/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Copyright 2016 Joyent, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "elf_impl.h" #include #include #if defined(__x86) #include #endif /* defined(__x86) */ extern int at_flags; #define ORIGIN_STR "ORIGIN" #define ORIGIN_STR_SIZE 6 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, ssize_t *); static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, ssize_t *, caddr_t *, ssize_t *); static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); typedef enum { STR_CTF, STR_SYMTAB, STR_DYNSYM, STR_STRTAB, STR_DYNSTR, STR_SHSTRTAB, STR_NUM } shstrtype_t; static const char *shstrtab_data[] = { ".SUNW_ctf", ".symtab", ".dynsym", ".strtab", ".dynstr", ".shstrtab" }; typedef struct shstrtab { int sst_ndx[STR_NUM]; int sst_cur; } shstrtab_t; static void shstrtab_init(shstrtab_t *s) { bzero(&s->sst_ndx, sizeof (s->sst_ndx)); s->sst_cur = 1; } static int shstrtab_ndx(shstrtab_t *s, shstrtype_t type) { int ret; if ((ret = s->sst_ndx[type]) != 0) return (ret); ret = s->sst_ndx[type] = s->sst_cur; s->sst_cur += strlen(shstrtab_data[type]) + 1; return (ret); } static size_t shstrtab_size(const shstrtab_t *s) { return (s->sst_cur); } static void shstrtab_dump(const shstrtab_t *s, char *buf) { int i, ndx; *buf = '\0'; for (i = 0; i < STR_NUM; i++) { if ((ndx = s->sst_ndx[i]) != 0) (void) strcpy(buf + ndx, shstrtab_data[i]); } } static int dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) { ASSERT(phdrp->p_type == PT_SUNWDTRACE); /* * See the comment in fasttrap.h for information on how to safely * update this program header. */ if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) return (-1); args->thrptr = phdrp->p_vaddr + base; return (0); } /* * Map in the executable pointed to by vp. Returns 0 on success. */ int mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) { size_t len; struct vattr vat; caddr_t phdrbase = NULL; ssize_t phdrsize; int nshdrs, shstrndx, nphdrs; int error = 0; Phdr *uphdr = NULL; Phdr *junk = NULL; Phdr *dynphdr = NULL; Phdr *dtrphdr = NULL; uintptr_t lddata; long execsz; intptr_t minaddr; if (lddatap != NULL) *lddatap = NULL; if (error = execpermissions(vp, &vat, args)) { uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); return (error); } if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, &nphdrs)) != 0 || (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, &phdrsize)) != 0) { uprintf("%s: Cannot read %s\n", exec_file, args->pathname); return (error); } if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { uprintf("%s: Nothing to load in %s", exec_file, args->pathname); kmem_free(phdrbase, phdrsize); return (ENOEXEC); } if (lddatap != NULL) *lddatap = lddata; if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, len, &execsz, brksize)) { uprintf("%s: Cannot map %s\n", exec_file, args->pathname); kmem_free(phdrbase, phdrsize); return (error); } /* * Inform our caller if the executable needs an interpreter. */ *interp = (dynphdr == NULL) ? 0 : 1; /* * If this is a statically linked executable, voffset should indicate * the address of the executable itself (it normally holds the address * of the interpreter). */ if (ehdr->e_type == ET_EXEC && *interp == 0) *voffset = minaddr; if (uphdr != NULL) { *uphdr_vaddr = uphdr->p_vaddr; } else { *uphdr_vaddr = (Addr)-1; } kmem_free(phdrbase, phdrsize); return (error); } /*ARGSUSED*/ int elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, int brand_action) { caddr_t phdrbase = NULL; caddr_t bssbase = 0; caddr_t brkbase = 0; size_t brksize = 0; ssize_t dlnsize; aux_entry_t *aux; int error; ssize_t resid; int fd = -1; intptr_t voffset; Phdr *dyphdr = NULL; Phdr *stphdr = NULL; Phdr *uphdr = NULL; Phdr *junk = NULL; size_t len; ssize_t phdrsize; int postfixsize = 0; int i, hsize; Phdr *phdrp; Phdr *dataphdrp = NULL; Phdr *dtrphdr; Phdr *capphdr = NULL; Cap *cap = NULL; ssize_t capsize; int hasu = 0; int hasauxv = 0; int hasdy = 0; int branded = 0; struct proc *p = ttoproc(curthread); struct user *up = PTOU(p); struct bigwad { Ehdr ehdr; aux_entry_t elfargs[__KERN_NAUXV_IMPL]; char dl_name[MAXPATHLEN]; char pathbuf[MAXPATHLEN]; struct vattr vattr; struct execenv exenv; } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ Ehdr *ehdrp; int nshdrs, shstrndx, nphdrs; char *dlnp; char *pathbufp; rlim64_t limit; rlim64_t roundlimit; ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); ehdrp = &bigwad->ehdr; dlnp = bigwad->dl_name; pathbufp = bigwad->pathbuf; /* * Obtain ELF and program header information. */ if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, &nphdrs)) != 0 || (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, &phdrsize)) != 0) goto out; /* * Prevent executing an ELF file that has no entry point. */ if (ehdrp->e_entry == 0) { uprintf("%s: Bad entry point\n", exec_file); goto bad; } /* * Put data model that we're exec-ing to into the args passed to * exec_args(), so it will know what it is copying to on new stack. * Now that we know whether we are exec-ing a 32-bit or 64-bit * executable, we can set execsz with the appropriate NCARGS. */ #ifdef _LP64 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { args->to_model = DATAMODEL_ILP32; *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); } else { args->to_model = DATAMODEL_LP64; args->stk_prot &= ~PROT_EXEC; #if defined(__i386) || defined(__amd64) args->dat_prot &= ~PROT_EXEC; #endif *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); } #else /* _LP64 */ args->to_model = DATAMODEL_ILP32; *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); #endif /* _LP64 */ /* * We delay invoking the brand callback until we've figured out * what kind of elf binary we're trying to run, 32-bit or 64-bit. * We do this because now the brand library can just check * args->to_model to see if the target is 32-bit or 64-bit without * having do duplicate all the code