required by section 6.4.5 of * ISO 9660:1988(E). */ len = MIN(extension ? extension : PAGESIZE, filsiz - off); /* A little paranoia */ if (len <= 0) return (-1); /* * After all that, make sure we're asking for things in units * that bdev_strategy() will understand (see bug 4202551). */ len = roundup(len, DEV_BSIZE); pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp, &io_len_tmp, off, len, 1); if (pp == NULL) { hp->hs_num_contig = 0; hp->hs_ra_bytes = 0; hp->hs_prev_offset = 0; return (-1); } io_off = (uint_t)io_off_tmp; io_len = (uint_t)io_len_tmp; /* check for truncation */ /* * xxx Clean up and return EIO instead? * xxx Ought to go to u_offset_t for everything, but we * xxx call lots of things that want uint_t arguments. */ ASSERT(io_off == io_off_tmp); /* * get enough buffers for worst-case scenario * (i.e., no coalescing possible). */ bufcnt = (len + secsize - 1) / secsize; bufs = kmem_alloc(bufcnt * sizeof (struct buf), KM_SLEEP); vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP); /* * Allocate a array of semaphores since we are doing I/O * scheduling. */ fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), KM_SLEEP); /* * If our filesize is not an integer multiple of PAGESIZE, * we zero that part of the last page that's between EOF and * the PAGESIZE boundary. */ xlen = io_len & PAGEOFFSET; if (xlen != 0) pagezero(pp->p_prev, xlen, PAGESIZE - xlen); DTRACE_PROBE2(hsfs_readahead, struct vnode *, vp, uint_t, io_len); va = NULL; lastp = NULL; searchp = pp; io_end = io_off + io_len; for (count = 0, byte_offset = io_off; byte_offset < io_end; count++) { ASSERT(count < bufcnt); bioinit(&bufs[count]); bufs[count].b_edev = devvp->v_rdev; bufs[count].b_dev = cmpdev(devvp->v_rdev); bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ; bufs[count].b_iodone = hsfs_iodone; bufs[count].b_vp = vp; bufs[count].b_file = vp; /* Compute disk address for interleaving. */ /* considered without skips */ which_chunk_lbn = byte_offset / chunk_data_bytes; /* factor in skips */ offset_lbn = which_chunk_lbn * chunk_lbn_count; /* convert to physical byte offset for lbn */ offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp); /* don't forget offset into lbn */ offset_extra = byte_offset % chunk_data_bytes; /* get virtual block number for driver */ driver_block = lbtodb(bof + xarsiz + offset_bytes + offset_extra); if (lastp != searchp) { /* this branch taken first time through loop */ va = vas[count] = ppmapin(searchp, PROT_WRITE, (caddr_t)-1); /* ppmapin() guarantees not to return NULL */ } else { vas[count] = NULL; } bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE; bufs[count].b_offset = (offset_t)(byte_offset - io_off + off); /* * We specifically use the b_lblkno member here * as even in the 32 bit world driver_block can * get very large in line with the ISO9660 spec. */ bufs[count].b_lblkno = driver_block; remaining_bytes = ((which_chunk_lbn + 1) * chunk_data_bytes) - byte_offset; /* * remaining_bytes can't be zero, as we derived * which_chunk_lbn directly from byte_offset. */ if ((remaining_bytes + byte_offset) < (off + len)) { /* coalesce-read the rest of the chunk */ bufs[count].b_bcount = remaining_bytes; } else { /* get the final bits */ bufs[count].b_bcount = off + len - byte_offset; } remainder = PAGESIZE - (byte_offset % PAGESIZE); if (bufs[count].b_bcount > remainder) { bufs[count].b_bcount = remainder; } bufs[count].b_bufsize = bufs[count].b_bcount; if (((offset_t)byte_offset + bufs[count].b_bcount) > HS_MAXFILEOFF) { break; } byte_offset += bufs[count].b_bcount; /* * We are scheduling I/O so we need to enqueue * requests rather than calling bdev_strategy * here. A later invocation of the scheduling * function will take care of doing the actual * I/O as it selects requests from the queue as * per the scheduling logic. */ struct hio *hsio = kmem_cache_alloc(hio_cache, KM_SLEEP); sema_init(&fio_done[count], 0, NULL, SEMA_DEFAULT, NULL); hsio->bp = &bufs[count]; hsio->sema = &fio_done[count]; hsio->io_lblkno = bufs[count].b_lblkno; hsio->nblocks = howmany(hsio->bp->b_bcount, DEV_BSIZE); /* used for deadline */ hsio->io_timestamp = drv_hztousec(ddi_get_lbolt()); /* for I/O coalescing */ hsio->contig_chain = NULL; hsched_enqueue_io(fsp, hsio, 1); lwp_stat_update(LWP_STAT_INBLK, 1); lastp = searchp; if ((remainder - bufs[count].b_bcount) < 1) { searchp = searchp->p_next; } } bufsused = count; info = kmem_cache_alloc(hio_info_cache, KM_SLEEP); info->bufs = bufs; info->vas = vas; info->sema = fio_done; info->bufsused = bufsused; info->bufcnt = bufcnt; info->fsp = fsp; info->pp = pp; (void) taskq_dispatch(fsp->hqueue->ra_task, hsfs_ra_task, info, KM_SLEEP); /* * The I/O locked pages are