above. */ if ((level < 2) && (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { error = BROP(p)->b_elfexec(vp, uap, args, idatap, level + 1, execsz, setid, exec_file, cred, brand_action); goto out; } /* * Determine aux size now so that stack can be built * in one shot (except actual copyout of aux image), * determine any non-default stack protections, * and still have this code be machine independent. */ hsize = ehdrp->e_phentsize; phdrp = (Phdr *)phdrbase; for (i = nphdrs; i > 0; i--) { switch (phdrp->p_type) { case PT_INTERP: hasauxv = hasdy = 1; break; case PT_PHDR: hasu = 1; break; case PT_SUNWSTACK: args->stk_prot = PROT_USER; if (phdrp->p_flags & PF_R) args->stk_prot |= PROT_READ; if (phdrp->p_flags & PF_W) args->stk_prot |= PROT_WRITE; if (phdrp->p_flags & PF_X) args->stk_prot |= PROT_EXEC; break; case PT_LOAD: dataphdrp = phdrp; break; case PT_SUNWCAP: capphdr = phdrp; break; } phdrp = (Phdr *)((caddr_t)phdrp + hsize); } if (ehdrp->e_type != ET_EXEC) { dataphdrp = NULL; hasauxv = 1; } /* Copy BSS permissions to args->dat_prot */ if (dataphdrp != NULL) { args->dat_prot = PROT_USER; if (dataphdrp->p_flags & PF_R) args->dat_prot |= PROT_READ; if (dataphdrp->p_flags & PF_W) args->dat_prot |= PROT_WRITE; if (dataphdrp->p_flags & PF_X) args->dat_prot |= PROT_EXEC; } /* * If a auxvector will be required - reserve the space for * it now. This may be increased by exec_args if there are * ISA-specific types (included in __KERN_NAUXV_IMPL). */ if (hasauxv) { /* * If a AUX vector is being built - the base AUX * entries are: * * AT_BASE * AT_FLAGS * AT_PAGESZ * AT_SUN_AUXFLAGS * AT_SUN_HWCAP * AT_SUN_HWCAP2 * AT_SUN_PLATFORM (added in stk_copyout) * AT_SUN_EXECNAME (added in stk_copyout) * AT_NULL * * total == 9 */ if (hasdy && hasu) { /* * Has PT_INTERP & PT_PHDR - the auxvectors that * will be built are: * * AT_PHDR * AT_PHENT * AT_PHNUM * AT_ENTRY * AT_LDDATA * * total = 5 */ args->auxsize = (9 + 5) * sizeof (aux_entry_t); } else if (hasdy) { /* * Has PT_INTERP but no PT_PHDR * * AT_EXECFD * AT_LDDATA * * total = 2 */ args->auxsize = (9 + 2) * sizeof (aux_entry_t); } else { args->auxsize = 9 * sizeof (aux_entry_t); } } else { args->auxsize = 0; } /* * If this binary is using an emulator, we need to add an * AT_SUN_EMULATOR aux entry. */ if (args->emulator != NULL) args->auxsize += sizeof (aux_entry_t); /* * On supported kernels (x86_64) make room in the auxv for the * AT_SUN_COMMPAGE entry. This will go unpopulated on i86xpv systems * which do not provide such functionality. */ #if defined(__amd64) args->auxsize += sizeof (aux_entry_t); #endif /* defined(__amd64) */ if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { branded = 1; /* * We will be adding 4 entries to the aux vectors. One for * the the brandname and 3 for the brand specific aux vectors. */ args->auxsize += 4 * sizeof (aux_entry_t); } /* Hardware/Software capabilities */ if (capphdr != NULL && (capsize = capphdr->p_filesz) > 0 && capsize <= 16 * sizeof (*cap)) { int ncaps = capsize / sizeof (*cap); Cap *cp; cap = kmem_alloc(capsize, KM_SLEEP); if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, capsize, (offset_t)capphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { uprintf("%s: Cannot read capabilities section\n", exec_file); goto out; } for (cp = cap; cp < cap + ncaps; cp++) { if (cp->c_tag == CA_SUNW_SF_1 && (cp->c_un.c_val & SF1_SUNW_ADDR32)) { if (args->to_model == DATAMODEL_LP64) args->addr32 = 1; break; } } } aux = bigwad->elfargs; /* * Move args to the user's stack. * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries. */ if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { if (error == -1) { error = ENOEXEC; goto bad; } goto out; } /* we're single threaded after this point */ /* * If this is an ET_DYN executable (shared object), * determine its memory size so that mapelfexec() can load it. */ if (ehdrp->e_type == ET_DYN) len = elfsize(ehdrp, nphdrs, phdrbase, NULL); else len = 0; dtrphdr = NULL; if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr, &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, len, execsz, &brksize)) != 0) goto bad; if (uphdr != NULL && dyphdr == NULL) goto bad; if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); goto bad; } if (dyphdr != NULL) { size_t len; uintptr_t lddata; char *p; struct vnode *nvp; dlnsize = dyphdr->p_filesz; if (dlnsize > MAXPATHLEN || dlnsize <= 0) goto bad; /* * Read in "interpreter" pathname. */ if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz, (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { uprintf("%s: Cannot obtain interpreter pathname\n", exec_file); goto bad; } if (resid != 0 || dlnp[dlnsize - 1] != '\0') goto bad; /* * Search for '$ORIGIN' token in interpreter path. * If found, expand it. */ for (p = dlnp; p = strchr(p, '$'); ) { uint_t len, curlen; char *_ptr; if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) continue; curlen = 0; len = p - dlnp - 1; if (len) { bcopy(dlnp, pathbufp, len); curlen += len; } if (_ptr = strrchr(args->pathname, '/')) { len = _ptr - args->pathname; if ((curlen + len) > MAXPATHLEN) break; bcopy(args->pathname, &pathbufp[curlen], len); curlen += len; } else { /* * executable is a basename found in the * current directory. So - just substitue * '.' for ORIGIN. */ pathbufp[curlen] = '.'; curlen++; } p += ORIGIN_STR_SIZE; len = strlen(p); if ((curlen + len) > MAXPATHLEN) break; bcopy(p, &pathbufp[curlen], len); curlen += len; pathbufp[curlen++] = '\0'; bcopy(pathbufp, dlnp, curlen); } /* * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). * Just in case /usr is not mounted, change it now. */ if (strcmp(dlnp, USR_LIB_RTLD) == 0) dlnp += 4; error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); if (error && dlnp != bigwad->dl_name) { /* new kernel, old user-level */ error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); } if (error) { uprintf("%s: Cannot find %s\n", exec_file, dlnp); goto bad; } /* * Setup the "aux" vector. */ if (uphdr) { if (ehdrp->e_type == ET_DYN) { /* don't use the first page */ bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; } else { bigwad->exenv.ex_bssbase = bssbase; bigwad->exenv.ex_brkbase = brkbase; } bigwad->exenv.ex_brksize = brksize; bigwad->exenv.ex_magic = elfmagic; bigwad->exenv.ex_vp = vp; setexecenv(&bigwad->exenv); ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) ADDAUX(aux, AT_PHNUM, nphdrs) ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) } else { if ((error = execopen(&vp, &fd)) != 0) { VN_RELE(nvp); goto bad; } ADDAUX(aux, AT_EXECFD, fd) } if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { VN_RELE(nvp); uprintf("%s: Cannot execute %s\n", exec_file, dlnp); goto bad; } /* * Now obtain the ELF header along with the entire program * header contained in "nvp". */ kmem_free(phdrbase, phdrsize); phdrbase = NULL; if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, &shstrndx, &nphdrs)) != 0 || (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, &phdrsize)) != 0) { VN_RELE(nvp); uprintf("%s: Cannot read %s\n", exec_file, dlnp); goto bad; } /* * Determine memory size of the "interpreter's" loadable * sections. This size is then used to obtain the virtual * address of a hole, in the user's address space, large * enough to map the "interpreter". */ if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { VN_RELE(nvp); uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); goto bad; } dtrphdr = NULL; error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, execsz, NULL); if (error || junk != NULL) { VN_RELE(nvp); uprintf("%s: Cannot map %s\n", exec_file, dlnp); goto bad; } /* * We use the DTrace program header to initialize the * architecture-specific user per-LWP location. The dtrace * fasttrap provider requires ready access to per-LWP scratch * space. We assume that there is only one such program header * in the interpreter. */ if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { VN_RELE(nvp); uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); goto bad; } VN_RELE(nvp); ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) } if (hasauxv) { int auxf = AF_SUN_HWCAPVERIFY; /* * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via * exec_args() */ ADDAUX(aux, AT_BASE, voffset) ADDAUX(aux, AT_FLAGS, at_flags) ADDAUX(aux, AT_PAGESZ, PAGESIZE) /* * Linker flags. (security) * p_flag not yet set at this time. * We rely on gexec() to provide us with the information. * If the application is set-uid but this is not reflected * in a mismatch between real/effective uids/gids, then * don't treat this as a set-uid exec. So we care about * the EXECSETID_UGIDS flag but not the ...SETID flag. */ if ((setid &= ~EXECSETID_SETID) != 0) auxf |= AF_SUN_SETUGID; /* * If we're running a native process from within a branded * zone under pfexec then we clear the AF_SUN_SETUGID flag so * that the native ld.so.1 is able to link with the native * libraries instead of using the brand libraries that are * installed in the zone. We only do this for processes * which we trust because we see they are already running * under pfexec (where uid != euid). This prevents a * malicious user within the zone from crafting a wrapper to * run native suid commands with unsecure libraries interposed. */ if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && (setid &= ~EXECSETID_SETID) != 0)) auxf &= ~AF_SUN_SETUGID; /* * Record the user addr of the auxflags aux vector entry * since brands may optionally want to manipulate this field. */ args->auxp_auxflags = (char *)((char *)args->stackend + ((char *)&aux->a_type - (char *)bigwad->elfargs)); ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); /* * Hardware capability flag word (performance hints) * Used for choosing faster library routines. * (Potentially different between 32-bit and 64-bit ABIs) */ #if defined(_LP64) if (args->to_model == DATAMODEL_NATIVE) { ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) } else { ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) } #else ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) #endif if (branded) { /* * Reserve space for the brand-private aux vectors, * and record the user addr of that space. */ args->auxp_brand = (char *)((char *)args->stackend + ((char *)&aux->a_type - (char *)bigwad->elfargs)); ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) } /* * Add the comm page auxv entry, mapping it in if needed. */ #if defined(__amd64) if (args->commpage != NULL || (args->commpage = (uintptr_t)comm_page_mapin()) != NULL) { ADDAUX(aux, AT_SUN_COMMPAGE, args->commpage) } else { /* * If the comm page cannot be mapped, pad out the auxv * to satisfy later size checks. */ ADDAUX(aux, AT_NULL, 0) } #endif /* defined(__amd64) */ ADDAUX(aux, AT_NULL, 0) postfixsize = (char *)aux - (char *)bigwad->elfargs; /* * We make assumptions above when we determine how many aux * vector entries we will be adding. However, if we have an * invalid elf file, it is possible that mapelfexec might * behave differently (but not return an error), in which case * the number of aux entries we actually add will be different. * We detect that now and error out. */ if (postfixsize != args->auxsize) { DTRACE_PROBE2(elfexec_badaux, int, postfixsize, int, args->auxsize); goto bad; } ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); } /* * For the 64-bit kernel, the limit is big enough that rounding it up * to a page can overflow the 64-bit limit, so we check for btopr() * overflowing here by comparing it with the unrounded limit in pages. * If it hasn't overflowed, compare the exec size with the rounded up * limit in pages. Otherwise, just compare with the unrounded limit. */ limit = btop(p->p_vmem_ctl); roundlimit = btopr(p->p_vmem_ctl); if ((roundlimit > limit && *execsz > roundlimit) || (roundlimit < limit && *execsz > limit)) { mutex_enter(&p->p_lock); (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, RCA_SAFE); mutex_exit(&p->p_lock); error = ENOMEM; goto bad; } bzero(up->u_auxv, sizeof (up->u_auxv)); up->u_commpagep = args->commpage; if (postfixsize) { int num_auxv; /* * Copy the aux vector to the user stack. */ error = execpoststack(args, bigwad->elfargs, postfixsize); if (error) goto bad; /* * Copy auxv to the process's user structure for use by /proc. * If this is a branded process, the brand's exec routine will * copy it's private entries to the user structure later. It * relies on the fact that the blank entries are at the end. */ num_auxv = postfixsize / sizeof (aux_entry_t); ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); aux = bigwad->elfargs; for (i = 0; i < num_auxv; i++) { up->u_auxv[i].a_type = aux[i].a_type; up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; } } /* * Pass back the starting address so we can set the program counter. */ args->entry = (uintptr_t)(ehdrp->e_entry + voffset); if (!uphdr) { if (ehdrp->e_type == ET_DYN) { /* * If we are executing a shared library which doesn't * have a interpreter (probably ld.so.1) then * we don't set the brkbase now. Instead we * delay it's setting until the first call * via grow.c::brk(). This permits ld.so.1 to * initialize brkbase to the tail of the executable it * loads (which is where it needs to be). */ bigwad->exenv.ex_brkbase = (caddr_t)0; bigwad->exenv.ex_bssbase = (caddr_t)0; bigwad->exenv.ex_brksize = 0; } else { bigwad->exenv.ex_brkbase = brkbase; bigwad->exenv.ex_bssbase = bssbase; bigwad->exenv.ex_brksize = brksize; } bigwad->exenv.ex_magic = elfmagic; bigwad->exenv.ex_vp = vp; setexecenv(&bigwad->exenv); } ASSERT(error == 0); goto out; bad: if (fd != -1) /* did we open the a.out yet */ (void) execclose(fd); psignal(p, SIGKILL); if (error == 0) error = ENOEXEC; out: if (phdrbase != NULL) kmem_free(phdrbase, phdrsize); if (cap != NULL) kmem_free(cap, capsize); kmem_free(bigwad, sizeof (struct bigwad)); return (error); } /* * Compute the memory size requirement for the ELF file. */ static size_t elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) { size_t len; Phdr *phdrp = (Phdr *)phdrbase; int hsize = ehdrp->e_phentsize; int first = 1; int dfirst = 1; /* first data segment */ uintptr_t loaddr = 0; uintptr_t hiaddr = 0; uintptr_t lo, hi; int i; for (i = nphdrs; i > 0; i--) { if (phdrp->p_type == PT_LOAD) { lo = phdrp->p_vaddr; hi = lo + phdrp->p_memsz; if (first) { loaddr = lo; hiaddr = hi; first = 0; } else { if (loaddr > lo) loaddr = lo; if (hiaddr < hi) hiaddr = hi; } /* * save the address of the first data segment * of a object - used for the AT_SUNW_LDDATA * aux entry. */ if ((lddata != NULL) && dfirst && (phdrp->p_flags & PF_W)) { *lddata = lo; dfirst = 0; } } phdrp = (Phdr *)((caddr_t)phdrp + hsize); } len = hiaddr - (loaddr & PAGEMASK); len = roundup(len, PAGESIZE); return (len); } /* * Read in the ELF header and program header table. * SUSV3 requires: * ENOEXEC File format is not recognized * EINVAL Format recognized but execution not supported */ static int getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, int *nphdrs) { int error; ssize_t resid; /* * We got here by the first two bytes in ident, * now read the entire ELF header. */ if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid)) != 0) return (error); /* * Since a separate version is compiled for handling 32-bit and * 64-bit ELF executables on a 64-bit kernel, the 64-bit version * doesn't need to be able to deal with 32-bit ELF files. */ if (resid != 0 || ehdr->e_ident[EI_MAG2] != ELFMAG2 || ehdr->e_ident[EI_MAG3] != ELFMAG3) return (ENOEXEC); if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || #if defined(_ILP32) || defined(_ELF32_COMPAT) ehdr->e_ident[EI_CLASS] != ELFCLASS32 || #else ehdr->e_ident[EI_CLASS] != ELFCLASS64 || #endif !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, ehdr->e_flags)) return (EINVAL); *nshdrs = ehdr->e_shnum; *shstrndx = ehdr->e_shstrndx; *nphdrs = ehdr->e_phnum; /* * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need * to read in the section header at index zero to acces the true * values for those fields. */ if ((*nshdrs == 0 && ehdr->e_shoff != 0) || *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { Shdr shdr; if (ehdr->e_shoff == 0) return (EINVAL); if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid)) != 0) return (error); if (*nshdrs == 0) *nshdrs = shdr.sh_size; if (*shstrndx == SHN_XINDEX) *shstrndx = shdr.sh_link; if (*nphdrs == PN_XNUM && shdr.sh_info != 0) *nphdrs = shdr.sh_info; } return (0); } #ifdef _ELF32_COMPAT extern size_t elf_nphdr_max; #else size_t elf_nphdr_max = 1000; #endif static int getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, caddr_t *phbasep, ssize_t *phsizep) { ssize_t resid, minsize; int err; /* * Since we're going to be using e_phentsize to iterate down the * array of program headers, it must be 8-byte aligned or else * a we might cause a misaligned access. We use all members through * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so * e_phentsize must be at least large enough to include those * members. */ #if !defined(_LP64) || defined(_ELF32_COMPAT) minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); #else minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); #endif if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) return (EINVAL); *phsizep = nphdrs * ehdr->e_phentsize; if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) return (ENOMEM); } else { *phbasep = kmem_alloc(*phsizep, KM_SLEEP); } if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid)) != 0) { kmem_free(*phbasep, *phsizep); *phbasep = NULL; return (err); } return (0); } #ifdef _ELF32_COMPAT extern size_t elf_nshdr_max; extern size_t elf_shstrtab_max; #else size_t elf_nshdr_max = 10000; size_t elf_shstrtab_max = 100 * 1024; #endif