unlocked in our taskq thread. */ return (0); } /* * Each file may have a different interleaving on disk. This makes * things somewhat interesting. The gist is that there are some * number of contiguous data sectors, followed by some other number * of contiguous skip sectors. The sum of those two sets of sectors * defines the interleave size. Unfortunately, it means that we generally * can't simply read N sectors starting at a given offset to satisfy * any given request. * * What we do is get the relevant memory pages via pvn_read_kluster(), * then stride through the interleaves, setting up a buf for each * sector that needs to be brought in. Instead of kmem_alloc'ing * space for the sectors, though, we just point at the appropriate * spot in the relevant page for each of them. This saves us a bunch * of copying. * * NOTICE: The code below in hsfs_getapage is mostly same as the code * in hsfs_getpage_ra above (with some omissions). If you are * making any change to this function, please also look at * hsfs_getpage_ra. */ /*ARGSUSED*/ static int hsfs_getapage( struct vnode *vp, u_offset_t off, size_t len, uint_t *protp, struct page *pl[], size_t plsz, struct seg *seg, caddr_t addr, enum seg_rw rw, struct cred *cred) { struct hsnode *hp; struct hsfs *fsp; int err; struct buf *bufs; caddr_t *vas; caddr_t va; struct page *pp, *searchp, *lastp; page_t *pagefound; offset_t bof; struct vnode *devvp; ulong_t byte_offset; size_t io_len_tmp; uint_t io_off, io_len; uint_t xlen; uint_t filsiz; uint_t secsize; uint_t bufcnt; uint_t bufsused; uint_t count; uint_t io_end; uint_t which_chunk_lbn; uint_t offset_lbn; uint_t offset_extra; offset_t offset_bytes; uint_t remaining_bytes; uint_t extension; int remainder; /* must be signed */ int chunk_lbn_count; int chunk_data_bytes; int xarsiz; diskaddr_t driver_block; u_offset_t io_off_tmp; ksema_t *fio_done; int calcdone; /* * We don't support asynchronous operation at the moment, so * just pretend we did it. If the pages are ever actually * needed, they'll get brought in then. */ if (pl == NULL) return (0); hp = VTOH(vp); fsp = VFS_TO_HSFS(vp->v_vfsp); devvp = fsp->hsfs_devvp; secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */ /* file data size */ filsiz = hp->hs_dirent.ext_size; /* disk addr for start of file */ bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp); /* xarsiz byte must be skipped for data */ xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift; /* how many logical blocks in an interleave (data+skip) */ chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk; if (chunk_lbn_count == 0) { chunk_lbn_count = 1; } /* * Convert interleaving size into bytes. The zero case * (no interleaving) optimization is handled as a side- * effect of the read-ahead logic. */ if (hp->hs_dirent.intlf_sz == 0) { chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp); /* * Optimization: If our pagesize is a multiple of LBN * bytes, we can avoid breaking up a page into individual * lbn-sized requests. */ if (PAGESIZE % chunk_data_bytes == 0) { chunk_lbn_count = BYTE_TO_LBN(PAGESIZE, vp->v_vfsp); chunk_data_bytes = PAGESIZE; } } else { chunk_data_bytes = LBN_TO_BYTE(hp->hs_dirent.intlf_sz, vp->v_vfsp); } reread: err = 0; pagefound = 0; calcdone = 0; /* * Do some read-ahead. This mostly saves us a bit of * system cpu time more than anything else when doing * sequential reads. At some point, could do the * read-ahead asynchronously which might gain us something * on wall time, but it seems unlikely.... * * We do the easy case here, which is to read through * the end of the chunk, minus whatever's at the end that * won't exactly fill a page. */ if (hp->hs_ra_bytes > 0 && chunk_data_bytes != PAGESIZE) { which_chunk_lbn = (off + len) / chunk_data_bytes; extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off; extension -= (extension % PAGESIZE); } else { extension = roundup(len, PAGESIZE); } atomic_inc_64(&fsp->total_pages_requested); pp = NULL; again: /* search for page in buffer */ if ((pagefound = page_exists(vp, off)) == 0) { /* * Need to really do disk IO to get the page. */ if (!calcdone) { extension += hp->hs_ra_bytes; /* * Some cd writers don't write sectors that aren't * used. Also, there's no point in reading sectors * we'll never look at. So, if we're asked to go * beyond the end of a file, truncate to the length * of that file. * * Additionally, this behaviour is required by section * 6.4.5 of ISO 9660:1988(E). */ len = MIN(extension ? extension : PAGESIZE, filsiz - off); /* A little paranoia. */ ASSERT(len > 0); /* * After all that, make sure we're asking for things * in units that bdev_strategy() will understand * (see bug 4202551). */ len = roundup(len, DEV_BSIZE); calcdone = 1; } pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp, &io_len_tmp, off, len, 0); if (pp == NULL) { /* * Pressure on memory, roll back readahead */ hp->hs_num_contig = 0; hp->hs_ra_bytes = 0; hp->hs_prev_offset = 0; goto again; } io_off = (uint_t)io_off_tmp; io_len = (uint_t)io_len_tmp; /* check for truncation */ /* * xxx Clean up and return EIO instead? * xxx Ought to go to u_offset_t for everything, but we * xxx call lots of things that want uint_t arguments. */ ASSERT(io_off == io_off_tmp); /* * get enough buffers for worst-case scenario * (i.e., no coalescing possible). */ bufcnt = (len + secsize - 1) / secsize; bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP); vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP); /* * Allocate a array of semaphores if we are doing I/O * scheduling. */ if (fsp->hqueue != NULL) fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), KM_SLEEP); for (count = 0; count < bufcnt; count++) { bioinit(&bufs[count]); bufs[count].b_edev = devvp->v_rdev; bufs[count].b_dev = cmpdev(devvp->v_rdev); bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ; bufs[count].b_iodone = hsfs_iodone; bufs[count].b_vp = vp; bufs[count].b_file = vp; } /* * If our filesize is not an integer multiple of PAGESIZE, * we zero that part of the last page that's between EOF and * the PAGESIZE boundary. */ xlen = io_len & PAGEOFFSET; if (xlen != 0) pagezero(pp->p_prev, xlen, PAGESIZE - xlen); va = NULL; lastp = NULL; searchp = pp; io_end = io_off + io_len; for (count = 0, byte_offset = io_off; byte_offset < io_end; count++) { ASSERT(count < bufcnt); /* Compute disk address for interleaving. */ /* considered without skips */ which_chunk_lbn = byte_offset / chunk_data_bytes; /* factor in skips */ offset_lbn = which_chunk_lbn * chunk_lbn_count; /* convert to physical byte offset for lbn */ offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp); /* don't forget offset into lbn */ offset_extra = byte_offset % chunk_data_bytes; /* get virtual block number for driver */ driver_block = lbtodb(bof + xarsiz + offset_bytes + offset_extra); if (lastp != searchp) { /* this branch taken first time through loop */ va = vas[count] = ppmapin(searchp, PROT_WRITE, (caddr_t)-1); /* ppmapin() guarantees not to return NULL */ } else { vas[count] = NULL; } bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE; bufs[count].b_offset = (offset_t)(byte_offset - io_off + off); /* * We specifically use the b_lblkno member here * as even in the 32 bit world driver_block can * get very large in line with the ISO9660 spec. */ bufs[count].b_lblkno = driver_block; remaining_bytes = ((which_chunk_lbn + 1) * chunk_data_bytes) - byte_offset; /* * remaining_bytes can't be zero, as we derived * which_chunk_lbn directly from byte_offset. */ if ((remaining_bytes + byte_offset) < (off + len)) { /* coalesce-read the rest of the chunk */ bufs[count].b_bcount = remaining_bytes; } else { /* get the final bits */ bufs[count].b_bcount = off + len - byte_offset; } /* * It would be nice to do multiple pages' * worth at once here when the opportunity * arises, as that has been shown to improve * our wall time. However, to do that * requires that we use the pageio subsystem, * which doesn't mix well with what we're * already using here. We can't use pageio * all the time, because that subsystem * assumes that a page is stored in N * contiguous blocks on the device. * Interleaving violates that assumption. * * Update: This is now not so big a problem * because of the I/O scheduler sitting below * that can re-order and coalesce I/O requests. */ remainder = PAGESIZE - (byte_offset % PAGESIZE); if (bufs[count].b_bcount > remainder) { bufs[count].b_bcount = remainder; } bufs[count].b_bufsize = bufs[count].b_bcount; if (((offset_t)byte_offset + bufs[count].b_bcount) > HS_MAXFILEOFF) { break; } byte_offset += bufs[count].b_bcount; if (fsp->hqueue == NULL) { (void) bdev_strategy(&bufs[count]); } else { /* * We are scheduling I/O so we need to enqueue * requests rather than calling bdev_strategy * here. A later invocation of the scheduling * function will take care of doing the actual * I/O as it selects requests from the queue as * per the scheduling logic. */ struct hio *hsio = kmem_cache_alloc(hio_cache, KM_SLEEP); sema_init(&fio_done[count], 0, NULL, SEMA_DEFAULT, NULL); hsio->bp = &bufs[count]; hsio->sema = &fio_done[count]; hsio->io_lblkno = bufs[count].b_lblkno; hsio->nblocks = howmany(hsio->bp->b_bcount, DEV_BSIZE); /* used for deadline */ hsio->io_timestamp = drv_hztousec(ddi_get_lbolt()); /* for I/O coalescing */ hsio->contig_chain = NULL; hsched_enqueue_io(fsp, hsio, 0); } lwp_stat_update(LWP_STAT_INBLK, 