static int getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, char **shstrbasep, ssize_t *shstrsizep) { ssize_t resid, minsize; int err; Shdr *shdr; /* * Since we're going to be using e_shentsize to iterate down the * array of section headers, it must be 8-byte aligned or else * a we might cause a misaligned access. We use all members through * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize * must be at least large enough to include that member. The index * of the string table section must also be valid. */ minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || shstrndx >= nshdrs) return (EINVAL); *shsizep = nshdrs * ehdr->e_shentsize; if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) return (ENOMEM); } else { *shbasep = kmem_alloc(*shsizep, KM_SLEEP); } if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid)) != 0) { kmem_free(*shbasep, *shsizep); return (err); } /* * Pull the section string table out of the vnode; fail if the size * is zero. */ shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); if ((*shstrsizep = shdr->sh_size) == 0) { kmem_free(*shbasep, *shsizep); return (EINVAL); } if (*shstrsizep > elf_shstrtab_max) { if ((*shstrbasep = kmem_alloc(*shstrsizep, KM_NOSLEEP)) == NULL) { kmem_free(*shbasep, *shsizep); return (ENOMEM); } } else { *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); } if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid)) != 0) { kmem_free(*shbasep, *shsizep); kmem_free(*shstrbasep, *shstrsizep); return (err); } /* * Make sure the strtab is null-terminated to make sure we * don't run off the end of the table. */ (*shstrbasep)[*shstrsizep - 1] = '\0'; return (0); } static int mapelfexec( vnode_t *vp, Ehdr *ehdr, int nphdrs, caddr_t phdrbase, Phdr **uphdr, Phdr **dyphdr, Phdr **stphdr, Phdr **dtphdr, Phdr *dataphdrp, caddr_t *bssbase, caddr_t *brkbase, intptr_t *voffset, intptr_t *minaddr, size_t len, long *execsz, size_t *brksize) { Phdr *phdr; int i, prot, error; caddr_t addr = NULL; size_t zfodsz; int ptload = 0; int page; off_t offset; int hsize = ehdr->e_phentsize; caddr_t mintmp = (caddr_t)-1; extern int use_brk_lpg; if (ehdr->e_type == ET_DYN) { /* * Obtain the virtual address of a hole in the * address space to map the "interpreter". */ map_addr(&addr, len, (offset_t)0, 1, 0); if (addr == NULL) return (ENOMEM); *voffset = (intptr_t)addr; /* * Calculate the minimum vaddr so it can be subtracted out. * According to the ELF specification, since PT_LOAD sections * must be sorted by increasing p_vaddr values, this is * guaranteed to be the first PT_LOAD section. */ phdr = (Phdr *)phdrbase; for (i = nphdrs; i > 0; i--) { if (phdr->p_type == PT_LOAD) { *voffset -= (uintptr_t)phdr->p_vaddr; break; } phdr = (Phdr *)((caddr_t)phdr + hsize); } } else { *voffset = 0; } phdr = (Phdr *)phdrbase; for (i = nphdrs; i > 0; i--) { switch (phdr->p_type) { case PT_LOAD: if ((*dyphdr != NULL) && (*uphdr == NULL)) return (0); ptload = 1; prot = PROT_USER; if (phdr->p_flags & PF_R) prot |= PROT_READ; if (phdr->p_flags & PF_W) prot |= PROT_WRITE; if (phdr->p_flags & PF_X) prot |= PROT_EXEC; addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); /* * Keep track of the segment with the lowest starting * address. */ if (addr < mintmp) mintmp = addr; zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; offset = phdr->p_offset; if (((uintptr_t)offset & PAGEOFFSET) == ((uintptr_t)addr & PAGEOFFSET) && (!(vp->v_flag & VNOMAP))) { page = 1; } else { page = 0; } /* * Set the heap pagesize for OOB when the bss size * is known and use_brk_lpg is not 0. */ if (brksize != NULL && use_brk_lpg && zfodsz != 0 && phdr == dataphdrp && (prot & PROT_WRITE)) { size_t tlen = P2NPHASE((uintptr_t)addr + phdr->p_filesz, PAGESIZE); if (zfodsz > tlen) { curproc->p_brkpageszc = page_szc(map_pgsz(MAPPGSZ_HEAP, curproc, addr + phdr->p_filesz + tlen, zfodsz - tlen, 0)); } } if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && (prot & PROT_WRITE)) { uint_t szc = curproc->p_brkpageszc; size_t pgsz = page_get_pagesize(szc); caddr_t ebss = addr + phdr->p_memsz; size_t extra_zfodsz; ASSERT(pgsz > PAGESIZE); extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); if (error = execmap(vp, addr, phdr->p_filesz, zfodsz + extra_zfodsz, phdr->p_offset, prot, page, szc)) goto bad; if (brksize != NULL) *brksize = extra_zfodsz; } else { if (error = execmap(vp, addr, phdr->p_filesz, zfodsz, phdr->p_offset, prot, page, 0)) goto bad; } if (bssbase != NULL && addr >= *bssbase && phdr == dataphdrp) { *bssbase = addr + phdr->p_filesz; } if (brkbase != NULL && addr >= *brkbase) { *brkbase = addr + phdr->p_memsz; } *execsz += btopr(phdr->p_memsz); break; case PT_INTERP: if (ptload) goto bad; *dyphdr = phdr; break; case PT_SHLIB: *stphdr = phdr; break; case PT_PHDR: if (ptload) goto bad; *uphdr = phdr; break; case PT_NULL: case PT_DYNAMIC: case PT_NOTE: break; case PT_SUNWDTRACE: if (dtphdr != NULL) *dtphdr = phdr; break; default: break; } phdr = (Phdr *)((caddr_t)phdr + hsize); } if (minaddr != NULL) { ASSERT(mintmp != (caddr_t)-1); *minaddr = (intptr_t)mintmp; } return (0); bad: if (error == 0) error = EINVAL; return (error); } int elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, rlim64_t rlimit, cred_t *credp) { Note note; int error; bzero(¬e, sizeof (note)); bcopy("CORE", note.name, 4); note.nhdr.n_type = type; /* * The System V ABI states that n_namesz must be the length of the * string that follows the Nhdr structure including the terminating * null. The ABI also specifies that sufficient padding should be * included so that the description that follows the name string * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries * respectively. However, since this change was not made correctly * at the time of the 64-bit port, both 32- and 64-bit binaries * descriptions are only guaranteed to begin on a 4-byte boundary. */ note.nhdr.n_namesz = 5; note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, sizeof (note), rlimit, credp)) return (error); *offsetp += sizeof (note); if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, note.nhdr.n_descsz, rlimit, credp)) return (error); *offsetp += note.nhdr.n_descsz; return (0); } /* * Copy the section data from one vnode to the section of another vnode. */ static void copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, void *buf, size_t size, cred_t *credp, rlim64_t rlimit) { ssize_t resid; size_t len, n = src->sh_size; offset_t off = 0; while (n != 0) { len = MIN(size, n); if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || resid >= len || core_write(dst_vp, UIO_SYSSPACE, *doffset + off, buf, len - resid, rlimit, credp) != 0) { dst->sh_size = 0; dst->sh_offset = 0; return; } ASSERT(n >= len - resid); n -= len - resid; off += len - resid; } *doffset += src->sh_size; } #ifdef _ELF32_COMPAT extern size_t elf_datasz_max; #else size_t elf_datasz_max = 1 * 1024 * 1024; #endif /* * This function processes mappings that correspond to load objects to * examine their respective sections for elfcore(). It's called once with * v set to NULL to count the number of sections that we're going to need * and then again with v set to some allocated buffer that we fill in with * all the section data. */ static int process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) { vnode_t *lastvp = NULL; struct seg *seg; int i, j; void *data = NULL; size_t datasz = 0; shstrtab_t shstrtab; struct as *as = p->p_as; int error = 0; if (v != NULL) shstrtab_init(&shstrtab); i = 1; for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { uint_t prot; vnode_t *mvp; void *tmp = NULL; caddr_t saddr = seg->s_base; caddr_t naddr; caddr_t eaddr; size_t segsize; Ehdr ehdr; int nshdrs, shstrndx, nphdrs; caddr_t shbase; ssize_t shsize; char *shstrbase; ssize_t shstrsize; Shdr *shdr; const char *name; size_t sz; uintptr_t off; int ctf_ndx = 0; int symtab_ndx = 0; /* * Since we're just looking for text segments of load * objects, we only care about the protection bits; we don't * care about the actual size of the segment so we use the * reserved size. If the segment's size is zero, there's * something fishy going on so we ignore this segment. */ if (seg->s_ops != &segvn_ops || SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || mvp == lastvp || mvp == NULL || mvp->v_type != VREG || (segsize = pr_getsegsize(seg, 1)) == 0) continue; eaddr = saddr + segsize; prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); pr_getprot_done(&tmp); /* * Skip this segment unless the protection bits look like * what we'd expect for a text segment. */ if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) continue; if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, &nphdrs) != 0 || getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, &shbase, &shsize, &shstrbase, &shstrsize) != 0) continue; off = ehdr.e_shentsize; for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { Shdr *symtab = NULL, *strtab; shdr = (Shdr *)(shbase + off); if (shdr->sh_name >= shstrsize) continue; name = shstrbase + shdr->sh_name; if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { if ((content & CC_CONTENT_CTF) == 0 || ctf_ndx != 0) continue; if (shdr->sh_link > 0 && shdr->sh_link < nshdrs) { symtab = (Shdr *)(shbase + shdr->sh_link * ehdr.e_shentsize); } if (v != NULL && i < nv - 1) { if (shdr->sh_size > datasz && shdr->sh_size <= elf_datasz_max) { if (data != NULL) kmem_free(data, datasz); datasz = shdr->sh_size; data = kmem_alloc(datasz, KM_SLEEP); } v[i].sh_name = shstrtab_ndx(&shstrtab, STR_CTF); v[i].sh_addr = (Addr)(uintptr_t)saddr; v[i].sh_type = SHT_PROGBITS; v[i].sh_addralign = 4; *doffsetp = roundup(*doffsetp, v[i].sh_addralign); v[i].sh_offset = *doffsetp; v[i].sh_size = shdr->sh_size; if (symtab == NULL) { v[i].sh_link = 0; } else if (symtab->sh_type == SHT_SYMTAB && symtab_ndx != 0) { v[i].sh_link = symtab_ndx; } else { v[i].sh_link = i + 1; } copy_scn(shdr, mvp, &v[i], vp, doffsetp, data, datasz, credp, rlimit); } ctf_ndx = i++; /* * We've already dumped the symtab. */ if (symtab != NULL && symtab->sh_type == SHT_SYMTAB && symtab_ndx != 0) continue; } else if (strcmp(name, shstrtab_data[STR_SYMTAB]) == 0) { if ((content & CC_CONTENT_SYMTAB) == 0 || symtab != 0) continue; symtab = shdr; } if (symtab != NULL) { if ((symtab->sh_type != SHT_DYNSYM && symtab->sh_type != SHT_SYMTAB) || symtab->sh_link == 0 || symtab->sh_link >= nshdrs) continue; strtab = (Shdr *)(shbase + symtab->sh_link * ehdr.e_shentsize); if (strtab->sh_type != SHT_STRTAB) continue; if (v != NULL && i < nv - 2) { sz = MAX(symtab->sh_size, strtab->sh_size); if (sz > datasz && sz <= elf_datasz_max) { if (data != NULL) kmem_free(data, datasz); datasz = sz; data = kmem_alloc(datasz, KM_SLEEP); } if (symtab->sh_type == SHT_DYNSYM) { v[i].sh_name = shstrtab_ndx( &shstrtab, STR_DYNSYM); v[i + 1].sh_name = shstrtab_ndx( &shstrtab, STR_DYNSTR); } else { v[i].sh_name = shstrtab_ndx( &shstrtab, STR_SYMTAB); v[i + 1].sh_name = shstrtab_ndx( &shstrtab, STR_STRTAB); } v[i].sh_type = symtab->sh_type; v[i].sh_addr = symtab->sh_addr; if (ehdr.e_type == ET_DYN || v[i].sh_addr == 0) v[i].sh_addr += (Addr)(uintptr_t)saddr; v[i].sh_addralign = symtab->sh_addralign; *doffsetp = roundup(*doffsetp, v[i].sh_addralign); v[i].sh_offset = *doffsetp; v[i].sh_size = symtab->sh_size; v[i].sh_link = i + 1; v[i].sh_entsize = symtab->sh_entsize; v[i].sh_info = symtab->sh_info; copy_scn(symtab, mvp, &v[i], vp, doffsetp, data, datasz, credp, rlimit); v[i + 1].sh_type = SHT_STRTAB; v[i + 1].sh_flags = SHF_STRINGS; v[i + 1].sh_addr = symtab->sh_addr; if (ehdr.e_type == ET_DYN || v[i + 1].sh_addr == 0) v[i + 1].sh_addr += (Addr)(uintptr_t)saddr; v[i + 1].sh_addralign = strtab->sh_addralign; *doffsetp = roundup(*doffsetp, v[i + 1].sh_addralign); v[i + 1].sh_offset = *doffsetp; v[i + 