1); lastp = searchp; if ((remainder - bufs[count].b_bcount) < 1) { searchp = searchp->p_next; } } bufsused = count; /* Now wait for everything to come in */ if (fsp->hqueue == NULL) { for (count = 0; count < bufsused; count++) { if (err == 0) { err = biowait(&bufs[count]); } else (void) biowait(&bufs[count]); } } else { for (count = 0; count < bufsused; count++) { struct buf *wbuf; /* * Invoke scheduling function till our buf * is processed. In doing this it might * process bufs enqueued by other threads * which is good. */ wbuf = &bufs[count]; DTRACE_PROBE1(hsfs_io_wait, struct buf *, wbuf); while (sema_tryp(&fio_done[count]) == 0) { /* * hsched_invoke_strategy will return 1 * if the I/O queue is empty. This means * that there is another thread who has * issued our buf and is waiting. So we * just block instead of spinning. */ if (hsched_invoke_strategy(fsp)) { sema_p(&fio_done[count]); break; } } sema_destroy(&fio_done[count]); DTRACE_PROBE1(hsfs_io_done, struct buf *, wbuf); if (err == 0) { err = geterror(wbuf); } } kmem_free(fio_done, bufcnt * sizeof (ksema_t)); } /* Don't leak resources */ for (count = 0; count < bufcnt; count++) { biofini(&bufs[count]); if (count < bufsused && vas[count] != NULL) { ppmapout(vas[count]); } } kmem_free(vas, bufcnt * sizeof (caddr_t)); kmem_free(bufs, bufcnt * sizeof (struct buf)); } if (err) { pvn_read_done(pp, B_ERROR); return (err); } /* * Lock the requested page, and the one after it if possible. * Don't bother if our caller hasn't given us a place to stash * the page pointers, since otherwise we'd lock pages that would * never get unlocked. */ if (pagefound) { int index; ulong_t soff; /* * Make sure it's in memory before we say it's here. */ if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) { hsfs_lostpage++; goto reread; } pl[0] = pp; index = 1; atomic_inc_64(&fsp->cache_read_pages); /* * Try to lock the next page, if it exists, without * blocking. */ plsz -= PAGESIZE; /* LINTED (plsz is unsigned) */ for (soff = off + PAGESIZE; plsz > 0; soff += PAGESIZE, plsz -= PAGESIZE) { pp = page_lookup_nowait(vp, (u_offset_t)soff, SE_SHARED); if (pp == NULL) break; pl[index++] = pp; } pl[index] = NULL; /* * Schedule a semi-asynchronous readahead if we are * accessing the last cached page for the current * file. * * Doing this here means that readaheads will be * issued only if cache-hits occur. This is an advantage * since cache-hits would mean that readahead is giving * the desired benefit. If cache-hits do not occur there * is no point in reading ahead of time - the system * is loaded anyway. */ if (fsp->hqueue != NULL && hp->hs_prev_offset - off == PAGESIZE && hp->hs_prev_offset < filsiz && hp->hs_ra_bytes > 0 && !page_exists(vp, hp->hs_prev_offset)) { (void) hsfs_getpage_ra(vp, hp->hs_prev_offset, seg, addr + PAGESIZE, hp, fsp, xarsiz, bof, chunk_lbn_count, chunk_data_bytes); } return (0); } if (pp != NULL) { pvn_plist_init(pp, pl, plsz, off, io_len, rw); } return (err); } static int hsfs_getpage( struct vnode *vp, offset_t off, size_t len, uint_t *protp, struct page *pl[], size_t plsz, struct seg *seg, caddr_t addr, enum seg_rw rw, struct cred *cred) { int err; uint_t filsiz; struct hsfs *fsp; struct hsnode *hp; fsp = VFS_TO_HSFS(vp->v_vfsp); hp = VTOH(vp); /* does not support write */ if (rw == S_WRITE) { panic("write attempt on READ ONLY HSFS"); /*NOTREACHED*/ } if (vp->v_flag & VNOMAP) { return (ENOSYS); } ASSERT(off <= HS_MAXFILEOFF); /* * Determine file data size for EOF check. */ filsiz = hp->hs_dirent.ext_size; if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap) return (EFAULT); /* beyond EOF */ /* * Async Read-ahead computation. * This attempts to detect sequential access pattern and * enables reading extra pages ahead of time. */ if (fsp->hqueue != NULL) { /* * This check for sequential access also takes into * account segmap weirdness when reading in chunks * less than the segmap size of 8K. */ if (hp->hs_prev_offset == off || (off < hp->hs_prev_offset && off + MAX(len, PAGESIZE) >= hp->hs_prev_offset)) { if (hp->hs_num_contig < (seq_contig_requests - 1)) { hp->hs_num_contig++; } else { /* * We increase readahead quantum till * a predefined max. max_readahead_bytes * is a multiple of PAGESIZE. */ if (hp->hs_ra_bytes < fsp->hqueue->max_ra_bytes) { hp->hs_ra_bytes += PAGESIZE; } } } else { /* * Not contiguous so reduce read ahead counters. */ if (hp->hs_ra_bytes > 0) hp->hs_ra_bytes -= PAGESIZE; if (hp->hs_ra_bytes <= 0) { hp->hs_ra_bytes = 0; if (hp->hs_num_contig > 0) hp->hs_num_contig--; } } /* * Length must be rounded up to page boundary. * since we read in units of pages. */ hp->hs_prev_offset = off + roundup(len, PAGESIZE); DTRACE_PROBE1(hsfs_compute_ra, struct hsnode *, hp); } if (protp != NULL) *protp = PROT_ALL; if (len <= PAGESIZE) err = hsfs_getapage(vp, (u_offset_t)off, len, protp, pl, plsz, seg, addr, rw, cred); else err = pvn_getpages(hsfs_getapage, vp, off, len, protp, pl, plsz, seg, addr, rw, cred); return (err); } /* * This function should never be called. We need to have it to pass * it as an argument to other functions. */ /*ARGSUSED*/ int hsfs_putapage( vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, int flags, cred_t *cr) { /* should never happen - just destroy it */ cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page"); pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags); return (0); } /* * The only flags we support are B_INVAL, B_FREE and B_DONTNEED. * B_INVAL is set by: * * 1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag. * 2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice * which translates to an MC_SYNC with the MS_INVALIDATE flag. * * The B_FREE (as well as the B_DONTNEED) flag is set when the * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked * from SEGVN to release pages behind a pagefault. */ /*ARGSUSED*/ static int hsfs_putpage( struct vnode *vp, offset_t off, size_t len, int flags, struct cred *cr) { int error = 0; if (vp->v_count == 0) { panic("hsfs_putpage: bad v_count"); /*NOTREACHED*/ } if (vp->v_flag & VNOMAP) return (ENOSYS); ASSERT(off <= HS_MAXFILEOFF); if (!vn_has_cached_data(vp)) /* no pages mapped */ return (0); if (len == 0) { /* from 'off' to EOF */ error = pvn_vplist_dirty(vp, off, hsfs_putapage, flags, cr); } else { offset_t end_off = off + len; offset_t file_size = VTOH(vp)->hs_dirent.ext_size; offset_t io_off; file_size = (file_size + PAGESIZE - 1) & PAGEMASK; if (end_off > file_size) end_off = file_size; for (io_off = off; io_off < end_off; io_off += PAGESIZE) { page_t *pp; /* * We insist on getting the page only if we are * about to invalidate, free or write it and * the B_ASYNC flag is not set. */ if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { pp = page_lookup(vp, io_off, (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); } else { pp = page_lookup_nowait(vp, io_off, (flags & B_FREE) ? SE_EXCL : SE_SHARED); } if (pp == NULL) continue; /* * Normally pvn_getdirty() should return 0, which * impies that it has done the job for us. * The shouldn't-happen scenario is when it returns 1. * This means that the page has been modified and * needs to be put back. * Since we can't write on a CD, we fake a failed * I/O and force pvn_write_done() to destroy the page. */ if (pvn_getdirty(pp, flags) == 1) { cmn_err(CE_NOTE, "hsfs_putpage: dirty HSFS page"); pvn_write_done(pp, flags | B_ERROR | B_WRITE | B_INVAL | B_FORCE); } } } return (error); } /*ARGSUSED*/ static int hsfs_map( struct vnode *vp, offset_t off, struct as *as, caddr_t *addrp, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, struct cred *cred) { struct segvn_crargs vn_a; int error; /* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */ if (vp->v_flag & VNOMAP) return (ENOSYS); if (off > HS_MAXFILEOFF || off < 0 || (off + len) < 0 || (off + len) > HS_MAXFILEOFF) return (ENXIO); if (vp->v_type != VREG) { return (ENODEV); } /* * If file is being locked, disallow mapping. */ if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode)) return (EAGAIN); as_rangelock(as); if ((flags & MAP_FIXED) == 0) { map_addr(addrp, len, off, 1, flags); if (*addrp == NULL) { as_rangeunlock(as); return (ENOMEM); } } else { /* * User specified address - blow away any previous mappings */ (void) as_unmap(as, *addrp, len); } vn_a.vp = vp; vn_a.offset = off; vn_a.type = flags & MAP_TYPE; vn_a.prot = prot; vn_a.maxprot = maxprot; vn_a.flags = flags & ~MAP_TYPE; vn_a.cred = cred; vn_a.amp = NULL; vn_a.szc = 0; vn_a.lgrp_mem_policy_flags = 0; error = as_map(as, *addrp, len, segvn_create, &vn_a); as_rangeunlock(as); return (error); } /* ARGSUSED */ static int hsfs_addmap( struct vnode *vp, offset_t off, struct as *as, caddr_t addr, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, struct cred *cr) { struct hsnode *hp; if (vp->v_flag & VNOMAP) return (ENOSYS); hp = VTOH(vp); mutex_enter(&hp->hs_contents_lock); hp->hs_mapcnt += btopr(len); mutex_exit(&hp->hs_contents_lock); return (0); } /*ARGSUSED*/ static int hsfs_delmap( struct vnode *vp, offset_t off, struct as *as, caddr_t addr, size_t len, uint_t prot, uint_t maxprot, uint_t flags, struct cred *cr) { struct hsnode *hp; if (vp->v_flag & VNOMAP) return (ENOSYS); hp = VTOH(vp); mutex_enter(&hp->hs_contents_lock); hp->hs_mapcnt -= btopr(len); /* Count released mappings */ ASSERT(hp->hs_mapcnt >= 0); mutex_exit(&hp->hs_contents_lock); return (0); } /* ARGSUSED */ static int hsfs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp) { return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); } /* ARGSUSED */ static int hsfs_frlock( struct vnode *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) { struct hsnode *hp = VTOH(vp); /* * If the file is being mapped, disallow fs_frlock. * We are not holding the hs_contents_lock while checking * hs_mapcnt because the current locking strategy drops all * locks before calling fs_frlock. * So, hs_mapcnt could change before we enter fs_frlock making * it meaningless to have held hs_contents_lock in the first place. */ if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode)) return (EAGAIN); return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); } static int hsched_deadline_compare(const void *x1, const void *x2) { const struct hio *h1 = x1; const struct hio *h2 = x2; if (h1->io_timestamp < h2->io_timestamp) return (-1); if (h1->io_timestamp > h2->io_timestamp) return (1); if (h1->io_lblkno < h2->io_lblkno) return (-1); if (h1->io_lblkno > h2->io_lblkno) return (1); if (h1 < h2) return (-1); if (h1 > h2) return (1); return (0); } static int hsched_offset_compare(const void *x1, const void *x2) { const struct hio *h1 = x1; const struct hio *h2 = x2; if (h1->io_lblkno < h2->io_lblkno) return (-1); if (h1->io_lblkno > h2->io_lblkno) return (1); if (h1 < h2) return (-1); if (h1 > h2) return (1); return (0); } void hsched_init_caches(void) { hio_cache = kmem_cache_create("hsfs_hio_cache", sizeof (struct hio), 0, NULL, NULL, NULL, NULL, NULL, 0); hio_info_cache = kmem_cache_create("hsfs_hio_info_cache", sizeof (struct hio_info), 0, NULL, NULL, NULL, NULL, NULL, 0); } void hsched_fini_caches(void) { kmem_cache_destroy(hio_cache); kmem_cache_destroy(hio_info_cache); } /* * Initialize I/O scheduling structures. This is called via hsfs_mount */ void hsched_init(struct hsfs *fsp, int fsid, struct modlinkage *modlinkage) { struct hsfs_queue *hqueue = fsp->hqueue; struct vnode *vp = fsp->hsfs_devvp; /* TaskQ name of the form: hsched_task_ + stringof(int) */ char namebuf[23]; int error, err; struct dk_cinfo info; ldi_handle_t lh; ldi_ident_t li; /* * Default maxtransfer = 16k chunk */ hqueue->dev_maxtransfer = 16384; /* * Try to fetch the maximum device transfer size. This is used to * ensure that a coalesced block does not exceed the maxtransfer. */ err = ldi_ident_from_mod(modlinkage, &li); if (err) { cmn_err(CE_NOTE, "hsched_init: Querying device failed"); cmn_err(CE_NOTE, "hsched_init: ldi_ident_from_mod err=%d\n", err); goto set_ra; } err = ldi_open_by_dev(&(vp->v_rdev), OTYP_CHR, FREAD, CRED(), &lh, li); ldi_ident_release(li); if (err) { cmn_err(CE_NOTE, "hsched_init: Querying device failed"); cmn_err(CE_NOTE, "hsched_init: ldi_open err=%d\n", err); goto set_ra; } error = ldi_ioctl(lh, DKIOCINFO, (intptr_t)&info, FKIOCTL, CRED(), &err); err = ldi_close(lh, FREAD, CRED()); if (err) { cmn_err(CE_NOTE, "hsched_init: Querying device failed"); cmn_err(CE_NOTE, "hsched_init: ldi_close err=%d\n", err); } if (error == 0) { hqueue->dev_maxtransfer = ldbtob(info.dki_maxtransfer); } set_ra: /* * Max size of data to read ahead for sequential access pattern. * Conservative to avoid letting the underlying CD drive to spin * down, in case the application is reading slowly. * We read ahead upto a max of 4 pages. */ hqueue->max_ra_bytes = PAGESIZE * 8; mutex_init(&(hqueue->hsfs_queue_lock), NULL, MUTEX_DEFAULT, NULL); mutex_init(&(hqueue->strategy_lock), NULL, MUTEX_DEFAULT, NULL); avl_create(&(hqueue->read_tree), hsched_offset_compare, sizeof (struct hio), offsetof(struct hio, io_offset_node)); avl_create(&(hqueue->deadline_tree), hsched_deadline_compare, sizeof (struct hio), offsetof(struct hio, io_deadline_node)); (void) snprintf(namebuf, sizeof (namebuf), "hsched_task_%d", fsid); hqueue->ra_task = taskq_create(namebuf, hsfs_taskq_nthreads, minclsyspri + 2, 1, 104857600 / PAGESIZE, TASKQ_DYNAMIC); hqueue->next = NULL; hqueue->nbuf = kmem_zalloc(sizeof (struct buf), KM_SLEEP); } void hsched_fini(struct hsfs_queue *hqueue) { if (hqueue != NULL) { avl_destroy(&(hqueue->read_tree)); avl_destroy(&(hqueue->deadline_tree)); mutex_destroy(&(hqueue->hsfs_queue_lock)); mutex_destroy(&(hqueue->strategy_lock)); /* * If there are any existing readahead threads running * taskq_destroy will wait for them to finish. */ taskq_destroy(hqueue->ra_task); if (hqueue->next != NULL) { kmem_cache_free(hio_cache, hqueue->next); } kmem_free(hqueue->nbuf, sizeof (struct buf)); } } /* * Determine if two I/O requests are adjacent to each other so * that they can coalesced. */ #define IS_ADJACENT(io, nio) \ (((io)->io_lblkno + (io)->nblocks == (nio)->io_lblkno) && \ (io)->bp->b_edev == (nio)->bp->b_edev) /* * This performs the actual I/O scheduling logic. We use the Circular * Look algorithm here. Sort the I/O requests in ascending order of * logical block number and process them starting with the lowest * numbered block and progressing towards higher block numbers in the * queue. Once there are no more higher numbered blocks, start again * with the lowest one. This is good for CD/DVD as you keep moving * the head in one direction along the outward spiral track and avoid * too many seeks as much as possible. The re-ordering also allows * us to coalesce adjacent requests into one larger request. * This is thus essentially a 1-way Elevator with front merging. * * In addition each read request here has a deadline and will be * processed out of turn if the deadline (500ms) expires. * * This function is necessarily serialized via hqueue->strategy_lock. * This function sits just below hsfs_getapage and processes all read * requests orginating from that function. */ int hsched_invoke_strategy(struct hsfs *fsp) { struct hsfs_queue *hqueue; struct buf *nbuf; struct hio *fio, *nio, *tio, *prev, *last; size_t bsize, soffset, offset, data; int bioret, bufcount; struct vnode *fvp; ksema_t *io_done; caddr_t iodata; hqueue = fsp->hqueue; mutex_enter(&hqueue->strategy_lock); mutex_enter(&hqueue->hsfs_queue_lock); /* * Check for Deadline expiration first */ fio = avl_first(&hqueue->deadline_tree); /* * Paranoid check for empty I/O queue. Both deadline * and read trees contain same data sorted in different * ways. So empty deadline tree = empty read tree. */ if (fio == NULL) { /* * Remove the sentinel if there was one. */ if (hqueue->next != NULL) { avl_remove(&hqueue->read_tree, hqueue->next); kmem_cache_free(hio_cache, hqueue->next); hqueue->next = NULL; } mutex_exit(&hqueue->hsfs_queue_lock); mutex_exit(&hqueue->strategy_lock); return (1); } if (drv_hztousec(ddi_get_lbolt()) - fio->io_timestamp < HSFS_READ_DEADLINE) { /* * Apply standard scheduling logic. This uses the * C-LOOK approach. Process I/O requests in ascending * order of logical block address till no subsequent * higher numbered block request remains. Then start * again from the lowest numbered block in the queue. * * We do this cheaply here by means of a sentinel. * The last processed I/O structure from the previous * invocation of this func, is left dangling in the * read_tree so that we can easily scan to the next * higher numbered request and remove the sentinel. */ fio = NULL; if (hqueue->next != NULL) { fio = AVL_NEXT(&hqueue->read_tree, hqueue->next); avl_remove(&hqueue->read_tree, hqueue->next); kmem_cache_free(hio_cache, hqueue->next); hqueue->next = NULL; } if (fio == NULL) { fio = avl_first(&hqueue->read_tree); } } else if (hqueue->next != NULL) { DTRACE_PROBE1(hsfs_deadline_expiry, struct hio *, fio); avl_remove(&hqueue->read_tree, hqueue->next); kmem_cache_free(hio_cache, hqueue->next); hqueue->next = NULL; } /* * In addition we try to coalesce contiguous * requests into one bigger request. */ bufcount = 1; bsize = ldbtob(fio->nblocks); fvp = fio->bp->b_file; nio = AVL_NEXT(&hqueue->read_tree, fio); tio = fio; while (nio != NULL && IS_ADJACENT(tio, nio) && bsize < hqueue->dev_maxtransfer) { avl_remove(&hqueue->deadline_tree, tio); avl_remove(&hqueue->read_tree, tio); tio->contig_chain = nio; bsize += ldbtob(nio->nblocks); prev = tio; tio = nio; /* * This check is required to detect the case where * we are merging adjacent buffers belonging to * different files. fvp is used to set the b_file * parameter in the coalesced buf. b_file is used * by DTrace so we do not want DTrace to accrue * requests to two different files to any one file. */ if (fvp && tio->bp->b_file != fvp) { fvp = NULL; } nio = AVL_NEXT(&hqueue->read_tree, nio); bufcount++; } /* * tio is not removed from the read_tree as it serves as a sentinel * to cheaply allow us to scan to the next higher numbered I/O * request. */ hqueue->next = tio; avl_remove(&hqueue->deadline_tree, tio); mutex_exit(&hqueue->hsfs_queue_lock); DTRACE_PROBE3(hsfs_io_dequeued, struct hio *, fio, int, bufcount, size_t, bsize); /* * The benefit of coalescing occurs if the the savings in I/O outweighs * the cost of doing the additional work below. * It was observed that coalescing 2 buffers results in diminishing * returns, so we do coalescing if we have >2 adjacent bufs. */ if (bufcount > hsched_coalesce_min) { /* * We have coalesced blocks. First allocate mem and buf for * the entire coalesced chunk. * Since we are guaranteed single-threaded here we pre-allocate * one buf at mount time and that is re-used every time. This * is a