1].sh_size = strtab->sh_size; copy_scn(strtab, mvp, &v[i + 1], vp, doffsetp, data, datasz, credp, rlimit); } if (symtab->sh_type == SHT_SYMTAB) symtab_ndx = i; i += 2; } } kmem_free(shstrbase, shstrsize); kmem_free(shbase, shsize); lastvp = mvp; } if (v == NULL) { if (i == 1) *nshdrsp = 0; else *nshdrsp = i + 1; goto done; } if (i != nv - 1) { cmn_err(CE_WARN, "elfcore: core dump failed for " "process %d; address space is changing", p->p_pid); error = EIO; goto done; } v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); v[i].sh_size = shstrtab_size(&shstrtab); v[i].sh_addralign = 1; *doffsetp = roundup(*doffsetp, v[i].sh_addralign); v[i].sh_offset = *doffsetp; v[i].sh_flags = SHF_STRINGS; v[i].sh_type = SHT_STRTAB; if (v[i].sh_size > datasz) { if (data != NULL) kmem_free(data, datasz); datasz = v[i].sh_size; data = kmem_alloc(datasz, KM_SLEEP); } shstrtab_dump(&shstrtab, data); if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, data, v[i].sh_size, rlimit, credp)) != 0) goto done; *doffsetp += v[i].sh_size; done: if (data != NULL) kmem_free(data, datasz); return (error); } int elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, core_content_t content) { offset_t poffset, soffset; Off doffset; int error, i, nphdrs, nshdrs; int overflow = 0; struct seg *seg; struct as *as = p->p_as; union { Ehdr ehdr; Phdr phdr[1]; Shdr shdr[1]; } *bigwad; size_t bigsize; size_t phdrsz, shdrsz; Ehdr *ehdr; Phdr *v; caddr_t brkbase; size_t brksize; caddr_t stkbase; size_t stksize; int ntries = 0; klwp_t *lwp = ttolwp(curthread); top: /* * Make sure we have everything we need (registers, etc.). * All other lwps have already stopped and are in an orderly state. */ ASSERT(p == ttoproc(curthread)); prstop(0, 0); AS_LOCK_ENTER(as, RW_WRITER); nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ /* * Count the number of section headers we're going to need. */ nshdrs = 0; if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, NULL, &nshdrs); } AS_LOCK_EXIT(as); ASSERT(nshdrs == 0 || nshdrs > 1); /* * The core file contents may required zero section headers, but if * we overflow the 16 bits allotted to the program header count in * the ELF header, we'll need that program header at index zero. */ if (nshdrs == 0 && nphdrs >= PN_XNUM) nshdrs = 1; phdrsz = nphdrs * sizeof (Phdr); shdrsz = nshdrs * sizeof (Shdr); bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); bigwad = kmem_alloc(bigsize, KM_SLEEP); ehdr = &bigwad->ehdr; bzero(ehdr, sizeof (*ehdr)); ehdr->e_ident[EI_MAG0] = ELFMAG0; ehdr->e_ident[EI_MAG1] = ELFMAG1; ehdr->e_ident[EI_MAG2] = ELFMAG2; ehdr->e_ident[EI_MAG3] = ELFMAG3; ehdr->e_ident[EI_CLASS] = ELFCLASS; ehdr->e_type = ET_CORE; #if !defined(_LP64) || defined(_ELF32_COMPAT) #if defined(__sparc) ehdr->e_ident[EI_DATA] = ELFDATA2MSB; ehdr->e_machine = EM_SPARC; #elif defined(__i386) || defined(__i386_COMPAT) ehdr->e_ident[EI_DATA] = ELFDATA2LSB; ehdr->e_machine = EM_386; #else #error "no recognized machine type is defined" #endif #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ #if defined(__sparc) ehdr->e_ident[EI_DATA] = ELFDATA2MSB; ehdr->e_machine = EM_SPARCV9; #elif defined(__amd64) ehdr->e_ident[EI_DATA] = ELFDATA2LSB; ehdr->e_machine = EM_AMD64; #else #error "no recognized 64-bit machine type is defined" #endif #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ /* * If the count of program headers or section headers or the index * of the section string table can't fit in the mere 16 bits * shortsightedly allotted to them in the ELF header, we use the * extended formats and put the real values in the section header * as index 0. */ ehdr->e_version = EV_CURRENT; ehdr->e_ehsize = sizeof (Ehdr); if (nphdrs >= PN_XNUM) ehdr->e_phnum = PN_XNUM; else ehdr->e_phnum = (unsigned short)nphdrs; ehdr->e_phoff = sizeof (Ehdr); ehdr->e_phentsize = sizeof (Phdr); if (nshdrs > 0) { if (nshdrs >= SHN_LORESERVE) ehdr->e_shnum = 0; else ehdr->e_shnum = (unsigned short)nshdrs; if (nshdrs - 1 >= SHN_LORESERVE) ehdr->e_shstrndx = SHN_XINDEX; else ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; ehdr->e_shentsize = sizeof (Shdr); } if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, sizeof (Ehdr), rlimit, credp)) goto done; poffset = sizeof (Ehdr); soffset = sizeof (Ehdr) + phdrsz; doffset = sizeof (Ehdr) + phdrsz + shdrsz; v = &bigwad->phdr[0]; bzero(v, phdrsz); setup_old_note_header(&v[0], p); v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); doffset += v[0].p_filesz; setup_note_header(&v[1], p); v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); doffset += v[1].p_filesz; mutex_enter(&p->p_lock); brkbase = p->p_brkbase; brksize = p->p_brksize; stkbase = p->p_usrstack - p->p_stksize; stksize = p->p_stksize; mutex_exit(&p->p_lock); AS_LOCK_ENTER(as, RW_WRITER); i = 2; for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); caddr_t saddr, naddr; void *tmp = NULL; extern struct seg_ops segspt_shmops; for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { uint_t prot; size_t size; int type; vnode_t *mvp; prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); prot &= PROT_READ | PROT_WRITE | PROT_EXEC; if ((size = (size_t)(naddr - saddr)) == 0) continue; if (i == nphdrs) { overflow++; continue; } v[i].p_type = PT_LOAD; v[i].p_vaddr = (Addr)(uintptr_t)saddr; v[i].p_memsz = size; if (prot & PROT_READ) v[i].p_flags |= PF_R; if (prot & PROT_WRITE) v[i].p_flags |= PF_W; if (prot & PROT_EXEC) v[i].p_flags |= PF_X; /* * Figure out which mappings to include in the core. */ type = SEGOP_GETTYPE(seg, saddr); if (saddr == stkbase && size == stksize) { if (!(content & CC_CONTENT_STACK)) goto exclude; } else if (saddr == brkbase && size == brksize) { if (!(content & CC_CONTENT_HEAP)) goto exclude; } else if (seg->s_ops == &segspt_shmops) { if (type & MAP_NORESERVE) { if (!(content & CC_CONTENT_DISM)) goto exclude; } else { if (!(content & CC_CONTENT_ISM)) goto exclude; } } else if (seg->s_ops != &segvn_ops) { goto exclude; } else if (type & MAP_SHARED) { if (shmgetid(p, saddr) != SHMID_NONE) { if (!(content & CC_CONTENT_SHM)) goto exclude; } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || mvp == NULL || mvp->v_type != VREG) { if (!(content & CC_CONTENT_SHANON)) goto exclude; } else { if (!(content & CC_CONTENT_SHFILE)) goto exclude; } } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || mvp == NULL || mvp->v_type != VREG) { if (!(content & CC_CONTENT_ANON)) goto exclude; } else if (prot == (PROT_READ | PROT_EXEC)) { if (!(content & CC_CONTENT_TEXT)) goto exclude; } else if (prot == PROT_READ) { if (!(content & CC_CONTENT_RODATA)) goto exclude; } else { if (!(content & CC_CONTENT_DATA)) goto exclude; } doffset = roundup(doffset, sizeof (Word)); v[i].p_offset = doffset; v[i].p_filesz = size; doffset += size; exclude: i++; } ASSERT(tmp == NULL); } AS_LOCK_EXIT(as); if (overflow || i != nphdrs) { if (ntries++ == 0) { kmem_free(bigwad, bigsize); overflow = 0; goto top; } cmn_err(CE_WARN, "elfcore: core dump failed for " "process %d; address space is changing", p->p_pid); error = EIO; goto done; } if ((error = core_write(vp, UIO_SYSSPACE, poffset, v, phdrsz, rlimit, credp)) != 0) goto done; if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, credp)) != 0) goto done; if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, credp, content)) != 0) goto done; for (i = 2; i < nphdrs; i++) { prkillinfo_t killinfo; sigqueue_t *sq; int sig, j; if (v[i].p_filesz == 0) continue; /* * If dumping out this segment fails, rather than failing * the core dump entirely, we reset the size of the mapping * to zero to indicate that the data is absent from the core * file and or in the PF_SUNW_FAILURE flag to differentiate * this from mappings that were excluded due to the core file * content settings. */ if ((error = core_seg(p, vp, v[i].p_offset, (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, rlimit, credp)) == 0) { continue; } if ((sig = lwp->lwp_cursig) == 0) { /* * We failed due to something other than a signal. * Since the space reserved for the segment is now * unused, we stash the errno in the first four * bytes. This undocumented interface will let us * understand the nature of the failure. */ (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, &error, sizeof (error), rlimit, credp); v[i].p_filesz = 0; v[i].p_flags |= PF_SUNW_FAILURE; if ((error = core_write(vp, UIO_SYSSPACE, poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), rlimit, credp)) != 0) goto done; continue; } /* * We took a signal. We want to abort the dump entirely, but * we also want to indicate what failed and why. We therefore * use the space reserved for the first failing segment to * write our error (which, for purposes of compatability with * older core dump readers, we set to EINTR) followed by any * siginfo associated with the signal. */ bzero(&killinfo, sizeof (killinfo)); killinfo.prk_error = EINTR; sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; if (sq != NULL) { bcopy(&sq->sq_info, &killinfo.prk_info, sizeof (sq->sq_info)); } else { killinfo.prk_info.si_signo = lwp->lwp_cursig; killinfo.prk_info.si_code = SI_NOINFO; } #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) /* * If this is a 32-bit process, we need to translate from the * native siginfo to the 32-bit variant. (Core readers must * always have the same data model as their target or must * be aware of -- and compensate for -- data model differences.) */ if (curproc->p_model == DATAMODEL_ILP32) { siginfo32_t si32; siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); bcopy(&si32, &killinfo.prk_info, sizeof (si32)); } #endif (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, &killinfo, sizeof (killinfo), rlimit, credp); /* * For the segment on which we took the signal, indicate that * its data now refers to a siginfo. */ v[i].p_filesz = 0; v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | PF_SUNW_SIGINFO; /* * And for every other segment, indicate that its absence * is due to a signal. */ for (j = i + 1; j < nphdrs; j++) { v[j].p_filesz = 0; v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; } /* * Finally, write out our modified program headers. */ if ((error = core_write(vp, UIO_SYSSPACE, poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0) goto done; break; } if (nshdrs > 0) { bzero(&bigwad->shdr[0], shdrsz); if (nshdrs >= SHN_LORESERVE) bigwad->shdr[0].sh_size = nshdrs; if (nshdrs - 1 >= SHN_LORESERVE) bigwad->shdr[0].sh_link = nshdrs - 1; if (nphdrs >= PN_XNUM) bigwad->shdr[0].sh_info = nphdrs; if (nshdrs > 1) { AS_LOCK_ENTER(as, RW_WRITER); if ((error = process_scns(content, p, credp, vp, &bigwad->shdr[0], nshdrs, rlimit, &doffset, NULL)) != 0) { AS_LOCK_EXIT(as); goto done; } AS_LOCK_EXIT(as); } if ((error = core_write(vp, UIO_SYSSPACE, soffset, &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) goto done; } done: kmem_free(bigwad, bigsize); return (error); } #ifndef _ELF32_COMPAT static struct execsw esw = { #ifdef _LP64 elf64magicstr, #else /* _LP64 */ elf32magicstr, #endif /* _LP64 */ 0, 5, elfexec, elfcore }; static struct modlexec modlexec = { &mod_execops, "exec module for elf", &esw }; #ifdef _LP64 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, int brand_action); extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, core_content_t content); static struct execsw esw32 = { elf32magicstr, 0, 5, elf32exec, elf32core }; static struct modlexec modlexec32 = { &mod_execops, "32-bit exec module for elf", &esw32 }; #endif /* _LP64 */ static struct modlinkage modlinkage = { MODREV_1, (void *)&modlexec, #ifdef _LP64 (void *)&modlexec32, #endif /* _LP64 */ NULL }; int _init(void) { return (mod_install(&modlinkage)); } int _fini(void) { return (mod_remove(&modlinkage)); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } #endif /* !_ELF32_COMPAT */