synthesized buf structure that uses kmem_alloced chunk. * Not quite a normal buf attached to pages. */ fsp->coalesced_bytes += bsize; nbuf = hqueue->nbuf; bioinit(nbuf); nbuf->b_edev = fio->bp->b_edev; nbuf->b_dev = fio->bp->b_dev; nbuf->b_flags = fio->bp->b_flags; nbuf->b_iodone = fio->bp->b_iodone; iodata = kmem_alloc(bsize, KM_SLEEP); nbuf->b_un.b_addr = iodata; nbuf->b_lblkno = fio->bp->b_lblkno; nbuf->b_vp = fvp; nbuf->b_file = fvp; nbuf->b_bcount = bsize; nbuf->b_bufsize = bsize; nbuf->b_resid = bsize; DTRACE_PROBE3(hsfs_coalesced_io_start, struct hio *, fio, int, bufcount, size_t, bsize); /* * Perform I/O for the coalesced block. */ (void) bdev_strategy(nbuf); /* * Duplicate the last IO node to leave the sentinel alone. * The sentinel is freed in the next invocation of this * function. */ prev->contig_chain = kmem_cache_alloc(hio_cache, KM_SLEEP); prev->contig_chain->bp = tio->bp; prev->contig_chain->sema = tio->sema; tio = prev->contig_chain; tio->contig_chain = NULL; soffset = ldbtob(fio->bp->b_lblkno); nio = fio; bioret = biowait(nbuf); data = bsize - nbuf->b_resid; biofini(nbuf); mutex_exit(&hqueue->strategy_lock); /* * We use the b_resid parameter to detect how much * data was succesfully transferred. We will signal * a success to all the fully retrieved actual bufs * before coalescing, rest is signaled as error, * if any. */ tio = nio; DTRACE_PROBE3(hsfs_coalesced_io_done, struct hio *, nio, int, bioret, size_t, data); /* * Copy data and signal success to all the bufs * which can be fully satisfied from b_resid. */ while (nio != NULL && data >= nio->bp->b_bcount) { offset = ldbtob(nio->bp->b_lblkno) - soffset; bcopy(iodata + offset, nio->bp->b_un.b_addr, nio->bp->b_bcount); data -= nio->bp->b_bcount; bioerror(nio->bp, 0); biodone(nio->bp); sema_v(nio->sema); tio = nio; nio = nio->contig_chain; kmem_cache_free(hio_cache, tio); } /* * Signal error to all the leftover bufs (if any) * after b_resid data is exhausted. */ while (nio != NULL) { nio->bp->b_resid = nio->bp->b_bcount - data; bzero(nio->bp->b_un.b_addr + data, nio->bp->b_resid); bioerror(nio->bp, bioret); biodone(nio->bp); sema_v(nio->sema); tio = nio; nio = nio->contig_chain; kmem_cache_free(hio_cache, tio); data = 0; } kmem_free(iodata, bsize); } else { nbuf = tio->bp; io_done = tio->sema; nio = fio; last = tio; while (nio != NULL) { (void) bdev_strategy(nio->bp); nio = nio->contig_chain; } nio = fio; mutex_exit(&hqueue->strategy_lock); while (nio != NULL) { if (nio == last) { (void) biowait(nbuf); sema_v(io_done); break; /* sentinel last not freed. See above. */ } else { (void) biowait(nio->bp); sema_v(nio->sema); } tio = nio; nio = nio->contig_chain; kmem_cache_free(hio_cache, tio); } } return (0); } /* * Insert an I/O request in the I/O scheduler's pipeline * Using AVL tree makes it easy to reorder the I/O request * based on logical block number. */ static void hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra) { struct hsfs_queue *hqueue = fsp->hqueue; mutex_enter(&hqueue->hsfs_queue_lock); fsp->physical_read_bytes += hsio->bp->b_bcount; if (ra) fsp->readahead_bytes += hsio->bp->b_bcount; avl_add(&hqueue->deadline_tree, hsio); avl_add(&hqueue->read_tree, hsio); DTRACE_PROBE3(hsfs_io_enqueued, struct hio *, hsio, struct hsfs_queue *, hqueue, int, ra); mutex_exit(&hqueue->hsfs_queue_lock); } /* ARGSUSED */ static int hsfs_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr) { struct hsfs *fsp; int error = 0; switch (cmd) { case _PC_NAME_MAX: fsp = VFS_TO_HSFS(vp->v_vfsp); *valp = fsp->hsfs_namemax; break; case _PC_FILESIZEBITS: *valp = 33; /* Without multi extent support: 4 GB - 2k */ break; default: error = fs_pathconf(vp, cmd, valp, cr); } return (error); } const fs_operation_def_t hsfs_vnodeops_template[] = { VOPNAME_OPEN, { .vop_open = hsfs_open }, VOPNAME_CLOSE, { .vop_close = hsfs_close }, VOPNAME_READ, { .vop_read = hsfs_read }, VOPNAME_GETATTR, { .vop_getattr = hsfs_getattr }, VOPNAME_ACCESS, { .vop_access = hsfs_access }, VOPNAME_LOOKUP, { .vop_lookup = hsfs_lookup }, VOPNAME_READDIR, { .vop_readdir = hsfs_readdir }, VOPNAME_READLINK, { .vop_readlink = hsfs_readlink }, VOPNAME_FSYNC, { .vop_fsync = hsfs_fsync }, VOPNAME_INACTIVE, { .vop_inactive = hsfs_inactive }, VOPNAME_FID, { .vop_fid = hsfs_fid }, VOPNAME_SEEK, { .vop_seek = hsfs_seek }, VOPNAME_FRLOCK, { .vop_frlock = hsfs_frlock }, VOPNAME_GETPAGE, { .vop_getpage = hsfs_getpage }, VOPNAME_PUTPAGE, { .vop_putpage = hsfs_putpage }, VOPNAME_MAP, { .vop_map = hsfs_map }, VOPNAME_ADDMAP, { .vop_addmap = hsfs_addmap }, VOPNAME_DELMAP, { .vop_delmap = hsfs_delmap }, VOPNAME_PATHCONF, { .vop_pathconf = hsfs_pathconf }, NULL, NULL }; struct vnodeops *hsfs_vnodeops;